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Compilers - Chapter 7: 

Loop optimisations

Part 3: Loop-invariant code motion

March 25

• Lecturer: 
– Paul Kelly (p.kelly@imperial.ac.uk)
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Which instructions can we move out of a loop?
• The next question is exactly which loop-invariant 

instructions we can move to the pre-header

March 25

L0:
 t = 0

L1:
 i = i+1
 t = a  b
 M[i] = t
 if i<N goto L1

L2:
 x = t

A
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Which instructions can we move out of a loop?
• The next question is exactly which loop-invariant 

instructions we can move to the pre-header

March 25

L0:
 t = 0
 t = a  b
L1:
 i = i+1
 t = a  b
 M[i] = t
 if i<N goto L1

L2:
 x = t

A
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Which instructions can we move out of a loop?

• It’s easy to get it wrong….

March 25

L0:
 t = 0

L1:
 if i<N goto L2

 i = i+1
 t = a  b
 M[i] = t 
 goto L1
L2:
 x = t

B
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Which instructions can we move out of a loop?

• It’s easy to get it wrong….

March 25

L0:
 t = 0
 t = a  b
L1:
 if i<N goto L2

 i = i+1
 t = a  b
 M[i] = t 
 goto L1
L2:
 x = t

B
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Which instructions can we move out of a loop?

• It’s easy to get it wrong….

March 25

L0:
 t = 0
 t = a  b
L1:
 if i<N goto L2

 i = i+1
 t = a  b
 M[i] = t 
 goto L1
L2:
 x = t

B

t should be 0 if i<N
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Which instructions can we move out of a loop?

• It’s easy to get it wrong….

March 25

L0:
 
 
L1:
 i = i+1
 t = a  b
 M[i] = t
 t = 0

 M[j] = t

 if i<N goto L1

L2:
 

C
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Which instructions can we move out of a loop?

• It’s easy to get it wrong….

March 25

L0:
 
 t = a  b
L1:
 i = i+1
 t = a  b
 M[i] = t
 t = 0

 M[j] = t

 if i<N goto L1

L2:
 

C
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Which instructions can we move out of a loop?

• It’s easy to get it wrong….

March 25

L0:
 
 t = a  b
L1:
 i = i+1
 t = a  b
 M[i] = t
 t = 0

 M[j] = t

 if i<N goto L1

L2:
 

C

• (Just because an 

expression is loop 

invariant, doesn’t 

mean we can always 

move the 

instruction)

What about the second 

iteration?
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Which instructions can we move out of a loop?

• It’s easy to get it wrong….

March 25

L0:
 t = 0
 
L1:
 M[j] = t
 i = i+1
 t = a  b
 M[i] = t 
 if i<N goto L1

L2:
 x = t

D
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Which instructions can we move out of a loop?

• It’s easy to get it wrong….

March 25

L0:
 t = 0
 t = a  b
L1:
 M[j] = t
 i = i+1
 t = a  b
 M[i] = t 
 if i<N goto L1

L2:
 

D

t should be 0 on 

first iteration
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Which instructions can we move out of a loop?

March 25

L0:
 t = 0
 t = a  b
L1:
 i = i+1
 t = a  b
 M[i] = t
 t = 0

 M[j] = t

 if i<N goto 
L1

L2:
 

L0:
 t = 0
 t = a  b
L1:
 M[j] = t
 i = i+1
 t = a  b
 M[i] = t 
 if i<N goto 

L1

L2:
 

L0:
 t = 0
 t = a  b
L1:
 i = i+1
 t = a  b
 M[i] = t
 if i<N goto 

L1

L2:
 x = t

L0:
 t = 0
 t = a  b
L1:
 if i<N goto L2

 i = i+1
 t = a  b
 M[i] = t 
 goto L1
L2:
 x = t

A B C D

Hoist Don’t hoist:

Loop invariant node 

does not dominate 

all loop exits

Don’t hoist:

More than one 

definition of t 

in the loop 

Don’t hoist:

t is liveOut from 

the loop’s 

preheader 
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Which instructions can we move out of a loop?
• Conditions for hoisting a CFG node

 d:  t = a  b

March 25

Loop invariant node 

must dominate all 

loop exits

There must be 

just one def of 

t in loop 

t must not be 

liveOut from the 

loop’s preheader 

Loop invariant: all 
reaching defs used by d 
occur outside loop

Use Reaching Definitions data flow 

analysis

Use Dominators analysis

Just count them!

Use Live Variables data flow analysis

1

2

3

4

This is a bit messy…
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Static Single Assignment form (SSA)
• SSA is a powerful technique for simplifying many 

optimisation problems

• It is very widely used

• The next few slides illustrate how SSA avoids the side 
conditions on loop invariant code motion presented 
earlier

• Converting your code into SSA, and back to code again, 
takes a bit more work 

– You should know what SSA is, and how it helps – but converting 
to and from SSA form is beyond the scope of this course

– but see the textbooks (EaC Section 9.3 pp454, Appel Ch19)

March 25
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Introducing static 
single assignment…

• Note that B is reassigned

March 25

A := e1

B := e2

...

... B ...  B used

C := A+B  A and B used

...

