Compilers - Chapter 7: Loop optimisations Part 2: Dominators and natural loops

- Lecturer:
 - Paul Kelly (p.kelly@imperial.ac.uk)

Where should we move the loop-invariant instructions to?

- Given control-flow graph, need to find
 - Where the loops are
 - Where the loop headers are
 - So we can find a place to put the loop's loopinvariant instructions
 - Need robust scheme that handles all loops including whatever you can do with goto
- We will develop a general framework for finding loops in control-flow graphs
 - We aim to *recover* the loop structure that came from the source program's looping constructs
 - We do not assume that the source code's structured control flow is preserved – so that we can combine different optimisations without having to track how the CFG was built

Where should we move the loop-invariant instructions to?

- Given control-flow graph, need to find
 - Where the loops are
 - Where the loop headers are
 - So we can find a place to put the loop's loopinvariant instructions
 - Need robust scheme that handles all loops including whatever you can do with goto
- Definition:
 - A *loop* in a control flow graph is a set of nodes S including a *header* node h, with the following properties:
 - From any node in S there is a path leading to h
 - There is a path from h to any node in S
 - There is no edge from any node outside S to any node in S other than h

 p_6

 p_1

S

 p_3

h

p₄

 p_5

p₂

• Definition: dominator

A node d *dominates* a node n if every path from the CFG's start node to n must go through d. Every node dominates itself

• Definition: dominator

A node d *dominates* a node n if every path from the CFG's start node to n must go through d. Every node dominates itself

Dominators...

- Finding the nodes dominated by a node d:
 - Consider another node n with predecessors $p_1...p_k$
 - If d dominates each one of the p_i then it must dominate n
 - Because:
 - Every path from the start node to n must go through one of the p_i
 - And every path from the start node to a p_i must go through d
 - Conversely,
 - If d dominates n, it must dominate all the p_{i}
 - Otherwise there would be a path from the start node to n going through the predecessor not dominated by d

Algorithm for finding dominators

• Let Doms(n) be the set of nodes that dominate n

("*n* is dominated by Doms(*n*)")

- Construct a system of simultaneous set equations:
- $Doms(s) = \{ s \}$ (s = start node)
- $Doms(n) = \{n\} U (\bigcap_{p \in preds(n)} Doms(p)) (otherwise)$

("which dominators are common to all our preds?")

- Solve this system iteratively
- Initially, each Doms(n) starts as the set of all nodes in the graph
- Each assignment makes Doms(n) smaller, until it stops changing

Back edges

• A control flow graph edge from a node *n* to a node *h* that dominates *n* is called a *back edge*.

n1 dominates all nodes n2 dominates n2,n4 n3 dominates only n3 n4 dominates only n4 n5 dominates only n5 n6 dominates only n6

8

Back edges...

For every back edge, there is a corresponding subgraph of the CFG that is a loop (by our definition earlier)

Definition:

The *natural loop* of a backedge (n,h), where h dominates n, is

- the set of nodes x such that h dominates x and
- there is a path from x to n not containing h.

The *header* of this loop will be h

Back edges...

For every back edge, there is a corresponding subgraph of the CFG that is a loop (by our definition earlier)

Definition:

The *natural loop* of a backedge (n,h), where h dominates n, is

- the set of nodes x such that h dominates x and
- there is a path from x to n not containing h.

The *header* of this loop will be h

- It is possible for two loops to share the same header
- This example has two back edges, (5,3) and (7,3)

- It is possible for two loops to share the same header
- This example has two back edges, (5,3) and (7,3)

- It is possible for two loops to share the same header
- This example has two back edges, (5,3) and (7,3)

February 21

- It is possible for two loops to share the same header
- This example has two back edges, (6,9) and (8,9)
- E.g. here two natural loops arise from one source-code loop

Two natural loops sharing the same header

• Consider these two code fragments:

One loop:	Two loops:
while true {	do {
if (a<10) {	do {
a += 1;	if (a>9) break;
} else {	a += 1;
a = 0;	} while true;
b += 1;	a = 0;
if (b>100) break;	b += 1;
}	if (b>100) break;
}	} while true;

