Compilers - Chapter 7: Loop optimisations
Part 2: Dominators and natural loops

• Lecturer:
 – Paul Kelly (p.kelly@imperial.ac.uk)
Where should we move the loop-invariant instructions to?

- Given control-flow graph, need to find
 - Where the loops are
 - Where the loop headers are
 - So we can find a place to put the loop’s loop-invariant instructions
 - Need robust scheme that handles all loops including whatever you can do with goto

- We will develop a general framework for finding loops in control-flow graphs
 - We aim to *recover* the loop structure that came from the source program’s looping constructs
 - We do not assume that the source code’s structured control flow is preserved – so that we can combine different optimisations without having to track how the CFG was built
Where should we move the loop-invariant instructions to?

• Given control-flow graph, need to find
 – Where the loops are
 – Where the loop headers are
 – So we can find a place to put the loop’s loop-invariant instructions
 – Need robust scheme that handles all loops including whatever you can do with goto

• Definition:

 A loop in a control flow graph is a set of nodes S including a header node h, with the following properties:
 • From any node in S there is a path leading to h
 • There is a path from h to any node in S
 • There is no edge from any node outside S to any node in S other than h

So there is only one way in!
• **Definition: dominator**

A node \(d\) *dominates* a node \(n\) if every path from the CFG’s start node to \(n\) must go through \(d\). Every node dominates itself.
Definition: dominator

A node \(d \) *dominates* a node \(n \) if every path from the CFG’s start node to \(n \) must go through \(d \). Every node dominates itself.

1 is dominated by \(\{1\} \)
9 is dominated by \(\{1,9\} \)
2 is dominated by \(\{1,2,9,10\} \)
4 is dominated by \(\{1,2,3,4,9,10\} \)
7 is dominated by \(\{1,2,3,7,9,10\} \)

Example:

```plaintext
while (b<10) {
    if (b<a) b = a+1;  
    else a = b-1;  
}
```

```
1 Bra L2 9
2 cmp b a a,b 3
3 bge L3 4,7
4 mov a b a b 5
5 add #1 b b b 6
6 bra L4 9
7 mov b a b a 8
8 sub #1 a a a 9
9 Cmp b #10 b 10
10 Blt L1 11,2
```
Dominators...

• Finding the nodes dominated by a node d:
 – Consider another node n with predecessors $p_1...p_k$
 – If d dominates each one of the p_i then it must dominate n
 – Because:
 • Every path from the start node to n must go through one of the p_i
 • And every path from the start node to a p_i must go through d
 – Conversely,
 • If d dominates n, it must dominate all the p_i
 • Otherwise there would be a path from the start node to n going through the predecessor not dominated by d
Algorithm for finding dominators

• Let Doms(n) be the set of nodes that dominate n
 ("n is dominated by Doms(n)"")
• Construct a system of simultaneous set equations:
 • Doms(s) = \{ s \} \quad (s = \text{start node})
 • Doms(n) = \{ n \} \cup \left(\bigcap_{p \in \text{preds}(n)} \text{Doms}(p) \right) \quad (\text{otherwise})
 ("\text{which dominators are common to all our preds?}")
• Solve this system iteratively
• Initially, each Doms(n) starts as the set of all nodes in the graph
• Each assignment makes Doms(n) smaller, until it stops changing
Back edges

- A control flow graph edge from a node n to a node h that dominates n is called a **back edge**.

n1 dominates all nodes
n2 dominates n2, n4
n3 dominates only n3
n4 dominates only n4
n5 dominates only n5
n6 dominates only n6
Back edges...

• For every back edge, there is a corresponding subgraph of the CFG that is a loop (by our definition earlier)

Definition:
The *natural loop* of a backedge \((n, h)\), where \(h\) dominates \(n\), is

- the set of nodes \(x\) such that \(h\) dominates \(x\) and
- there is a path from \(x\) to \(n\) not containing \(h\).

The *header* of this loop will be \(h\)
Back edges…

• For every back edge, there is a corresponding subgraph of the CFG that is a loop (by our definition earlier)

Definition:
The natural loop of a backedge \((n,h)\), where \(h\) dominates \(n\), is

- the set of nodes \(x\) such that \(h\) dominates \(x\) and
- there is a path from \(x\) to \(n\) not containing \(h\).

