
1

Compilers - Chapter 6:

Optimisation and data-flow analysis

Part 1: Introduction to optimisation

January 21

• Lecturers:
– Paul Kelly (p.kelly@imperial.ac.uk)

– Naranker Dulay (n.dulay@imperial.ac.uk)

• Materials:
– materials.doc.ic.ac.uk, Panopto
– Textbook
– Course web pages

(http://www.doc.ic.ac.uk/~phjk/Compilers)

– Piazza
(https://piazza.com/class/kf7uelkyxk7aa)

mailto:p.kelly@imperial.ac.uk
mailto:n.dulay@imperial.ac.uk
http://www.doc.ic.ac.uk/~phjk/Compilers
http://piazza.com/imperial.ac.uk/fall2015/221
https://piazza.com/class/kf7uelkyxk7aa

2

Overview
• This introductory course has focussed so far on fast,

simple techniques which generated code that works
reasonably well

• We now briefly look at what optimising compilers do, and
how they do it

• Compare “gcc file.c” versus “gcc –O file.c”

• According to the gcc manual page (“man gcc”):

– Without `-O', the compiler's goal is to reduce the cost of
compilation and to make debugging produce the expected
results. Statements are independent: if you stop the program
with a breakpoint between statements, you can then assign a
new value to any variable or change the program counter to any
other statement in the function and get exactly the results you
would expect from the source code.

– Without `-O', only variables declared “register” are allocated in
registers

January 21

3

The plan
• To optimise or not to optimise?

• High-level vs low-level; role of analysis

• Peephole optimisation

• Local, global, interprocedural

– Loop optimisations

– Where optimisation fits in the compiler

• Example: live ranges

– Live ranges as a data flow problem

– Solving the data-flow equations

– Deriving the interference graph

• Other data-flow analyses

• Loop-invariant code and code motion optimisations

– More sophisticated optimisations

January 21

4

Optimisation: example

• Consider the loop from tutorial exercise 4:

January 21

void P(int i, int j)

{

int k, tmp;

for (k=0; k<100; k++) {

tmp = A[i+k];

A[i+k] = A[j+k];

A[j+k] = tmp;

}

}

• What can optimisation

do here?

6

Without optimisation….
_P:

subl $36,%esp

pushl %ebp

pushl %ebx

nop

movl $0,28(%esp)

.align 4

L3:

cmpl $99,28(%esp)

jle L6

jmp L4

.align 4

L6:

movl 48(%esp),%eax

movl 28(%esp),%edx

addl %edx,%eax

leal 0(,%eax,4),%edx

movl $_A,%eax

movl (%edx,%eax),%edx

movl %edx,24(%esp)

movl 48(%esp),%eax

movl 28(%esp),%ecx

leal (%ecx,%eax),%edx

leal 0(,%edx,4),%eax

January 21

movl $_A,%edx

movl 52(%esp),%ecx

movl 28(%esp),%ebx

addl %ebx,%ecx

leal 0(,%ecx,4),%ebx

movl $_A,%ecx

movl (%ebx,%ecx),%ebx

movl %ebx,(%eax,%edx)

movl 52(%esp),%eax

movl 28(%esp),%ecx

leal (%ecx,%eax),%edx

leal 0(,%edx,4),%eax

movl $_A,%edx

movl 24(%esp),%ecx

movl %ecx,(%eax,%edx)

L5:

incl 28(%esp)

jmp L3

.align 4

L4:

L2:

popl %ebx

popl %ebp

addl $36,%esp

ret

Without

optimisation,

code is large,

slow, but

compiles

quickly and

works well

with the

debugger

31 instructions in loop

Performance:

• 8.2ns per iteration

(gcc 3.2.2, 2GHz

Pentium IV)

8

With optimisation:

