
1

Compilers - Chapter 8:

Loop scheduling optimisations

Part 1: Why mess with the order of loop

execution?

June 25

• Lecturer:
– Paul Kelly (p.kelly@imperial.ac.uk)

https://xkcd.com/754/ (It turns out that this cartoon is good for almost any compilers topic, definitely this one)

mailto:p.kelly@imperial.ac.uk
https://xkcd.com/754/

3

“Restructuring” compilers
• The optimisations we have studied so far reduce the number of

instructions that need to be executed at runtime

– This is fundamentally a good idea!

• But sometimes we can get a performance improvement by
thinking about the order in which loops are executed

• Why might that be?

June 25

4

“Restructuring” compilers
• The optimisations we have studied so far reduce the number of

instructions that need to be executed at runtime

– This is fundamentally a good idea!

• But sometimes we can get a performance improvement by
thinking about the order in which loops are executed

• Why might that be?

– We might be able to use vector instructions

• So different iterations of a loop are being executed at the
same time

June 25

5

“Restructuring” and “parallelizing” compilers

• The optimisations we have studied so far reduce the number of
instructions that need to be executed at runtime

– This is fundamentally a good idea!

• But sometimes we can get a performance improvement by
thinking about the order in which loops are executed

• Why might that be?

– We might be able to use vector instructions

• So different iterations of a loop are being executed at the
same time

– We might be able to use multiple cores

• So different iterations of a loop might be assigned to
different threads running on different CPUs

June 25

6

“Restructuring” and “parallelizing” compilers

• The optimisations we have studied so far reduce the number of
instructions that need to be executed at runtime

– This is fundamentally a good idea!

• But sometimes we can get a performance improvement by
thinking about the order in which loops are executed

• Why might that be?

– We might be able to use vector instructions

• So different iterations of a loop are being executed at the
same time

– We might be able to use multiple cores

• So different iterations of a loop might be assigned to
different threads running on different CPUs

– We might be able to improve how the cache is used

• We will come to this later!
June 25

7

Vector instruction set extensions
• Example: Intel’s AVX512

• Extended registers ZMM0-ZMM31, 512 bits wide

– Can be used to store 8 doubles, 16 floats, 32 shorts,
64 bytes

– So instructions are executed in parallel in 64,32,16 or
8 “lanes”

7

8

Vector instruction set extensions
• Example: Intel’s AVX512

• Extended registers ZMM0-ZMM31, 512 bits wide

– Can be used to store 8 doubles, 16 floats, 32 shorts,
64 bytes

• Example: vaddps zmm0 zmm1 zmm2

– “Add Packed Single Precision Floating-Point Values”

a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0zmm1:

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0zmm2:

a15+b15 a14+b14 a13+b13 a12+b12 a11+b11 a10+b10 a9+b9 a8+b8 a7+b7 a6+b6 a5+b5 a4+b4 a3+b3 a2+b2 a1+b1 a0+b0zmm0:

Vaddps zmm0 zmm1 zmm2

In one instruction we add 16 32-bit floating point values

from zmm1 and 16 32-bit values from zmm2

10

A stretch of Mumbai to Pune expressway near Lonavala.
By neelnimavat - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=49735402

11

Dubai

https://www.worldatlas.com/articles/countries-with-the-best-roads.html

https://www.worldatlas.com/articles/countries-with-the-best-roads.html

12
https://blog.playo.co/cycling-work-insane-idea-boon/

La
n

e
0

La
n

e
1

La
n

e
2

La
n

e
3

https://blog.playo.co/cycling-work-insane-idea-boon/

17

Can we get the compiler to vectorise?

In sufficiently simple cases, no problem:
Gcc reports: addcba.c:6:20: optimized: loop vectorized using 64
byte vectors

17

18

Can we get the compiler to vectorise?

In sufficiently simple cases, no problem:
Gcc reports: addcba.c:6:20: optimized: loop vectorized using 64
byte vectors

18

vmovaps: load 16 floats (64 bytes) from a[i] into
vector register zmm0

add: bump the offset (rax) by 64 bytes

vaddps: add 16 floats from b[i] to zmm0

vmovaps: store zmm0 to c[i]

Tell the compiler to generate code for AMD Zen
4 which has AVX512

Switch back to non-vector mode

20

How do we know a loop is
parallel?

• This case was easy:

June 25

for (int i=0; i<4; i++)
 c[i] = a[i] + b[i]; P

a[0] b[0]
+

c[0]

a[1] b[1]
+

c[1]

a[2] b[2]
+

c[2]

a[3] b[3]
+

c[3]

Iteration #0

Iteration #1

Iteration #2

Iteration #3

• To use vector instructions, we
need to verify that different
iterations of the loop are truly
parallel

• In this case we can easily see that
the dependence arrows do not
cross iteration boundaries

• So we can use a vector add

a[0] a[1] a[2] a[3]

b[0] b[1] b[2] b[3]

b[0] b[1] b[2] b[3]

Vector add

instruction

21

How much does it help?
First: without vectorisation

• Source code:

for (int i=0; i<size; i++)

c[i] = a[i] + b[i];

• Processor: AMD Ryzen 9 7940HS (“maple10”)

• Compiler command line:
gcc –O1 addcba-perf.c

• Generated code – not vectorised:
.L3:

 movss (%rsi,%rax), %xmm0

 addss (%rcx,%rax), %xmm0

 movss %xmm0, (%rdi,%rax)

 addq $4, %rax

 cmpq %rdx, %rax

 jne .L3

• Performance: 4.8 GFLOPS (4.8*109 single precision floating-point operations/second)

• Time per loop iteration: 0.21ns (one clock cycle at 4.8GHz, 1
result per iteration)

22

How much does it help?
This time with vectorisation

• Source code:

for (int i=0; i<size; i++)

c[i] = a[i] + b[i];

• Processor: AMD Ryzen 9 7940HS (“maple10”)

• Compiler command line:
gcc -Ofast -march=znver4 addcba-perf.c

• Generated code:
.L4:

 vmovaps (%r8,%rax), %zmm1

 vaddps (%rdi,%rax), %zmm1, %zmm0

 vmovaps %zmm0, (%rsi,%rax)

 addq $64, %rax

 cmpq %rax, %rdx

 jne .L4

• Performance: 34.8 GFLOPS (single precision)

• Time per loop iteration: 0.45ns (two clock cycles, 16 results per
iteration)

23

How much does it help?
This time with vectorisation

• Source code:

for (int i=0; i<size; i++)

c[i] = a[i] + b[i];

• Processor: AMD Ryzen 9 7940HS (“maple10”)

• Compiler command line:
gcc -Ofast -march=znver4 addcba-perf.c

• Generated code:
.L4:

 vmovaps (%r8,%rax), %zmm1

 vaddps (%rdi,%rax), %zmm1, %zmm0

 vmovaps %zmm0, (%rsi,%rax)

 addq $64, %rax

 cmpq %rax, %rdx

 jne .L4

• Performance: 34.8 GFLOPS (single precision)

• Time per loop iteration: 0.45ns (two clock cycles, 16 results per
iteration)

Speed of light is 30cm/ns.

So this machine
completes about three
iterations in the time it
takes the light to get
from your computer
screen to your eyes

24

Compilers - Chapter 8:

Loop scheduling optimisations

Part 2: Determining whether a loop can

 be executed in parallel

June 25

• Lecturer:
– Paul Kelly (p.kelly@imperial.ac.uk)

https://xkcd.com/754/ (It turns out that this cartoon is good for almost any compilers topic, definitely this one)

mailto:p.kelly@imperial.ac.uk
https://xkcd.com/754/

25

But that example was obviously parallel?
• To use vector instructions, we need to verify that

different iterations of the loop are truly parallel

• This case was easy:

• How about this one?

June 25

for (int i=0; i<1024; i++)
 c[i] = a[i] + b[i];

for (int i=0; i<1024; i++)
 c[i] = c[i-1] + b[i];

P

Q

a[0] b[0]
+

c[0]

a[1] b[1]
+

c[1]

26

But that example was obviously parallel?
• To use vector instructions, we need to verify that different

iterations of the loop are truly parallel

• This case was easy:

• How about this one?

