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The plan

• A simple language with assignments, loops etc.

• A stack-based instruction set and its code generator

• Code generation for a machine with registers:

– an unbounded number of registers

– a fixed number of registers

– avoiding running out of registers

– register allocation across multiple statements

This will lead us on to dataflow analysis and 

optimisation
January 23 Compilers Chapter 3 © Paul Kelly, Imperial College
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A simple programming language with statements 

and loops

• Concrete syntax:

stat → ident ‘:=’ exp | 

stat ‘;’ stat | 

‘for’ ident ‘from’ exp ‘to’ exp ‘do’ stat ‘od’

exp → exp binop exp | 

unop exp | 

ident | 

num

binop → ‘+’ | ‘-’ | ‘*’ | ‘/’

unop → ‘-’
January 23 Compilers Chapter 3 © Paul Kelly, Imperial College

(Language based on Maple)
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Abstract syntax tree data type:

• data Stat = Assign name Exp | 

Seq Stat Stat | 

ForLoop Name Exp Exp Stat

• data Exp = Binop Op Exp Exp | 

Unop Op Exp | 

Ident Name | 

Const Int

• data Op = Plus | Minus | 

Times | Divide | Minus

• type Name = [Char]

January 23 Compilers Chapter 3 © Paul Kelly, Imperial College
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Target machine: stack machine

• To begin with we consider a computer consisting 
of a main store, addressed from zero up to some 
limit, together with a program counter, a current 
instruction register, a pointer to the topmost item 
on the stack, and a temporary register.

• We can specify what the machine does by giving 
an interpreter for its instruction set.
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PROCEDURE stackmachine()

VAR store : ARRAY [0..maxmem] OF BYTE;

PC, IR, SP, T : BYTE;

BEGIN

PC := 0;   SP := maxmem;  (* stack grows downwards *)

REPEAT

IR := store[PC];

PC := PC + 4;

CASE opcode(IR) OF

ADD: ....action for ADD...

SUB: ....action for SUB...

PUSHIMM: ....action for PUSHIMM...

PUSHABS: ....action for PUSHABS...

COMPEQ: ....action for COMPEQ...

JTRUE: ....action for JTRUE...

FOREVER

END
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The function opcode selects the 

opcode part of the instruction word

Actions for each instruction defined shortly

This is a description of 

how the machine 

executes instructions
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Instruction set for stack machine

data Instruction 

= Add | Sub | Mul | Div (as before)

| PushImm Int (push constant onto stack)

| PushAbs Name(push variable at given location onto stack)

| Pop Name (remove top of stack & store it at given loc’n)

| CompEq (subtract top two elements of stack, and

replace with 1 if the result was zero, 0 otherwise)

| JTrue Label (remove top item from stack; if 1 jump to label)

| JFalse Label (jump if stack top is 0)

| Define Label (set up destination for jump)

Note that Define is an assembler directive, not an executable 
instruction
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What exactly do these instructions do?
CASE opcode(IR) OF

ADD: 

T:=store[SP];

SP := SP+4;

T:=store[SP]+T;

store[SP]:=T;

PUSHIMM: 

SP:=SP-4;

store[SP]:=operand(IR);

PUSHABS: 

T:=store[operand(IR)];

SP:=SP-4;

store[SP]:=T;
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POP: 

T:=store[SP];

SP:=SP+4;

store[operand(IR)]:=T;

COMPEQ:

T:=store[SP];

SP := SP+4;

T:=store[SP]-T;

store[SP]:=IF T=0 THEN 1 ELSE 0;

JTRUE: 

T:=store[SP];

SP:=SP+4;

IF T=1 THEN PC:=operand(IR);
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Assembly code

• A typical assembly 
language sequence:

PushAbs i

PushImm 1

Sub

Pop i

PushAbs i

PushImm 100

CompEq

JTrue start

January 23 Compilers Chapter 3 © Paul Kelly, Imperial College

31 30 29 28 27 26 25 24 25 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

Bits:Opcode Operan

d

00000000000000000000010000000001

00000000000000000000000000100010

00000000000000000000000000000011

00000000000000000000010000000100

00000000000000000000010000000001

0000000000000000000110010000010

00000000000000000000000000000101

00000000000000000001000000000110

Location

128

132

136

140

144

148

152

156

• Corresponding binary 
encoding:

