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Compilers - Chapter 7: 

Loop optimisations

Part 2: Dominators and natural loops

February 21

• Lecturer: 
– Paul Kelly (p.kelly@imperial.ac.uk)

http://phdcomics.com/comics/archive.php?comicid=1015, https://en.wikipedia.org/wiki/Piled_Higher_and_Deeper

mailto:p.kelly@imperial.ac.uk
http://phdcomics.com/comics/archive.php?comicid=1015
https://en.wikipedia.org/wiki/Piled_Higher_and_Deeper
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Where should we move the loop-invariant instructions to?

• Given control-flow graph, need to find

– Where the loops are

– Where the loop headers are

– So we can find a place to put the loop’s loop-
invariant instructions

– Need robust scheme that handles all loops 
including whatever you can do with goto

• We will develop a general framework for 
finding loops in control-flow graphs

– We aim to recover the loop structure that came 
from the source program’s looping constructs

– We do not assume that the source code’s 
structured control flow is preserved – so that we 
can combine different optimisations without 
having to track how the CFG was built

February 21
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Where should we move the loop-invariant instructions to?

• Given control-flow graph, need to find

– Where the loops are

– Where the loop headers are

– So we can find a place to put the loop’s loop-
invariant instructions

– Need robust scheme that handles all loops 
including whatever you can do with goto

• Definition: 

A loop in a control flow graph is a set of nodes S 
including a header node h, with the following 
properties:

• From any node in S there is a path leading to h

• There is a path from h to any node in S

• There is no edge from any node outside S to any node in 
S other than h

February 21
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So there is only one way in!
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• Definition: dominator

A node d dominates a node n if every path from the CFG’s start 

node to n must go through d.  Every node dominates itself

February 21
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{2}

{4,5}

{5}

{1} {2}

{3,4,5,6,7}

{4,5,6,7}

{6,7}{5}

{7}



5

• Definition: dominator

A node d dominates a node n if every path from the CFG’s start 

node to n must go through d.  Every node dominates itself

February 21

Bra L2 91

cmp b a a,b 32

bge L3 4,73

mov a b a b 54

add #1 b b b 65

bra L4 96

mov b a b a 87

sub #1 a a a 98

Cmp b #10 b 109

Blt L1 11,210

Start node

Exit

Example:

while (b<10) {

if (b<a) b = a+1;

else a = b-1;

}

1 is dominated by {1}

9 is dominated by {1,9}

2 is dominated by {1,2,9,10}

4 is dominated by {1,2,3,4,9,10}

7 is dominated by {1,2,3,7,9,10}
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Dominators…
• Finding the nodes dominated by a 

node d:
– Consider another node n with 

predecessors p1...pk

– If d dominates each one of the pi then it 
must dominate n

– Because:

• Every path from the start node to n 
must go through one of the  pi 

• And every path from the start node to 
a pi must go through d

– Conversely,
• If d dominates n, it must dominate all 

the pi 

• Otherwise there would be a path from 
the start node to n going through the 
predecessor not dominated by d

February 21
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Algorithm for finding dominators

• Let Doms(n) be the set of nodes that dominate n

• Construct a system of simultaneous set equations:

• Doms(s) = { s }    (s = start node)

• Doms(n) = {n} U (            Doms(p) ) (otherwise)

• Solve this system iteratively

• Initially, each Doms(n) starts as the set of all nodes in the graph

• Each assignment makes Doms(n) smaller, until it stops changing

February 21


p  preds(n)

(“n is dominated by Doms(n)”)

(“which dominators are common to all our preds?”)
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Back edges

• A control flow graph edge from a node n to a node 

h that dominates n is called a back edge.

February 21

n4 n5

n2
n3

n6

n1

n1 dominates all nodes

n2 dominates n2,n4

n3 dominates only n3

n4 dominates only n4

n5 dominates only n5

n6 dominates only n6
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Back edges…

• For every back edge, there is a corresponding 

subgraph of the CFG that is a loop (by our 

definition earlier)

February 21

n4 n5

n2
n3

n6

n1

Definition:

The natural loop of a 

backedge (n,h), where h 

dominates n, is 

• the set of nodes x such 

that h dominates x and 

• there is a path from x 

to n not containing h.

The header of this loop 

will be h

Header
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Back edges…

• For every back edge, there is a corresponding 

subgraph of the CFG that is a loop (by our 

definition earlier)
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Definition:

The natural loop of a 

backedge (n,h), where h 

dominates n, is 

• the set of nodes x such 

that h dominates x and 

• there is a path from x 

to n not containing h.

The header of this loop 

will be h



11

Multiple loops
• It is possible for two loops to share the same header

• This example has two back edges, (5,3) and (7,3)

• In many cases these two natural loops arise from one source-

code loop
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Multiple loops
• It is possible for two loops to share the same header

• This example has two back edges, (5,3) and (7,3)

• In many cases these two natural loops arise from one source-

code loop
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Multiple loops
• It is possible for two loops to share the same header

• This example has two back edges, (5,3) and (7,3)

• In many cases these two natural loops arise from one source-

code loop

February 21

Natural loop of (7,3)
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p4

p5

p7

p1 p2

p6

{1} {2}

{3,4,5,6,7}

{4,5,6,7}

{6,7}{5}

{7}

Natural loop of (5,3)
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Multiple loops
• It is possible for two loops to share the same header

• This example has two back edges, (6,9) and (8,9)