• And this?

June 25

for (int i=0; i<1024; i++)
 c[i] = a[i] + b[i];

for (int i=0; i<1024; i++)
 c[i] = c[i-1] + b[i];

P

Q

for (int i=0; i<1024; i+=2)
 c[i] = c[i-1] + b[i];

R

27

“Loop-carried dependence”

• Consider this example:

• What does it do?

June 25

for (int i=1; i<8; i++)
 c[i] = c[i-1] + b[i];

Q

28

“Loop-carried dependence”

• Consider this example:

• When executed we get:

June 25

for (int i=1; i<8; i++)
 c[i] = c[i-1] + b[i];

Q

c[1] = c[0] + b[1];
c[2] = c[1] + b[2];
c[3] = c[2] + b[3];
c[4] = c[3] + b[4];
c[5] = c[4] + b[5];
c[6] = c[5] + b[6];
c[7] = c[6] + b[7];

29

“Loop-carried dependence”

• Consider this example:

• When executed we get:

June 25

for (int i=1; i<8; i++)
 c[i] = c[i-1] + b[i];

Q
Each iteration produces a

value that is used in the

next iteration

The dependence arrows

go from one iteration to

the next

The dependence is

carried by the loop

c[1] = c[0] + b[1];
c[2] = c[1] + b[2];
c[3] = c[2] + b[3];
c[4] = c[3] + b[4];
c[5] = c[4] + b[5];
c[6] = c[5] + b[6];
c[7] = c[6] + b[7];

30

“Loop-carried dependence”

• Consider this example:

• When executed we get:

June 25

for (int i=1; i<8; i++)
 c[i] = c[i-1] + b[i];

Q

c[0] b[1]
+

b[2]
+

b[3]
+

b[4]
+

Iteration #1

Iteration #2

Iteration #3

Iteration #4

c[1]

c[2]

c[3]

c[1] = c[0] + b[1];
c[2] = c[1] + b[2];
c[3] = c[2] + b[3];
c[4] = c[3] + b[4];
c[5] = c[4] + b[5];
c[6] = c[5] + b[6];
c[7] = c[6] + b[7];

31

“Loop-carried dependence”

• Consider this example:

• When executed we get:

June 25

for (int i=1; i<8; i++)
 c[i] = c[i-1] + b[i];

Q

c[0] b[1]
+

b[2]
+

b[3]
+

b[4]
+

Iteration #1

Iteration #2

Iteration #3

Iteration #4

c[1]

c[2]

c[3]

There is a chain of dependence

from iteration to iteration

c[1] = c[0] + b[1];
c[2] = c[1] + b[2];
c[3] = c[2] + b[3];
c[4] = c[3] + b[4];
c[5] = c[4] + b[5];
c[6] = c[5] + b[6];
c[7] = c[6] + b[7];

32

“Loop-carried dependence”

• Consider this example:

• When executed we get:

June 25

for (int i=1; i<8; i++)
 c[i] = c[i-1] + b[i];

Q

c[1] = c[0] + b[1];
c[2] = c[1] + b[2];
c[3] = c[2] + b[3];
c[4] = c[3] + b[4];
c[5] = c[4] + b[5];
c[6] = c[5] + b[6];
c[7] = c[6] + b[7];

c[0] b[1]
+

b[2]
+

b[3]
+

b[4]
+

Iteration #1

Iteration #2

Iteration #3

Iteration #4

c[1]

c[2]

c[3]

These are the loop-carried

dependences

33

So we need a compiler algorithm
• To determine whether there is a loop-carried dependence

• To distinguish, for example, P, Q and R:

June 25

for (int i=0; i<1024; i++)
 c[i] = a[i] + b[i];

for (int i=0; i<1024; i++)
 c[i] = c[i-1] + b[i];

P

Q

for (int i=0; i<1024; i+=2)
 c[i] = c[i-1] + b[i];

R

• No loop-carried dependence

• So iterations can be executed in parallel

• So vectorisable

• loop-carried dependence

• So iterations cannot be executed in

parallel

• So not vectorisable

• No loop-carried dependence

• So iterations can be executed in parallel

• So vectorisable

34

So we need a compiler algorithm
• To determine whether there is a loop-carried dependence

• To distinguish, for example, P, Q and R:

June 25

for (int i=0; i<1024; i++)
 c[i] = a[i] + b[i];

for (int i=0; i<1024; i++)
 c[i] = c[i-1] + b[i];

P

Q

for (int i=0; i<1024; i+=2)
 c[i] = c[i-1] + b[i];

R

• No loop-carried dependence

• So iterations can be executed in parallel

• So vectorisable

• loop-carried dependence

• So iterations cannot be executed in

parallel

• So not vectorisable

• No loop-carried dependence

• So iterations can be executed in parallel

• So vectorisable
• (though actually generating efficient vector

code for this might be a bit tricky?)

35

Can we get the compiler to vectorise?

If the trip count is not known to be
divisible by 4:
gcc reports:
test.c:6:3: note: loop vectorized
test.c:6:3: note: loop turned into non-loop; it never loops.
test.c:6:3: note: loop with 3 iterations completely unrolled

Basically the same
vectorised code as
before

Three copies of the
non-vectorised loop
body to mop up the
additional iterations
in case N is not
divisible by 4

35

36

If the alignment of the
operand pointers is not
known:
gcc reports:
test.c:6:3: note: loop vectorized
test.c:6:3: note: loop peeled for vectorization to enhance alignment
test.c:6:3: note: loop turned into non-loop; it never loops.
test.c:6:3: note: loop with 3 iterations completely unrolled
test.c:1:6: note: loop turned into non-loop; it never loops.
test.c:1:6: note: loop with 4 iterations completely unrolled

Basically the same
vectorised code as before

Three copies of the non-
vectorised loop body to
mop up the additional
iterations in case N is not
divisible by 4

Three copies of the non-
vectorised loop body to
align the start address of
the vectorised code on a
32-byte boundary

36

37

If the pointers might be
aliases:
gcc reports:
test.c:6:3: note: loop vectorized
test.c:6:3: note: loop versioned for vectorization because of
possible aliasing
test.c:6:3: note: loop peeled for vectorization to enhance alignment
test.c:6:3: note: loop turned into non-loop; it never loops.
test.c:6:3: note: loop with 3 iterations completely unrolled
test.c:1:6: note: loop turned into non-loop; it never loops.
test.c:1:6: note: loop with 3 iterations completely unrolled

Basically the same vectorised
code as before

Three copies of the non-
vectorised loop body to mop
up the additional iterations in
case N is not divisible by 4

Check whether the memory
regions pointed to by c, b and
a might overlap

Three copies of the non-
vectorised loop body to align
the start address of the
vectorised code on a 32-byte
boundary

Non-vector version of the loop
for the case when c might
overlap with a or b

37

38

What do we see?

• Actually exploiting vectorisation is a bit tricky even when
the dependence analysis is easy

• In the following slides we start with an easily-vectorizable
example

• And look at some of the things that make it complicatedJune 25

3939

Example 2

double A[N], B[N], C[N], D[N]

for i = 0 to N, i++

C[i] = A[2*i] + B[D[i]]

loop: VLOAD av, A[i], stride=2

VGATHER bv, B, D[i:v]

VADD cv, bv, av

VSTORE C[i:v], cv

incr: INCR i

IF i<N/v: loop

Advanced issues: bad access patterns

SIMD version

Example as before

4040

Indirection: b[ind[]]

We have a register containing a vector of

pointers

We need a “gather” instruction:

• A vector load

• That loads from a different address in each

lane

(how can this be implemented efficiently??)