• In this extreme example,
optimised code is 2-4 times
faster

– Use registers not stack

– One jump per iteration

– Loop-invariant offset
calculation moved out

– Array pointers incremented
instead of recalculated

– Loop control variable
replaced with down-counter

January 21

_P: pushl %edi

pushl %esi

movl $99,%edi

pushl %ebx

movl $_A,%esi

movl 20(%esp),%ebx

movl 16(%esp),%ecx

sall $2,%ebx

sall $2,%ecx

.align 4

L6:

movl (%esi,%ecx),%edx

movl (%esi,%ebx),%eax

movl %eax,(%esi,%ecx)

movl %edx,(%esi,%ebx)

addl $4,%ecx

addl $4,%ebx

decl %edi

jns L6

popl %ebx

popl %esi

popl %edi

ret

8 instructions in loop

Performance:

• 3.4ns per iteration

(gcc 3.2.2, 2GHz

Pentium IV)

9

With optimisation:

• In this extreme example,
optimised code is 2-4 times
faster

– Use registers not stack

– One jump per iteration

– Loop-invariant offset
calculation moved out

– Array pointers incremented
instead of recalculated

– Loop control variable
replaced with down-counter

January 21

_P: pushl %esi

pushl %ebx

movl 12(%esp), %edx

movl 16(%esp), %ecx

leal 0(,%edx,4), %ebx

subl %edx, %ecx

movl %ecx, %edx

leal _A(%ebx), %eax

addl $_A+400, %ebx

L2: movl (%eax), %ecx

movl (%eax,%edx,4), %esi

movl %esi, (%eax)

movl %ecx, (%eax,%edx,4)

addl $4, %eax

cmpl %ebx, %eax

jne L2

popl %ebx

popl %esi

ret

7 instructions in loop

• 0.7ns per iteration

(gcc 5.4 –O3,

3.2GHz Intel

Skylake i76600U)

10

With optimisation:

• In this code, the compiler
has used vector instructions
that operate on four
operands at a time

• The full code is rather
complicated as care is
needed to check whether
the memory regions
overlap

• (this example goes far
beyond what we can hope
to cover in this course)

January 21

_P: ….

….

.L5: movdqu (%rdx,%rax), %xmm0

movdqu (%rcx,%rax), %xmm1

movdqu %xmm1, (%rdx,%rax)

movdqu %xmm0, (%rcx,%rax)

addq $16, %rax

cmpq $400, %rax

jne .L5

rep ret 7 instructions in loop

• 0.2ns per iteration

(gcc 4.8.4 –O3,

–march=native,

3.2GHz Intel

Skylake i7-6600U)

• Vectorised

11

Never write your own memcopy

January 21

h
tt

p
:/

/n
ad

ea
u

so
ft

w
ar

e.
co

m
/a

rt
ic

le
s/

2
0

1
2

/0
5

/c
_

c_
ti

p
_

h
o

w
_

co
p

y
_

m
em

o
ry

_
q

u
ic

k
ly

12

Optimisation principles…

• To generate really good code, need to combine many
techniques, including both high-level and low-level

• High-level example: inlining
– replace a call “f(x)” with the function body itself

– Avoids call/return overheads

– Also creates further opportunities…

– Can we inline virtual method calls “x.f(y)”?

– Need static analysis of possible types of “x”

• Low-level example: instruction scheduling
– Re-order instructions so processor executes them in parallel

– To switch order of load A[i] and store A[j], need
dependence analysis: could i and j refer to same location?

January 21

13

A simple local technique – peephole optimisation

• Scan assembly code, replacing obviously inane

combinations of instructions (eg mov R0,a; mov a,R0)

• Easy to implement:

January 21

peep :: [Instruction] -> [Instruction]

peep (Store r1 dest : Load r2 src : rest)

| src == dest

= Store r1 dest : (peep (Load r2 r1 : rest))

| otherwise

= Store r1 dest : (peep (Load r2 src : rest))

• Endless possibilities…

• Phase ordering problem: in which sequence should

optimisations be applied?

