
1

Compilers - Chapter 7:

Loop optimisations

Part 2: Dominators and natural loops

February 21

• Lecturer:
– Paul Kelly (p.kelly@imperial.ac.uk)

http://phdcomics.com/comics/archive.php?comicid=1015, https://en.wikipedia.org/wiki/Piled_Higher_and_Deeper

mailto:p.kelly@imperial.ac.uk
http://phdcomics.com/comics/archive.php?comicid=1015
https://en.wikipedia.org/wiki/Piled_Higher_and_Deeper

2

Where should we move the loop-invariant instructions to?

• Given control-flow graph, need to find

– Where the loops are

– Where the loop headers are

– So we can find a place to put the loop’s loop-
invariant instructions

– Need robust scheme that handles all loops
including whatever you can do with goto

• We will develop a general framework for
finding loops in control-flow graphs

– We aim to recover the loop structure that came
from the source program’s looping constructs

– We do not assume that the source code’s
structured control flow is preserved – so that we
can combine different optimisations without
having to track how the CFG was built

February 21

3

Where should we move the loop-invariant instructions to?

• Given control-flow graph, need to find

– Where the loops are

– Where the loop headers are

– So we can find a place to put the loop’s loop-
invariant instructions

– Need robust scheme that handles all loops
including whatever you can do with goto

• Definition:

A loop in a control flow graph is a set of nodes S
including a header node h, with the following
properties:

• From any node in S there is a path leading to h

• There is a path from h to any node in S

• There is no edge from any node outside S to any node in
S other than h

February 21

p1

p2

h

p3

p4

p5
p6

So there is only one way in!

S

4

• Definition: dominator

A node d dominates a node n if every path from the CFG’s start

node to n must go through d. Every node dominates itself

February 21

p3

p2

p4

p5

p1

p3

p4

p5

p7

p1 p2

p6

{1,2,3,4,5}

{3}
{2}

{4,5}

{5}

{1} {2}

{3,4,5,6,7}

{4,5,6,7}

{6,7}{5}

{7}

5

• Definition: dominator

A node d dominates a node n if every path from the CFG’s start

node to n must go through d. Every node dominates itself

February 21

Bra L2 91

cmp b a a,b 32

bge L3 4,73

mov a b a b 54

add #1 b b b 65

bra L4 96

mov b a b a 87

sub #1 a a a 98

Cmp b #10 b 109

Blt L1 11,210

Start node

Exit

Example:

while (b<10) {

if (b<a) b = a+1;

else a = b-1;

}

1 is dominated by {1}

9 is dominated by {1,9}

2 is dominated by {1,2,9,10}

4 is dominated by {1,2,3,4,9,10}

7 is dominated by {1,2,3,7,9,10}

6

Dominators…
• Finding the nodes dominated by a

node d:
– Consider another node n with

predecessors p1...pk

– If d dominates each one of the pi then it
must dominate n

– Because:

• Every path from the start node to n
must go through one of the pi

• And every path from the start node to
a pi must go through d

– Conversely,
• If d dominates n, it must dominate all

the pi

• Otherwise there would be a path from
the start node to n going through the
predecessor not dominated by d

February 21

p1 p2 p3 p4

n

d

s

Other nodes and arcs

7

Algorithm for finding dominators

• Let Doms(n) be the set of nodes that dominate n

• Construct a system of simultaneous set equations:

• Doms(s) = { s } (s = start node)

• Doms(n) = {n} U (Doms(p)) (otherwise)

• Solve this system iteratively

• Initially, each Doms(n) starts as the set of all nodes in the graph

• Each assignment makes Doms(n) smaller, until it stops changing

February 21


p  preds(n)

(“n is dominated by Doms(n)”)

(“which dominators are common to all our preds?”)

8

Back edges

• A control flow graph edge from a node n to a node

h that dominates n is called a back edge.

