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Compilers - Chapter 6: 

Optimisation and data-flow analysis

Part 1: Introduction to optimisation

January 21

• Lecturers: 
– Paul Kelly (p.kelly@imperial.ac.uk)

– Naranker Dulay (n.dulay@imperial.ac.uk)

• Materials:
– materials.doc.ic.ac.uk, Panopto
– Textbook
– Course web pages 

(http://www.doc.ic.ac.uk/~phjk/Compilers)

– Piazza
(https://piazza.com/class/kf7uelkyxk7aa)

mailto:p.kelly@imperial.ac.uk
mailto:n.dulay@imperial.ac.uk
http://www.doc.ic.ac.uk/~phjk/Compilers
http://piazza.com/imperial.ac.uk/fall2015/221
https://piazza.com/class/kf7uelkyxk7aa
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Overview
• This introductory course has focussed so far on fast, 

simple techniques which generated code that works 
reasonably well

• We now briefly look at what optimising compilers do, and 
how they do it

• Compare “gcc file.c” versus “gcc –O file.c”

• According to the gcc manual page (“man gcc”):

– Without `-O', the compiler's goal is to reduce  the cost  of  
compilation and to make debugging produce the expected 
results.  Statements are  independent: if you stop the program 
with a breakpoint between statements, you can then assign a 
new value to any variable or change the program counter to any 
other statement in the function and get exactly  the  results you 
would expect from the source code.

– Without  `-O', only variables declared “register” are allocated in  
registers

January 21
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The plan
• To optimise or not to optimise?

• High-level vs low-level; role of analysis

• Peephole optimisation

• Local, global, interprocedural

– Loop optimisations

– Where optimisation fits in the compiler

• Example: live ranges

– Live ranges as a data flow problem

– Solving the data-flow equations

– Deriving the interference graph

• Other data-flow analyses

• Loop-invariant code and code motion optimisations

– More sophisticated optimisations

January 21



4

Optimisation: example

• Consider the loop from tutorial exercise 4:

January 21

void P(int i, int j)

{

int k, tmp;

for (k=0; k<100; k++) {

tmp = A[i+k];

A[i+k] = A[j+k];

A[j+k] = tmp;

}

}

• What can optimisation 

do here?
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Without optimisation….
_P:

subl $36,%esp

pushl %ebp

pushl %ebx

nop

movl $0,28(%esp)

.align 4

L3:

cmpl $99,28(%esp)

jle L6

jmp L4

.align 4

L6:

movl 48(%esp),%eax

movl 28(%esp),%edx

addl %edx,%eax

leal 0(,%eax,4),%edx

movl $_A,%eax

movl (%edx,%eax),%edx

movl %edx,24(%esp)

movl 48(%esp),%eax

movl 28(%esp),%ecx

leal (%ecx,%eax),%edx

leal 0(,%edx,4),%eax
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movl $_A,%edx

movl 52(%esp),%ecx

movl 28(%esp),%ebx

addl %ebx,%ecx

leal 0(,%ecx,4),%ebx

movl $_A,%ecx

movl (%ebx,%ecx),%ebx

movl %ebx,(%eax,%edx)

movl 52(%esp),%eax

movl 28(%esp),%ecx

leal (%ecx,%eax),%edx

leal 0(,%edx,4),%eax

movl $_A,%edx

movl 24(%esp),%ecx

movl %ecx,(%eax,%edx)

L5:

incl 28(%esp)

jmp L3

.align 4

L4:

L2:

popl %ebx

popl %ebp

addl $36,%esp

ret

Without 

optimisation, 

code is large, 

slow, but 

compiles 

quickly and 

works well 

with the 

debugger

31 instructions in loop

Performance:

• 8.2ns per iteration 

(gcc 3.2.2, 2GHz 

Pentium IV)
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With optimisation:

• In this extreme example, 
optimised code is 2-4 times 
faster

– Use registers not stack

– One jump per iteration

– Loop-invariant offset 
calculation moved out

– Array pointers incremented 
instead of recalculated

– Loop control variable 
replaced with down-counter

January 21

_P: pushl %edi

pushl %esi

movl $99,%edi

pushl %ebx

movl $_A,%esi

movl 20(%esp),%ebx

movl 16(%esp),%ecx

sall $2,%ebx

sall $2,%ecx

.align 4

L6:

movl (%esi,%ecx),%edx

movl (%esi,%ebx),%eax

movl %eax,(%esi,%ecx)

movl %edx,(%esi,%ebx)

addl $4,%ecx

addl $4,%ebx

decl %edi

jns L6

popl %ebx

popl %esi

popl %edi

ret

8 instructions in loop

Performance:

• 3.4ns per iteration 

(gcc 3.2.2, 2GHz 

Pentium IV)
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With optimisation:

