
1

Compilers - Chapter 7:

Loop optimisations

Part 3: Loop-invariant code motion

March 25

• Lecturer:
– Paul Kelly (p.kelly@imperial.ac.uk)

S
at

u
rd

ay
 M

o
rn

in
g
 B

re
ak

fa
st

 C
er

ea
l

-
2
0
1
1
-0

9
-0

8
 (

sm
b
c-

co
m

ic
s.

co
m

)

mailto:p.kelly@imperial.ac.uk
https://www.smbc-comics.com/?id=2362

2

Which instructions can we move out of a loop?
• The next question is exactly which loop-invariant

instructions we can move to the pre-header

March 25

L0:
 t = 0

L1:
 i = i+1
 t = a b
 M[i] = t
 if i<N goto L1

L2:
 x = t

A

3

Which instructions can we move out of a loop?
• The next question is exactly which loop-invariant

instructions we can move to the pre-header

March 25

L0:
 t = 0
 t = a b
L1:
 i = i+1
 t = a b
 M[i] = t
 if i<N goto L1

L2:
 x = t

A

4

Which instructions can we move out of a loop?

• It’s easy to get it wrong….

March 25

L0:
 t = 0

L1:
 if i<N goto L2

 i = i+1
 t = a b
 M[i] = t
 goto L1
L2:
 x = t

B

5

Which instructions can we move out of a loop?

• It’s easy to get it wrong….

March 25

L0:
 t = 0
 t = a b
L1:
 if i<N goto L2

 i = i+1
 t = a b
 M[i] = t
 goto L1
L2:
 x = t

B

6

Which instructions can we move out of a loop?

• It’s easy to get it wrong….

March 25

L0:
 t = 0
 t = a b
L1:
 if i<N goto L2

 i = i+1
 t = a b
 M[i] = t
 goto L1
L2:
 x = t

B

t should be 0 if i<N

7

Which instructions can we move out of a loop?

• It’s easy to get it wrong….

March 25

L0:

L1:
 i = i+1
 t = a b
 M[i] = t
 t = 0

 M[j] = t

 if i<N goto L1

L2:

C

8

Which instructions can we move out of a loop?

• It’s easy to get it wrong….

March 25

L0:

 t = a b
L1:
 i = i+1
 t = a b
 M[i] = t
 t = 0

 M[j] = t

 if i<N goto L1

L2:

C

9

Which instructions can we move out of a loop?

• It’s easy to get it wrong….

March 25

L0:

 t = a b
L1:
 i = i+1
 t = a b
 M[i] = t
 t = 0

 M[j] = t

 if i<N goto L1

L2:

C

• (Just because an

expression is loop

invariant, doesn’t

mean we can always

move the

instruction)

What about the second

iteration?

10

Which instructions can we move out of a loop?

• It’s easy to get it wrong….

March 25

L0:
 t = 0

L1:
 M[j] = t
 i = i+1
 t = a b
 M[i] = t
 if i<N goto L1

L2:
 x = t

D

11

Which instructions can we move out of a loop?

• It’s easy to get it wrong….

March 25

L0:
 t = 0
 t = a b
L1:
 M[j] = t
 i = i+1
 t = a b
 M[i] = t
 if i<N goto L1

L2:

D

t should be 0 on

first iteration

12

Which instructions can we move out of a loop?

March 25

L0:
 t = 0
 t = a b
L1:
 i = i+1
 t = a b
 M[i] = t
 t = 0

 M[j] = t

 if i<N goto
L1

L2:

L0:
 t = 0
 t = a b
L1:
 M[j] = t
 i = i+1
 t = a b
 M[i] = t
 if i<N goto

L1

L2:

L0:
 t = 0
 t = a b
L1:
 i = i+1
 t = a b
 M[i] = t
 if i<N goto

L1

L2:
 x = t

L0:
 t = 0
 t = a b
L1:
 if i<N goto L2

 i = i+1
 t = a b
 M[i] = t
 goto L1
L2:
 x = t

A B C D

Hoist Don’t hoist:

Loop invariant node

does not dominate

all loop exits

Don’t hoist:

More than one

definition of t

in the loop

Don’t hoist:

t is liveOut from

the loop’s

preheader

13

Which instructions can we move out of a loop?
• Conditions for hoisting a CFG node

 d: t = a b

March 25

Loop invariant node

must dominate all

loop exits

There must be

just one def of

t in loop

t must not be

liveOut from the

loop’s preheader

Loop invariant: all
reaching defs used by d
occur outside loop

Use Reaching Definitions data flow

analysis

Use Dominators analysis

Just count them!

Use Live Variables data flow analysis

1

2

3

4

This is a bit messy…

14

Static Single Assignment form (SSA)
• SSA is a powerful technique for simplifying many

optimisation problems

• It is very widely used

• The next few slides illustrate how SSA avoids the side
conditions on loop invariant code motion presented
earlier

• Converting your code into SSA, and back to code again,
takes a bit more work

– You should know what SSA is, and how it helps – but converting
to and from SSA form is beyond the scope of this course

– but see the textbooks (EaC Section 9.3 pp454, Appel Ch19)

March 25

15

Introducing static
single assignment…

• Note that B is reassigned

March 25

A := e1

B := e2

...

... B ... B used

C := A+B A and B used

...