(assuming variable i is stored at 
address 32 (=10000 in binary)

Assembler
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Assembly code

• A typical assembly 
language sequence:

PushAbs i

PushImm 1

Sub

Pop i

PushAbs i

PushImm 100

CompEq

JTrue start
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31 30 29 28 27 26 25 24 25 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

Bits:Opcode Operan

d

00000000000000000000010000000001

00000000000000000000000000100010

00000000000000000000000000000011

00000000000000000000010000000100

00000000000000000000010000000001

0000000000000000000110010000010

00000000000000000000000000000101

00000000000000000001000000000110

Location

128

132

136

140

144

148

152

156

• Corresponding binary 
encoding:

Assembler

How does the 
assembler know what 
address “start” is?

(assuming variable i is stored at 
address 32 (=10000 in binary)
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Labels

• A typical assembly 
language sequence:

start:

PushAbs i

PushImm 1

Sub

Pop i

PushAbs i

PushImm 100

CompEq

JTrue start
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31 30 29 28 27 26 25 24 25 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

Bits:Opcode Operan

d

00000000000000000000010000000001

00000000000000000000000000100010

00000000000000000000000000000011

00000000000000000000010000000100

00000000000000000000010000000001

0000000000000000000110010000010

00000000000000000000000000000101

00000000000000000001000000000110

Location

128

132

136

140

144

148

152

156

• Corresponding binary 
encoding:

Assembler

The label tells the assembler to 
associate the symbol “start” with 
the address of the next instruction

(assuming variable i is stored at 
address 32 (=10000 in binary)
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Representation in Haskell

• A typical assembly 
language sequence:

PushAbs i

PushImm 1

Sub

Pop i

PushAbs i

PushImm 100

CompEq

JTrue start

January 23 Compilers Chapter 3 © Paul Kelly, Imperial College

• In our code generator, 
assembly code is 
represented by the 
Haskell list:

[

PushAbs "i",

PushImm 1, 

Sub, 

Pop "i", 

PushAbs "i",

CompEQ, 

Jtrue "start“

]
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• A typical assembly 
language sequence:

start:

PushAbs i

PushImm 1

Sub

Pop i

PushAbs i

PushImm 100

CompEq

JTrue start
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• In our code generator, 
assembly code is 
represented by the 
Haskell list:
[Define “start”,

PushAbs "i",

PushImm 1, 

Sub, 

Pop "i", 

PushAbs "i",

CompEQ, 

Jtrue "start“

]

Representation in Haskell: labels

• This is a Haskell representation of assembly language: we add a 

pseudo-instruction “Define” in the instruction data type

• In assembly language, cross-references are represented using labels 

which are resolved by the linker
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A Naive code generator for a stack machine

• We now present a syntax-directed code generator for 

the language with assignment and ‘for’ loops

• The structure of the translator is derived directly from 

the AST data type: we deal with each of the 

alternatives using a separate rule

• Begin with assignment:

transStat :: stat -> [instruction]

transStat (Assign (Ident id) exp) = ...

transStat (Seq s1 s2) = ...

transStat (ForLoop id e1 e2 body) = ...

January 23 Compilers Chapter 3 © Paul Kelly, Imperial College
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Assignment:

transStat (Assign id exp)

= transExp exp ++ [Pop id]

• The output code consists of instructions generated by 
transExp (see later), joined to the one element list 

‘[Pop id]’.

• ‘transExp exp’ yields a list of instructions, which, 
when executed, leave the value of the RHS of the 
assignment on the top of the stack.

• When the ‘Pop id’ instruction is executed, it removes 
the value from the stack and stores it at the location 
specified by the name id.

