Compilers

Chapter 1: Bonus material
Bootstrapping compilers:
“T-diagrams”

* Lecturer:
— Paul Kelly (p.kelly@imperial.ac.uk)

Non-examinable material for fun/interest

anuary 21 1

mailto:p.kelly@imperial.ac.uk

* How was the first ever C
compiler written?

e INC?

CLANG/LLVM
C++

 How was the first ever C
compiler written?

X86
Assembler

VAX

C++ Assembler

Dennis Ritchie’s C compiler
PDP11 Target language

Assembler AT&T PCC

PDP 11 PDP11
assembler

Source language

Assembler o |mplemented in

« In assembly code, by hand!

* A“T-Diagram” shows the source language, the target

language, and the implementation language

— (GCC and CLANG/LLVM are compiler frameworks that support multiple
January 21 source languages and target architectures)

CLANG/LLVM
X86
Assembler

« How was the second C compiler
written?

C++

VAX

C++ Assembler

Dennis Ritchie’s C compiler
PDP11

Assembler AT&T PCC

PDP11
assembler

PDP 11
Assembler

* In C, compiled using the first C compiler

January 21

« How were later compilers written?

CLANG/LLVM

X86
Assembler

PDP11

assembler

PDP11
Assembler

PDP 11
Assembler

* In languages compiled by earlier compilers
« And ported to new Instruction sets

January 21

« How were compilers ported to new hardware?

CLANG/LLVM
RISCV
Assembler

, CLANG/LLVM
Modified “cross-compiler”: Cit X86

runs on x86 but generates Assembler
RISCV code Original, “native”

C++

compiler runs on x86,
generates x86 code

January 21 6

« How were later compilers ported to new hardware?

“bootstrapping”:

recompile the RISCV
compiler with itself, to CLANG/LM

get a compiler that runs C++ pembler
on RISCV and generates CLANG/LLVM
RISCV code C++t RISCV

Assembler

n . CLANG/LLVM
Modified “cross-compiler”: Cit X86

runs on x86 but generates Assembler
RISCV code Original, “native”

compiler runs on x86,
generates x86 code

* By “bootstrapping”:
— First, develop a new back-end that generates code for the new target
— Then use it to recompile the compiler itself

January 21 7

« How were later compilers written in other languages?

Compcert C compiler

RISCV
assembler

The CompCert project investigates the formal verific s usable for
eritical ed software, Such verified compilers come with a mathematical, machine-
X 8 6 checked proof that the generated executable code behaves exactly as prescribed by the Tome
juced bugs,
vvvvvvvv
g
to source programs.
assempler Resereh

Downloads

Ocaml Assembler

Assembler

« Example: Compcert is a formally-verified C
generating code for x86, ARM, PowerPC and RISCV

The compiler is Implemented in the theorem prover Coq
Which is implemented in the functional language OCaml

January 21

« How about compilers that generate high-level code?

Compcert C compiler

RISCV
Assembler

X86
Assembler

Coq OCaml

X86
Assembler

OCaml

X86
Assembler

« Actually Coq is compiled first to Ocaml source
code then to machine code

January 21

« How about interpreters?

« Actually the OCaml compiler is written in OCaml
« An Ocaml interpreter is used to compile the OCaml compiler

* See also “J —diagrams” (https://johnwickerson.wordpress.com/2020/05/21/diagrams-

for-composing-compilers/)

10

https://johnwickerson.wordpress.com/2020/05/21/diagrams-for-composing-compilers/

If you like this kind
of thing, check out
this:
Ken Thompson. 1984.
Reflections on trusting
trust. Commun. ACM 27,
8 (Aug 1984), 761-763.
DOI:

https://doi.org/10.1145/3
58198.358210

Then figure out If
you can find a way
to ever trust a
compiler again...

TURING AWARD LECTURE

Reflections on Trusting Trust

To what extent should one trust a statement that a program is free of Trojan
horses? Perhaps it is more important to trust the people who wrote the

software.

KEN THOMPSON

INTRODUCTION

[thank the ACM for this award. I can’t help but feel
that I am receiving this honor for timing and serendip-
ity as much as technical merit. UNIX' swept into popu-
larity with an industry-wide change from central main-
frames to autonomous minis. I suspect that Daniel Bob-
row [1] would be here instead of me if he could not
afford a PDP-10 and had had to “settle” for a PDP-11.
Moreover, the current state of UNIX is the result of the
labors of a large number of people.

There is an old adage, “Dance with the one that
brought you,” which means that I should talk about
UNIX. I have not worked on mainstream UNIX in many
years, yet I continue to get undeserved credit for the
work of others. Therefore, I am not going to talk about
UNIX, but I want to thank everyone who has contrib-
uted.

programs. I would like to present to you the cutest
program I ever wrote. [will do this in three stages and
try to bring it together at the end.

STAGE 1

In college, before video games, we would amuse our-
selves by posing programming exercises. One of the
favorites was to write the shortest self-reproducing pro-
gram. Since this is an exercise divorced from reality,
the usual vehicle was FORTRAN. Actually, FORTRAN
was the language of choice for the same reason that
three-legged races are popular.

More precisely stated, the problem is to write a
source program that, when compiled and executed, will
produce as output an exact copy of its source. If you
have never done this, I urge you to try it on your own.

Il

https://doi.org/10.1145/358198.358210

Curtiss JN-4 "Jenny" Aircraft
With Model Wing Suspended
Description Active aircraft biplane,
NACA 29-38131, with model wing

suspended during flight.

12