B := A*5 A used

D := B+1 ... B used

... C ... C used

At this point, three live-

ranges overlap – so we

need at least three

registers

Recall graph colouring for

register allocation

16

• SSA: introduce a new name each time a variable is assigned

• This helps register allocation by splitting live ranges
March 25

A := e1

B := e2

...

... B ... B used

C := A+B A and B used

...

B := A*5 A used

D := B+1 ... B used

... C ... C used

• Variable B is reused – it

really has two separate live

ranges:

A := e1

B1 := e2

...

... B1 ... B1 used

C := A+B1 A and B1 used

...

B2 := A*5 A used

D := B2+1 ...B2 used

... C ... C used

Introducing static
single assignment…

17

Static Single Assignment form (SSA)
• Things are a bit more complicated with branches:

branch

a = b+c a = d*2

e = a+1

branch

𝑎1 = b+c 𝑎2 = d*2

𝑎3 = 𝝋(𝑎1 , 𝑎2)

e = 𝑎3+1

• At control-flow joins, we insert a dummy renaming operator
𝝋(𝑎1, 𝑎2) – which magically picks either 𝑎1 or 𝑎2 depending on
which path is actually taken

• 𝝋 is not really executed – it is eliminated during code generation

18March 25

Example A (where hoisting was valid)

We should do SSA conversion for variable i as well – this has been omitted

for clarity.

𝐿0:

 𝑡1 = 0

𝐿1:

 i = i+1

 𝑡2 = a ⨁ b

 M[i] = 𝑡2

 if I<N goto 𝐿1

𝐿2:

 x = 𝑡2

𝐿0:

 𝑡 = 0

𝐿1:

 i = i+1

 𝑡 = a ⨁ b

 M[i] = 𝑡
 if I<N goto 𝐿1

𝐿2:

 x = 𝑡

A

Original code SSA code

21

L0:

L1:
 i = i+1
 t = a b
 M[i] = t
 t = 0

 M[j] = t

 if i<N goto L1

L2:

C
Original code SSA code SSA code after hoisting

Example C (where hoisting was invalid)

Renaming t solves the problem all by itself!

27March 25

BL0:
 t = 0

L1:
 if i<N goto L2

 i = i+1
 t = a b
 M[i] = t
 goto L1
L2:
 x = t

𝑡1=0

if i<N

i=i+1

𝑡2=a⨁b

M[i]= 𝑡2

x=𝒕𝟑

𝒕𝟑 = 𝝋(𝒕𝟏,𝒕𝟐)

Original code SSA CFG SSA code

Example B (where hoisting was invalid) is more subtle!

At the control flow join, we have two values for t

“x=t” is reached by two definitions. Adding the "𝑡3 = 𝝋(𝑡1 , 𝑡2)” fixes this.

L0:
 𝑡1= 0

L1:
 𝑡3 = 𝝋(𝑡1, 𝑡2)
 if i<N goto L2

 i = i+1
 𝑡2 = a b
 M[i] = 𝑡2
 goto L1
L2:
 x = 𝑡3

28March 25

B

The SSA

transformation

resolves the

problem by

introducing

separate

names

Hoist

SSA…BL0:
 t = 0

L1:
 if i<N goto L2

 i = i+1
 t = a b
 M[i] = t
 goto L1
L2:
 x = t

Original code SSA code

29

B B

Copies introduced when

generating code from SSA

The tricky bit is when we

transform the code back out

of SSA form again

We really do need more

than one variable for t

We need to assign 𝑡3 to the

right value on the two

different control-flow paths

that meet at the phi

We push the assignments

to 𝒕𝟑 backwards into the

two predecessor paths of

the 𝝋

Doing this actually makes

the loop-invariant hoistable

for this example!

SSA code Generated code

31

L0:
 t = 0

L1:
 M[j] = t
 i = i+1
 t = a b
 M[i] = t
 if i<N goto L1

L2:
 x = t

D

Original code SSA code SSA code after hoisting

Example D (where hoisting was invalid)

L0:
 𝑡1 = 0

L1:
 𝑡3 = 𝝋(𝑡1, 𝑡2)
 M[j] = 𝑡3
 i = i+1
 𝑡2 = a b
 M[i] = 𝑡2
 if i<N goto L1

L2:
 x = 𝑡2

L0:
 𝑡1 = 0

 𝑡2 = a b
L1:
 𝑡3 = 𝝋(𝑡1, 𝑡2)
 M[j] = 𝑡3
 i = i+1
 𝑡2 = a b
 M[i] = 𝑡2
 if i<N goto L1

L2:
 x = 𝑡2

32

L0:
 t = 0

L1:
 M[j] = t
 i = i+1
 t = a b
 M[i] = t
 if i<N goto L1

L2:
 x = t

D

Original code SSA code SSA code after hoisting

Example D (where hoisting was invalid)

SSA makes it valid here too

L0:
 𝑡1 = 0

 𝑡2 = a b
L1:
 𝑡3 = 𝝋(𝑡1, 𝑡2)
 M[j] = 𝑡3
 i = i+1
 𝑡2 = a b
 M[i] = 𝑡2
 if i<N goto L1

L2:
 x = 𝑡2

L0:
 𝑡1 = 0

 𝑡2 = a b
 𝒕𝟑 = 𝒕𝟏
L1:
 𝑡3 = 𝝋(𝑡1, 𝑡2)
 M[j] = 𝑡3
 i = i+1
 𝑡2 = a b
 M[i] = 𝑡2
 𝒕𝟑 = 𝒕𝟐
 if i<N goto L1

L2:
 x = 𝑡2

After SSA

34

Which instructions can we move out of a loop?
• Conditions for hoisting a CFG node after SSA conversion

 d: t = a b

March 25

Loop invariant node

must dominate all

loop exits

There must be

just one def of

t in loop

t must not be

liveOut from the

loop’s preheader

Loop invariant: all
reaching defs used by d
occur outside loop

Use Reaching Definitions data flow

analysis

Not a problem any more!