4141

Incrementing through indirection: ind[i]

1. Load a vector ind[i:i+16]

2. Gather a vector A[ind[i:i+16]

3. Subtract the D[i] values:

4. RHS[0:16]=A[ind[i:i+16]] – D[i:i+16]

5. Gather the LHS[0:16] = C[ind[i:i+16]]

6. Add (+=): LHS[0:16] += RHS[0:16]

7. Scatter: C[ind[i:i+16]] = LHS[0:16]

DDDDA A A A

RHS

LHS

C C C C

ind

ind

LHS

C C C C

ind

i i i i

i i i i

-

+

4242

Incrementing through indirection: ind[i]

1. Load a vector ind[i:i+16]

2. Gather a vector A[ind[i:i+16]

3. Subtract the D[i] values:

4. RHS[0:16]=A[ind[i:i+16]] – D[i:i+16]

5. Gather the LHS[0:16] = C[ind[i:i+16]]

6. Add (+=): LHS[0:16] += RHS[0:16]

7. Scatter: C[ind[i:i+16]] = LHS[0:16]

DDDDA A A A

RHS

LHS

C C C C

ind

ind

LHS

C C C C

ind

i i i i

i i i i

-

+

DDDDA A A

RHS

LHS

ind

ind

LHS

ind

i i i i

i i i i

-

+

C C C

C C C

What would happen if there were

duplicate indices in ind?

4343

Incrementing through indirection: ind[i]

1. Load a vector ind[i:i+16]

2. Gather a vector A[ind[i:i+16]

3. Subtract the D[i] values:

4. RHS[0:16]=A[ind[i:i+16]] – D[i:i+16]

5. Gather the LHS[0:16] = C[ind[i:i+16]]

6. Add (+=): LHS[0:16] += RHS[0:16]

7. Scatter: C[ind[i:i+16]] = LHS[0:16]

DDDDA A A A

RHS

LHS

C C C C

ind

ind

LHS

C C C C

ind

i i i i

i i i i

-

+

DDDDA A A

RHS

LHS

ind

ind

LHS

ind

i i i i

i i i i

-

+

C C C

C C C

What would happen if there were

duplicate indices in ind?

It’s not parallel! We have to sum two (or more)

different values into the same C element

44

Incrementing through indirection: ind[i]

1. Load a vector ind[i:i+16]

2. Gather a vector A[ind[i:i+16]

3. Subtract the D[i] values:

4. RHS[0:16]=A[ind[i:i+16]] – D[i:i+16]

5. Gather the LHS[0:16] = C[ind[i:i+16]]

6. Add (+=): LHS[0:16] += RHS[0:16]

7. Scatter: C[ind[i:i+16]] = LHS[0:16]

vpconflictq

instruction

checks for

duplicate

values in

ind[i:i+16]

If found, we

branch to a

loop over each

distinct value

Roughly…

N
o
t

e
x
a
m

in
a
b
le

This is addressed by AVX512
“conflict detect” instructions
which enable us to catch
duplicates and serialise where
needed

Add RHS into LHS

RHS

Count conflicts

Add

conflicting

lanes’ values

sequentially Unrolled copy

Scatter back

If no conflicts the

skip to fast case

Add RHS into LHS

Start next iteration

45

Health warning

• Automatic discovery of parallelism has a bad reputation

– Deservedly! It looks great on simple examples

– But real code has complexity that means it often just doesn’t
happen

• But in some application domains it can really work

• And some programming languages make it easier, maybe!

– Functional languages lack anti- and output-dependences (but
tend to add higher-order functions and lazy evaluation)

– Some languages control pointer ownership and aliasing

– Some programming models discourage explicit loops and explicit
elementwise subscripting

June 25

46

So: we need a compiler algorithm to
determine whether a loop is parallel…

June 25

47

How?Dependence
Define:

IN(S): set of memory locns which might be read by some execn of
statement S

OUT(S): set of memory locns which might be written by some execn
of statement S

Reordering is constrained by dependences;

There are four types:

Data (“true") dependence: S1 δ S2

• OUT(S1) ∩ IN(S2)

Anti dependence: S1 S2

• IN(S1) ∩ OUT(S2)

Output dependence: S1 δo S2

• OUT(S1) ∩ OUT(S2)

Control dependence: S1 δc S2

These are static analogues of the dynamic RAW, WAR, WAW and control
hazards which have to be considered in processor architecture

δ

(“S1 must read something

before S2 overwrites it”)

(“S1 must write something

before S2 can read it”)

(“If S1 and S2 might both

write to a location, S2 must

write after S1”)

(“S1 determines whether S2

should execute”)

48

Loop-carried dependencesRecall:

S1 : A[0] := 0

 for I = 1 to 8

S2 : A[I] := A[I-1] + B[I]

What does this loop do?

1 1 1 1 1 1 1 1B:

0A:

49

Loop-carried dependencesRecall:

S1 : A[0] := 0

 for I = 1 to 8

S2 : A[I] := A[I-1] + B[I]

What does this loop do?

1 1 1 1 1 1 1 1B:

0 1 2A:

In this case, there is a data dependence

This is a loop-carried dependence - the dependence
spans a loop iteration

This loop is inherently sequential

+

+

+

+

+

+

+

+

0 B[1]

B[2]

B[3]

B[4]

B[5]

B[6]

B[7]

B[8]

50

Loop-carried dependencesRecall:

S1 : A[0] := 0

 for I = 1 to 8

S2 : A[I] := A[I-1] + B[I]

Loop carried:

S21 : A[1] := A[0] + B[1]

S22 : A[2] := A[1] + B[2]

S23 : A[3] := A[2] + B[3]

S24 : A[4] := A[3] + B[4]

S25 : A[5] := A[4] + B[5]

S26 : A[6] := A[5] + B[6]

S27 : A[7] := A[6] + B[7]

S28 : A[8] := A[7] + B[8]

+

+

+

+

+

+

+

+

0 B[1]

B[2]

B[3]

B[4]

B[5]

B[6]

B[7]

B[8]

Dependences cross, from

one iteration to next

51

What is a loop-carried dependence?

• Consider two iterations I1 and I2

• A dependence occurs between two statements Sp and Sq (not

necessarily distinct), when an assignment in Sp
I1 refers to the

same location as a use in Sq
I2

In the example,

• The assignment is "A[I1] := ...”

• The use is "... := A[I2-1] ...”

• These refer to the same location when I1 = I2-1

• Thus I1 < I2, ie the assignment is in an earlier iteration

 Notation: S2 < S2

52

Definition: The dependence equation
A dependence occurs

• between two statements Sp and Sq (not necessarily distinct),

• when there exists a pair of loop iterations I1 and I2,

• such that a memory reference in Sp in I1 may refer to the same location as a

memory reference in Sq in I2.

• This might occur if Sp and Sq refer to some common array A

• Suppose Sp refers to A[φp(I)]

• Suppose Sq refers to A[φq(I)]

• A dependence of some kind occurs between Sp and Sq if there exists a

solution to the equation

 φp(I
1) = φq(I

2)

(φp(I) is some subscript

expression involving I)

• for integer values of I1 and I2 lying

within the loop bounds

53

Types of dependence
If a solution to the dependence equation exists, a dependence of

some kind occurs

The dependence type depends on what solutions exist

• The solutions consist of a set of pairs (I1,I2)

• We would appear to have a data dependence if

 A[p(I)] є OUT(Sp)

 and

 A[q(I)] є IN(Sq)

• But we only really have a data dependence if the assignments

precede the uses, ie

• Sp < Sq

• if, for each solution pair (I1,I2), I1 < I2

54

Dependence versus anti-dependence
• If the uses precede the assignments, we actually have an

anti-dependence, ie

if, for each solution pair (I1,I2), I1 > I2

• In this case we do have a constraint on execution order

• Because we (may) have to read a value before it (may) be

overwritten

• And this anti-dependence is loop-carried

• Anti-dependences prevent re-ordering, and multi-thread

parallelism

55

Dependence versus anti-dependence

• If there are some solution pairs (I1,I2) with I1 < I2 and some

with I1 > I2, we write

This represents that we know we must respect execution

ordering, even though the compiler is unable to classify the

dependence fully

• If, for all solution pairs (I1,I2), I1 = I2, there are

dependences within an iteration of the loop, but there are no

loop-carried dependences:

=

56

Dependence distance
In many common examples, the set of solution pairs is characterised

easily:

• Definition: dependence distance

• If, for all solution pairs (I1, I2),

 I1 = I2 - k

 then the dependence distance is k

• For example in the loop we considered earlier,

 We find that S2 < S2 with dependence distance 1.