• In this extreme example, 
optimised code is 2-4 times 
faster

– Use registers not stack

– One jump per iteration

– Loop-invariant offset 
calculation moved out

– Array pointers incremented 
instead of recalculated

– Loop control variable 
replaced with down-counter

January 21

_P: pushl   %esi

pushl   %ebx

movl    12(%esp), %edx

movl    16(%esp), %ecx

leal    0(,%edx,4), %ebx

subl    %edx, %ecx

movl    %ecx, %edx

leal    _A(%ebx), %eax

addl    $_A+400, %ebx

L2:   movl    (%eax), %ecx

movl    (%eax,%edx,4), %esi

movl    %esi, (%eax)

movl    %ecx, (%eax,%edx,4)

addl    $4, %eax

cmpl    %ebx, %eax

jne     L2

popl    %ebx

popl    %esi

ret

7 instructions in loop

• 0.7ns per iteration 

(gcc 5.4 –O3, 

3.2GHz Intel 

Skylake i76600U)



10

With optimisation:

• In this code, the compiler 
has used vector instructions 
that operate on four 
operands at a time

• The full code is rather 
complicated as care is 
needed to check whether 
the memory regions 
overlap

• (this example goes far 
beyond what we can hope 
to cover in this course)

January 21

_P: ….

…. 

.L5: movdqu  (%rdx,%rax), %xmm0  

movdqu  (%rcx,%rax), %xmm1 

movdqu  %xmm1, (%rdx,%rax) 

movdqu  %xmm0, (%rcx,%rax) 

addq    $16, %rax  

cmpq    $400, %rax

jne     .L5

rep ret 7 instructions in loop

• 0.2ns per iteration 

(gcc 4.8.4 –O3,       

–march=native, 

3.2GHz Intel 

Skylake i7-6600U)

• Vectorised
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Never write your own memcopy

January 21
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Optimisation principles…

• To generate really good code, need to combine many 
techniques, including both high-level and low-level

• High-level example: inlining
– replace a call “f(x)” with the function body itself

– Avoids call/return overheads

– Also creates further opportunities…

– Can we inline virtual method calls “x.f(y)”?  

– Need static analysis of possible types of “x”

• Low-level example: instruction scheduling
– Re-order instructions so processor executes them in parallel

– To switch order of load A[i] and store A[j], need 
dependence analysis: could i and j refer to same location?

January 21
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A simple local technique – peephole optimisation

• Scan assembly code, replacing obviously inane 

combinations of instructions (eg mov R0,a; mov a,R0)

• Easy to implement:

January 21

peep :: [Instruction] -> [Instruction]

peep (Store r1 dest : Load r2 src : rest)

| src == dest 

= Store r1 dest : (peep (Load r2 r1 : rest))

| otherwise

= Store r1 dest : (peep (Load r2 src : rest))

• Endless possibilities…

• Phase ordering problem: in which sequence should 

optimisations be applied?



14

Spectrum…
• Peephole optimisation works at instruction level

• The Sethi-Ullman “weights” algorithm: expressions

• “Local” optimisation works at the level of  basic 

blocks – a sequence of instructions which has a 

single point of entry and a single point of exit

• “Global” optimisation works on a whole procedure

• Interprocedural optimisation works on the whole 

program

January 21

▪ Local: generally runs quickly and easy to validate

▪ Global: may have worse-than-linear complexity, eg O(N2) where 
N is number of instructions, basic blocks, or local variables

▪ Interprocedural: rare – hard to avoid excessive compilation time
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Some loop optimisations…

• Loop-invariant code motion

– An instruction is loop-invariant if its operands can only arrive 

from outside the loop

– move loop-invariant instructions into loop header

• Detection of induction variables

– Induction variable is a variable which increases/decreases by a 

(loop-invariant) constant on each iteration

• Strength reduction: calculate induction variable by 

incrementing, instead of by multiplying other induction 

variables

• Control variable selection: replace loop control variable 

with one of the induction variables actually used in the 

loop
January 21
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Loop optimisations - example
int P(int N, int M)

{

int i, u, v, w, x, y;

int z = 0;

for (i=0; i<N; i++) {

w = w+10;

x = w*10;

y = z*(w-x);

u = w+x+y+N+M;

v = v+u;

}

return v;

}

January 21

1. y is constant

2. w-x is dead code

3. y+N+M is loop-

invariant

4. i, w and x are 

induction variables 

(so is w+x)

5. x increases by 100 

each iteration

6. i is used only to 

control the loop, 

and can be omitted 

if convenient

1. (constant 

propagation 

Appel pg457)

2. (dead code 

elimination 

pg457,397)

3. (loop-invariant 

code motion 

pg422)

4. (induction 

variable 

recognition 

pg426)

5. (strength 

reduction ditto)

6. (rewriting 

comparisons, 

pg428)
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Where does optimisation happen?