B := A*5  A used

D := B+1 ...  B used

... C ...  C used

At this point, three live-

ranges overlap – so we 

need at least three 

registers

Recall graph colouring for 

register allocation
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• SSA: introduce a new name each time a variable is assigned

• This helps register allocation by splitting live ranges
March 25

A := e1

B := e2

...

... B ...   B used

C := A+B   A and B used

...

B := A*5   A used

D := B+1 ...  B used

... C ...   C used

• Variable B is reused – it 

really has two separate live 

ranges: 

A := e1

B1 := e2

...

... B1 ...  B1 used

C := A+B1 A and B1 used

...

B2 := A*5 A used

D := B2+1 ...B2 used

... C ...  C used

Introducing static 
single assignment…
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Static Single Assignment form (SSA)
• Things are a bit more complicated with branches:

branch

a = b+c a = d*2

e = a+1

branch

𝑎1 = b+c 𝑎2 = d*2

𝑎3 = 𝝋(𝑎1 , 𝑎2 ) 

e = 𝑎3+1

• At control-flow joins, we insert a dummy renaming operator 
𝝋(𝑎1, 𝑎2) – which magically picks either 𝑎1 or 𝑎2 depending on 
which path is actually taken

•  𝝋 is not really executed – it is eliminated during code generation
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Example A (where hoisting was valid)

We should do SSA conversion for variable i as well – this has been omitted 

for clarity.

𝐿0:

 𝑡1 = 0

𝐿1:

 i = i+1

 𝑡2 = a ⨁ b

 M[i] = 𝑡2

 if I<N goto 𝐿1

𝐿2:

 x = 𝑡2

𝐿0:

 𝑡 = 0

𝐿1:

 i = i+1

 𝑡 = a ⨁ b

 M[i] = 𝑡
 if I<N goto 𝐿1

𝐿2:

 x = 𝑡

A

Original code SSA code
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L0:
 
 
L1:
 i = i+1
 t = a  b
 M[i] = t
 t = 0

 M[j] = t

 if i<N goto L1

L2:
 

C
Original code SSA code SSA code after hoisting

Example C (where hoisting was invalid)

Renaming t solves the problem all by itself!
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BL0:
 t = 0

L1:
 if i<N goto L2

 i = i+1
 t = a  b
 M[i] = t 
 goto L1
L2:
 x = t

𝑡1=0

if i<N

i=i+1

𝑡2=a⨁b

M[i]= 𝑡2

x=𝒕𝟑

𝒕𝟑 = 𝝋(𝒕𝟏,𝒕𝟐)

Original code SSA CFG SSA code

Example B (where hoisting was invalid) is more subtle!

At the control flow join, we have two values for t

“x=t” is reached by two definitions.  Adding the "𝑡3 = 𝝋(𝑡1 , 𝑡2 )” fixes this. 

L0:
 𝑡1= 0

L1:
 𝑡3 = 𝝋(𝑡1, 𝑡2 )
 if i<N goto L2

 i = i+1
 𝑡2 = a  b
 M[i] = 𝑡2 
 goto L1
L2:
 x = 𝑡3
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B

The SSA 

transformation 

resolves the 

problem by 

introducing 

separate 

names 

Hoist

SSA…BL0:
 t = 0

L1:
 if i<N goto L2

 i = i+1
 t = a  b
 M[i] = t 
 goto L1
L2:
 x = t

Original code SSA code
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B B

Copies introduced when 

generating code from SSA

The tricky bit is when we 

transform the code back out 

of SSA form again

We really do need more 

than one variable for t

We need to assign 𝑡3 to the 

right value on the two 

different control-flow paths 

that meet at the phi

We push the assignments 

to 𝒕𝟑 backwards into the 

two predecessor paths of 

the 𝝋

Doing this actually makes 

the loop-invariant hoistable 

for this example!

SSA code Generated code
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L0:
 t = 0
 
L1:
 M[j] = t
 i = i+1
 t = a  b
 M[i] = t 
 if i<N goto L1

L2:
 x = t

D

Original code SSA code SSA code after hoisting

Example D (where hoisting was invalid)

L0:
 𝑡1 = 0
 
L1:
 𝑡3 = 𝝋(𝑡1, 𝑡2)
 M[j] = 𝑡3
 i = i+1
 𝑡2 = a  b
 M[i] = 𝑡2 
 if i<N goto L1

L2:
 x = 𝑡2

L0:
 𝑡1 = 0

 𝑡2 = a  b
L1:
 𝑡3 = 𝝋(𝑡1, 𝑡2)
 M[j] = 𝑡3
 i = i+1
 𝑡2 = a  b
 M[i] = 𝑡2 
 if i<N goto L1

L2:
 x = 𝑡2
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L0:
 t = 0
 
L1:
 M[j] = t
 i = i+1
 t = a  b
 M[i] = t 
 if i<N goto L1

L2:
 x = t

D

Original code SSA code SSA code after hoisting

Example D (where hoisting was invalid)

SSA makes it valid here too

L0:
 𝑡1 = 0

 𝑡2 = a  b
L1:
 𝑡3 = 𝝋(𝑡1, 𝑡2)
 M[j] = 𝑡3
 i = i+1
 𝑡2 = a  b
 M[i] = 𝑡2 
 if i<N goto L1