• ((of course there are many cases where the difference is not

constant and so the dependence cannot be summarised this way)).

57

Reuse distance
When optimising for cache performance, it is sometimes
useful to consider the re-use relationship,

• IN(S1) ∩ IN(S2)

• Here there is no dependence - it doesn't matter which
read occurs first

• Nonetheless, cache performance can be improved by
minimising the reuse distance

The reuse distance is calculated essentially the same
way

Eg

 for I = 5 to 100

S1: B[I] := A[I] * 2

S2: C[I] := A[I-5] * 10

Here we have a loop-carried reuse with distance 5

58

Compilers - Chapter 8:

Loop scheduling optimisations

Part 3: Dependence analysis in nested

 loops

June 25

• Lecturer:
– Paul Kelly (p.kelly@imperial.ac.uk)

https://xkcd.com/754/ (It turns out that this cartoon is good for almost any compilers topic, definitely this one)

mailto:p.kelly@imperial.ac.uk
https://xkcd.com/754/

59

Nested loops

Up to now we have looked at single loops

Now let’s generalise to loop “nests”

We begin by considering a very common dependence

pattern, called the “wavefront”:

Dependence structure?

60

Nested loops

Up to now we have looked at single loops

Now let’s generalise to loop “nests”

We begin by considering a very common dependence

pattern, called the “wavefront”:

for I = 0 to 3 do

 for J = 0 to 3 do

 S: A[I,J] = A[I-1,J] + A[I,J-1]

Dependence structure? I is 𝐼1
J is 𝐼2

61

System of dependence equations
Consider the dependence equations for this loop nest:

There are two potential dependences arising from the three references to A, so two

systems of dependence equations to solve:

62

• The same loop:

• For humans the easy way to understand this loop nest is to
draw the iteration space graph showing the iteration-to-
iteration dependences:

• The diagram shows an arrow for each solution of each
dependence equation.

Iteration space graph

63

• The same loop:

• For humans the easy way to understand this loop nest is to
draw the iteration space graph showing the iteration-to-
iteration dependences:

• The diagram shows an arrow for each solution of each
dependence equation. Is there any parallelism?

Iteration space graph

64

The inner loop is not vectorisable since there is a dependence chain

linking successive iterations.

(to use a vector instruction, need to be able to operate on each element of the vector in

parallel)

• Similarly, the outer loop is not parallel

65

The inner loop is not vectorisable since there is a dependence chain

linking successive iterations.

(to use a vector instruction, need to be able to operate on each element of the vector in

parallel)

• Similarly, the outer loop is not parallel

66

The inner loop is not vectorisable since there is a dependence chain

linking successive iterations.

(to use a vector instruction, need to be able to operate on each element of the vector in

parallel)

• Similarly, the outer loop is not parallel

• This loop nest has two dependence distance vectors:

• (1,0) carried by the outer loop Direction vector: (<,=)

• (0,1) carried by the inner loop Direction vector: (=,<)

67

The inner loop is not vectorisable since there is a dependence chain

linking successive iterations.

(to use a vector instruction, need to be able to operate on each element of the vector in

parallel)

• Similarly, the outer loop is not parallel

• This loop is interchangeable: the top-to-bottom, left-to-right execution

order is also valid since all dependence constraints (as shown by the

arrows) are still satisfied.

• Interchanging the loop does not improve vectorisability or

parallelisability

68

Interchange: counter-example

for I1 = 0 to 3 do

 for I2 = 0 to 3 do

 A[I1,I2] := A[I1 ± ?, I2 ± ?] + B[I1, I2]

Can you think of a loop like this that cannot

safely be interchanged?

69

Interchange: counter-example

for I1 = 0 to 3 do

 for I2 = 0 to 3 do

 A[I1,I2] := A[I1 ± 1, I2 ± 1] + B[I1, I2]

Can you think of a loop like this that cannot

safely be interchanged?

70

Interchange: counter-example

for I1 = 0 to 3 do

 for I2 = 0 to 3 do

 A[I1,I2] := A[I1 – 1, I2 + 1] + B[I1, I2]

71

Interchange: counter-example

Before

interchange

for I1 = 0 to 3 do

 for I2 = 0 to 3 do

 A[I1,I2] := A[I1 – 1, I2 + 1] + B[I1, I2]

72

Interchange: counter-example

After

interchange:

New traversal

order crosses

dependence

arrows

backwards

for I1 = 0 to 3 do

 for I2 = 0 to 3 do

 A[I1,I2] := A[I1 – 1, I2 + 1] + B[I1, I2]

73

Interchange: condition

• A loop is interchangeable if all dependence constraints

(as shown by the arrows) are still satisfied by the top-to-

bottom, left-to-right execution order

• How can you tell whether a loop can be interchanged?

Look at its dependence direction vectors:

Is there a dependence direction vector with the form

(<,>) ?

• ie there is a dependence distance vector (k1,k2) with

k1>0 and k2<0 ?

• If so, interchange would be invalid

Because the arrows would be traversed backwards

All other dependence directions are OK.

74

SkewingConsider this variation on the wavefront loop:

• The inner loop's control variable runs from k1 to k1+3.

• The iteration space of this loop has 42 iterations just like the original loop.

• If we draw the iteration space with each iteration SK1,K2 at coordinate

position (K1,K2), it is skewed to form a lozenge shape:

This loop

performs the

same computation

as the original.

75

Skewing preserves semantics

To see that this

loop performs the

same

computation, lets

work out its

dependence

structure.

First label each

iteration with the

element of A to

which it assigns

Skewing doesn’t actually
change the order in which the
loop body is executed

The loop body is

 A[k1,k2-k1] := A[k1-1,k2-k1]+A[k1,k2-k1-1]

• E.g. iteration S23 does:

 A[2,1] := A[1,1]+A[2,0]

78

Thus the dependence structure of the skewed loop is shown

by marking the iteration space with all the dependences:

Can this loop nest be vectorised?

Can this loop nest be interchanged?

79

Skewing changes effect of interchange
Thus the dependence structure of the skewed loop is shown

by marking the iteration space with all the dependences:

Original execution order

80

Thus the dependence structure of the skewed loop is shown

by marking the iteration space with all the dependences:

Transposed execution order

Interchange after skewing

81

You can think of loop

interchange as changing

the way the iteration space

is traversed

Alternatively, you can think

of it as a change to the

way the runtime code

instances are mapped onto

the iteration space

Traversal is always

lexicographic – ie left-to-

right, top-down

82

The inner loop is now

vectorisable, since it has

no loop-carried

dependence

• The skewed iteration

space has N rows and

2N-1 columns, but still

only N2 actual statement

instances.

Iterations in each

row are

independent

84

Original loop interchangeable

but not vectorisable.

We skewed inner loop by outer

loop by factor 1.

Still not vectorisable, but

interchangeable.

• Interchanged, skewed loop is

vectorisable.

Bounds of new loop not simple!

Is skewing ever invalid?

Does skewing affect interchangeability?

Does skewing affect dependence

distances?

Can you predict value of skewing?

Skewing and interchange: summary

85

Summary: dependence
Dependence equation for single loop:

• Suppose Sp refers to A[φp(I)]

• Suppose Sq refers to A[φ q(I)]

• A dependence of some kind occurs between Sp and Sq if there exists a solution to

the equation

 φ p(I1) = φ q(I2)

• for integer values of I1 and I2 lying within the loop bounds

• For multidimensional arrays, and nested for-loops, we generalise this to a

system of simultaneous dependence equations for two iterations, (I1
1, I2

1)

and (I1
2, I2

2)

• Iteration space graph, lexicographic schedule of execution

Arrows in graph show solutions to dependence equation

• Dependence distance vectors characterise families of congruent

arrows

86

Summary: transformations

• A loop can be executed in parallel if it has no loop-carried

dependence

• A loop nest can be interchanged if the transposed

dependence distance vectors are lexicographically

forward

• Strip-mining is always valid

• Tiling = strip-mining + interchange

Skewing is always valid

• Skewing can expose parallelism by aligning parallel

iterations with one of the loops

Skewing can make interchange (and therefore tiling)

valid

Not explained yet

87June 25

Student

question:
“why is

antidependence

a dependence?”