January 23 Compilers Chapter 3 © Paul Kelly, Imperial College
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Statement sequence:

transStat (Seq s1 s2)

= transStat s1 ++ transStat s2

January 23 Compilers Chapter 3 © Paul Kelly, Imperial College



20

For loop: • Basic idea—given the source code:

for x := e1 to e2 do

body

od

next statement

• we want the output code to look like:

x := e1

label1:

if x>e2 then goto label2

body

x := x + 1

goto label1

label2:

code for next statement

January 23 Compilers Chapter 3 © Paul Kelly, Imperial College

The ‘for’
statement is a 
bit more 
complicated…

This is our “code 

template” for the 

‘for’ loop



For loops…

• Example: Source code:

for x := 1 to 10 do

a := a+x;

od

• … Resulting code:

January 23 Compilers Chapter 3 © Paul Kelly, Imperial College

[PushImm 1, (initialisation)

Pop "x",

Define L1,

PushImm 10, (test)

PushAbs "x",

CompGt.

JTrue L2,

PushAbs "a", (body)

PushAbs "x",

Add,  Pop "a", (store a+x in a)

PushAbs "x", (increment)

PushImm 1,

Add,

Pop "x", (store x+1 in x)

Jump L1,

Define L2]



22

• From the template, write down the translator:

transStat (ForLoop id e1 e2 body)

= transExp e1 ++ [Pop id] ++

[Define label1] ++

transExp e2 ++ [PushAbs id] ++ [CompGt] ++

[JTrue label2] ++

transStat body ++

[PushAbs id] ++ [PushImm 1] ++ [Add] ++ [Pop id]++

[Jump label1] ++

[Define label2]

January 23 Compilers Chapter 3 © Paul Kelly, Imperial College

(initialisation)

(test)

(increment)

where label1and label2 are fresh 

labels which have not been used so far
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Expressions:

• This completes the 

statement part of 

the code generator; 

all that remains is 

to deal with 

expressions—

which are handled 

just as they were 

in the introductory 

example:

January 23

transExp :: Exp -> [Instruction]

transExp (Binop op e1 e2)

= transExp e1 ++

transExp e2 ++

transOp op

transExp (Unop op e)

= transExp e ++

transUnop op

transExp (Ident id) = [PushAbs id]

transExp (Const v) = [PushImm v]

transOp Plus = [Add]

transOp Minus = [Sub]

transOp Times = [Mul]

transOp Divide = [Div]

transUnop Minus = [Negate]
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Conclusion

• This chapter has shown how a code generator can be written, 
which takes an AST as input and produces a working assembler 
program as output.

• We divided the problem into two parts: code generation for 
statements (e.g. assignment, if-then-else, while, for etc), and code 
generation for expressions.

• For each statement type, the code generator uses a standard 
“template”; the details of the statement determine how the gaps 
are filled in.

• For expressions we used a very simple, stack-based scheme; we 
will study better ways very shortly

• We haven’t looked at procedures, declarations, records, etc.

January 23 Compilers Chapter 3 © Paul Kelly, Imperial College
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Textbooks• EaC

– Section 4.4: ad-hoc syntax-directed translation

– especially Figure 4.14 (pg 198)

– Section 4.3: Attribute grammars

– See also section 11.1

• Appel

– Section 11.4: Expression trees, register allocation

– Section 9: Instruction selection (Appel skips simple code 
generation and concentrates on finding the best instruction to 
match the context).

• Dragon Book

– Chapter 2: introduction to code generation

– Chapter 8, esp 8.1 and 8.6

January 23 Compilers Chapter 3 © Paul Kelly, Imperial College
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This course vs the textbooks
• In this course, we translate the text into the AST, then translate 

the AST to assembler. Modern compilers tend to use an more 
than one Intermediate Representation (IR)

• See EaC Chapter 5

• The first IR is often a tree, the Abstract Syntax Tree 

– But may include statement operations and expressions uniformly

– This is useful for more sophisticated instruction selection and register 
allocation techniques

• This tree is typically “flattened” into a control-flow graph or 
linear IR, that makes branches/jumps explicit

– A data structure representing the assembler-level code

– Useful for control-flow – sensitive optimisations like loop-invariant 
code motion

• Modern compilers often also use dependence-based graph 
representations, and “static single assignment” form

January 23 Compilers Chapter 3 © Paul Kelly, Imperial College
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Appendix A

• To help clarify what is going on for students less 

familiar with Haskell, the next few slides offer a 

sketch of how to do this is Java.  