L2:
 x = 𝑡2

L0:
 𝑡1 = 0

 𝑡2 = a  b
 𝒕𝟑 = 𝒕𝟏 
L1:
 𝑡3 = 𝝋(𝑡1, 𝑡2)
 M[j] = 𝑡3 
 i = i+1
 𝑡2 = a  b
 M[i] = 𝑡2 
 𝒕𝟑 = 𝒕𝟐
 if i<N goto L1

L2:
 x = 𝑡2

After SSA
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Which instructions can we move out of a loop?
• Conditions for hoisting a CFG node after SSA conversion

 d:  t = a  b

March 25

Loop invariant node 

must dominate all 

loop exits

There must be 

just one def of 

t in loop 

t must not be 

liveOut from the 

loop’s preheader 

Loop invariant: all 
reaching defs used by d 
occur outside loop

Use Reaching Definitions data flow 

analysis

Not a problem any more!

Guaranteed by SSA

Can’t happen with SSA (because d must 

be the only definition of t)

1

2

3

4
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What next…
• Hoisting loop invariants really helps

• But good compilers do lots more…

– Induction variables:

• A variable which is incremented by a loop-invariant amount

• A variable which is a multiple of an induction variable

– Strength reduction

• Compute all induction variables by incrementing instead of multiplying

– Induction variable elimination, rewriting comparisons

– Array bounds check elimination

• Range of all induction variables is known on entry to a for loop

– Common sub-expressions

– More sophisticated methods – eg partial redundancy elimination

• Now you have seen how to hoist loop-invariants, you can 

figure the rest out yourself!
March 25
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Optimisations for high-performance computing
• “Conventional” optimisations reduce work done at run-time

• “restructuring” compilers improve performance by finding the right 
order in which to do the computation

• Example: Parallelisation:

Original code:

For (i=0;i<N;i++)

  For (j=0;j<M;j++)

   A[i,j] = (A[i,j] + A[i-1,j] + A[i+1,j])* (1/3)

Parallel implementation:

For (i=0;i<N;i++)

  ParFor (j=0;j<M;j++)

   A[i,j] = (A[i,j] + A[i-1,j] + A[i+1,j])* (1/3)

Better parallel implementation?

ParFor (j=0;j<M;j++)

  For (i=0;i<N;i++)

   A[i,j] = (A[i,j] + A[i-1,j] + A[i+1,j])* (1/3)
March 25
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Optimisations for high-performance computing

• Another restructuring example:
Example: matrix transpose:

 for (i=0;i<N;i++)

    for (j=0;j<M;j++)

      B[i][j] = A[j][i];

Cache-efficient implementation:

 for (ii=0;ii<N;ii+=IB)

    for (jj=0;jj<M;jj+=JB)

      for (i=ii;i<ii+IB;i++)

      for (j=jj;j<jj+JB;j++)

          B[i][j] = A[j][i];

March 25

Using Intel i7-7567U, gcc 9.30

gcc -Ofast

N=M=10240

IB=JB=16

Original execution time: 7.2s

Improved execution time: 0.46s
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Optimisations for high-level programming languages
• Subtype polymorphism

– Static resolution of the type of x in x.f( ) enables inlining of method f

• Generics (aka parametric polymorphism)
– A generic class is parameterised by a type (eg a container by its element type).  When is 

it a good idea to generate specialised code?

• Pattern matching
– In a language like Haskell, Prolog, Erlang, Elixir, pattern matching on nested data 

structures is very powerful.  Find optimum sequence of tests.

• Dynamic object creation
– If we allow space to be allocated, but automatically freed, can we sometimes add code 

to do it instead of relying on garbage collection?

• Lazy evaluation
– Can an expression be evaluated where it is first referred to, or do we have to build a 
“closure” representing it?

• Arrays – overloaded arithmetic
– If we overload arithmetic operators to work on arrays, how to avoid lots of little loops?

• Arrays – slices
– If we allow a multidimensional array to be sliced, eg A[2:99,2:99], how do we avoid 

having to manipulate an array descriptor?

March 25
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Research
• Several Imperial research groups are working on optimising compiler technology, including:

– Wayne Luk’s Custom Computing/Silicon Compilation group

– Alastair Donaldson’s Multicore Programming group

– Paul Kelly’s Software Performance Optimisation group

– Compiler-related research: Cristian Cadar, Holger Pirk, Nick Wu, Jamie Willis, Hongxiang Fan, Sergio 
Maffeis, Peter Pietzuch, Herbert Wicklicky, etc

• And more in EEE including John Wickerson, George Constantinides, Aaron Zhao

• And more in Maths eg David Ham, Kevin Buzzard

• And more in Earth Science Engineering eg Gerard Gorman

– Programming languages: Sophia Drossopoulou, Azalea Raad, Philippa Gardner, and others

• Opportunities: UROP summer placements, individual projects, and PhDs

• Sample projects:

– Work with computational scientists to make their simulation of tidal turbines/Formula 1/blood 
flow/glacier flow/weather/medical imaging run fast on 10,000-100,000 cores

– Design a domain-specific language and compiler to generate high-performance code for 3D robot 
vision and scene understanding