• Input: intermediate 
code

• Output: intermediate 
code

• Uses: symbol table, 
semantic analysis

January 21
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Intermediate code
• In our simple compiler, translator traverses AST and 

produces assembler code directly

• In optimising compiler, translator traverses AST and 
produces “intermediate code”

• Intermediate code is designed to 

– Represent all primitive operations necessary to execute program 

– In a uniform way, easy to analyse and manipulate

– Independently of target instruction set

• Compiler writers argue… Appel advocates two IRs:

• Tree: before instruction selection

• FlowGraph: after instruction selection

• IR uses “temporaries” T0, T1, T2… instead of real 
registers; after optimisation, use graph colouring to assign 
temporaries to real registers

January 21
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Where does optimisation happen?

January 21
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Where does optimisation happen?
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Where does optimisation happen?

January 21
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Intermediate representations

January 21

Intermediate
Code
Generation

AnalysisOptimisation
Generator

CodeAnalysis OptimisationAnalysisOptimisation

For example in GCC:

“GENERIC”: a tree representation common to all GCC front-end languages

“GIMPLE”: three-address-code tree-based representation

“Low-level GIMPLE”: linear control flow, explicit exceptions

“SSA GIMPLE”: Static-single-assignment – variables are renamed so 

that uses are reached by exactly one definition

Successively-lowered representations

“Register-Transfer Language”: low-level representation from 

which instructions are selected

To see, try “gcc -fdump-tree-all file.c”

Or on Compiler Explorer:

https://godbolt.org/z/78qd4r for GIMPLE

https://godbolt.org/z/7WW4vT for RTL
(for interest – beyond examinable scope of the course

https://godbolt.org/z/78qd4r
https://godbolt.org/z/7WW4vT
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Extract from 

gcc’s

documentation 

showing which 

optimisations 

are activated 

by the “-O” 

flag

(for interest – beyond examinable scope of the course
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“-O1” flags 

enables 

selected 

optimisation 

passes

(for interest – beyond examinable scope of the course



25January 21

“-O1” flags 

enables 

selected 

optimisation 

passes

Small extract from 

gcc’s

“passes.def”, 

which defines 

which analyses 

and optimisations 

are activated, in 

what order

(for interest – beyond examinable scope of the course
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Summary
• Optimisations consist of analyses and transformations

• Key optimisations include common sub-expression elimination, loop-
invariant code motion, induction variable selection, strength reduction, 
dead code elimination (there are many more)

• Low-level optimisations: instruction selection, instruction scheduling,
register allocation

• High-level optimisations: function inlining, loop unrolling – often enable 
other optimisations

– The phase ordering problem is the challenge of finding the right order in which to 
apply optimisations

• Intermediate representations (IRs) are designed to make analyses and 
optimisations easy

• Compilers successively lower high-level IR to low-level IR

• Optimisation algorithms that work at the function level may have worse-
than-linear time complexity

– But inter-procedural, whole-program (“link time”) optimisations need to be O(n)

January 21
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To see GCC’s intermediate representations for yourself, try “gcc -fdump-tree-all file.c”

Or on Compiler Explorer:

https://godbolt.org/z/78qd4r for GIMPLE (shown above)

https://godbolt.org/z/7WW4vT for RTL (next slide)

https://godbolt.org/z/78qd4r
https://godbolt.org/z/7WW4vT
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Feeding curiosity
• The idea of automatically deriving the instruction selector from the definition of the 

instruction set dates back to a landmark paper by Susan Graham and Stephen Glanville, 
“A new method for compiler code generation” (POPL78, 
https://dl.acm.org/doi/10.1145/512760.512785).  The algorithm works as a bottom-up 
(shift-reduce) parser – using the table contruction ideas you have learned about.

• There is a wonderful book “20 Years of the ACM SIGPLAN Conference on 
Programming Language Design and Implementation 1979-1999, A Selection” full of 
good things (https://dblp.org/db/conf/pldi/pldi2004best.html ) including:

– “Automatic generation of peephole optimizations” (Davidson and Fraser, 
https://dl.acm.org/doi/10.1145/989393.989407): peephole optimisers don’t have to be 
ad-hoc.  You can use the automatic instruction selection mechanism to translate 
instruction sequences back to IR, and regenerate them – and then use this to 
generate peephole optimisation rules.  See also Souper 
(https://github.com/google/souper).

• If you’ve formalised the ISA, you should be able to prove the correctness of peephole 
optimisations – see “Provably correct peephole optimizations with ALIVE”(Nuno Lopes 
et al, PLDI’15, https://dl.acm.org/doi/10.1145/2737924.2737965)

– “Global register allocation at link time” (David Wall, 
https://dl.acm.org/doi/10.1145/989393.989415).  Instead of having a fixed ABI to 
determine which registers can be used in each function, look at the whole program 
to find all the call sites.
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