• Conclusion: we can't always distinguish exactly what the source code's structured control flow was

Nested loops

- Suppose:
 - A and B are loops with headers a and b, such that a ≠ b, and b is in A
- Then
 - The nodes of B must be a proper subset of the nodes of A
 - We say that loop B is nested within A
 - B is the inner loop

Back edges: (3,2), (4,2), (10,5), (9,8)

Nested loops

- Suppose:
 - A and B are loops with headers a and b, such that a ≠ b, and b is in A
- Then
 - The nodes of B must be a proper subset of the nodes of A
 - We say that loop B is nested within A
 - B is the inner loop

Back edges: (3,2), (4,2), (10,5), (9,8)

The Control Tree

We have reconstructed the "structured control flow" from the control flow graph February 21 18

Pre-headers

• Where should we move the loop-invariant instructions *to*?

- We can't move them to the header
- We want to move them to the node preceding the header

Pre-headers

- Where should we move the loop-invariant instructions *to*?
- We want to move them to the node preceding the header
- But sometimes the header has multiple predecessors
- What shall we do?

Pre-headers

- Where should we move the loop-invariant instructions *to*?
- We want to move them to the node preceding the header
- But sometimes the header has multiple predecessors
- What shall we do?
 Insert a pre-header

Summary

- Dominators
- Iterative data-flow algorithm for finding dominators
- There is a natural loop for each back edge
- Natural loops, loop header
 - A natural loop has just one entry path, through its *header*
 - (contrast: a natural loop is a strongly-connected region, but there are strongly-connected regions that are not natural loops)
- Natural loops that share the same header have ambiguous source-code structured control flow
- Natural loops with different headers form a loop tree
- We insert a pre-header before the header, to ensure a unique place to move loop-invariant instructions to

The Control Tree

The root node of the loop tree has seven children - two of them are loops themselves (shown in green and purple), and five of them are non-loop statements (1,6,7,11,12). The purple subloop has two non-loop children (5,10) and one loop child (in blue). That child has two non-loop children (8,9).

February 21

Piazza question:

"are 5&10 parents of 8&9?"

Feeding curiosity

- Reducible control-flow graphs: structured control-flow programs (goto-free) result in CFGs whose only cycles are natural loops. In particular, you can't make a loop with more than one entry path. Reducibility is a rich property that can be defined and tested in multiple ways ; see:
 - Matthew S. Hecht and Jeffrey D. Ullman. 1972. Flow graph reducibility. STOC '72 <u>https://doi.org/10.1145/800152.804919</u>
- Interval analysis and structural analysis: dataflow analysis can be solved using non-iterative methods by finding the loop nesting structure – potentially leading to faster algorithms (and better behaviour with incremental updates). At least for reducible CFGs. See for example
 - M. Sharir. 1980. Structural analysis: A new approach to flow analysis in optimizing compilers. Comput. Lang. 5, 3–4 (January, 1980) <u>https://doi.org/10.1016/0096-0551(80)90007-7</u>
- But pretty much everyone uses iterative algorithms!

Feeding curiosity

- Reverse engineering: recovering the source code from the binary is clearly an interesting problem – with applications from cracking license-protected software products, to reverse-engineering malware.
- **Code obfuscation:** naturally one might try to modify code to make reverse-engineering hard. Many cunning approaches exist. But they come with no guarantees (cf cryptography where we might prove that decryption is hard)
- Is it possible to have any assurance that reverse-engineering executable software is *actually* hard?
- Impossibility: See:
 - Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil
 Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM 59, 2,
 Article 6 (April 2012), <u>https://doi.org/10.1145/2160158.2160159</u>
- **Possibility**: See:
 - Boaz Barak. 2016. Hopes, fears, and software obfuscation. Commun. ACM 59, 3 (March 2016), 88–96. <u>https://doi.org/10.1145/2757276</u>

25