– Design a compiler to generate code for computer vision on a camera sensor device with a processor at 
every pixel

– Build an automatic program differentiator, that works for parallel programs

– Check that a program that operates on non-volatile memory always leaves its data in a consistent state, 
even if it fails at any time

March 25
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Chapter 7: summary
• Reaching definitions identify instructions that are candidates for loop-invariant 

code motion

• We can find the headers of the program’s natural loops, and insert pre-headers, 
so that there is a unique place to move loop-invariant instructions to

• It may still not be safe to actual move them!  We have to check some subtle 
side-conditions

• Transforming the program to Static Single Assignment (SSA) form ensures 
that every use is reached by exactly one definition (which might be a phi).  
Translating into SSA may require new variables

• SSA makes loop-invariant code motion safe without side-conditions

• Transforming out of SSA may introduce some additional copy instructions

– SSA also helps with other optimisations, such as register allocation

• Loop-invariant code motion is just one of many optimisations – but it has 
introduced many of the key ideas and issues

• Nested loops operating on arrays can benefit from loop scheduling 
optimisations and parallelisation, and there is a rich theory

• Many languages can only be optimised effectively with pointer analysis

• Many high-level language features raise the need for additional optimisations

March 25
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Textbooks
EaC

• Data flow analysis is covered in Chapter 9

– Reaching definitions are covered in Section 9.2.4

– Dominators are covered in Section 9.3.2

• EaC handles loop-invariant code motion somewhat 
differently from these slides, which are based on 
Appel’s presentation

– See “Lazy Code Motion” (LCM), page 506

– LCM resolves the hoisting conditions in a more 
systematic way than presented here, by combining four 
different data-flow analyses

March 25
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Textbooks
• Appel also covers optimisation in depth

– Chapter 10 introduces DFA through live variable analysis
– Chapter 17 shows how DFA can be used for many other useful analyses
– Chapter 18 deals with finding loops, finding induction variables, and implementing 

loop optimisations (which rely on DFAs)
– Chapter 19 presents Static Single Assignment, a program representation which 

provides easy (and space-efficient) access to dependence information such as 
reaching definitions.  This simplifies many loop optimisations

– Chapter 20 covers instruction scheduling – finding an instruction ordering which 
makes optimal use of modern CPU architectures

– Chapter 21 concerns improving cache performance – by prefetching, and by 
executing loops blockwise

• Another really good source if you’re building an optimising compiler is 
“High-performance compilers for parallel computing”, Michael Wolfe 
(Addison Wesley 1996)

• Fine print:
– CFG would consist of basic blocks instead of individual instructions
– For loop optimisations, we would do the DFA on the IR before instruction selection; 

it’s simpler and it avoids complications such a having only two-address instructions
– See Appel pg388

• Credits: in addition to Appel’s book, I found it very useful to study the 
course notes of Liz White (George Mason University), Laurie Hendren 
(McGill University) and Chau-Wen Tseng (University of Maryland)

March 25
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Appendix A: Implementing loop 

optimisations in Haskell

• The next few slides give a Haskell implementation for 
some of the ideas presented in this chapter

• This material is provided to provide a concrete 
illustration of the concepts

• It is the concepts which are important, not the code

• Do not memorise the code – spend the time reading 
the textbook instead

• Some of the algorithms used here are rather inefficient 
– in many cases we just transcribe the mathematical 
definitions.  Efficient algorithms exist – but are 
considerably more complicated.

March 25
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Reaching definitions – gen and kill

• Preliminaries: the Gen and Kill sets:

nodeGen node | nodeDefs node == [] = []

              | otherwise       = [nodeId node]

nodeKill cfg node = nodeDefSet cfg node \\ [nodeId node]

• Suppose t is defined in node.  nodeDefSet is set of all the nodeids 
where t is defined:

nodeDefSet (ControlFlowGraph cfg) node

 = case nodeDefs node of

   [t] -> [id | Node id i ds us scs prds <- cfg,

           t `elem` ds]

   []  -> []

   otherwise -> error "nodeDefSet: multiple defs“

• Auxiliary functions used in solver overleaf:
untilConverges (a:b:rest) | a == b = a

untilConverges (a:b:rest)          = untilConverges (b:rest)

zip2 (rdsin,rdsout) = zip rdsin rdsout

bigU sets = nub (concat sets)March 25
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Reaching definitions - solver

• Solve the dataflow equations:

reachingDefinitionsOf :: CFG -> ( [ (Id,[Id]) ], [ (Id,[Id]) ] )

reachingDefinitionsOf cfg

 = untilConverges (iterate updateRDs initialRDs)

   where

   initialRDs :: ( [ (Id,[Id]) ], [ (Id,[Id]) ] )

   initialRDs = ( [(n,[]) | n<-nodesOf cfg], [(n,[]) | n<-nodesOf cfg] )
  

   updateRDs :: ( [(Id,[Id])], [(Id,[Id])] ) -> ( [(Id,[Id])], [(Id,[Id])] )

   updateRDs rds = unzip (map (updateRD rds) (zip2 rds))

   updateRD (rdins_sofar,rdouts_sofar) ((id,rdins), (sameid,rdouts))