Guaranteed by SSA

Can’t happen with SSA (because d must

be the only definition of t)

1

2

3

4

35

What next…
• Hoisting loop invariants really helps

• But good compilers do lots more…

– Induction variables:

• A variable which is incremented by a loop-invariant amount

• A variable which is a multiple of an induction variable

– Strength reduction

• Compute all induction variables by incrementing instead of multiplying

– Induction variable elimination, rewriting comparisons

– Array bounds check elimination

• Range of all induction variables is known on entry to a for loop

– Common sub-expressions

– More sophisticated methods – eg partial redundancy elimination

• Now you have seen how to hoist loop-invariants, you can

figure the rest out yourself!
March 25

36

Optimisations for high-performance computing
• “Conventional” optimisations reduce work done at run-time

• “restructuring” compilers improve performance by finding the right
order in which to do the computation

• Example: Parallelisation:

Original code:

For (i=0;i<N;i++)

 For (j=0;j<M;j++)

 A[i,j] = (A[i,j] + A[i-1,j] + A[i+1,j])* (1/3)

Parallel implementation:

For (i=0;i<N;i++)

 ParFor (j=0;j<M;j++)

 A[i,j] = (A[i,j] + A[i-1,j] + A[i+1,j])* (1/3)

Better parallel implementation?

ParFor (j=0;j<M;j++)

 For (i=0;i<N;i++)

 A[i,j] = (A[i,j] + A[i-1,j] + A[i+1,j])* (1/3)
March 25

38

Optimisations for high-performance computing

• Another restructuring example:
Example: matrix transpose:

 for (i=0;i<N;i++)

 for (j=0;j<M;j++)

 B[i][j] = A[j][i];

Cache-efficient implementation:

 for (ii=0;ii<N;ii+=IB)

 for (jj=0;jj<M;jj+=JB)

 for (i=ii;i<ii+IB;i++)

 for (j=jj;j<jj+JB;j++)

 B[i][j] = A[j][i];

March 25

Using Intel i7-7567U, gcc 9.30

gcc -Ofast

N=M=10240

IB=JB=16

Original execution time: 7.2s

Improved execution time: 0.46s

39

Optimisations for high-level programming languages
• Subtype polymorphism

– Static resolution of the type of x in x.f() enables inlining of method f

• Generics (aka parametric polymorphism)
– A generic class is parameterised by a type (eg a container by its element type). When is

it a good idea to generate specialised code?

• Pattern matching
– In a language like Haskell, Prolog, Erlang, Elixir, pattern matching on nested data

structures is very powerful. Find optimum sequence of tests.

• Dynamic object creation
– If we allow space to be allocated, but automatically freed, can we sometimes add code

to do it instead of relying on garbage collection?

• Lazy evaluation
– Can an expression be evaluated where it is first referred to, or do we have to build a
“closure” representing it?

• Arrays – overloaded arithmetic
– If we overload arithmetic operators to work on arrays, how to avoid lots of little loops?

• Arrays – slices
– If we allow a multidimensional array to be sliced, eg A[2:99,2:99], how do we avoid

having to manipulate an array descriptor?

March 25

40

Research
• Several Imperial research groups are working on optimising compiler technology, including:

– Wayne Luk’s Custom Computing/Silicon Compilation group

– Alastair Donaldson’s Multicore Programming group

– Paul Kelly’s Software Performance Optimisation group

– Compiler-related research: Cristian Cadar, Holger Pirk, Nick Wu, Jamie Willis, Hongxiang Fan, Sergio
Maffeis, Peter Pietzuch, Herbert Wicklicky, etc

• And more in EEE including John Wickerson, George Constantinides, Aaron Zhao

• And more in Maths eg David Ham, Kevin Buzzard

• And more in Earth Science Engineering eg Gerard Gorman

– Programming languages: Sophia Drossopoulou, Azalea Raad, Philippa Gardner, and others

• Opportunities: UROP summer placements, individual projects, and PhDs

• Sample projects:

– Work with computational scientists to make their simulation of tidal turbines/Formula 1/blood
flow/glacier flow/weather/medical imaging run fast on 10,000-100,000 cores

– Design a domain-specific language and compiler to generate high-performance code for 3D robot
vision and scene understanding

– Design a compiler to generate code for computer vision on a camera sensor device with a processor at
every pixel

– Build an automatic program differentiator, that works for parallel programs

– Check that a program that operates on non-volatile memory always leaves its data in a consistent state,
even if it fails at any time

March 25

41

Chapter 7: summary
• Reaching definitions identify instructions that are candidates for loop-invariant

code motion

• We can find the headers of the program’s natural loops, and insert pre-headers,
so that there is a unique place to move loop-invariant instructions to

• It may still not be safe to actual move them! We have to check some subtle
side-conditions

• Transforming the program to Static Single Assignment (SSA) form ensures
that every use is reached by exactly one definition (which might be a phi).
Translating into SSA may require new variables