14

Spectrum…
• Peephole optimisation works at instruction level

• The Sethi-Ullman “weights” algorithm: expressions

• “Local” optimisation works at the level of basic

blocks – a sequence of instructions which has a

single point of entry and a single point of exit

• “Global” optimisation works on a whole procedure

• Interprocedural optimisation works on the whole

program

January 21

▪ Local: generally runs quickly and easy to validate

▪ Global: may have worse-than-linear complexity, eg O(N2) where
N is number of instructions, basic blocks, or local variables

▪ Interprocedural: rare – hard to avoid excessive compilation time

15

Some loop optimisations…

• Loop-invariant code motion

– An instruction is loop-invariant if its operands can only arrive

from outside the loop

– move loop-invariant instructions into loop header

• Detection of induction variables

– Induction variable is a variable which increases/decreases by a

(loop-invariant) constant on each iteration

• Strength reduction: calculate induction variable by

incrementing, instead of by multiplying other induction

variables

• Control variable selection: replace loop control variable

with one of the induction variables actually used in the

loop
January 21

16

Loop optimisations - example
int P(int N, int M)

{

int i, u, v, w, x, y;

int z = 0;

for (i=0; i<N; i++) {

w = w+10;

x = w*10;

y = z*(w-x);

u = w+x+y+N+M;

v = v+u;

}

return v;

}

January 21

1. y is constant

2. w-x is dead code

3. y+N+M is loop-

invariant

4. i, w and x are

induction variables

(so is w+x)

5. x increases by 100

each iteration

6. i is used only to

control the loop,

and can be omitted

if convenient

1. (constant

propagation

Appel pg457)

2. (dead code

elimination

pg457,397)

3. (loop-invariant

code motion

pg422)

4. (induction

variable

recognition

pg426)

5. (strength

reduction ditto)

6. (rewriting

comparisons,

pg428)

17

Where does optimisation happen?

• Input: intermediate
code

• Output: intermediate
code

• Uses: symbol table,
semantic analysis

January 21

Tree

Source
Language
Program

(char string)

Analysis Synthesis

Target
Language
Program

(char string)

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Intermediate
Code
Generation

Optimisation Code
Generator

(further
decomposition)

Abstract
Syntax

Symbol
Table

(internal
representation)

18

Intermediate code
• In our simple compiler, translator traverses AST and

produces assembler code directly

• In optimising compiler, translator traverses AST and
produces “intermediate code”

• Intermediate code is designed to

– Represent all primitive operations necessary to execute program

– In a uniform way, easy to analyse and manipulate

– Independently of target instruction set

• Compiler writers argue… Appel advocates two IRs:

• Tree: before instruction selection

• FlowGraph: after instruction selection

• IR uses “temporaries” T0, T1, T2… instead of real
registers; after optimisation, use graph colouring to assign
temporaries to real registers

January 21

19

Where does optimisation happen?

January 21

Tree

Source
Language
Program

(char string)

Analysis Synthesis

Target
Language
Program

(char string)

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Intermediate
Code
Generation

Optimisation Code
Generator

(further
decomposition)

Abstract
Syntax

Symbol
Table

(internal
representation)

20

Where does optimisation happen?

January 21

Tree

Source
Language
Program

(char string)

Analysis Synthesis

Target
Language
Program

(char string)

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Intermediate
Code
Generation

Analysis Optimisation
Generator

(further
decomposition)

Abstract
Syntax

Symbol
Table

(internal
representation)

Code

21

Where does optimisation happen?