The header of this loop will be \(h\)
Multiple loops

• It is possible for two loops to share the same header
• This example has two back edges, (5,3) and (7,3)
• In many cases these two natural loops arise from one source-code loop
Multiple loops

- It is possible for two loops to share the same header
- This example has two back edges, (5,3) and (7,3)
- In many cases these two natural loops arise from one source-code loop
Multiple loops

- It is possible for two loops to share the same header
- This example has two back edges, (5,3) and (7,3)
- In many cases these two natural loops arise from one source-code loop

Natural loop of (5,3)

Natural loop of (7,3)
Multiple loops

- It is possible for two loops to share the same header
- This example has two back edges, (6,9) and (8,9)
- E.g. here two natural loops arise from one source-code loop

Example:
```c
while (b<10) {
    if (b<a) b = a+1;
    else a = b-1;
}
```
Two natural loops sharing the same header

- Consider these two code fragments:

One loop:
```java
while true {
    if (a<10) {
        a += 1;
    } else {
        a = 0;
        b += 1;
        if (b>100) break;
    }
}
```

Two loops:
```java
do {
    do {
        if (a>9) break;
        a += 1;
    } while true;
    a = 0;
    b += 1;
}
```

- Conclusion: we can’t always distinguish exactly what the source code’s structured control flow was
Nested loops

• Suppose:
 – A and B are loops with headers a and b, such that $a \neq b$, and b is in A

• Then
 – The nodes of B must be a proper subset of the nodes of A
 – We say that loop B is nested within A
 – B is the inner loop

Back edges: (3,2), (4,2), (10,5), (9,8)
Nested loops

- Suppose:
 - A and B are loops with headers a and b, such that $a \neq b$, and b is in A
- Then
 - The nodes of B must be a proper subset of the nodes of A
 - We say that loop B is nested within A
 - B is the inner loop

Back edges: $(3,2), (4,2), (10,5), (9,8)$
The Control Tree

• Loops form a tree
• Example:

We have reconstructed the “structured control flow” from the control flow graph.
Pre-headers

- Where should we move the loop-invariant instructions to?

- We can’t move them to the header
- We want to move them to the node preceding the header
Pre-headers

• Where should we move the loop-invariant instructions *to*?

• We want to move them to the node preceding the header

• But sometimes the header has multiple predecessors

• What shall we do?
Pre-headers

• Where should we move the loop-invariant instructions to?

• We want to move them to the node preceding the header

• But sometimes the header has multiple predecessors

• What shall we do?
 – Insert a pre-header
Summary

• Dominators
• Iterative data-flow algorithm for finding dominators
• There is a natural loop for each back edge
• Natural loops, loop header
 – A natural loop has just one entry path, through its header
 – (contrast: a natural loop is a strongly-connected region, but there are strongly-connected regions that are not natural loops)
• Natural loops that share the same header have ambiguous source-code structured control flow
• Natural loops with different headers form a loop tree
• We insert a pre-header before the header, to ensure a unique place to move loop-invariant instructions to
The root node of the loop tree has seven children - two of them are loops themselves (shown in green and purple), and five of them are non-loop statements (1,6,7,11,12). The purple subloop has two non-loop children (5,10) and one loop child (in blue). That child has two non-loop children (8,9).

Piazza question: “are 5&10 parents of 8&9?”
Feeding curiosity

- **Reducible control-flow graphs**: structured control-flow programs (goto-free) result in CFGs whose only cycles are natural loops. In particular, you can’t make a loop with more than one entry path. Reducibility is a rich property that can be defined and tested in multiple ways; see:

- **Interval analysis and structural analysis**: dataflow analysis can be solved using non-iterative methods by finding the loop nesting structure – potentially leading to faster algorithms (and better behaviour with incremental updates). At least for reducible CFGs. See for example

- But pretty much everyone uses iterative algorithms!
Feeding curiosity

- **Reverse engineering**: recovering the source code from the binary is clearly an interesting problem – with applications from cracking license-protected software products, to reverse-engineering malware.

- **Code obfuscation**: naturally one might try to modify code to make reverse-engineering hard. Many cunning approaches exist. But they come with no guarantees (cf cryptography where we might prove that decryption is hard)

- Is it possible to have any assurance that reverse-engineering executable software is actually hard?

- **Impossibility**: See:

- **Possibility**: See: