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Compilers - Chapter 8: 

Loop scheduling optimisations

Part 1: Why mess with the order of loop 

execution?

June 25

• Lecturer: 
– Paul Kelly (p.kelly@imperial.ac.uk)

https://xkcd.com/754/ (It turns out that this cartoon is good for almost any compilers topic, definitely this one)

mailto:p.kelly@imperial.ac.uk
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“Restructuring” compilers
• The optimisations we have studied so far reduce the number of 

instructions that need to be executed at runtime

– This is fundamentally a good idea!

• But sometimes we can get a performance improvement by 
thinking about the order in which loops are executed

• Why might that be? 

June 25
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“Restructuring” compilers
• The optimisations we have studied so far reduce the number of 

instructions that need to be executed at runtime

– This is fundamentally a good idea!

• But sometimes we can get a performance improvement by 
thinking about the order in which loops are executed

• Why might that be? 

– We might be able to use vector instructions

• So different iterations of a loop are being executed at the 
same time

June 25
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“Restructuring” and “parallelizing” compilers

• The optimisations we have studied so far reduce the number of 
instructions that need to be executed at runtime

– This is fundamentally a good idea!

• But sometimes we can get a performance improvement by 
thinking about the order in which loops are executed

• Why might that be? 

– We might be able to use vector instructions

• So different iterations of a loop are being executed at the 
same time

– We might be able to use multiple cores

• So different iterations of a loop might be assigned to 
different threads running on different CPUs

June 25
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“Restructuring” and “parallelizing” compilers

• The optimisations we have studied so far reduce the number of 
instructions that need to be executed at runtime

– This is fundamentally a good idea!

• But sometimes we can get a performance improvement by 
thinking about the order in which loops are executed

• Why might that be? 

– We might be able to use vector instructions

• So different iterations of a loop are being executed at the 
same time

– We might be able to use multiple cores

• So different iterations of a loop might be assigned to 
different threads running on different CPUs

– We might be able to improve how the cache is used

• We will come to this later!
June 25
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Vector instruction set extensions
• Example: Intel’s AVX512

• Extended registers ZMM0-ZMM31, 512 bits wide

– Can be used to store 8 doubles, 16 floats, 32 shorts, 
64 bytes

– So instructions are executed in parallel in 64,32,16 or 
8 “lanes”

7
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Vector instruction set extensions
• Example: Intel’s AVX512

• Extended registers ZMM0-ZMM31, 512 bits wide

– Can be used to store 8 doubles, 16 floats, 32 shorts, 
64 bytes

• Example:  vaddps zmm0 zmm1 zmm2

– “Add Packed Single Precision Floating-Point Values”

a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0zmm1:

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0zmm2:

a15+b15 a14+b14 a13+b13 a12+b12 a11+b11 a10+b10 a9+b9 a8+b8 a7+b7 a6+b6 a5+b5 a4+b4 a3+b3 a2+b2 a1+b1 a0+b0zmm0:

Vaddps zmm0 zmm1 zmm2

In one instruction we add 16 32-bit floating point values 

from zmm1 and 16 32-bit values from zmm2



10

A stretch of Mumbai to Pune expressway near Lonavala.
By neelnimavat - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=49735402
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Dubai

https://www.worldatlas.com/articles/countries-with-the-best-roads.html 

https://www.worldatlas.com/articles/countries-with-the-best-roads.html
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Can we get the compiler to vectorise?

In sufficiently simple cases, no problem:
Gcc reports: addcba.c:6:20: optimized: loop vectorized using 64 
byte vectors

17
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Can we get the compiler to vectorise?

In sufficiently simple cases, no problem:
Gcc reports: addcba.c:6:20: optimized: loop vectorized using 64 
byte vectors

18

vmovaps: load 16 floats (64 bytes) from a[i] into 
vector register zmm0

add: bump the offset (rax) by 64 bytes

vaddps: add 16 floats from b[i] to zmm0

vmovaps: store zmm0 to c[i]

Tell the compiler to generate code for AMD Zen 
4 which has AVX512

Switch back to non-vector mode 
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How do we know a loop is 
parallel?

• This case was easy:

 

June 25

for (int i=0; i<4; i++) 
  c[i] = a[i] + b[i]; P

a[0] b[0]
+

c[0]

a[1] b[1]
+

c[1]

a[2] b[2]
+

c[2]

a[3] b[3]
+

c[3]

Iteration #0

Iteration #1

Iteration #2

Iteration #3

• To use vector instructions, we 
need to verify that different 
iterations of the loop are truly 
parallel 

• In this case we can easily see that 
the dependence arrows do not 
cross iteration boundaries

• So we can use a vector add

a[0] a[1] a[2] a[3]

b[0] b[1] b[2] b[3]

b[0] b[1] b[2] b[3]

Vector add

instruction
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How much does it help?
First: without vectorisation

• Source code:

for (int i=0; i<size; i++)

c[i] = a[i] + b[i];

• Processor: AMD Ryzen 9 7940HS (“maple10”)

• Compiler command line:
gcc –O1 addcba-perf.c

• Generated code – not vectorised:
.L3:

        movss   (%rsi,%rax), %xmm0

        addss   (%rcx,%rax), %xmm0

        movss   %xmm0, (%rdi,%rax)

        addq    $4, %rax

        cmpq    %rdx, %rax

        jne     .L3

• Performance: 4.8 GFLOPS (4.8*109 single precision floating-point operations/second)

• Time per loop iteration: 0.21ns (one clock cycle at 4.8GHz, 1 
result per iteration)
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How much does it help?
This time with vectorisation

• Source code:

for (int i=0; i<size; i++)

c[i] = a[i] + b[i];

• Processor: AMD Ryzen 9 7940HS (“maple10”)

• Compiler command line:
gcc -Ofast -march=znver4 addcba-perf.c

• Generated code:
.L4:

        vmovaps (%r8,%rax), %zmm1

        vaddps  (%rdi,%rax), %zmm1, %zmm0

        vmovaps %zmm0, (%rsi,%rax)

        addq    $64, %rax

        cmpq    %rax, %rdx

        jne     .L4

• Performance: 34.8 GFLOPS (single precision)

• Time per loop iteration: 0.45ns (two clock cycles, 16 results per 
iteration)
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How much does it help?
This time with vectorisation

• Source code:

for (int i=0; i<size; i++)

c[i] = a[i] + b[i];

• Processor: AMD Ryzen 9 7940HS (“maple10”)

• Compiler command line:
gcc -Ofast -march=znver4 addcba-perf.c

• Generated code:
.L4:

        vmovaps (%r8,%rax), %zmm1

        vaddps  (%rdi,%rax), %zmm1, %zmm0

        vmovaps %zmm0, (%rsi,%rax)

        addq    $64, %rax

        cmpq    %rax, %rdx

        jne     .L4

• Performance: 34.8 GFLOPS (single precision)

• Time per loop iteration: 0.45ns (two clock cycles, 16 results per 
iteration)

Speed of light is 30cm/ns.  

So this machine 
completes about three 
iterations in the time it 
takes the light to get 
from your computer 
screen to your eyes
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Compilers -   Chapter 8: 

Loop scheduling optimisations

Part 2: Determining whether a loop can 

    be executed in parallel

June 25

• Lecturer: 
– Paul Kelly (p.kelly@imperial.ac.uk)

https://xkcd.com/754/ (It turns out that this cartoon is good for almost any compilers topic, definitely this one)

mailto:p.kelly@imperial.ac.uk
https://xkcd.com/754/
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But that example was obviously parallel?
• To use vector instructions, we need to verify that 

different iterations of the loop are truly parallel 

• This case was easy:

• How about this one?

 

June 25

for (int i=0; i<1024; i++) 
  c[i] = a[i] + b[i];

for (int i=0; i<1024; i++) 
  c[i] = c[i-1] + b[i];

P

Q

a[0] b[0]
+

c[0]

a[1] b[1]
+

c[1]
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But that example was obviously parallel?
• To use vector instructions, we need to verify that different 

iterations of the loop are truly parallel 

• This case was easy:

• How about this one?

• And this?

 

June 25

for (int i=0; i<1024; i++) 
  c[i] = a[i] + b[i];

for (int i=0; i<1024; i++) 
  c[i] = c[i-1] + b[i];

P

Q

for (int i=0; i<1024; i+=2) 
  c[i] = c[i-1] + b[i];

R
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“Loop-carried dependence”

• Consider this example:

• What does it do?

June 25

for (int i=1; i<8; i++) 
  c[i] = c[i-1] + b[i];

Q
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“Loop-carried dependence”

• Consider this example:

• When executed we get:

June 25

for (int i=1; i<8; i++) 
  c[i] = c[i-1] + b[i];

Q

c[1] = c[0] + b[1];
c[2] = c[1] + b[2];
c[3] = c[2] + b[3];
c[4] = c[3] + b[4];
c[5] = c[4] + b[5];
c[6] = c[5] + b[6];
c[7] = c[6] + b[7];
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“Loop-carried dependence”

• Consider this example:

• When executed we get:

June 25

for (int i=1; i<8; i++) 
  c[i] = c[i-1] + b[i];

Q
Each iteration produces a 

value that is used in the 

next iteration

The dependence arrows 

go from one iteration to 

the next

The dependence is 

carried by the loop

c[1] = c[0] + b[1];
c[2] = c[1] + b[2];
c[3] = c[2] + b[3];
c[4] = c[3] + b[4];
c[5] = c[4] + b[5];
c[6] = c[5] + b[6];
c[7] = c[6] + b[7];
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“Loop-carried dependence”

• Consider this example:

• When executed we get:

June 25

for (int i=1; i<8; i++) 
  c[i] = c[i-1] + b[i];

Q

c[0] b[1]
+

b[2]
+

b[3]
+

b[4]
+

Iteration #1

Iteration #2

Iteration #3

Iteration #4

c[1]

c[2]

c[3]

c[1] = c[0] + b[1];
c[2] = c[1] + b[2];
c[3] = c[2] + b[3];
c[4] = c[3] + b[4];
c[5] = c[4] + b[5];
c[6] = c[5] + b[6];
c[7] = c[6] + b[7];
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“Loop-carried dependence”

• Consider this example:

• When executed we get:

June 25

for (int i=1; i<8; i++) 
  c[i] = c[i-1] + b[i];

Q

c[0] b[1]
+

b[2]
+

b[3]
+

b[4]
+

Iteration #1

Iteration #2

Iteration #3

Iteration #4

c[1]

c[2]

c[3]

There is a chain of dependence 

from iteration to iteration

c[1] = c[0] + b[1];
c[2] = c[1] + b[2];
c[3] = c[2] + b[3];
c[4] = c[3] + b[4];
c[5] = c[4] + b[5];
c[6] = c[5] + b[6];
c[7] = c[6] + b[7];
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“Loop-carried dependence”

• Consider this example:

• When executed we get:

June 25

for (int i=1; i<8; i++) 
  c[i] = c[i-1] + b[i];

Q

c[1] = c[0] + b[1];
c[2] = c[1] + b[2];
c[3] = c[2] + b[3];
c[4] = c[3] + b[4];
c[5] = c[4] + b[5];
c[6] = c[5] + b[6];
c[7] = c[6] + b[7];

c[0] b[1]
+

b[2]
+

b[3]
+

b[4]
+

Iteration #1

Iteration #2

Iteration #3

Iteration #4

c[1]

c[2]

c[3]

These are the loop-carried 

dependences
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So we need a compiler algorithm
• To determine whether there is a loop-carried dependence

• To distinguish, for example, P, Q and R:

 

June 25

for (int i=0; i<1024; i++) 
  c[i] = a[i] + b[i];

for (int i=0; i<1024; i++) 
  c[i] = c[i-1] + b[i];

P

Q

for (int i=0; i<1024; i+=2) 
  c[i] = c[i-1] + b[i];