• E.g. here two natural loops arise from one source-code loop

February 21

Bra L2 91

cmp b a a,b 32

bge L3 4,73

mov a b a b 54

add #1 b b b 65

bra L4 96

mov b a b a 87

sub #1 a a a 98

Cmp b #10 b 109

Blt L1 11,210

Start node

Exit

1 dominates all nodes

9 dominates 9,10,2..8

2 dominates 2,3,4..8

4 dominates 4,5,6

7 dominates 7,8

Example:

while (b<10) {

if (b<a) b = a+1;

else a = b-1;

}
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Two natural loops sharing the same header

• Consider these two code fragments:

One loop:

while true {

if (a<10) {

a += 1;

} else {

a = 0;

b += 1;

if (b>100) break;

}

}

Two loops:

do { 

do { 

if (a>9) break;

a += 1;

} while true;

a = 0;

b += 1;

if (b>100) break;

} while true;

a>9

a+=1

b+=1

a=0

b>100

• Conclusion: we can’t always distinguish exactly what the source code’s 

structured control flow was



16

Nested loops

• Suppose:

– A and B are loops with 

headers a and b, such 

that a  b, and b is in A

• Then

– The nodes of B must be 

a proper subset of the 

nodes of A

– We say that loop B is 

nested within A

– B is the inner loop

February 21
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Back edges: (3,2), (4,2), (10,5), (9,8)
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Nested loops

• Suppose:

– A and B are loops with 

headers a and b, such 

that a  b, and b is in A

• Then

– The nodes of B must be 

a proper subset of the 

nodes of A

– We say that loop B is 

nested within A

– B is the inner loop
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Back edges: (3,2), (4,2), (10,5), (9,8)
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The Control Tree

• Loops form a tree

• Example:

February 21

Back edges: (3,2), (4,2), (10,5), (9,8)

1

6,7,11,12

2

3,4

5

10

8

9

We have reconstructed the “structured control flow” from the control flow graph

1

2

3 4

5 6

7

11

12

8

9

10



19

Pre-headers

• Where should we move 
the loop-invariant 
instructions to?

February 21

1

6,7,11,12

2

3,4

5

10

8

9
• We can’t move them to the header

• We want to move them to the node 
preceding the header
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Pre-headers
• Where should we move 

the loop-invariant 
instructions to?

• We want to move them 
to the node preceding 
the header

• But sometimes the 
header has multiple 
predecessors

• What shall we do?

February 21
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Header
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Pre-headers

February 21

n4

n5

n2 n3

n6

n1

Header

n7 Pre-header

• Where should we move 
the loop-invariant 
instructions to?

• We want to move them 
to the node preceding 
the header

• But sometimes the 
header has multiple 
predecessors

• What shall we do?

– Insert a pre-header
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Summary

• Dominators

• Iterative data-flow algorithm for finding dominators

• There is a natural loop for each back edge

• Natural loops, loop header

– A natural loop has just one entry path, through its header

– (contrast: a natural loop is a strongly-connected region, but 
there are strongly-connected regions that are not natural loops) 

• Natural loops that share the same header have 
ambiguous source-code structured control flow

• Natural loops with different headers form a loop tree

• We insert a pre-header before the header, to ensure a 
unique place to move loop-invariant instructions to 

February 21
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The Control Tree

• Loops form a tree

• Example:

February 21

Back edges: (3,2), (4,2), (10,5), (9,8)

1

6,7,11,12

2

3,4

5

10

8

9

The root node of the loop tree has seven children - two of them are loops themselves (shown in green and purple), and 

five of them are non-loop statements (1,6,7,11,12). The purple subloop has two non-loop children (5,10) and one loop 

child (in blue). That child has two non-loop children (8,9).

1

2

3 4

5 6

7

11

12

8

9

10

Piazza question:
“are 5&10 parents of 8&9?”
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Feeding curiosity
• Reducible control-flow graphs: structured control-flow programs 

(goto-free) result in CFGs whose only cycles are natural loops.  In 
particular, you can’t make a loop with more than one entry path.  
Reducibility is a rich property that can be defined and tested in 
multiple ways ; see:
– Matthew S. Hecht and Jeffrey D. Ullman. 1972. Flow graph reducibility. STOC ‘72 

https://doi.org/10.1145/800152.804919

• Interval analysis and structural analysis: dataflow analysis can be 
solved using non-iterative methods by finding the loop nesting 
structure – potentially leading to faster algorithms (and better 
behaviour with incremental updates).  At least for reducible CFGs.  
See for example
– M. Sharir. 1980. Structural analysis: A new approach to flow analysis in optimizing 

compilers. Comput. Lang. 5, 3–4 (January, 1980) https://doi.org/10.1016/0096-
0551(80)90007-7

• But pretty much everyone uses iterative algorithms!

February 21

https://doi.org/10.1145/800152.804919
https://doi.org/10.1016/0096-0551(80)90007-7
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Feeding curiosity
• Reverse engineering: recovering the source code from the binary is 

clearly an interesting problem – with applications from cracking 
license-protected software products, to reverse-engineering 
malware.  

• Code obfuscation: naturally one might try to modify code to make 
reverse-engineering hard.  Many cunning approaches exist.  But 
they come with no guarantees (cf cryptography where we might 
prove that decryption is hard)

• Is it possible to have any assurance that reverse-engineering 
executable software is actually hard?  

• Impossibility: See:
– Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil 

Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM 59, 2, 
Article 6 (April 2012), https://doi.org/10.1145/2160158.2160159

• Possibility: See:
– Boaz Barak. 2016. Hopes, fears, and software obfuscation. Commun. ACM 

59, 3 (March 2016), 88–96. https://doi.org/10.1145/2757276February 21

https://doi.org/10.1145/2160158.2160159
https://doi.org/10.1145/2757276