January 21

Synthesis

Target
Language
Program

(char string)

Intermediate
Code
Generation

AnalysisOptimisation
Generator

CodeAnalysis OptimisationAnalysisOptimisation

22

Intermediate representations

January 21

Intermediate
Code
Generation

AnalysisOptimisation
Generator

CodeAnalysis OptimisationAnalysisOptimisation

For example in GCC:

“GENERIC”: a tree representation common to all GCC front-end languages

“GIMPLE”: three-address-code tree-based representation

“Low-level GIMPLE”: linear control flow, explicit exceptions

“SSA GIMPLE”: Static-single-assignment – variables are renamed so

that uses are reached by exactly one definition

Successively-lowered representations

“Register-Transfer Language”: low-level representation from

which instructions are selected

To see, try “gcc -fdump-tree-all file.c”

Or on Compiler Explorer:

https://godbolt.org/z/78qd4r for GIMPLE

https://godbolt.org/z/7WW4vT for RTL
(for interest – beyond examinable scope of the course

https://godbolt.org/z/78qd4r
https://godbolt.org/z/7WW4vT

23January 21

Extract from

gcc’s

documentation

showing which

optimisations

are activated

by the “-O”

flag

(for interest – beyond examinable scope of the course

24January 21

“-O1” flags

enables

selected

optimisation

passes

(for interest – beyond examinable scope of the course

25January 21

“-O1” flags

enables

selected

optimisation

passes

Small extract from

gcc’s

“passes.def”,

which defines

which analyses

and optimisations

are activated, in

what order

(for interest – beyond examinable scope of the course

26

Summary
• Optimisations consist of analyses and transformations

• Key optimisations include common sub-expression elimination, loop-
invariant code motion, induction variable selection, strength reduction,
dead code elimination (there are many more)

• Low-level optimisations: instruction selection, instruction scheduling,
register allocation

• High-level optimisations: function inlining, loop unrolling – often enable
other optimisations

– The phase ordering problem is the challenge of finding the right order in which to
apply optimisations

• Intermediate representations (IRs) are designed to make analyses and
optimisations easy

• Compilers successively lower high-level IR to low-level IR

• Optimisation algorithms that work at the function level may have worse-
than-linear time complexity

– But inter-procedural, whole-program (“link time”) optimisations need to be O(n)

January 21

27

To see GCC’s intermediate representations for yourself, try “gcc -fdump-tree-all file.c”

Or on Compiler Explorer:

https://godbolt.org/z/78qd4r for GIMPLE (shown above)

https://godbolt.org/z/7WW4vT for RTL (next slide)

https://godbolt.org/z/78qd4r
https://godbolt.org/z/7WW4vT

28

29

Feeding curiosity
• The idea of automatically deriving the instruction selector from the definition of the

instruction set dates back to a landmark paper by Susan Graham and Stephen Glanville,
“A new method for compiler code generation” (POPL78,
https://dl.acm.org/doi/10.1145/512760.512785). The algorithm works as a bottom-up
(shift-reduce) parser – using the table contruction ideas you have learned about.

• There is a wonderful book “20 Years of the ACM SIGPLAN Conference on
Programming Language Design and Implementation 1979-1999, A Selection” full of
good things (https://dblp.org/db/conf/pldi/pldi2004best.html) including:

– “Automatic generation of peephole optimizations” (Davidson and Fraser,
https://dl.acm.org/doi/10.1145/989393.989407): peephole optimisers don’t have to be
ad-hoc. You can use the automatic instruction selection mechanism to translate
instruction sequences back to IR, and regenerate them – and then use this to
generate peephole optimisation rules. See also Souper
(https://github.com/google/souper).

• If you’ve formalised the ISA, you should be able to prove the correctness of peephole
optimisations – see “Provably correct peephole optimizations with ALIVE”(Nuno Lopes
et al, PLDI’15, https://dl.acm.org/doi/10.1145/2737924.2737965)

– “Global register allocation at link time” (David Wall,
https://dl.acm.org/doi/10.1145/989393.989415). Instead of having a fixed ABI to
determine which registers can be used in each function, look at the whole program
to find all the call sites.

January 21

https://dl.acm.org/doi/10.1145/512760.512785
https://dblp.org/db/conf/pldi/pldi2004best.html
https://dl.acm.org/doi/10.1145/989393.989407
https://github.com/google/souper
https://dl.acm.org/doi/10.1145/2737924.2737965
https://dl.acm.org/doi/10.1145/989393.989415