• You can find the code at

http://www.doc.ic.ac.uk/~phjk/CompilersCourse/Sample

Code/Ex2-CodeGenInJava/

January 23 Compilers Chapter 3 © Paul Kelly, Imperial College

http://www.doc.ic.ac.uk/~phjk/CompilersCourse/SampleCode/Ex2-CodeGenInJava/
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Step 1: define abstract syntax tree

January 23 Compilers Chapter 3 © Paul Kelly, Imperial College

public abstract class StatementTree {

public abstract void Accept(StatementTreeVisitor v);

}

public class AssignNode extends StatementTree {

String lhs; ExpressionTree rhs;

AssignNode(String _lhs, ExpressionTree _rhs) {

lhs = _lhs; rhs = _rhs;

}

public void Accept(StatementTreeVisitor v) {

v.visitAssignNode(lhs, rhs);

}

} Each AST node type extends StatementTree abstract class

Each node has members, constructor, and accepts a visitor
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Step 1: define abstract syntax tree

January 23 Compilers Chapter 3 © Paul Kelly, Imperial College

public class CompoundNode extends StatementTree {

Vector body; // Vector of StatementTree

CompoundNode(Vector _body) {

body = _body;

}

public void Accept(StatementTreeVisitor v) {

v.visitCompoundNode(body);

}}
public class IfThenNode extends StatementTree {

ExpressionTree cond; StatementTree body;

IfThenNode(ExpressionTree _cond, StatementTree _body) {

cond = _cond; body = _body;

}

public void Accept(StatementTreeVisitor v) {

v.visitIfThenNode(cond, body);

}} Each AST node type extends StatementTree abstract class

Each node has members, constructor, and accepts a visitor

For this example we 

define an AST with 

three node types: 

• Assignment statement

• Compound statement

• If-Then statement
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Step 2: define the Visitor class

January 23 Compilers Chapter 3 © Paul Kelly, Imperial College

public abstract class StatementTreeVisitor {

abstract void visitCompoundNode(Vector body);

abstract void visitAssignNode(String lhs, ExpressionTree rhs);

abstract void visitIfThenNode(ExpressionTree cond, StatementTree body);

}

public class ExampleVisitor extends StatementTreeVisitor {

void visitCompoundNode(Vector body) {

// case for Compound statement node

}

void visitAssignNode(String lhs, ExpressionTree rhs) {

// case for Assign statement node

}

void visitIfThenNode(ExpressionTree cond, StatementTree body) {

// case for If-Then statement node

}}

To define a function to walk the AST, create a Visitor like this:
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Step 3: define a Visitor that generates code

January 23 Compilers Chapter 3 © Paul Kelly, Imperial College

void visitAssignNode(String lhs, ExpressionTree rhs) {

// print instructions which, when executed, will leave

// expression value at top of stack

rhs.Accept(new TranslateExpVisitor());

System.out.println("pop "+lhs);

}

….

We implement the code generator as a visitor.  

We define a “visit” method for each node type

public class TranslateVisitor extends StatementTreeVisitor {

Assign node case:
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Step 3: define a Visitor that generates code

January 23 Compilers Chapter 3 © Paul Kelly, Imperial College

void visitCompoundNode(Vector body) {

// Visit each statement in the list of statements

// that make up the Compound statement body

for (int i=0; i<body.size(); i++)

((StatementTree)body.elementAt(i)).Accept(this);

}

Compound statement node case:
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Step 3: define a Visitor that generates code

January 23 Compilers Chapter 3 © Paul Kelly, Imperial College

…
void visitIfThenNode(ExpressionTree cond, StatementTree body) {

// print instructions which, when executed, will leave

// expression value at top of stack

UniqueLabel skiplabel = new UniqueLabel();

cond.Accept(new TranslateExpVisitor());

System.out.println("JFalse "+skiplabel.toString());

body.Accept(this);

System.out.println("Define "+skiplabel.toString());

}

Assign node case:

(to complete this code you need to add an AST for expressions)
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If you don’t use a visitor…

• You need to add a 

method for each 

operation that 

involves a 

traversal of the 

AST

• For every 

StatementTree 

subclassJanuary 23 Compilers Chapter 3 © Paul Kelly, Imperial College

public class TurnNode extends StatementTree {

int degrees;

TurnNode(int d) {

degrees = d;