R

• No loop-carried dependence

• So iterations can be executed in parallel

• So vectorisable

• loop-carried dependence

• So iterations cannot be executed in 

parallel

• So not vectorisable

• No loop-carried dependence

• So iterations can be executed in parallel

• So vectorisable
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So we need a compiler algorithm
• To determine whether there is a loop-carried dependence

• To distinguish, for example, P, Q and R:

 

June 25

for (int i=0; i<1024; i++) 
  c[i] = a[i] + b[i];

for (int i=0; i<1024; i++) 
  c[i] = c[i-1] + b[i];

P

Q

for (int i=0; i<1024; i+=2) 
  c[i] = c[i-1] + b[i];

R

• No loop-carried dependence

• So iterations can be executed in parallel

• So vectorisable

• loop-carried dependence

• So iterations cannot be executed in 

parallel

• So not vectorisable

• No loop-carried dependence

• So iterations can be executed in parallel

• So vectorisable
• (though actually generating efficient vector 

code for this might be a bit tricky?)
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Can we get the compiler to vectorise?

If the trip count is not known to be 
divisible by 4:
gcc reports:
test.c:6:3: note: loop vectorized
test.c:6:3: note: loop turned into non-loop; it never loops.
test.c:6:3: note: loop with 3 iterations completely unrolled

Basically the same 
vectorised code as 
before

Three copies of the 
non-vectorised loop 
body to mop up the 
additional iterations 
in case N is not 
divisible by 4

35



36

If the alignment of the 
operand pointers is not 
known:
gcc reports:
test.c:6:3: note: loop vectorized
test.c:6:3: note: loop peeled for vectorization to enhance alignment
test.c:6:3: note: loop turned into non-loop; it never loops.
test.c:6:3: note: loop with 3 iterations completely unrolled
test.c:1:6: note: loop turned into non-loop; it never loops.
test.c:1:6: note: loop with 4 iterations completely unrolled

Basically the same 
vectorised code as before

Three copies of the non-
vectorised loop body to 
mop up the additional 
iterations in case N is not 
divisible by 4

Three copies of the non-
vectorised loop body to 
align the start address of 
the vectorised code on a 
32-byte boundary

36
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If the pointers might be 
aliases:
gcc reports:
test.c:6:3: note: loop vectorized
test.c:6:3: note: loop versioned for vectorization because of 
possible aliasing
test.c:6:3: note: loop peeled for vectorization to enhance alignment
test.c:6:3: note: loop turned into non-loop; it never loops.
test.c:6:3: note: loop with 3 iterations completely unrolled
test.c:1:6: note: loop turned into non-loop; it never loops.
test.c:1:6: note: loop with 3 iterations completely unrolled

Basically the same vectorised 
code as before

Three copies of the non-
vectorised loop body to mop 
up the additional iterations in 
case N is not divisible by 4

Check whether the memory 
regions pointed to by c, b and 
a might overlap

Three copies of the non-
vectorised loop body to align 
the start address of the 
vectorised code on a 32-byte 
boundary

Non-vector version of the loop 
for the case when c might 
overlap with a or b

37
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What do we see?

• Actually exploiting vectorisation is a bit tricky even when 
the dependence analysis is easy

• In the following slides we start with an easily-vectorizable 
example 

• And look at some of the things that make it complicatedJune 25
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Example 2

double A[N], B[N], C[N], D[N]

for i = 0 to N, i++

C[i] = A[2*i] + B[D[i]] 

loop: VLOAD av, A[i], stride=2

VGATHER bv, B, D[i:v]

VADD cv, bv, av

VSTORE C[i:v], cv

incr: INCR i

IF i<N/v: loop

Advanced issues: bad access patterns

SIMD version

Example as before
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Indirection: b[ind[]]

We have a register containing a vector of 

pointers

We need a “gather” instruction:

• A vector load

• That loads from a different address in each 

lane

(how can this be implemented efficiently??)
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Incrementing through indirection: ind[i]