• SSA makes loop-invariant code motion safe without side-conditions

• Transforming out of SSA may introduce some additional copy instructions

– SSA also helps with other optimisations, such as register allocation

• Loop-invariant code motion is just one of many optimisations – but it has
introduced many of the key ideas and issues

• Nested loops operating on arrays can benefit from loop scheduling
optimisations and parallelisation, and there is a rich theory

• Many languages can only be optimised effectively with pointer analysis

• Many high-level language features raise the need for additional optimisations

March 25

42

Textbooks
EaC

• Data flow analysis is covered in Chapter 9

– Reaching definitions are covered in Section 9.2.4

– Dominators are covered in Section 9.3.2

• EaC handles loop-invariant code motion somewhat
differently from these slides, which are based on
Appel’s presentation

– See “Lazy Code Motion” (LCM), page 506

– LCM resolves the hoisting conditions in a more
systematic way than presented here, by combining four
different data-flow analyses

March 25

43

Textbooks
• Appel also covers optimisation in depth

– Chapter 10 introduces DFA through live variable analysis
– Chapter 17 shows how DFA can be used for many other useful analyses
– Chapter 18 deals with finding loops, finding induction variables, and implementing

loop optimisations (which rely on DFAs)
– Chapter 19 presents Static Single Assignment, a program representation which

provides easy (and space-efficient) access to dependence information such as
reaching definitions. This simplifies many loop optimisations

– Chapter 20 covers instruction scheduling – finding an instruction ordering which
makes optimal use of modern CPU architectures

– Chapter 21 concerns improving cache performance – by prefetching, and by
executing loops blockwise

• Another really good source if you’re building an optimising compiler is
“High-performance compilers for parallel computing”, Michael Wolfe
(Addison Wesley 1996)

• Fine print:
– CFG would consist of basic blocks instead of individual instructions
– For loop optimisations, we would do the DFA on the IR before instruction selection;

it’s simpler and it avoids complications such a having only two-address instructions
– See Appel pg388

• Credits: in addition to Appel’s book, I found it very useful to study the
course notes of Liz White (George Mason University), Laurie Hendren
(McGill University) and Chau-Wen Tseng (University of Maryland)

March 25

44

Appendix A: Implementing loop

optimisations in Haskell

• The next few slides give a Haskell implementation for
some of the ideas presented in this chapter

• This material is provided to provide a concrete
illustration of the concepts

• It is the concepts which are important, not the code

• Do not memorise the code – spend the time reading
the textbook instead

• Some of the algorithms used here are rather inefficient
– in many cases we just transcribe the mathematical
definitions. Efficient algorithms exist – but are
considerably more complicated.

March 25

45

Reaching definitions – gen and kill

• Preliminaries: the Gen and Kill sets:

nodeGen node | nodeDefs node == [] = []

 | otherwise = [nodeId node]

nodeKill cfg node = nodeDefSet cfg node \\ [nodeId node]

• Suppose t is defined in node. nodeDefSet is set of all the nodeids
where t is defined:

nodeDefSet (ControlFlowGraph cfg) node

 = case nodeDefs node of

 [t] -> [id | Node id i ds us scs prds <- cfg,

 t `elem` ds]

 [] -> []

 otherwise -> error "nodeDefSet: multiple defs“

• Auxiliary functions used in solver overleaf:
untilConverges (a:b:rest) | a == b = a

untilConverges (a:b:rest) = untilConverges (b:rest)

zip2 (rdsin,rdsout) = zip rdsin rdsout

bigU sets = nub (concat sets)March 25

46

Reaching definitions - solver

• Solve the dataflow equations:

reachingDefinitionsOf :: CFG -> ([(Id,[Id])], [(Id,[Id])])

reachingDefinitionsOf cfg

 = untilConverges (iterate updateRDs initialRDs)

 where

 initialRDs :: ([(Id,[Id])], [(Id,[Id])])

 initialRDs = ([(n,[]) | n<-nodesOf cfg], [(n,[]) | n<-nodesOf cfg])

 updateRDs :: ([(Id,[Id])], [(Id,[Id])]) -> ([(Id,[Id])], [(Id,[Id])])

 updateRDs rds = unzip (map (updateRD rds) (zip2 rds))

 updateRD (rdins_sofar,rdouts_sofar) ((id,rdins), (sameid,rdouts))

 = ((id,rdins'), (id,rdouts'))

 where

 rdins' = bigU [retrieve s rdouts_sofar | s <- nodePreds node]

 rdouts' = nodeGen node `union` ((rdInsOf node) \\ nodeKill cfg node)

 where

 rdInsOf node = retrieve (nodeId node) rdins_sofar

 node = idToNode cfg id
March 25

• We solve the
system of
simultaneous
set equations
iteratively

• Initially each
node’s
ReachIn
(rdins), and
ReachOut
(rdouts) set is
empty

• The updates
successively
increase the
ReachIn and
ReachOut sets
until
convergence

47

Use reaching definitions to find loop invariant instructions

• Find the definitions which reach this node which are relevant

– that is, which generate the values this node uses:

relevantReachingDefinitionsOf :: CFG -> [(Id,[Id])]

relevantReachingDefinitionsOf cfg

 = [(nodeId node, relevantDefs node) | node <- cfgToNodes cfg]

 where

 relevantDefs node

 = [rd | rd <- retrieve (nodeId node) rds_in,

 nodeDefs (idToNode cfg rd) `intersect` nodeUses node /= []]