Loop-carried true dependence:

 for i

 A[i] = A[i-1] + B[i]

Loop-carried anti-dependence:

 for i

 A[i] = A[i+1] + B[i]

88

“Loop-carried anti-dependence”

• Consider this example:

• When executed we get:

June 25

for (int i=0; i<7; i++)
 c[i] = c[i+1] + b[i];

Z

c[0] = c[1] + b[1];
c[1] = c[2] + b[2];
c[2] = c[3] + b[3];
c[3] = c[4] + b[4];
c[4] = c[5] + b[5];
c[5] = c[6] + b[6];
c[6] = c[7] + b[7];

Each iteration uses a

value which is overwritten

in the next iteration

We need the use to

happen before the

overwrite

So we have a precedence

requirement due to an

anti-dependence

The anti-dependence

arrows go from one

iteration to the next

The anti-dependence is

carried by the loop

89

Implementing shared-memory parallel loop

“self-scheduling” loop

FetchAndAdd() is atomic
operation to get next un-
executed loop iteration:

Int FetchAndAdd(int *i) {

 lock(i);

 r = *i;

 *i = *i+1;

 unlock(i);

 return(r);

}

if (myThreadId() == 0)
 i = 0;
barrier();
// on each thread
while (true) {
 local_i = FetchAndAdd(&i);
 if (local_i >= N) break;
 A[local_i] = A[local_i] + B[local_i];
}
barrier();

for (i=0; i<N; i++) {
 A[i] = A[i] + B[i];
}

There are smarter ways to implement

FetchAndAdd….

Barrier(): block until
all threads reach this
point

Optimisations:

• Work in chunks

• Avoid unnecessary barriers

• Exploit “cache affinity” from loop to loop

90June 25

if (myThreadId() == 0)
 i = 0;
barrier();
while (true) {
 local_i = FetchAndAdd(&i);
 if (local_i >= N) break;
 A[local_i] = A[local_i] + B[local_i];
}
barrier();

if (myThreadId() == 0)
 i = 0;
barrier();
while (true) {
 local_i = FetchAndAdd(&i);
 if (local_i >= N) break;
 A[local_i] = A[local_i] + B[local_i];
}
barrier();

Thread #0 Thread #1

for (i=0; i<N; i++) {
 A[i] = A[i] + B[i];
}

Thread #0 gets some sequence of

iterations to do
Thread #1 gets some sequence of

iterations to do

91June 25

if (myThreadId() == 0)
 i = 0;
barrier();
while (true) {
 local_i = FetchAndAdd(&i);
 if (local_i >= N) break;
 A[local_i] = A[local_i+1] + B[local_i];
}
barrier();

if (myThreadId() == 0)
 i = 0;
barrier();
while (true) {
 local_i = FetchAndAdd(&i);
 if (local_i >= N) break;
 A[local_i] = A[local_i+1] + B[local_i];
}
barrier();

Thread #0 Thread #1

for (i=0; i<N; i++) {
 A[i] = A[i+1] + B[i];
}

Thread #0 gets some sequence of

iterations to do
Thread #1 gets some sequence of

iterations to do

What could possibly go wrong?

92June 25

if (myThreadId() == 0)
 i = 0;
barrier();
while (true) {
 local_i = FetchAndAdd(&i);
 if (local_i >= N) break;
 A[local_i] = A[local_i+1] + B[local_i];
}
barrier();

if (myThreadId() == 0)
 i = 0;
barrier();
while (true) {
 local_i = FetchAndAdd(&i);
 if (local_i >= N) break;
 A[local_i] = A[local_i+1] + B[local_i];
}
barrier();

Thread #0 Thread #1

for (i=0; i<N; i++) {
 A[i] = A[i+1] + B[i];
}

Thread #0 gets some sequence of

iterations to do, eg: 0, 2, 4, 6…
Thread #1 gets some sequence of

iterations to do, eg: 1, 3, 5, 7…

What could possibly go wrong?
This example has a loop-carried anti-dependence.

We must read from A before overwriting A

93

Feeding curiosity: solving the dependence equation
from z3 import *

N=100

i1 = Int("i1")

i2 = Int("i2")

consider a loop like this:

for i = 1 to N

a[phi1(i)] = a[phi2(i)] + b[i]

So the dependence equation is

exists i1, i2: 1<i<n s.t. phi1(i1) == phi2(i2)

def DependenceTest(bounds, dependence_equation):

 s = Solver()

 s.add(bounds, dependence_equation)

 if s.check() == unsat:

 print ("No dependence is present")

 else:

 print("Dependence is found, for example when:")

 m = s.model()

 print ("i1 = %s (LHS)" % m[i1])

 print ("i2 = %s (RHS)" % m[i2])

June 25

print("for i = 1 to N")

print(" a[i] = a[i-1] + b[i]")

DependenceTest(And(i1>=1, i1<N, i2>=1, i2<N),

 i1 == i2-1)

Example 1:

for i = 1 to N

 a[i] = a[i-1] + b[i]

Dependence is found, for example when:

i1 = 1 (LHS)

i2 = 2 (RHS)

Just add the constraints and call the solver

(not examinable)

94

Feeding curiosity: solving the dependence equation
def DependenceTest(bounds, dependence_equation):

 s = Solver()

 s.add(bounds, dependence_equation)

 if s.check() == unsat:

 print ("No dependence is present")

 else:

 print("Dependence is found, for example when:")

 m = s.model()

 print ("i1 = %s (LHS)" % m[i1])

 print ("i2 = %s (RHS)" % m[i2])

 # Is there a loop-carried true dependence?

 s2 = Solver()

 s2.add(bounds, dependence_equation, i1<i2)

 if s2.check() == unsat:

 print ("No loop-carried true dependence is present")

 else:

 print("Loop-carried true dependence found, for example when:")

 m = s2.model()

 print ("i1 = %s" % m[i1])

 print ("i2 = %s" % m[i2])

 # Is there a loop-carried anti-dependence?

 s3 = Solver()

 s3.add(bounds, dependence_equation, i1>i2)

 if s3.check() == unsat:

 print ("No loop-carried anti-dependence is present")

 else:

 print("Loop-carried anti-dependence found, for example when:")

 m = s3.model()

 print ("i1 = %s" % m[i1])

 print ("i2 = %s" % m[i2])

June 25

print("for i = 1 to N")

print(" a[i] = a[i-1] + b[i]")

DependenceTest(And(i1>=1, i1<N, i2>=1, i2<N),

 i1 == i2-1)

Example 1:

for i = 1 to N

 a[i] = a[i-1] + b[i]

Dependence is found, for example when:

i1 = 1 (LHS)

i2 = 2 (RHS)

Loop-carried true dependence found, for example
when:

i1 = 1

i2 = 2

No loop-carried anti-dependence is present

Extend to distinguish loop-carried true and anti-dependencies

95

Feeding curiosity: solving the dependence equation
def DependenceTest(bounds, dependence_equation):

 s = Solver()

 s.add(bounds, dependence_equation)

 if s.check() == unsat:

 print ("No dependence is present")

 else:

 print("Dependence is found, for example when:")

 m = s.model()

 print ("i1 = %s (LHS)" % m[i1])

 print ("i2 = %s (RHS)" % m[i2])

 # Is there a loop-carried true dependence?

 s2 = Solver()

 s2.add(bounds, dependence_equation, i1<i2)

 if s2.check() == unsat:

 print ("No loop-carried true dependence is present")

 else:

 print("Loop-carried true dependence found, for example when:")

 m = s2.model()

 print ("i1 = %s" % m[i1])

 print ("i2 = %s" % m[i2])