    = ((id,rdins'), (id,rdouts'))

      where

      rdins' = bigU [retrieve s rdouts_sofar | s <- nodePreds node]

      rdouts' = nodeGen node `union` ((rdInsOf node) \\ nodeKill cfg node )

                where

                rdInsOf node = retrieve (nodeId node) rdins_sofar

      node = idToNode cfg id
March 25

• We solve the 
system of 
simultaneous 
set equations 
iteratively

• Initially each 
node’s 
ReachIn 
(rdins), and 
ReachOut 
(rdouts) set is 
empty

• The updates 
successively 
increase the 
ReachIn and 
ReachOut sets 
until 
convergence 
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Use reaching definitions to find loop invariant instructions

• Find the definitions which reach this node which are relevant 

– that is, which generate the values this node uses:

relevantReachingDefinitionsOf :: CFG -> [ (Id,[Id]) ]

relevantReachingDefinitionsOf cfg

 = [(nodeId node, relevantDefs node) | node <- cfgToNodes cfg]

    where

    relevantDefs node

  = [rd | rd <- retrieve (nodeId node) rds_in,

                  nodeDefs (idToNode cfg rd) `intersect` nodeUses node /= []]

    (rds_in, rds_out) = reachingDefinitionsOf cfg

March 25
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Use reaching definitions to find loop invariant instructions

• An instruction is loop invariant if the definitions of all the 
values it uses are outside the loop:

> externallyDependentInstructionsOf cfg loop 

>  = [node | node <- [idToNode cfg id | id <- loop],

>            nodeDefs node /= [],

>            relevantDefs node `intersect` loop == [],

>            hoistable node]

>    where

>    relevantDefs node = retrieve (nodeId node)                                                             
(relevantReachingDefinitionsOf cfg)

• An instruction is hoistable only if it produces a value (ie not a compare, 
branch, etc):

    hoistable (Node id i [] uses succs preds) = False

  hoistable (Node id i defs uses succs preds) = True

March 25
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Use reaching definitions to find loop invariant instructions

• Now iteratively add instructions which are l-i because they depend only 
on l-i instructions.  We reverse the result so that when we add them to 
the pre-header, they are added in dependence-order.

> loopInvariantInstructionsOf cfg loop

>  = reverse (untilConverges (iterate updateLIs initialLIs))

>    where

>    initialLIs = externallyDependentInstructionsOf cfg loop

>    updateLIs :: [CFGNode] -> [CFGNode] 

>    updateLIs invariantsSoFar

>     = invariantsSoFar `union`

>       [n | n <- map (idToNode cfg) loop,

>            hoistable n,

>            and [hasSingleInvariantDefinition n u | u<-nodeUses n]]

>       where

>       hasSingleInvariantDefinition n u

>        = length defs == 1 && head defs `elem` map nodeId invariantsSoFar

>          where 

>          defs = [d | d<-relevantDefs n, u `elem` nodeDefs (idToNode cfg d)]
March 25
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Finding dominators… implementation
dominatorsOf :: CFG -> [(Id,[Id])]

dominatorsOf cfg

 = untilConverges (iterate updateDs initialDs)

   where

   initialDs :: [(Id,[Id])]

   initialDs = [ (n, nodesOf cfg) | n <- (nodesOf cfg)]

   updateDs :: [(Id,[Id])] -> [(Id,[Id])]

   updateD ds_sofar (id,d) 

    = (id, 

         [id] `union` (bigCap [retrieve p ds_sofar | p <- nodePredsOf id])

   )

   updateDs ds = map (updateD ds) ds

   nodePredsOf id = nodePreds (idToNode cfg id)

bigCap [] = []

bigCap sets = foldr1 intersect sets

untilConverges (a:b:rest) | a == b = a

untilConverges (a:b:rest)              = untilConverges (b:rest)

March 25

• We solve the 
system of 
simultaneous 
set equations 
iteratively

• Initially each 
node’s Doms 
set is the set 
of all the 
nodes of the 
CFG

• The updates 
successively 
reduce the 
Doms until 
convergence 
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Finding back edges

• A flow graph edge from a node n to a node h that dominates n is 

called a back edge:

backEdges :: CFG -> [(Id,Id)]

backEdges cfg 

 = [ (n,h) | n <- nodesOf cfg, h <- nodesOf cfg, n /= h,

             flowedge n h,

             h `dominates` n]

   where

   dominators = dominatorsOf cfg

   a `dominates` b = a `elem` (retrieve b dominators)

   flowedge a b = a `elem` nodePreds (idToNode cfg b)

March 25
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Finding natural loops

• The natural loop of a backedge (n,h), where h dominates n, is 
the set of nodes x such that h dominates x and there is a path 
from x to n not containing h.

naturalLoop :: CFG -> (Id,Id) -> (Id, [Id])

--                                backedge   header, nodes

naturalLoop cfg (n,header)

 = (header, real_xs)

   where

   poss_xs = [x | x <- nodesOf cfg, header `dominates` x]

   real_xs = [x | x <- poss_xs, pathExists x n]

   pathExists x n 

    = [] /= [path | path <- allpaths, not (header `elem` path)]

      where

      allpaths = findControlFlowPaths cfg x n  (findControlFlowPaths defined next slide)

   dominators = dominatorsOf cfg

   a `dominates` b = a `elem` (retrieve b dominators)
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(omit paths via header, and 

therefore paths via enclosing 

loops)
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Finding paths

• I have used a general-purpose path enumeration to find all the paths 
from one node to another.  This is rather wasteful... Some care is 
needed to avoid following cycles; "mypath" below records the nodes 
visited so far.