 (rds_in, rds_out) = reachingDefinitionsOf cfg

March 25

48

Use reaching definitions to find loop invariant instructions

• An instruction is loop invariant if the definitions of all the
values it uses are outside the loop:

> externallyDependentInstructionsOf cfg loop

> = [node | node <- [idToNode cfg id | id <- loop],

> nodeDefs node /= [],

> relevantDefs node `intersect` loop == [],

> hoistable node]

> where

> relevantDefs node = retrieve (nodeId node)
(relevantReachingDefinitionsOf cfg)

• An instruction is hoistable only if it produces a value (ie not a compare,
branch, etc):

 hoistable (Node id i [] uses succs preds) = False

 hoistable (Node id i defs uses succs preds) = True

March 25

49

Use reaching definitions to find loop invariant instructions

• Now iteratively add instructions which are l-i because they depend only
on l-i instructions. We reverse the result so that when we add them to
the pre-header, they are added in dependence-order.

> loopInvariantInstructionsOf cfg loop

> = reverse (untilConverges (iterate updateLIs initialLIs))

> where

> initialLIs = externallyDependentInstructionsOf cfg loop

> updateLIs :: [CFGNode] -> [CFGNode]

> updateLIs invariantsSoFar

> = invariantsSoFar `union`

> [n | n <- map (idToNode cfg) loop,

> hoistable n,

> and [hasSingleInvariantDefinition n u | u<-nodeUses n]]

> where

> hasSingleInvariantDefinition n u

> = length defs == 1 && head defs `elem` map nodeId invariantsSoFar

> where

> defs = [d | d<-relevantDefs n, u `elem` nodeDefs (idToNode cfg d)]
March 25

50

Finding dominators… implementation
dominatorsOf :: CFG -> [(Id,[Id])]

dominatorsOf cfg

 = untilConverges (iterate updateDs initialDs)

 where

 initialDs :: [(Id,[Id])]

 initialDs = [(n, nodesOf cfg) | n <- (nodesOf cfg)]

 updateDs :: [(Id,[Id])] -> [(Id,[Id])]

 updateD ds_sofar (id,d)

 = (id,

 [id] `union` (bigCap [retrieve p ds_sofar | p <- nodePredsOf id])

)

 updateDs ds = map (updateD ds) ds

 nodePredsOf id = nodePreds (idToNode cfg id)

bigCap [] = []

bigCap sets = foldr1 intersect sets

untilConverges (a:b:rest) | a == b = a

untilConverges (a:b:rest) = untilConverges (b:rest)

March 25

• We solve the
system of
simultaneous
set equations
iteratively

• Initially each
node’s Doms
set is the set
of all the
nodes of the
CFG

• The updates
successively
reduce the
Doms until
convergence

51

Finding back edges

• A flow graph edge from a node n to a node h that dominates n is

called a back edge:

backEdges :: CFG -> [(Id,Id)]

backEdges cfg

 = [(n,h) | n <- nodesOf cfg, h <- nodesOf cfg, n /= h,

 flowedge n h,

 h `dominates` n]

 where

 dominators = dominatorsOf cfg

 a `dominates` b = a `elem` (retrieve b dominators)

 flowedge a b = a `elem` nodePreds (idToNode cfg b)

March 25

52

Finding natural loops

• The natural loop of a backedge (n,h), where h dominates n, is
the set of nodes x such that h dominates x and there is a path
from x to n not containing h.

naturalLoop :: CFG -> (Id,Id) -> (Id, [Id])

-- backedge header, nodes

naturalLoop cfg (n,header)

 = (header, real_xs)

 where

 poss_xs = [x | x <- nodesOf cfg, header `dominates` x]

 real_xs = [x | x <- poss_xs, pathExists x n]

 pathExists x n

 = [] /= [path | path <- allpaths, not (header `elem` path)]

 where

 allpaths = findControlFlowPaths cfg x n (findControlFlowPaths defined next slide)

 dominators = dominatorsOf cfg

 a `dominates` b = a `elem` (retrieve b dominators)

March 25

(omit paths via header, and

therefore paths via enclosing

loops)

53

Finding paths

• I have used a general-purpose path enumeration to find all the paths
from one node to another. This is rather wasteful... Some care is
needed to avoid following cycles; "mypath" below records the nodes
visited so far.

findControlFlowPaths :: CFG -> Id -> Id -> [[Id]]

findControlFlowPaths cfg start end = findControlFlowPaths' [] start

 where

 findControlFlowPaths' mypath x

 | x == end = [[x]]

 | x `elem` mypath = [[]]

 | otherwise = map (x:) restOfPath

 where

 extendedpath = x:mypath

 succs = nodeSuccs (idToNode cfg x)

 nonCycleSuccs = succs

 restOfPath = concat (map (findControlFlowPaths' extendedpath) nonCycleSuccs)

March 25

54

Building the loop nest tree (a.k.a. the control tree)

• The loop nest tree consists, at each level, of a loop (with its
header), and the list of all its subloop trees:

data LoopTree = LTree (Id,[Id]) [LoopTree] deriving (Show, Eq)

loopTree :: CFG -> LoopTree

loopTree cfg

 = LTree (0, nodesOf cfg) (makeTrees theloops)

 where

 backedges = backEdges cfg

 theloops = map (naturalLoop cfg) backedges

 makeTrees loops = map makeTree (siblingloops loops)

 makeTree loop

 = LTree loop (makeTrees subloops)

 where

 subloops = [(h,nub l) | (h,l) <- theloops, containedIn (h,l) loop]
March 25

55

Building the loop nest tree…

• The children of a given loop are the immediate subloops. A
subloop is an immediate subloop if it is not contained in any
other loop in the list:

siblingloops loops

 = [l1 | l1 <- loops,

 not (any (containedIn l1) [l2 | l2<-loops, l1 /= l2])]