 # Is there a loop-carried anti-dependence?

 s3 = Solver()

 s3.add(bounds, dependence_equation, i1>i2)

 if s3.check() == unsat:

 print ("No loop-carried anti-dependence is present")

 else:

 print("Loop-carried anti-dependence found, for example when:")

 m = s3.model()

 print ("i1 = %s" % m[i1])

 print ("i2 = %s" % m[i2])

June 25

print("for i = 1 to N")

print(" a[i] = a[i] + b[i]")

DependenceTest(And(i1>=1, i1<N, i2>=1, i2<N),

 i1 == i2)

Example 2:

for i = 1 to N

 a[i] = a[i] + b[i]

Dependence is found, for example when:

i1 = 1 (LHS)

i2 = 1 (RHS)

No loop-carried true dependence is present

No loop-carried anti-dependence is present

In this case the dependence is present but not loop-carried

96

Feeding curiosity: solving the dependence equation
def DependenceTest(bounds, dependence_equation):

 s = Solver()

 s.add(bounds, dependence_equation)

 if s.check() == unsat:

 print ("No dependence is present")

 else:

 print("Dependence is found, for example when:")

 m = s.model()

 print ("i1 = %s (LHS)" % m[i1])

 print ("i2 = %s (RHS)" % m[i2])

 # Is there a loop-carried true dependence?

 s2 = Solver()

 s2.add(bounds, dependence_equation, i1<i2)

 if s2.check() == unsat:

 print ("No loop-carried true dependence is present")

 else:

 print("Loop-carried true dependence found, for example when:")

 m = s2.model()

 print ("i1 = %s" % m[i1])

 print ("i2 = %s" % m[i2])

 # Is there a loop-carried anti-dependence?

 s3 = Solver()

 s3.add(bounds, dependence_equation, i1>i2)

 if s3.check() == unsat:

 print ("No loop-carried anti-dependence is present")

 else:

 print("Loop-carried anti-dependence found, for example when:")

 m = s3.model()

 print ("i1 = %s" % m[i1])

 print ("i2 = %s" % m[i2])

June 25

print("for i = 1 to N")

print(" a[2*i] = a[2*i-1] + b[i]")

DependenceTest(And(i1>=1, i1<N, i2>=1, i2<N),

 2*i1 == 2*i2-1)

Example 3:

for i = 1 to N

a[2*i] = a[2*i-1] + b[2*i]

No dependence is present

97

Feeding curiosity: solving the dependence equation
def DependenceTest(bounds, dependence_equation):

 s = Solver()

 s.add(bounds, dependence_equation)

 if s.check() == unsat:

 print ("No dependence is present")

 else:

 print("Dependence is found, for example when:")

 m = s.model()

 print ("i1 = %s (LHS)" % m[i1])

 print ("i2 = %s (RHS)" % m[i2])

 # Is there a loop-carried true dependence?

 s2 = Solver()

 s2.add(bounds, dependence_equation, i1<i2)

 if s2.check() == unsat:

 print ("No loop-carried true dependence is present")

 else:

 print("Loop-carried true dependence found, for example when:")

 m = s2.model()

 print ("i1 = %s" % m[i1])

 print ("i2 = %s" % m[i2])

 # Is there a loop-carried anti-dependence?

 s3 = Solver()

 s3.add(bounds, dependence_equation, i1>i2)

 if s3.check() == unsat:

 print ("No loop-carried anti-dependence is present")

 else:

 print("Loop-carried anti-dependence found, for example when:")

 m = s3.model()

 print ("i1 = %s" % m[i1])

 print ("i2 = %s" % m[i2])

June 25

print("for i = 1 to N")

print(" a[3*i] = a[5*i-10] + b[i]")

DependenceTest(And(i1>=1, i1<N, i2>=1, i2<N),

 3*i1 == 5*i2-20)

Example 4:

for i = 1 to N

 a[3*i] = a[5*1-20] + b[i]

Dependence is found, for example when:

i1 = 5 (LHS)

i2 = 7 (RHS)

Loop-carried true dependence found, for example
when:

i1 = 5

i2 = 7

Loop-carried anti-dependence found, for example
when:

i1 = 15

i2 = 13

In this case we have both true and anti-dependences: weird!

98

S1 : A[0] := 0

 for i = 1 to 8

S2 : A[i] := A[i-1] + B[i]

Appears to be inherently sequential

Feeding curiosity (not examinable)

Loop-carried dependences can

sometimes still be parallelised

+

+

+

+

+

+

+

+

0B[1]

B[2]

B[3]

B[4]

B[5]

B[6]

B[7]

B[8]

A[1]

A[2]

A[3]

A[4]

A[5]

A[6]

A[7]

A[8]

99

S1 : A[0] := 0

 for i = 1 to 8

S2 : A[i] := A[i-1] + B[i]

Appears to be inherently sequential

Feeding curiosity (not examinable)

Loop-carried dependences can

sometimes still be parallelised

+

+

+

+

+

+

+

+

0B[1]

B[2]

B[3]

B[4]

B[5]

B[6]

B[7]

B[8]

A[1]

A[2]

A[3]

A[4]

A[5]

A[6]

A[7]

A[8]

1 1 1 1 1 1 1B: 1

1 1 1 1 1 1>>1: 1 +
2 2 2 2 2 2 2A1: 1

2 2 2 2 21 +
2 3 4 4 4 4 4A2: 1

2 3 4>>4: 1 +
2 3 4 5 6 7 8A3: 1

>>2:

“Parallel scan” or “parallel prefix sum”

But parallel is possible:

101

Feeding curiosity (not examinable)

Loop-carried dependences can

sometimes still be parallelised

S1 : A[0] := 0

 for i = 1 to 8

S2 : A[i] := A[i-1] + B[i]

Appears to be inherently sequential

But parallel implementation is possible

1 1 1 1 1 1 1B: 1

1 1 1 1 1 1>>1: 1 +
2 2 2 2 2 2 2A1: 1

2 2 2 2 21 +
2 3 4 4 4 4 4A2: 1

2 3 4>>4: 1 +
2 3 4 5 6 7 8A3: 1

>>2:

“Parallel scan” or “parallel prefix sum”

Each step is a

vector-parallel

operation

Of decreasing

size

We have log(N)

steps

102

S1 : A[0] := 0

 for i = 1 to 8

S2 : A[i] := A[i-1] + B[i]

Appears to be inherently sequential

But parallel implementation is possible

1 1 1 1 1 1 1B: 1

>>1: +
2 2 2 2 2 2 2A1: 1

+
2 3 4 4 4 4 4A2: 1

>>4: +
2 3 4 5 6 7 8A3: 1

>>2:

We can see that the last element is computed with a reduction tree

Feeding curiosity (not examinable)

Loop-carried dependences can

sometimes still be parallelised

103

S1 : A[0] := 0

 for i = 1 to 8

S2 : A[i] := A[i-1] + B[i]

Appears to be inherently sequential

But parallel implementation is possible

1 1 1 1 1 1 1B: 1

>>1: +
2 2 2 2 2 2 2A1: 1

+
2 3 4 4 4 4 4A2: 1

>>4: +
2 3 4 5 6 7 8A3: 1

>>2:

All the elements are computed by reduction trees of depth log(N) – for example element 7

Feeding curiosity (not examinable)

Loop-carried dependences can

sometimes still be parallelised

104

Feeding curiosityS1 : A[0] := 0

 for i = 1 to 8

S2 : A[i] := A[i-1] + B[i]

Appears to be inherently sequential

But parallel implementation is possible

1 1 1 1 1 1 1B: 1

1 1 1 1 1 1>>1: 1 +
2 2 2 2 2 2 2B: 1

2 2 2 2 21 +
2 3 4 4 4 4 4B: 1

2 3 4>>4: 1 +
2 3 4 5 6 7 8B: 1

>>2:

“Parallel scan” or “parallel prefix sum”

This is the

“naïve” parallel

scan

It does more

work than the

sequential scan –

but it does use

parallelism

There are “work-

efficient” parallel

scans

Eg see Mark

Harris, GPU

Gems Ch39
https://developer.nvidia.com/gp

ugems/gpugems3/part-vi-gpu-

computing/chapter-39-parallel-

prefix-sum-scan-cuda

105June 25

Compilers - That wraps it up!