February 21

n4 n5

n2
n3

n6

n1

n1 dominates all nodes

n2 dominates n2,n4

n3 dominates only n3

n4 dominates only n4

n5 dominates only n5

n6 dominates only n6

9

Back edges…

• For every back edge, there is a corresponding

subgraph of the CFG that is a loop (by our

definition earlier)

February 21

n4 n5

n2
n3

n6

n1

Definition:

The natural loop of a

backedge (n,h), where h

dominates n, is

• the set of nodes x such

that h dominates x and

• there is a path from x

to n not containing h.

The header of this loop

will be h

Header

10

Back edges…

• For every back edge, there is a corresponding

subgraph of the CFG that is a loop (by our

definition earlier)

February 21

p3

p4

p5

p7

p1 p2

p6

{1} {2}

{3,4,5,6,7}

{4,5,6,7}

{6,7}{5}

{7}

Definition:

The natural loop of a

backedge (n,h), where h

dominates n, is

• the set of nodes x such

that h dominates x and

• there is a path from x

to n not containing h.

The header of this loop

will be h

11

Multiple loops
• It is possible for two loops to share the same header

• This example has two back edges, (5,3) and (7,3)

• In many cases these two natural loops arise from one source-

code loop

February 21

p3

p4

p5

p7

p1 p2

p6

{1} {2}

{3,4,5,6,7}

{4,5,6,7}

{6,7}{5}

{7}

12

Multiple loops
• It is possible for two loops to share the same header

• This example has two back edges, (5,3) and (7,3)

• In many cases these two natural loops arise from one source-

code loop

February 21

p3

p4

p5

p7

p1 p2

p6

{1} {2}

{3,4,5,6,7}

{4,5,6,7}

{6,7}{5}

{7} Back edges

13

Multiple loops
• It is possible for two loops to share the same header

• This example has two back edges, (5,3) and (7,3)

• In many cases these two natural loops arise from one source-

code loop

February 21

Natural loop of (7,3)

p3

p4

p5

p7

p1 p2

p6

{1} {2}

{3,4,5,6,7}

{4,5,6,7}

{6,7}{5}

{7}

Natural loop of (5,3)

14

Multiple loops
• It is possible for two loops to share the same header

• This example has two back edges, (6,9) and (8,9)

• E.g. here two natural loops arise from one source-code loop

February 21

Bra L2 91

cmp b a a,b 32

bge L3 4,73

mov a b a b 54

add #1 b b b 65

bra L4 96

mov b a b a 87

sub #1 a a a 98

Cmp b #10 b 109

Blt L1 11,210

Start node

Exit

1 dominates all nodes

9 dominates 9,10,2..8

2 dominates 2,3,4..8

4 dominates 4,5,6

7 dominates 7,8

Example:

while (b<10) {

if (b<a) b = a+1;

else a = b-1;

}

15

Two natural loops sharing the same header

• Consider these two code fragments:

One loop:

while true {

if (a<10) {

a += 1;

} else {

a = 0;

b += 1;

if (b>100) break;

}

}

Two loops:

do {

do {

if (a>9) break;

a += 1;

} while true;

a = 0;

b += 1;

if (b>100) break;

} while true;

a>9

a+=1

b+=1

a=0

b>100

• Conclusion: we can’t always distinguish exactly what the source code’s

structured control flow was

16

Nested loops

• Suppose:

– A and B are loops with

headers a and b, such

that a  b, and b is in A

• Then

– The nodes of B must be

a proper subset of the

nodes of A

– We say that loop B is

nested within A

– B is the inner loop

February 21

1

2

3 4

5 6

7

11

12

8

9

10

Back edges: (3,2), (4,2), (10,5), (9,8)

17

Nested loops

• Suppose:

– A and B are loops with

headers a and b, such

that a  b, and b is in A

• Then

– The nodes of B must be

a proper subset of the

nodes of A

– We say that loop B is

nested within A

– B is the inner loop

February 21

1

2

3 4

5 6

7

11

12

8

9

10

Back edges: (3,2), (4,2), (10,5), (9,8)

18

The Control Tree

• Loops form a tree

• Example:

February 21

Back edges: (3,2), (4,2), (10,5), (9,8)

1

6,7,11,12

2

3,4

5

10

8

9

We have reconstructed the “structured control flow” from the control flow graph

1

2

3 4

5 6

7

11

12

8

9

10

19

Pre-headers

• Where should we move
the loop-invariant
instructions to?