• To work out whether one loop l1 is strictly contained within
another l2, we ask simply whether l1’s header is in l2’s
body:

containedIn :: (Id,[Id]) -> (Id,[Id]) -> Bool

containedIn (h1,l1) (h2,l2) = h1 `elem` l2

March 25

56

Manipulating the control flow graph…

• To implement hoisting of loop invariants we need a few other
functions:

– Insert a pre-header before each loop header:
> addPreHeaders :: CFG -> LoopTree -> ([(Id,Id)], CFG)
> addPreHeaders cfg looptree =

– Remove a specified list of nodes from a cfg
> removeNodes :: [CFGNode] -> CFG -> CFG
> removeNode node cfg = …

– Insert a specified node n into a cfg after a specified node "target".
This only works if the target has only one successor, as is the case
with a pre-header.

> [CFGNode] -> CFG -> Int -> CFG
> insertNodesAfter nodes cfg target = …

– Traverse the modified CFG and generate instructions:
> generateInstructions :: CFG -> [Instruction]
> generateInstructions cfg = …

March 25

57

Hoisting the loop-invariants…
• Finally, we bring it all together

> hoistLoopInvariants cfg looptree

> = newcfg

> where

> newcfg = foldl hoistALoop cfgWithPreheaders loops

> loops = [(h,l) | (h,l) <- loopsOf looptree, h /= 0]

> (preheaders, cfgWithPreheaders) = addPreHeaders cfg looptree

> hoistALoop cfg (header,body)

> = insertNodesAfter invariants (removeNodes invariants cfg) preheader

> where

> invariants = loopInvariantInstructionsOf cfg (header:body)

> preheader = retrieve header preheaders

> loopsOf (LTree (h,body) subloops)

> = (h,body) : concat (map loopsOf subloops)

March 25

(This sketch

implementation

doesn’t check all the

hoisting conditions…)

58
Example

> test = (Program

> [(Decl "w" Integer),

> (Decl "x" Integer),

> (Decl "y" Integer),

> (Decl "z" Integer)]

> [Assign (Var "x") (Const 1),

> Assign (Var "w") (Const 100),

> Assign (Var "z") (Const 200),

> LabelStat "Here",

> Assign (Var "x") (Binop Plus

 (Ref (Var "x")) (Const 1)),

> Assign (Var "y") (Binop Plus

 (Ref (Var "w")) (Ref (Var "z"))),

> IfThenElse (Compare CLT

 (Ref (Var "x")) (Const 10))

> [Goto "Here"] []

>])

March 25

Node 0 (Mov (ImmNum 1) (Reg T1)) [T1] [] [1] []

Node 1 (Mov (ImmNum 100) (Reg T0)) [T0] [] [2] [0]

Node 2 (Mov (ImmNum 200) (Reg T3)) [T3] [] [3] [1]

Node 3 (Mov (Reg T1) (Reg T4)) [T4] [T1] [4] [2,15]

Node 4 (Add (ImmNum 1) (Reg T4)) [T4] [T4] [5] [3]

Node 5 (Mov (Reg T4) (Reg T1)) [T1] [T4] [6] [4]

Node 6 (Mov (Reg T3) (Reg T5)) [T5] [T3] [7] [5]

Node 7 (Mov (Reg T0) (Reg T6)) [T6] [T0] [8] [6]

Node 8 (Add (Reg T5) (Reg T6)) [T6] [T5,T6] [9] [7]

Node 9 (Mov (Reg T6) (Reg T2)) [T2] [T6] [10] [8]

Node 10 (Mov (Reg T1) (Reg T7)) [T7] [T1] [11] [9]

Node 11 (Mov (ImmNum 10) (Reg T8)) [T8] [] [12] [10]

Node 12 (Cmp (Reg T7) (Reg T8)) [] [T7,T8] [13] [11]

Node 13 (Blt "L1") [] [] [14,15] [12]

Node 14 (Bra "L2") [] [] [17] [13]

Node 15 (Bra "LHere") [] [] [3] [13]

Node 16 (Bra "L3") [] [] [17] []

Node 17 Halt [] [] [] [14,16]

AST Original control flow graph:

59

• Relevant reaching definitions:
relevantReachingDefinitionsOf cfg =

[(0,[]),
(1,[]),
(2,[]),
(3,[0,5]),
(4,[3]),
(5,[4]),
(6,[2]),
(7,[1]),
(8,[7,6]),
(9,[8]),
(10,[5]),
(11,[]),
(12,[11,10]),
(13,[]),
(14,[]),
(15,[]),
(16,[]), (17,[])]

March 25

• Loop Tree:

loopTree cfg =

LTree (0,[0,1,2,3,4,5,6,7,8,9,10,

 11,12,13,14,15,16,17])

 [LTree (3,[4,5,6,7,8,9,10,

 11,12,13,15])