findControlFlowPaths :: CFG -> Id -> Id -> [[Id]]

findControlFlowPaths cfg start end = findControlFlowPaths' [] start

   where

   findControlFlowPaths' mypath x

    | x == end     = [[x]]

    | x `elem` mypath = [[]]

    | otherwise    = map (x:) restOfPath

           where

       extendedpath = x:mypath

       succs = nodeSuccs (idToNode cfg x)

       nonCycleSuccs = succs

           restOfPath = concat (map (findControlFlowPaths' extendedpath) nonCycleSuccs)

March 25
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Building the loop nest tree (a.k.a. the control tree)

• The loop nest tree consists, at each level, of a loop (with its 
header), and the list of all its subloop trees:

data LoopTree = LTree (Id,[Id]) [LoopTree] deriving (Show, Eq)

loopTree :: CFG -> LoopTree

loopTree cfg 

 = LTree (0, nodesOf cfg) (makeTrees theloops)

    where

    backedges = backEdges cfg

    theloops = map (naturalLoop cfg) backedges

    makeTrees loops = map makeTree (siblingloops loops)

    makeTree loop 

     = LTree loop (makeTrees subloops)

       where

       subloops = [(h,nub l) | (h,l) <- theloops, containedIn (h,l) loop]
March 25
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Building the loop nest tree…

• The children of a given loop are the immediate subloops.  A 
subloop is an immediate subloop if it is not contained in any 
other loop in the list:

siblingloops loops 

 = [l1 | l1 <- loops, 

         not (any (containedIn l1) [l2 | l2<-loops, l1 /= l2]) ]

• To work out whether one loop l1 is strictly contained within 
another l2, we ask simply whether l1’s header is in l2’s 
body:

containedIn :: (Id,[Id]) -> (Id,[Id]) -> Bool

containedIn (h1,l1) (h2,l2) = h1 `elem` l2
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Manipulating the control flow graph…

• To implement hoisting of loop invariants we need a few other 
functions:

– Insert a pre-header before each loop header:
> addPreHeaders :: CFG -> LoopTree -> ([(Id,Id)], CFG)
> addPreHeaders cfg looptree = 

– Remove a specified list of nodes from a cfg
> removeNodes :: [CFGNode] -> CFG -> CFG
> removeNode node cfg = …

– Insert a specified node n into a cfg after a specified node "target".  
This only works if the target has only one successor, as is the case 
with a pre-header.

> [CFGNode] -> CFG -> Int -> CFG
> insertNodesAfter nodes cfg target = … 

– Traverse the modified CFG and generate instructions:
> generateInstructions :: CFG -> [Instruction]
> generateInstructions cfg = …
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Hoisting the loop-invariants…
• Finally, we bring it all together

> hoistLoopInvariants cfg looptree 

>  = newcfg

>    where

>    newcfg = foldl hoistALoop cfgWithPreheaders loops

>    loops = [(h,l) | (h,l) <- loopsOf looptree, h /= 0]

>    (preheaders, cfgWithPreheaders) = addPreHeaders cfg looptree

>    hoistALoop cfg (header,body)

>     = insertNodesAfter invariants (removeNodes invariants cfg) preheader

>       where

>       invariants = loopInvariantInstructionsOf cfg (header:body)

>       preheader = retrieve header preheaders

> loopsOf (LTree (h,body) subloops)

>  = (h,body) : concat (map loopsOf subloops)
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(This sketch 

implementation 

doesn’t check all the 

hoisting conditions…)
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Example

> test = (Program 

>           [(Decl "w" Integer),

>            (Decl "x" Integer),

>            (Decl "y" Integer),

>            (Decl "z" Integer)]

>           [Assign (Var "x") (Const 1),

>           Assign (Var "w") (Const 100),

>           Assign (Var "z") (Const 200),

>           LabelStat "Here",

>           Assign (Var "x") (Binop Plus 

                         (Ref (Var "x")) (Const 1)),

>           Assign (Var "y") (Binop Plus 

                         (Ref (Var "w")) (Ref (Var "z"))),

>           IfThenElse (Compare CLT 

                         (Ref (Var "x")) (Const 10))

>             [Goto "Here"] []

>           ] )
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Node 0 (Mov (ImmNum 1) (Reg T1)) [T1] [] [1] []

Node 1 (Mov (ImmNum 100) (Reg T0)) [T0] [] [2] [0]

Node 2 (Mov (ImmNum 200) (Reg T3)) [T3] [] [3] [1]

Node 3 (Mov (Reg T1) (Reg T4)) [T4] [T1] [4] [2,15]

Node 4 (Add (ImmNum 1) (Reg T4)) [T4] [T4] [5] [3]

Node 5 (Mov (Reg T4) (Reg T1)) [T1] [T4] [6] [4]

Node 6 (Mov (Reg T3) (Reg T5)) [T5] [T3] [7] [5]