1. Load a vector ind[i:i+16]

2. Gather a vector A[ind[i:i+16]

3. Subtract the D[i] values:

4.   RHS[0:16]=A[ind[i:i+16]] – D[i:i+16]

5. Gather the LHS[0:16] = C[ind[i:i+16]]

6. Add (+=): LHS[0:16] += RHS[0:16]

7. Scatter: C[ind[i:i+16]] = LHS[0:16]

DDDDA  A A    A

RHS

LHS

C  C C    C

ind

ind

LHS

C  C C    C

ind

i  i  i  i

i  i  i  i

-

+
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Incrementing through indirection: ind[i]

1. Load a vector ind[i:i+16]

2. Gather a vector A[ind[i:i+16]

3. Subtract the D[i] values:

4.   RHS[0:16]=A[ind[i:i+16]] – D[i:i+16]

5. Gather the LHS[0:16] = C[ind[i:i+16]]

6. Add (+=): LHS[0:16] += RHS[0:16]

7. Scatter: C[ind[i:i+16]] = LHS[0:16]

DDDDA  A A    A

RHS

LHS

C  C C    C

ind

ind

LHS

C  C C    C

ind

i  i  i  i

i  i  i  i

-

+

DDDDA  A       A

RHS

LHS

ind

ind

LHS

ind

i  i  i  i

i  i  i  i

-

+

C  C       C

C  C       C

What would happen if there were 

duplicate indices in ind?



4343

Incrementing through indirection: ind[i]

1. Load a vector ind[i:i+16]

2. Gather a vector A[ind[i:i+16]

3. Subtract the D[i] values:

4.   RHS[0:16]=A[ind[i:i+16]] – D[i:i+16]

5. Gather the LHS[0:16] = C[ind[i:i+16]]

6. Add (+=): LHS[0:16] += RHS[0:16]

7. Scatter: C[ind[i:i+16]] = LHS[0:16]

DDDDA  A A    A

RHS

LHS

C  C C    C

ind

ind

LHS

C  C C    C

ind

i  i  i  i

i  i  i  i

-

+

DDDDA  A       A

RHS

LHS

ind

ind

LHS

ind

i  i  i  i

i  i  i  i

-

+

C  C       C

C  C       C

What would happen if there were 

duplicate indices in ind?

It’s not parallel!  We have to sum two (or more) 

different values into the same C element
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Incrementing through indirection: ind[i]

1. Load a vector ind[i:i+16]

2. Gather a vector A[ind[i:i+16]

3. Subtract the D[i] values:

4.   RHS[0:16]=A[ind[i:i+16]] – D[i:i+16]

5. Gather the LHS[0:16] = C[ind[i:i+16]]

6. Add (+=): LHS[0:16] += RHS[0:16]

7. Scatter: C[ind[i:i+16]] = LHS[0:16]

vpconflictq 

instruction 

checks for 

duplicate 

values in 

ind[i:i+16]

If found, we 

branch to a 

loop over each 

distinct value

Roughly…

N
o
t 

e
x
a
m

in
a
b
le

This is addressed by AVX512 
“conflict detect” instructions 
which enable us to catch 
duplicates and serialise where 
needed 

Add RHS into LHS

RHS

Count conflicts

Add 

conflicting 

lanes’ values 

sequentially Unrolled copy

Scatter back

If no conflicts the

skip to fast case

Add RHS into LHS

Start next iteration
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Health warning

• Automatic discovery of parallelism has a bad reputation

– Deservedly!  It looks great on simple examples

– But real code has complexity that means it often just doesn’t 
happen

• But in some application domains it can really work

• And some programming languages make it easier, maybe!