}

public void print() {

System.out.println("turn "+degrees+" degrees");

}

public void interpret() {

System.out.println("please turn "+degrees);

}

public void orientation() {

pose.setHeading(pose.getHeading)+degrees);

}

}
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public class InterpretVisitor extends TreeVisitor {

void visitStatementList(StatementTree first,

StatementTreeList rest) {

first.Accept(this);

if (rest != null) {

rest.Accept(this);

}

}

void visitTurnNode(int degrees) {

System.out.println("Please turn "+degrees+" degrees");

}

void visitForwardNode(int distance) {

System.out.println("Please move forward "+distance);

}

void visitTimesNode(int count, StatementTree body) {

for (int i=0; i<count; ++i) {

body.Accept(this);

}

}

void visitBeginNode(StatementTreeList body) {

body.Accept(this);

}

}
January 23 Compilers Chapter 3 © Paul Kelly, Imperial College

• Now we can 

encapsulate all the 

interpreter code in a 

single file

• And we can write a 

“print” traversal in a 

similar, single file
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Appendix B: Syntax-directed translation and 

attribute grammars
• The structure of our translator is derived systematically 

from the AST data type—which in turn is derived from the 

language’s grammar. Thus translation is “syntax-directed”.

• In fact some textbooks (eg EaC and The Dragon book) 

make this link explicit -

– attribute grammars express syntax-directed translation directly in 

terms of the grammar

– we use Haskell to traverse the AST. The principle is the same

– In Java a common approach is to use a Visitor pattern, see 

example at the end of these notes

• (Using attribute grammars leads to interesting possibilities 

for automatically-generating the syntax-directed translator)
January 23 Compilers Chapter 3 © Paul Kelly, Imperial College
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Ad-hoc syntax-directed translation

• Attribute grammars are a neat theory (see Appendix B of these 

notes)

– For example, supports incremental calculation of attributes, so 

you can update them when small changes are made to the tree

– Lots of academic researchers have developed compiler-

construction tools based on attribute grammars

• In most cases it’s just as easy to build your own syntax-

directed translator directly (see EaC section 4.4)

• Especially if you use a nice functional language like Haskell… 

(if you want to see how it’s done in Java see Appendix A).

January 23 Compilers Chapter 3 © Paul Kelly, Imperial College
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Attribute grammars: example

• Attribute grammars are a formal technique for specifying 
syntax-directed computation 

• Invented by Knuth in 1968 – see EaC Section 4.3

• A kind of functional programming…

Example attributed to Scott K Warren
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Numbers represented in our example grammar
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Extending the grammar with attributes

• Each non-terminal carries attributes

• Each production of the grammar is extended with rules 

• The rules specify how the attributes are calculated
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• Parse tree, combined with attribute rules, define functional 
program to calculate all the attribute values

• Evaluation order must be consistent with attribute 
dependence graph

(Example from Ken Kennedy’s EaC-based course notes)
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Feeding curiosity…
• We’re in the business of writing programs that generate programs.  Can you 

write a program that prints out its own source code?  In how many different 
ways?  See “Some alternative reproductive strategies in artificial molecular 
machines”, Richard Laing, Journal of Theoretical Biology, 1975.

• What does a compiler look like if it’s written by someone who’s never seen a 
compiler textbook, nor taken this course?  See “The FORTRAN automatic coding 
system”, John Backus et al, IRE-AIEE-ACM ‘57.

• Suppose your language had expressions, conditionals, functions and recursion, 
but no other control constructs.  Can you define statements, blocks, loops, goto, 
exceptions, coroutines, threads, backtracking, lazy evaluation etc – in the 
language?  See “Lambda: The Ultimate Imperative”, Guy Steele and Gerald Jay 
Sussman, MIT AI Memo 353, 1976.

• One page 7, I defined a processor microarchitecture in pseudocode.  Using a 
hardware description language like Verilog or Chisel you can do this for real –
see, for example https://github.com/ucb-bar/chisel-
tutorial/blob/release/src/main/scala/examples/Risc.scala (one page of code).

• Verilog and Chisel need compilers too…. See https://llhd.io/

January 23

https://github.com/ucb-bar/chisel-tutorial/blob/release/src/main/scala/examples/Risc.scala
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