Node 7 (Mov (Reg T0) (Reg T6)) [T6] [T0] [8] [6]

Node 8 (Add (Reg T5) (Reg T6)) [T6] [T5,T6] [9] [7]

Node 9 (Mov (Reg T6) (Reg T2)) [T2] [T6] [10] [8]

Node 10 (Mov (Reg T1) (Reg T7)) [T7] [T1] [11] [9]

Node 11 (Mov (ImmNum 10) (Reg T8)) [T8] [] [12] [10]

Node 12 (Cmp (Reg T7) (Reg T8)) [] [T7,T8] [13] [11]

Node 13 (Blt "L1") [] [] [14,15] [12]

Node 14 (Bra "L2") [] [] [17] [13]

Node 15 (Bra "LHere") [] [] [3] [13]

Node 16 (Bra "L3") [] [] [17] []

Node 17 Halt [] [] [] [14,16]

AST Original control flow graph:
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• Relevant reaching definitions:
relevantReachingDefinitionsOf cfg =

[(0,[]),
(1,[]),
(2,[]),
(3,[0,5]),
(4,[3]),
(5,[4]),
(6,[2]),
(7,[1]),
(8,[7,6]),
(9,[8]),
(10,[5]),
(11,[]),
(12,[11,10]),
(13,[]),  
(14,[]),  
(15,[]),  
(16,[]),  (17,[])]

March 25

• Loop Tree:

loopTree cfg =

LTree (0,[0,1,2,3,4,5,6,7,8,9,10,

  11,12,13,14,15,16,17]) 

  [LTree (3,[4,5,6,7,8,9,10,

       11,12,13,15]) 

  [] ]• Loop invariants:
externallyDependentInstructionsOf cfg 

[3,4,5,6,7,8,9,10,11,12,13,15] =

[Node 6 (Mov (Reg T3) (Reg T5)) [T5] [T3] [7] [5],

Node 7 (Mov (Reg T0) (Reg T6)) [T6] [T0] [8] [6],

Node 11 (Mov (ImmNum 10) (Reg T8)) [T8] [] [12] [10]]

 loopInvariantInstructionsOf (cfgex 15) 
[3,4,5,6,7,8,9,10,11,12,13,15] =

[Node 7 (Mov (Reg T0) (Reg T6)) [T6] [T0] [8] [6],

Node 6 (Mov (Reg T3) (Reg T5)) [T5] [T3] [7] [5],

Node 11 (Mov (ImmNum 10) (Reg T8)) [T8] [] [12] [10],

Node 9 (Mov (Reg T6) (Reg T2)) [T2] [T6] [10] [8],

Node 8 (Add (Reg T5) (Reg T6)) [T6] [T5,T6] [9] [7]]
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• Code after loop-invariant hoisting:
move.l #1, T1

move.l #100, T0

move.l #200, T3

#Preheader for loop with header 3

move.l T0, T6

move.l T3, T5

move.l #10, T8

move.l T6, T2

add.l  T5, T6

(continued in next column…)
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M3:

move.l T1, T4

add.l  #1, T4

move.l T4, T1

#Mov (Reg T3) (Reg T5) moved

#Mov (Reg T0) (Reg T6) moved

#Add (Reg T5) (Reg T6) moved

#Mov (Reg T6) (Reg T2) moved

move.l T1, T7

#Mov (ImmNum 10) (Reg T8) moved

cmp.l  T7, T8

blt    M15

bra    M14

M15:

bra    M3

M14:

bra    M17

M17:

halt

bra    M3
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Feeding curiosity…
• We have been focused on optimising programs for efficiency.  How about 

optimising (floating-point) programs for accuracy?  See for example 
“Intra-procedural Optimization of the Numerical Accuracy of Programs”, 
Nasrine Damouche, Matthieu Martel, Alexandre Chapoutot, Formal 
Methods for Industrial Critical Systems, 2015.

• We talk about optimisation – but optimising compilers generally just 
improve programs, more or less heuristically.  What can we say about 
optimality?  See for example, “An algorithm for the optimization of finite 
element integration loops”, Fabio Luporini, David A. Ham, Paul H. J. Kelly, 
ACM TOMS 2017.

• A major element of compilation not covered in this course is scheduling – 
both of instructions, and of loops and loop nests.  Is finding a new 
schedule for an existing algorithm “just scheduling”, or might it 
sometimes be a truly new inventive step – in fact a new algorithm?  See 
for example, “Diamond Tiling: Tiling Techniques to Maximize Parallelism 
for Stencil Computations”, Uday Bondhugula et al, IEEE TPDS 2016.

March 25
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Feeding curiosity…
• Generalising LICM: Loop-invariant code motion deals with expressions which are 

redundantly computed in iterations of the immediately-enclosing loop.  But consider:
for i
  for j 
    R[i,j] = A[i]*B[i] + C[j]*D[j]
We see that “A[i]*B[i]” is loop-invariant.  But what about “C[j]*D[j]”?

We can eliminate this redundancy by introducing a new vector temporary T:
for j
  T[j] = C[j]*D[j]
for i
  p = A[i]*B[i] 
  for j 
    R[i,j] = p+T[j]
Most compilers don’t do this (we didn’t find any), perhaps because allocating new temporary arrays 
may lead to unwanted consequences.  It does, however, really help some applications.

