
1

Compilers - Chapter 5: 

Register allocation by graph colouring

January 21

• Lecturers: 
– Paul Kelly (p.kelly@imperial.ac.uk)

– Naranker Dulay (n.dulay@imperial.ac.uk)

• Materials:
– materials.doc.ic.ac.uk, Panopto
– Textbook
– Course web pages 

(http://www.doc.ic.ac.uk/~phjk/Compilers)

– Piazza
(https://piazza.com/class/kf7uelkyxk7aa)

mailto:p.kelly@imperial.ac.uk
mailto:n.dulay@imperial.ac.uk
http://www.doc.ic.ac.uk/~phjk/Compilers
http://piazza.com/imperial.ac.uk/fall2015/221
https://piazza.com/class/kf7uelkyxk7aa
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Limitations of Sethi-Ullman register allocation scheme

• The tree-weighting translator is a typical syntax-directed 
(“tree walking”) translation algorithm: it works well in the 
terms of its input tree, but fails to exploit the context of the 
code being generated:

– It makes no attempt to use registers to keep a value from 
statement to statement

– In particular it does not try to use registers to store variables

– Doesn’t handle repeated uses of a variable

• It is this exploitation of the context of the generated code 
which distinguishes an “optimising” compiler from the 
straightforward compilers we have considered so far

• Because of contextual dependences optimising compilers 
are very much harder to test, and therefore less reliable

January 21
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Importance of more sophisticated register allocation

Example:

void f() {

int i, a;

for (i=1; i<=10000000; 

i++)

a = a+i;

}

January 21

movl #1,a6@(-4)

jra L99

L16:

movl a6@(-4),d0

addl d0,a6@(-8)

addql #1,a6@(-4)

L99:

cmpl #10000000,a6@(-4)

jle L16

Naive implementation (roughly from cc -S):
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Unoptimised:

January 21

moveq #1,d7

L16:

addl d7,d6

addql #1,d7

cmpl #10000000,d7

jle L16

movl #1,a6@(-4)

jra L99

L16:

movl a6@(-4),d0

addl d0,a6@(-8)

addql #1,a6@(-4)

L99:

cmpl #10000000,a6@(-4)

jle L16

Optimised:

4 instructions in the loop, no 

references to main memory

Execution time on Sun 3/60: 8.3 

seconds (0.83seconds/iteration)

Notice that time per instruction has been reduced from 0.332s to 0.208s 

— because register instructions are faster than memory instructions

5 instr’ns in loop, 4 memory references. 

Execution time on Sun-3/60: 16.6 

seconds (1.66 microseconds/iteration)
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Importance of more sophisticated register allocation

Example:

void f() {

int i, a;

for (i=1; i<=1000000000; 

i++)

a = a+i;

}
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Naive implementation (roughly from cc -S):

movl $1,-4(%ebp)

jmp .L4

.L5

movl -4(%ebp),%eax

addl %eax,-8(%ebp)

incl -4(%ebp)

.L4:

cmpl $1000000000,-4(%ebp)

jle .L5

X86 code (slightly tidied 

but without register 

allocation)
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Unoptimised:
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movl $1,%edx

.L6:

addl %edx,%eax

incl %edx

cmpl $1000000000,%edx

jle .L6

movl $1,-4(%ebp)

jmp .L4

.L5

movl -4(%ebp),%eax

addl %eax,-8(%ebp)

incl -4(%ebp)

.L4:

cmpl $1000000000,-4(%ebp)

jle .L5

Optimised:

4 instructions in the loop, no 

references to main memory

Execution time on 2.13GHz Intel 

Core2Duo: 0.48 seconds (0.48 

nanoseconds/iteration, 1.02 cycles)

Notice that time per instruction has been reduced from 0.77 nanoseconds to 

0.12 — because register instructions are faster than memory instructions

5 instructions in the loop

Execution time on 2.13GHz Intel 

Core2Duo: 3.87 seconds (3.87 

nanoseconds/iteration, 8.24 cycles)
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Performance over time…
• Sun 3/60 introduced ca.1987

– Based on 20MHz Motorola 68020+68881 FPU

– No data cache

– Unoptimised: 1.66us/iteration (33 cycles, 6.6 cycles 
per instruction)

– Optimised: 0.83us/iteration (16.6 cycles, 4.15 cycles 
per instruction)

• Intel Xeon 2.2GHz introduced ca.2002

– Based on Pentium 4 “Netburst” architecture

– 8KB level 1 data cache, 512 KB level 2 data cache 

– Unoptimised: 2.8ns/iteration (6.16 cycles, 1.23 cycles 
per instructions)

– Optimised: 0.7ns/iteration (1.54 cycles, 0.385 cycles 
per instruction)

• Moore’s Law: “microprocessor performance 
doubles every 18 months” (not what he said!)