We have seen….
• How to build a simple non-optimising compiler for a simple imperative

language
• With functions
• With local variables, static variables, heap data, inheritance
• We have seen how an optimising compiler might work –

• intermediate representations, lowering,
• dataflow analysis, register allocation, code motion optimisations,
• instruction selection
• SSA

• Dependence analysis and parallelisation
• Loop-carried dependence
• Dependence distance
• Vectorisation and parallelisation

• You have been introduced to a world of topics fundamental to how your
code actually gets executed, and what can be done to make it efficient

106

Compilers - Chapter 8:

Loop scheduling optimisations

Part 4: Representing loop

 transformations as matrix

 multiplications

June 25

• Lecturer:
– Paul Kelly (p.kelly@imperial.ac.uk)

https://xkcd.com/2343/

This section is not
examinable

mailto:p.kelly@imperial.ac.uk
https://xkcd.com/2343/

107

Matrix representation of loop transformations

• To skew the inner loop by the outer loop by factor 1 we

adjust the loop bounds, and replace I1 by K1, and I2 by

K2-K1. That is,

 (K1,K2) = (I1,I2) . U

• where U is a 2 x 2 matrix

• That is,

 (K1,K2) = (I1,I2) . U = (I1,I2+I1)

Th
e

m
at

ri
x

re
p

re
se

n
ta

ti
o

n
 is

 n
o

t
ex

am
in

ab
le

𝐔 =

108

Matrix representation of loop transformations

• To skew the inner loop by the outer loop by factor 1 we

adjust the loop bounds, and replace I1 by K1, and I2 by

K2-K1. That is,

 (K1,K2) = (I1,I2) . U

• where U is a 2 x 2 matrix

• That is,

 (K1,K2) = (I1,I2) . U = (I1,I2+I1)

The inverse gets us back again:

 (I1,I2) = (K1,K2) . U
-1 = (K1,K2-K1)

Th
e

m
at

ri
x

re
p

re
se

n
ta

ti
o

n
 is

 n
o

t
ex

am
in

ab
le

𝐔−𝟏 =
1 −1
0 1

109

• Matrix U maps each statement instance SI1I2 to its position in

the new iteration space, SK1K2:

Original iteration space:

Transformed iteration space:
The

dependences

are subject to

the same

transformation.

The subscripts are mapped back using U-1

(K1,K2) = (I1,I2) . U = (I1,I2+I1)

(I1,I2) = (K1,K2) . U
-1 = (K1,K2-K1)

Th
e

m
at

ri
x

re
p

re
se

n
ta

ti
o

n
 is

 n
o

t
ex

am
in

ab
le

110

Using matrices to reason about dependence

Recall that:

• There is a dependence between two iterations (I1
1,I2

1) and

(I1
2,I2

2) if there is a memory location which is assigned to in

iteration (I1
1,I2

1), and read in iteration (I1
2,I2

2).

 ((unless there is an intervening assignment))

• If (I1
1,I2

1) precedes (I1
2,I2

2) it is a data-dependence.

• If (I1
2,I2

2) precedes (I1
1,I2

1) it is a anti-dependence.

• If the location is assigned to in both iterations, it is an output-

dependence.

• The dependence distance vector (D1,D2) is (I1
1-I1

2,I2
1-I2

2). Th
e

m
at

ri
x

re
p

re
se

n
ta

ti
o

n
 is

 n
o

t
ex

am
in

ab
le

111

Transforming dependence vectors

• If there is a dependence between two iterations (I1
1,I2

1) and (I1
2,I2

2)

• Then iterations (I1
1,I2

1) . U and (I1
2,I2

2) .U will also read and write the

same location

• The transformation U is valid iff

 (I1
1,I2

1) . U precedes (I1
2,I2

2) . U

 whenever there is a dependence between

 (I1
1, I2

1) and (I1
2, I2

2).

• In the transformed loop the dependence distance vector is also

transformed, to

 (D1,D2) . U

• U is a valid transformation if all the program’s dependence distance

vectors are still “forward” when transformed by U

Th
e

m
at

ri
x

re
p

re
se

n
ta

ti
o

n
 is

 n
o

t
ex

am
in

ab
le

112

• What do we mean by “precedes”?

• “Lexicographic” is dictionary order – both “baz” and “can” precede

“cat”

• So (1,2) precedes (1,3)

• But (0,3) precedes (1,4)

• A dependence distance vector (D1,D2) is lexicographically “forward”

if it precedes (0,0)

Transforming dependence vectors

Definition: Lexicographic ordering:

(I1,J1) precedes (I2,J2)

if I1 < I2, or I1 = I2 and J1 < J2

Th
e

m
at

ri
x

re
p

re
se

n
ta

ti
o

n
 is

 n
o

t
ex

am
in

ab
le

113

Example: loop given earlier
Before transformation we had two

dependences:

1. Distance: (1,0), direction: (<,.)

2. Distance: (0,1), direction: (.,<)

• After transformation by matrix

• (i.e. skewing of inner loop by outer) we

get:

1. Distance: (1,0).U = (1,1), direction: (<,<)

2. Distance: (0,1).U = (0,1), direction: (.,<)

(0,1)

(1,0)

(0,1)

(1,1)
The matrix representation is not examinable

114

We can also represent loop interchange by a matrix transformation.

After transforming the skewed loop by matrix

(i.e. loop interchange) we get:

1. Distance: (1,0).U.V = (1,1).V = (1,1), direction: (<,<)

2. Distance: (0,1).U.V = (0,1).V = (1,0), direction: (<,.)

• The transformed iteration space is the transpose of the skewed iteration

space:

Th
e

m
at

ri
x

re
p

re
se

n
ta

ti
o

n
 is

 n
o

t
ex

am
in

ab
le

115

Summary
• (I1,I2) . U maps each statement instance (I1,I2) to its new position (K1,K2)

in the transformed loop's execution sequence

• (D1,D2) . U gives new dependence distance vector, giving test for validity

Captures skewing, interchange and reversal

Compose transformations by matrix multiplication

 U1 . U2

Resulting loop's bounds may be a little tricky

Efficient algorithms exist [Banerjee90] to maximise parallelism by

skewing and loop interchanging

Efficient algorithms exist to optimise cache performance by finding the

combination of blocking, block size, interchange and skewing which

leads to the best reuse [Wolf91]

Th
e

m
at

ri
x

re
p

re
se

n
ta

ti
o

n
 is

 n
o

t
ex

am
in

ab
le

116

Restructuring compilers - conclusions:

Restructuring compilers can find parallelism

And enhance locality

For a very restricted class of programs

For-loops over arrays with array subscripts that are

simple (“affine”) expressions involving loop control

variables

But for this restricted class there is a rather elegant theory

(the “polyhedral” or “polytope” model,

http://en.wikipedia.org/wiki/Polytope_model)

Extending beyond this is a big research problem

Current compilers (GCC, Clang/LLVM, Intel, Microsoft etc)

can do some of this, in theory – but are often defeated by

program complexity

http://en.wikipedia.org/wiki/Polytope_model

117

ReferencesTextbooks covering restructuring compilers

Michael Wolfe. High Performance Compilers for Parallel Computing. Addison Wesley, 1996.

Steven Muchnick, Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.

Ken Kennedy and Randy Allen, Optimizing Compilers for Modern Architectures. Morgan
Kaufmann, 2001.

Research papers:

• D. F. Bacon and S. L. Graham and O. J. Sharp, “Compiler Transformations for High-
Performance Computing”. ACM Computing Surveys V26 N4 Dec 1994
http://doi.acm.org/10.1145/197405.197406

U. Banerjee. Unimodular transformations of double loops. In Proceedings of the Third
Workshop on Programming Languages and Compilers for Parallel Computing, Irvine, CA.
Pitman/MIT Press, 1990.