 []]• Loop invariants:
externallyDependentInstructionsOf cfg

[3,4,5,6,7,8,9,10,11,12,13,15] =

[Node 6 (Mov (Reg T3) (Reg T5)) [T5] [T3] [7] [5],

Node 7 (Mov (Reg T0) (Reg T6)) [T6] [T0] [8] [6],

Node 11 (Mov (ImmNum 10) (Reg T8)) [T8] [] [12] [10]]

 loopInvariantInstructionsOf (cfgex 15)
[3,4,5,6,7,8,9,10,11,12,13,15] =

[Node 7 (Mov (Reg T0) (Reg T6)) [T6] [T0] [8] [6],

Node 6 (Mov (Reg T3) (Reg T5)) [T5] [T3] [7] [5],

Node 11 (Mov (ImmNum 10) (Reg T8)) [T8] [] [12] [10],

Node 9 (Mov (Reg T6) (Reg T2)) [T2] [T6] [10] [8],

Node 8 (Add (Reg T5) (Reg T6)) [T6] [T5,T6] [9] [7]]

60

• Code after loop-invariant hoisting:
move.l #1, T1

move.l #100, T0

move.l #200, T3

#Preheader for loop with header 3

move.l T0, T6

move.l T3, T5

move.l #10, T8

move.l T6, T2

add.l T5, T6

(continued in next column…)

March 25

M3:

move.l T1, T4

add.l #1, T4

move.l T4, T1

#Mov (Reg T3) (Reg T5) moved

#Mov (Reg T0) (Reg T6) moved

#Add (Reg T5) (Reg T6) moved

#Mov (Reg T6) (Reg T2) moved

move.l T1, T7

#Mov (ImmNum 10) (Reg T8) moved

cmp.l T7, T8

blt M15

bra M14

M15:

bra M3

M14:

bra M17

M17:

halt

bra M3

61

Feeding curiosity…
• We have been focused on optimising programs for efficiency. How about

optimising (floating-point) programs for accuracy? See for example
“Intra-procedural Optimization of the Numerical Accuracy of Programs”,
Nasrine Damouche, Matthieu Martel, Alexandre Chapoutot, Formal
Methods for Industrial Critical Systems, 2015.

• We talk about optimisation – but optimising compilers generally just
improve programs, more or less heuristically. What can we say about
optimality? See for example, “An algorithm for the optimization of finite
element integration loops”, Fabio Luporini, David A. Ham, Paul H. J. Kelly,
ACM TOMS 2017.

• A major element of compilation not covered in this course is scheduling –
both of instructions, and of loops and loop nests. Is finding a new
schedule for an existing algorithm “just scheduling”, or might it
sometimes be a truly new inventive step – in fact a new algorithm? See
for example, “Diamond Tiling: Tiling Techniques to Maximize Parallelism
for Stencil Computations”, Uday Bondhugula et al, IEEE TPDS 2016.

March 25

62

Feeding curiosity…
• Generalising LICM: Loop-invariant code motion deals with expressions which are

redundantly computed in iterations of the immediately-enclosing loop. But consider:
for i
 for j
 R[i,j] = A[i]*B[i] + C[j]*D[j]
We see that “A[i]*B[i]” is loop-invariant. But what about “C[j]*D[j]”?

We can eliminate this redundancy by introducing a new vector temporary T:
for j
 T[j] = C[j]*D[j]
for i
 p = A[i]*B[i]
 for j
 R[i,j] = p+T[j]
Most compilers don’t do this (we didn’t find any), perhaps because allocating new temporary arrays
may lead to unwanted consequences. It does, however, really help some applications.

See Fabio Luporini, Ana Lucia Varbanescu, Florian Rathgeber, Gheorghe-Teodor Bercea, J.
Ramanujam, David A. Ham, and Paul H. J. Kelly. Cross-Loop Optimization of Arithmetic Intensity for
Finite Element Local Assembly. ACM Trans. Archit. Code Optim. 11, 4, Article 57 (January 2015
https://doi.org/10.1145/2687415

March 25

https://doi.org/10.1145/2687415

63

Student question: robust simple LICM without SSA
• I understand why SSA is helpful in compilers in general,

but also that the algorithms to generate it are rather
complicated. In the case where we just want to do
Loop Invariant Code Motion, I think I came up with a
simpler scheme which essentially does what the phi
nodes do without needing to implement the algorithm
required to transform the whole program to SSA:

• This seems to be ideal because:

• You don't have to check the conditions for LICM

• You don't have to implement the hard SSA algorithms

• But, I couldn't find any resources in the textbooks or
online doing it this way, so I think maybe either:

• I misunderstood and this was exactly what was being
suggested in the SSA part - i.e. if we are just doing LICM
we don't need to implement full SSA. Though I thought
that the SSA method involved putting the t = t1 at the
control flow join.

• There is a flaw with this method that I haven't spotted.

• I'd be interested in everyone's opinion. This isn't really
exam related; I was just interested. :)

March 25

• Excellent observation. I think you are right that this is
enough for LICM.

• As you say, what you're proposing essentially leads to the
same result as the SSA-based approach presented in the
lecture.

• LICM is used in the lecture to motivate SSA, which is used for
other more complicated analyses and transformations in
modern compilers like LLVM and GCC. What you have
pointed out is that LICM is not, by itself, a particularly
compelling reason to transform into then out of SSA.