– 1987-2002 = 15 years = 10*18months 

– Predicts improvement of 2^10=1024

– Unoptimised ratio: 1.66us:2.8ns = 592

– Optimised ratio: 0.83us:0.7ns = 1186
January 21

– How much longer can we expect Moore’s 
Law to hold?

– What if it’s another 15 years?

“With unit cost 

falling as the 

number of 

components per 

circuit rises, by 

1975 economics 

may dictate 

squeezing as 

many as 65,000 

components on a 

single silicon 

chip” Gordon 

Moore, 1965
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Performance over time…
• Sun 3/60 introduced ca.1987

– Based on 20MHz Motorola 68020+68881 FPU

– No data cache

– Unoptimised: 1.66us/iteration (33 cycles, 6.6 cycles per 
instruction)

– Optimised: 0.83us/iteration (16.6 cycles, 4.15 cycles per 
instruction)

• Intel Core2Duo 6420 “Conroe” introduced ca.2007
– Two cores per chip

– 32KB L1 data cache, 32KB L1 instruction cache

– 4MB shared L2 cache

– Unoptimised: 3.87 nanoseconds/iteration, 1.65 cycles 
per instruction

– Optimised: 0.48ns/iteration (1.54 cycles, 0.255 cycles 
per instruction)

• Moore’s Law: microprocessor performance doubles 
every 18 months
– 1987-2007= 20 years = 13.3*18months 

– Predicts improvement of 2^13.3=10085

– Unoptimised ratio: 1.66us:3.87ns = 429

– Optimised ratio: 0.83us:0.48ns = 1729
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– How much longer can we expect Moore’s 
Law to hold?

– That’s not what he said...

“With unit cost 

falling as the 

number of 

components per 

circuit rises, by 

1975 economics 

may dictate 

squeezing as 

many as 65,000 

components on 

a single silicon 

chip” Gordon 

Moore, 1965
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Performance over time…
• Sun 3/60 introduced ca.1987

– Based on 20MHz Motorola 68020+68881 FPU

– No data cache

– Unoptimised: 1.66us/iteration (33 cycles, 6.6 cycles 
per instruction)

– Optimised: 0.83us/iteration (16.6 cycles, 4.15 cycles 
per instruction)

• Intel i7-8650U introduced ca.2017 (“Kaby Lake”)
– Four cores per chip

– 32KB L1 data cache, 32KB L1 instruction cache

– 256KB L2 cache

– L3 cache: 2MB per core so 8MB

– Unoptimised: 2.2 nanoseconds/iteration

– Optimised: 0.257ns/iteration

• Moore’s Law: microprocessor performance doubles 
every 18 months
– 1987-2016= 29 years = 19.3*18months 

– Predicts improvement of 2^19.3=645,474

– Unoptimised ratio: 1.66us:2.2ns = 755

– Optimised ratio: 0.83us:0.257ns = 3230
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– How much longer can we expect Moore’s 
Law to hold?

– That’s not what he said...

“With unit cost 

falling as the 

number of 

components per 

circuit rises, by 

1975 economics 

may dictate 

squeezing as 

many as 65,000 

components on 

a single silicon 

chip” Gordon 

Moore, 1965
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Common subexpressions

• Example:

• When the common subexpression is known to have the same 

value, we can write this as

(where t is a new temporary variable introduced by the compiler)

• Unfortunately our clever weighted tree translation scheme 

cannot easily arrange for t to be stored in a register

January 21

To overcome limitations of simple syntax-directed scheme, need 

to consider all variables on equal terms: not just programmer’s 

variables, but all intermediate values during the computation

a1 := b1 + s * k;

a2 := b2 + s * k;

t := s * k;

a1 := b1 + t;

a2 := b2 + t;
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A brief look at a smarter allocator

• As an example of a more sophisticated register allocator 
we will look at graph colouring.

• The algorithm consists of three steps:

1. Use a simple tree-walking translator to generate an 
intermediate code in which temporary values are always 
saved in named locations. (In the textbook this is 
referred to as “three address code”: resembles assembler 
but with unlimited set of named registers)

2. Construct the interference graph: the nodes are the 
temporary locations, and each pair of nodes is linked by 
an arc if the values must be stored simultaneously—if 
their “live ranges” overlap

3. Try to colour the nodes, with one colour for each 
register, so no connected nodes have the same colour

January 21
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Example:

• Program fragment:

A := e1

B := e2

...

... B ...  B used

C := A+B  A and B used

...

D := A*5  A used

... D ...  D used

... C ...  C used

January 21

• Interference graph:

A B

C D

Live ranges of A and B, A and C, C and D overlap

B and C do not overlap; could be stored in same register



14

Example:

• Program fragment:

A := e1

B := e2

...

... B ...  B used

C := A+B  A and B used

...

D := A*5  A used

... D ...  D used

... C ...  C used

January 21

• Interference graph:

A B

C D

Live ranges of A and B, A and C, C and D overlap

B and C do not overlap; could be stored in same register
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Colouring

• We colour the nodes, with 
one colour for each register, 
so no connected nodes have 
the same colour.