– Functional languages lack anti- and output-dependences (but 
tend to add higher-order functions and lazy evaluation)

– Some languages control pointer ownership and aliasing

– Some programming models discourage explicit loops and explicit 
elementwise subscripting

June 25
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So: we need a compiler algorithm to 
determine whether a loop is parallel…

June 25
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How?Dependence
Define:

IN(S): set of memory locns which might be read by some execn of 
statement S

OUT(S): set of memory locns which might be written by some execn 
of statement S

Reordering is constrained by dependences;

There are four types:

Data (“true") dependence: S1 δ S2

• OUT(S1) ∩ IN(S2)

Anti dependence: S1    S2

• IN(S1) ∩ OUT(S2)

Output dependence: S1 δo S2

• OUT(S1) ∩ OUT(S2)

Control dependence: S1 δc S2

These are static analogues of the dynamic RAW, WAR, WAW and control 
hazards which have to be considered in processor architecture

δ 

(“S1 must read something 

before S2 overwrites it”)

(“S1 must write something 

before S2 can read it”)

(“If S1 and S2 might both 

write to a location, S2 must 

write after S1”)

(“S1 determines whether S2 

should execute”)
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Loop-carried dependencesRecall:

S1 : A[0] := 0

   for I = 1 to 8

S2 :   A[I] := A[I-1] + B[I]

What does this loop do?

1 1 1 1 1 1 1 1B:

0A:
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Loop-carried dependencesRecall:

S1 : A[0] := 0

   for I = 1 to 8

S2 :   A[I] := A[I-1] + B[I]

What does this loop do?

1 1 1 1 1 1 1 1B:

0 1 2A:

In this case, there is a data dependence

This is a loop-carried dependence - the dependence 
spans a loop  iteration

This loop is inherently sequential

+

+

+

+

+

+

+

+

0 B[1]

B[2]

B[3]

B[4]

B[5]

B[6]

B[7]

B[8]
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Loop-carried dependencesRecall:

S1 : A[0] := 0

   for I = 1 to 8

S2 :   A[I] := A[I-1] + B[I]

Loop carried:

S21 :   A[1] := A[0] + B[1]

S22 :   A[2] := A[1] + B[2]

S23 :   A[3] := A[2] + B[3]

S24 :   A[4] := A[3] + B[4]

S25 :   A[5] := A[4] + B[5]

S26 :   A[6] := A[5] + B[6]

S27 :   A[7] := A[6] + B[7]

S28 :   A[8] := A[7] + B[8]

+

+

+

+

+

+

+

+

0 B[1]

B[2]

B[3]

B[4]

B[5]

B[6]

B[7]

B[8]

Dependences cross, from 

one iteration to next
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What is a loop-carried dependence?

• Consider two iterations I1 and I2

• A dependence occurs between two statements Sp and Sq (not 

necessarily distinct), when an assignment in Sp
I1 refers to the 

same location as a use in Sq
I2

In the example,

 

• The assignment is "A[I1] := ...”

• The use is "... := A[I2-1] ...”

• These refer to the same location when I1 = I2-1

• Thus I1 < I2, ie the assignment is in an earlier iteration

   Notation: S2 < S2
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Definition: The dependence equation
A dependence occurs 

• between two statements Sp and Sq (not necessarily distinct), 

• when there exists a pair of loop iterations I1 and I2, 

• such that a memory reference in Sp in I1 may refer to the same location as a 

memory reference in Sq in I2.

• This might occur if Sp and Sq refer to some common array A

• Suppose Sp refers to A[φp(I)]

• Suppose Sq refers to A[φq(I)]

• A dependence of some kind occurs between Sp and Sq if there exists a 

solution to the equation

  φp(I
1) = φq(I

2)
 

(φp(I) is some subscript 

expression involving I)

• for integer values of I1 and I2 lying 

within the loop bounds
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Types of dependence
If a solution to the dependence equation exists, a dependence of 

some kind occurs

The dependence type depends on what solutions exist

• The solutions consist of a set of pairs (I1,I2)

• We would appear to have a data dependence if

 A[p(I)] є OUT(Sp)

 and

 A[q(I)] є IN(Sq)

• But we only really have a data dependence if the assignments 

precede the uses, ie

• Sp < Sq

• if, for each solution pair (I1,I2), I1 < I2
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Dependence versus anti-dependence
• If the uses precede the assignments, we actually have an 

anti-dependence, ie

if, for each solution pair (I1,I2), I1 > I2

• In this case we do have a constraint on execution order

• Because we (may) have to read a value before it (may) be 

overwritten

• And this anti-dependence is loop-carried

• Anti-dependences prevent re-ordering, and multi-thread 

parallelism
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Dependence versus anti-dependence