M.E. Wolf and M.S. Lam. A data locality optimizing algorithm. In Proceedings of the ACM
SIGPLAN '91 Conference on Programming Language Design and Implementation, volume 26,
pages 30-44, Toronto, Ontario, Canada, June 1991.

 Polyhedral:

 The Polyhedral Model (aka Polytope method) takes the ideas in this lecture much
further, notably

• Automatic code generation using the matrix model shown here

• Checking validity of such transformations

• Calculating parallelism and locality metrics for alternative versions

https://en.wikipedia.org/wiki/Polytope_model

https://normrubin.github.io/lectures/poly_final.html

https://polyhedral.info/

https://www.impact-workshop.org/

http://doi.acm.org/10.1145/197405.197406
https://polyhedral.info/
https://polyhedral.info/
https://polyhedral.info/
https://www.impact-workshop.org/

Advanced Computer Architecture Chapter 4.118

Feeding curiosityMatrix transpose
Try this link to the the Compiler Explorer:
https://godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(filename:'1',fontScale:14,fontUsePx:'0',j:1,lang:c%2B%2B,selection:(endColumn:2,endLineNumber:20,positionColumn:2,positionLi

neNumber:20,selectionStartColumn:2,selectionStartLineNumber:20,startColumn:2,startLineNumber:20),source:'%23define+SIZE+10240%0A//%23define+SIZE+20480%0A%23defin

e+TOTALBYTES+SIZE*SIZE*4%0A%0Aint+A%5BSIZE%5D%5BSIZE%5D%3B%0Aint+B%5BSIZE%5D%5BSIZE%5D%3B%0A%0A%23define+IB+32%0A%23define+JB+32%0A%0Avo

id+P(int+N,+int+M)%0A%7B%0A++int+i,+j%3B%0A%0A++for+(i%3D0%3B+i%3CN%3B+i%2B%2B)+%7B%0A++++for+(j%3D0%3B+j%3CN%3B+j%2B%2B)+%7B%0A++++++B%5Bi%

5D%5Bj%5D+%3D+A%5Bj%5D%5Bi%5D%3B%0A++++%7D%0A++%7D%0A%7D'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:c

lang_trunk,filters:(b:'0',binary:'1',binaryObject:'1',commentOnly:'0',debugCalls:'1',demangle:'0',directives:'0',execute:'1',intel:'0',libraryCode:'0',trim:'1',verboseDemangling:'0'),flags

ViewOpen:'1',fontScale:14,fontUsePx:'0',j:1,lang:c%2B%2B,libs:!(),options:'-Ofast+-

march%3Dznver4',overrides:!(),selection:(endColumn:1,endLineNumber:1,positionColumn:1,positionLineNumber:1,selectionStartColumn:1,selectionStartLineNumber:1,startColu

mn:1,startLineNumber:1),source:1),l:'5',n:'0',o:'+x86-64+clang+(trunk)+(Editor+%231)',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4

Collision detect
Try this link to the the Compiler Explorer:
https://godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(filename:'1',fontScale:14,fontUsePx:'0',j:1,lang:c%2B%2B,selection:(endColumn:13,endLineNumber:18,positionColumn:13,positio

nLineNumber:18,selectionStartColumn:13,selectionStartLineNumber:18,startColumn:13,startLineNumber:18),source:'%23define+SIZE+10240%0A//%23define+SIZE+20480%0A%23

define+TOTALBYTES+SIZE*SIZE*4%0A%0Aint+A%5BSIZE%5D%3B%0Aint+B%5BSIZE%5D%3B%0Aint+C%5BSIZE%5D%3B%0Aint+D%5BSIZE%5D%3B%0A%0A%23define+IB+32

%0A%23define+JB+32%0A%0Avoid+P(int+N,+int+M)%0A%7B%0A++int+i,+j%3B%0A%0A++for+(i%3D0%3B+i%3CN%3B+i%2B%2B)+%7B%0A++++++C%5BB%5Bi%5D%5D+%2B%

3D+A%5BB%5Bi%5D%5D+%2B+D%5Bi%5D%3B%0A++%7D%0A%7D'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:33.333333333333336,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(co

mpiler:icxlatest,filters:(b:'0',binary:'1',binaryObject:'1',commentOnly:'0',debugCalls:'1',demangle:'0',directives:'0',execute:'1',intel:'0',libraryCode:'0',trim:'1',verboseDemangling:'0'),

flagsViewOpen:'1',fontScale:14,fontUsePx:'0',j:1,lang:c%2B%2B,libs:!(),options:'-Ofast+-

march%3Dznver4+',overrides:!(),selection:(endColumn:1,endLineNumber:1,positionColumn:1,positionLineNumber:1,selectionStartColumn:1,selectionStartLineNumber:1,startCol

umn:1,startLineNumber:1),source:1),l:'5',n:'0',o:'+x86-64+icx+2025.0.0+(Editor+%231)',t:'0')),k:33.333333333333336,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:output,i:(compilerName:'x86-

64+clang+(trunk)',editorid:1,fontScale:14,fontUsePx:'0',j:1,wrap:'1'),l:'5',n:'0',o:'Output+of+x86-

64+icx+2025.0.0+(Compiler+%231)',t:'0')),k:33.33333333333333,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4

Advanced Computer Architecture Chapter 4.119

Feeding curiosity

Ask me about….

• Loop interchange for locality
• For i, j, k matrix multiply vs

• For i, k, j matrix multiply

• See /homes/phjk/ToyPrograms/ACA24-25/MM – compare speed of

versions MM1.c, MM2.c

• Tiling for locality
• For the transpose example shown in the last chapter

• For matrix multiply (see version MM3.c)

• Stencils and convolutions
• skewed, split, diamond

• Graphs and unstructured meshes

	Slide 1: Compilers - Chapter 8: Loop scheduling optimisations Part 1: Why mess with the order of loop execution?
	Slide 3: “Restructuring” compilers
	Slide 4: “Restructuring” compilers
	Slide 5: “Restructuring” and “parallelizing” compilers
	Slide 6: “Restructuring” and “parallelizing” compilers
	Slide 7: Vector instruction set extensions
	Slide 8: Vector instruction set extensions
	Slide 10
	Slide 11
	Slide 12
	Slide 17: Can we get the compiler to vectorise?
	Slide 18: Can we get the compiler to vectorise?
	Slide 20: How do we know a loop is parallel?
	Slide 21: How much does it help? First: without vectorisation
	Slide 22: How much does it help? This time with vectorisation
	Slide 23: How much does it help? This time with vectorisation
	Slide 24: Compilers - Chapter 8: Loop scheduling optimisations Part 2: Determining whether a loop can be executed in parallel
	Slide 25: But that example was obviously parallel?
	Slide 26: But that example was obviously parallel?
	Slide 27: “Loop-carried dependence”
	Slide 28: “Loop-carried dependence”
	Slide 29: “Loop-carried dependence”
	Slide 30: “Loop-carried dependence”
	Slide 31: “Loop-carried dependence”
	Slide 32: “Loop-carried dependence”
	Slide 33: So we need a compiler algorithm
	Slide 34: So we need a compiler algorithm
	Slide 35: Can we get the compiler to vectorise?
	Slide 36
	Slide 37
	Slide 38: What do we see?
	Slide 39: Advanced issues: bad access patterns
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Health warning
	Slide 46: So: we need a compiler algorithm to determine whether a loop is parallel…
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58: Compilers - Chapter 8: Loop scheduling optimisations Part 3: Dependence analysis in nested loops
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88: “Loop-carried anti-dependence”
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93: Feeding curiosity: solving the dependence equation
	Slide 94: Feeding curiosity: solving the dependence equation
	Slide 95: Feeding curiosity: solving the dependence equation
	Slide 96: Feeding curiosity: solving the dependence equation
	Slide 97: Feeding curiosity: solving the dependence equation
	Slide 98
	Slide 99
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106: Compilers - Chapter 8: Loop scheduling optimisations Part 4: Representing loop transformations as matrix multiplications
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119