• Because if a pair of nodes are 
linked, their live ranges 
overlap so they can’t be 
stored in the same place. If 
they do not overlap, they can 
be assigned the same register 
if necessary

January 21

• Example interference 

graph after colouring:

A B

C D

R1 R2

R1R2
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Register-allocated code:

A := e1

B := e2

...

... B ... 

C := A+B

...

D := A*5

... D ...

... C ... 

January 21

R1 := e1

R2 := e2

...

... R2 ... 

R2 := R1+R2

...

R1 := R1*5

... R1 ...

... R2 ... 

Three-address code After register allocation
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Graph colouring: implementation

• Finding the live ranges is easy in straight-line code

• In code with branching and loops, data flow 
analysis is needed (see EaC Section 9.2.1, Appel 
Chapter 10, Dragon book pp.608ff).  

• The problem of determining whether a given graph 
can be coloured with a given number of colours is 
very hard - “NP Complete”

• This is not such a serious problem as a good, fast 
heuristic is adequate and not hard to invent (see 
Eac Sections 13.5.4-5, Appel 11.1, Dragon book 
pp.545-546)

January 21
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Spilling
• If the attempt to colour the graph using available 

registers fails, must spill some register

– i.e. choose an arc in the graph and break it

– i.e. choose a variable whose live range is causing 
trouble, and split its live range

– Do this by adding code to store it to memory and reload 
it later

– Then redo analysis:

• Update interference graph.

• Attempt colouring again; if no success, split another live range

– Key: strategy to choose values to spill:

• Avoid adding spill code to the innermost loop (e.g. prioritize 
values by their nesting depth).

• Split a live range that will enable colouring

January 21
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Some register spill options

• Allocate a temporary to the 
stack?

• Allocate to a register but 
spill it to the stack  - split the 
live range

• Profile-directed?

January 21

A = ....

For  (i-0; i<N; ++i) {
.... // high register pressure

}

= A

A = ....
For  (i-0; i<N; ++i) {
.... // high register pressure
if (...) {

= A;
}

}

A = ....
For  (i-0; i<N; ++i) {
....

= A;
}
For  (i-0; i<N; ++i) {
.... // high register pressure

}
For  (i-0; i<N; ++i) {
....

= A;
}
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Register allocation by graph colouring: summary

• Sethi-Ullman numbering minimises register usage in 

arithmetic expression trees

• When we have local variables, or common sub-expressions, we 

need to go further

• By considering all temporaries and variables on equal terms in 

register allocation

• We have seen how to formulate this as a graph colouring

problem – we build the register interference graph, and colour 

it

• If we run out of registers, we need to choose which live ranges 

to split, and where, in order to make the graph colourable

• The Sethi-Ullman scheme is still a good heuristic for 

scheduling instructions to reduce register interference

January 21
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Feeding curiosity… 2

• The register interference graphs formed by overlapping lifetimes 
(slide 41) are interval graphs.  A graph G’s pathwidth, also known as 
interval thickness is one less than the maximum clique size in an 
interval supergraph of G.  See 
https://en.wikipedia.org/wiki/Pathwidth for a discussion of how to 
determine in linear time whether a piece of straight-line code can 
be reordered in such a way that it can be evaluated with at most w 
registers

January 21

https://en.wikipedia.org/wiki/Pathwidth
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Piazza question: What is profiling in the context of Q2.c from 2018

A profiler is a tool that monitors your program as it runs, and collects statistics on where it spends its time. I thought you 

might have used a profiler at some point - if not, perhaps we should fix that!

Profile-directed optimisation (PDO) is the idea that you use a profile from testing to improve the performance of the code 

when it is recompiled (it's sometimes called "profile-guided" or "feedback-directed" optimisation).

PDO is useful for many things - an obvious example is to "straighten-out" branches to create blocks of instructions where 

the branches are more likely to fall-through than be actually taken. This question is about PDO for register allocation: you 

prefer not to allocate registers to values that statistically are less likely to be used. An example is shown in Ch5 slide 47:

Example of profiling: on Linux the callgrind tool produces output like this:
. void mm(A,B,C)

. double A[512][512], B[512][512], C[512][512];

5 {

. int i, j, k;

. double r;

.

1,540 for (i = 0; i < 512; i++){

788,480 for (k = 0; k < 512; k++){

2,621,440 r = A[i][k];

403,701,760 for (j = 0; j < 512; j++){

3,892,314,112 C[i][j] += r * B[k][j];

. }

. }

. }

3 }

The counts on the left show an estimate of the number of 

instructions executed at that line of code (to run this yourself see, for 

example, https://web.stanford.edu/class/cs107/resources/callgrind )

See here for how to use profile-directed optimisation in 

GCC: https://ddmler.github.io/compiler/2018/06/29/profile-guided-

optimization.html

https://web.stanford.edu/class/cs107/resources/callgrind
https://ddmler.github.io/compiler/2018/06/29/profile-guided-optimization.html