See Fabio Luporini, Ana Lucia Varbanescu, Florian Rathgeber, Gheorghe-Teodor Bercea, J. 
Ramanujam, David A. Ham, and Paul H. J. Kelly. Cross-Loop Optimization of Arithmetic Intensity for 
Finite Element Local Assembly. ACM Trans. Archit. Code Optim. 11, 4, Article 57 (January 2015 
https://doi.org/10.1145/2687415 
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https://doi.org/10.1145/2687415
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Student question: robust simple LICM without SSA
• I understand why SSA is helpful in compilers in general, 

but also that the algorithms to generate it are rather 
complicated. In the case where we just want to do 
Loop Invariant Code Motion, I think I came up with a 
simpler scheme which essentially does what the phi 
nodes do without needing to implement the algorithm 
required to transform the whole program to SSA:

• This seems to be ideal because:

• You don't have to check the conditions for LICM

• You don't have to implement the hard SSA algorithms

• But, I couldn't find any resources in the textbooks or 
online doing it this way, so I think maybe either:

• I misunderstood and this was exactly what was being 
suggested in the SSA part - i.e. if we are just doing LICM 
we don't need to implement full SSA. Though I thought 
that the SSA method involved putting the t = t1 at the 
control flow join. 

• There is a flaw with this method that I haven't spotted.

• I'd be interested in everyone's opinion. This isn't really 
exam related; I was just interested. : )
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• Excellent observation.  I think you are right that this is 
enough for LICM.

• As you say, what you're proposing essentially leads to the 
same result as the SSA-based approach presented in the 
lecture.

• LICM is used in the lecture to motivate SSA, which is used for 
other more complicated analyses and transformations in 
modern compilers like LLVM and GCC.  What you have 
pointed out is that LICM is not, by itself, a particularly 
compelling reason to transform into then out of SSA.

• SSA is however useful for more complicated things.  You 
might enjoy this page, which documents all the  analysis and 
transformation passes in LLVM:

 https://llvm.org/docs/Passes.html#sccp-sparse-
conditional-constant-propagation 

• In particular, you might look at sccp: Sparse Conditional 
Constant Propagation  
[https://llvm.org/docs/Passes.html#id79]  (a slightly 
extended explanation is also here: 
https://en.wikipedia.org/wiki/Sparse_conditional_constant_
propagation ).  SCCP is based on this paper:

Constant propagation with conditional branches. Wegman 
and Zadeck ACM TOPLAS 1991 
(https://www.cs.wustl.edu/~cytron/531Pages/f11/Resource
s/Papers/cprop.pdf )

• The Sparse Simple Constant (SSC) algorithm presented there 
is linear in the size of the SSA graph; they comment that 
without SSA, it would be much much slower without SSA, in 
the worst case slower in proportion to the number of 
variables in the program.  But this is beyond what we had 
time for in this course.

https://llvm.org/docs/Passes.html#sccp-sparse-conditional-constant-propagation
https://llvm.org/docs/Passes.html#sccp-sparse-conditional-constant-propagation
https://llvm.org/docs/Passes.html#id79
https://en.wikipedia.org/wiki/Sparse_conditional_constant_propagation
https://en.wikipedia.org/wiki/Sparse_conditional_constant_propagation
https://www.cs.wustl.edu/~cytron/531Pages/f11/Resources/Papers/cprop.pdf
https://www.cs.wustl.edu/~cytron/531Pages/f11/Resources/Papers/cprop.pdf
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Student question: robust simple LICM without SSA

March 25

• According to the lecture slides, S7 can't be hoisted since it 
does not dominate all loop exits.

• But, as you say, it might not matter, in an example like this 
where c is not live on exit.

• However, hoisting S7 could actually cause a big problem.  
Suppose the array D is not allocated, or not big enough: the 
access to D[N] might not be valid.  In fact it might actually be 
an access violation - if the address of D[N] is not allocated in 
the process's virtual address space, the access will cause a 
page fault - hoisting it might actually make the program 
crash when it shouldn’t.  [this is what the question was 
actually looking for]

• Now suppose S7 were something safe, like "c = N/3".  Now 
hoisting it looks safe.  But we might wonder whether it's a 
good idea, as it would put S7 on an always-taken path - 
whereas the conditional on S5 might very, very rarely 
activated.  We are at risk of making the program slower.

• In some instruction sets, for example Intel's Itanium, there is 
a special load instruction for situations like this, which loads 
from memory (eg c=D[N]), but if the address is invalid it 
doesn't throw a fault - it just marks the target register (c 
here) as "NaT" ("not a thing").  Then at S8 you would have 
an instruction to check whether c is NaT - if so, you re-
execute the load there so that the fault occurs at the right 
point.

• (The real reason Itanium programmers might do this is to 
increase parallelism; for a more detailed explanation and 
example see https://devblogs.microsoft.com/oldnewthing/20150804-
00/?p=91181 ). 

https://devblogs.microsoft.com/oldnewthing/20150804-00/?p=91181
https://devblogs.microsoft.com/oldnewthing/20150804-00/?p=91181
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