• SSA is however useful for more complicated things. You
might enjoy this page, which documents all the analysis and
transformation passes in LLVM:

 https://llvm.org/docs/Passes.html#sccp-sparse-
conditional-constant-propagation

• In particular, you might look at sccp: Sparse Conditional
Constant Propagation
[https://llvm.org/docs/Passes.html#id79] (a slightly
extended explanation is also here:
https://en.wikipedia.org/wiki/Sparse_conditional_constant_
propagation). SCCP is based on this paper:

Constant propagation with conditional branches. Wegman
and Zadeck ACM TOPLAS 1991
(https://www.cs.wustl.edu/~cytron/531Pages/f11/Resource
s/Papers/cprop.pdf)

• The Sparse Simple Constant (SSC) algorithm presented there
is linear in the size of the SSA graph; they comment that
without SSA, it would be much much slower without SSA, in
the worst case slower in proportion to the number of
variables in the program. But this is beyond what we had
time for in this course.

https://llvm.org/docs/Passes.html#sccp-sparse-conditional-constant-propagation
https://llvm.org/docs/Passes.html#sccp-sparse-conditional-constant-propagation
https://llvm.org/docs/Passes.html#id79
https://en.wikipedia.org/wiki/Sparse_conditional_constant_propagation
https://en.wikipedia.org/wiki/Sparse_conditional_constant_propagation
https://www.cs.wustl.edu/~cytron/531Pages/f11/Resources/Papers/cprop.pdf
https://www.cs.wustl.edu/~cytron/531Pages/f11/Resources/Papers/cprop.pdf

64

Student question: robust simple LICM without SSA

March 25

• According to the lecture slides, S7 can't be hoisted since it
does not dominate all loop exits.

• But, as you say, it might not matter, in an example like this
where c is not live on exit.

• However, hoisting S7 could actually cause a big problem.
Suppose the array D is not allocated, or not big enough: the
access to D[N] might not be valid. In fact it might actually be
an access violation - if the address of D[N] is not allocated in
the process's virtual address space, the access will cause a
page fault - hoisting it might actually make the program
crash when it shouldn’t. [this is what the question was
actually looking for]

• Now suppose S7 were something safe, like "c = N/3". Now
hoisting it looks safe. But we might wonder whether it's a
good idea, as it would put S7 on an always-taken path -
whereas the conditional on S5 might very, very rarely
activated. We are at risk of making the program slower.

• In some instruction sets, for example Intel's Itanium, there is
a special load instruction for situations like this, which loads
from memory (eg c=D[N]), but if the address is invalid it
doesn't throw a fault - it just marks the target register (c
here) as "NaT" ("not a thing"). Then at S8 you would have
an instruction to check whether c is NaT - if so, you re-
execute the load there so that the fault occurs at the right
point.

• (The real reason Itanium programmers might do this is to
increase parallelism; for a more detailed explanation and
example see https://devblogs.microsoft.com/oldnewthing/20150804-
00/?p=91181).

https://devblogs.microsoft.com/oldnewthing/20150804-00/?p=91181
https://devblogs.microsoft.com/oldnewthing/20150804-00/?p=91181

	Slide 1: Compilers - Chapter 7: Loop optimisations Part 3: Loop-invariant code motion
	Slide 2: Which instructions can we move out of a loop?
	Slide 3: Which instructions can we move out of a loop?
	Slide 4: Which instructions can we move out of a loop?
	Slide 5: Which instructions can we move out of a loop?
	Slide 6: Which instructions can we move out of a loop?
	Slide 7: Which instructions can we move out of a loop?
	Slide 8: Which instructions can we move out of a loop?
	Slide 9: Which instructions can we move out of a loop?
	Slide 10: Which instructions can we move out of a loop?
	Slide 11: Which instructions can we move out of a loop?
	Slide 12: Which instructions can we move out of a loop?
	Slide 13: Which instructions can we move out of a loop?
	Slide 14: Static Single Assignment form (SSA)
	Slide 15: Introducing static single assignment…
	Slide 16: Introducing static single assignment…
	Slide 17: Static Single Assignment form (SSA)
	Slide 18
	Slide 21
	Slide 27
	Slide 28
	Slide 29
	Slide 31
	Slide 32
	Slide 34: Which instructions can we move out of a loop?
	Slide 35: What next…
	Slide 36: Optimisations for high-performance computing
	Slide 38: Optimisations for high-performance computing
	Slide 39: Optimisations for high-level programming languages
	Slide 40: Research
	Slide 41: Chapter 7: summary
	Slide 42: Textbooks
	Slide 43: Textbooks
	Slide 44: Appendix A: Implementing loop optimisations in Haskell
	Slide 45: Reaching definitions – gen and kill
	Slide 46: Reaching definitions - solver
	Slide 47: Use reaching definitions to find loop invariant instructions
	Slide 48: Use reaching definitions to find loop invariant instructions
	Slide 49: Use reaching definitions to find loop invariant instructions
	Slide 50: Finding dominators… implementation
	Slide 51: Finding back edges
	Slide 52: Finding natural loops
	Slide 53: Finding paths
	Slide 54: Building the loop nest tree (a.k.a. the control tree)
	Slide 55: Building the loop nest tree…
	Slide 56: Manipulating the control flow graph…
	Slide 57: Hoisting the loop-invariants…
	Slide 58: Example
	Slide 59
	Slide 60
	Slide 61: Feeding curiosity…
	Slide 62: Feeding curiosity…
	Slide 63: Student question: robust simple LICM without SSA
	Slide 64: Student question: robust simple LICM without SSA