February 21

1

6,7,11,12

2

3,4

5

10

8

9
• We can’t move them to the header

• We want to move them to the node
preceding the header

1

2

3 4

5 6

7

11

12

8

9

10

20

Pre-headers
• Where should we move

the loop-invariant
instructions to?

• We want to move them
to the node preceding
the header

• But sometimes the
header has multiple
predecessors

• What shall we do?

February 21

n4

n5

n2 n3

n6

n1

Header

21

Pre-headers

February 21

n4

n5

n2 n3

n6

n1

Header

n7 Pre-header

• Where should we move
the loop-invariant
instructions to?

• We want to move them
to the node preceding
the header

• But sometimes the
header has multiple
predecessors

• What shall we do?

– Insert a pre-header

22

Summary

• Dominators

• Iterative data-flow algorithm for finding dominators

• There is a natural loop for each back edge

• Natural loops, loop header

– A natural loop has just one entry path, through its header

– (contrast: a natural loop is a strongly-connected region, but
there are strongly-connected regions that are not natural loops)

• Natural loops that share the same header have
ambiguous source-code structured control flow

• Natural loops with different headers form a loop tree

• We insert a pre-header before the header, to ensure a
unique place to move loop-invariant instructions to

February 21

23

The Control Tree

• Loops form a tree

• Example:

February 21

Back edges: (3,2), (4,2), (10,5), (9,8)

1

6,7,11,12

2

3,4

5

10

8

9

The root node of the loop tree has seven children - two of them are loops themselves (shown in green and purple), and

five of them are non-loop statements (1,6,7,11,12). The purple subloop has two non-loop children (5,10) and one loop

child (in blue). That child has two non-loop children (8,9).

1

2

3 4

5 6

7

11

12

8

9

10

Piazza question:
“are 5&10 parents of 8&9?”

24

Feeding curiosity
• Reducible control-flow graphs: structured control-flow programs

(goto-free) result in CFGs whose only cycles are natural loops. In
particular, you can’t make a loop with more than one entry path.
Reducibility is a rich property that can be defined and tested in
multiple ways ; see:
– Matthew S. Hecht and Jeffrey D. Ullman. 1972. Flow graph reducibility. STOC ‘72

https://doi.org/10.1145/800152.804919

• Interval analysis and structural analysis: dataflow analysis can be
solved using non-iterative methods by finding the loop nesting
structure – potentially leading to faster algorithms (and better
behaviour with incremental updates). At least for reducible CFGs.
See for example
– M. Sharir. 1980. Structural analysis: A new approach to flow analysis in optimizing

compilers. Comput. Lang. 5, 3–4 (January, 1980) https://doi.org/10.1016/0096-
0551(80)90007-7

• But pretty much everyone uses iterative algorithms!

February 21

https://doi.org/10.1145/800152.804919
https://doi.org/10.1016/0096-0551(80)90007-7

25

Feeding curiosity
• Reverse engineering: recovering the source code from the binary is

clearly an interesting problem – with applications from cracking
license-protected software products, to reverse-engineering
malware.

• Code obfuscation: naturally one might try to modify code to make
reverse-engineering hard. Many cunning approaches exist. But
they come with no guarantees (cf cryptography where we might
prove that decryption is hard)

• Is it possible to have any assurance that reverse-engineering
executable software is actually hard?

• Impossibility: See:
– Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil

Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM 59, 2,
Article 6 (April 2012), https://doi.org/10.1145/2160158.2160159

• Possibility: See:
– Boaz Barak. 2016. Hopes, fears, and software obfuscation. Commun. ACM

59, 3 (March 2016), 88–96. https://doi.org/10.1145/2757276February 21

https://doi.org/10.1145/2160158.2160159
https://doi.org/10.1145/2757276