• If there are some solution pairs (I1,I2) with I1 < I2 and some 

with I1 > I2, we write 

  

This represents that we know we must respect execution 

ordering, even though the compiler is unable to classify the 

dependence fully

• If, for all solution pairs (I1,I2), I1 = I2, there are 

dependences within an iteration of the loop, but there are no 

loop-carried dependences:

=
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Dependence distance
In many common examples, the set of solution pairs is characterised 

easily: 

• Definition: dependence distance

• If, for all solution pairs (I1, I2), 

   I1 = I2 - k

 then the dependence distance is k

• For example in the loop we considered earlier,

 

 We find that S2  <  S2 with dependence distance 1.

• ((of course there are many cases where the difference is not 

constant and so the dependence cannot be summarised this way)).
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Reuse distance
When optimising for cache performance, it is sometimes 
useful to consider the re-use relationship,

• IN(S1) ∩ IN(S2)

• Here there is no dependence - it doesn't matter which 
read occurs first

• Nonetheless, cache performance can be improved by 
minimising the reuse distance

The reuse distance is calculated essentially the same 
way

Eg

    for I = 5 to 100

S1:  B[I] := A[I] * 2

S2:  C[I] := A[I-5] * 10

Here we have a loop-carried reuse with distance 5
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Compilers -   Chapter 8: 

Loop scheduling optimisations

Part 3: Dependence analysis in nested 

    loops

June 25

• Lecturer: 
– Paul Kelly (p.kelly@imperial.ac.uk)

https://xkcd.com/754/ (It turns out that this cartoon is good for almost any compilers topic, definitely this one)

mailto:p.kelly@imperial.ac.uk
https://xkcd.com/754/
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Nested loops

Up to now we have looked at single loops

Now let’s generalise to loop “nests”

We begin by considering a very common dependence 

pattern, called the “wavefront”: 

Dependence structure?
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Nested loops

Up to now we have looked at single loops

Now let’s generalise to loop “nests”

We begin by considering a very common dependence 

pattern, called the “wavefront”: 

for I = 0 to 3 do

  for J = 0 to 3 do

 S: A[I,J] = A[I-1,J] + A[I,J-1]

Dependence structure? I is 𝐼1
J is 𝐼2
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System of dependence equations
Consider the dependence equations for this loop nest:

There are two potential dependences arising from the three references to A, so two 

systems of dependence equations to solve:
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• The same loop:

• For humans the easy way to understand this loop nest is to 
draw the iteration space graph showing the iteration-to-
iteration dependences:

• The diagram shows an arrow for each solution of each 
dependence equation.  

Iteration space graph
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• The same loop:

• For humans the easy way to understand this loop nest is to 
draw the iteration space graph showing the iteration-to-
iteration dependences:

• The diagram shows an arrow for each solution of each 
dependence equation.  Is there any parallelism?

Iteration space graph
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The inner loop is not vectorisable since there is a dependence chain 

linking successive iterations.

(to use a vector instruction, need to be able to operate on each element of the vector in 

parallel)

• Similarly, the outer loop is not parallel



65

The inner loop is not vectorisable since there is a dependence chain 

linking successive iterations.

(to use a vector instruction, need to be able to operate on each element of the vector in 

parallel)

• Similarly, the outer loop is not parallel
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The inner loop is not vectorisable since there is a dependence chain 

linking successive iterations.

(to use a vector instruction, need to be able to operate on each element of the vector in 

parallel)

• Similarly, the outer loop is not parallel

• This loop nest has two dependence distance vectors:

• (1,0) carried by the outer loop       Direction vector: (<,=) 

• (0,1) carried by the inner loop   Direction vector: (=,<) 
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The inner loop is not vectorisable since there is a dependence chain 

linking successive iterations.

(to use a vector instruction, need to be able to operate on each element of the vector in 

parallel)

• Similarly, the outer loop is not parallel

• This loop is interchangeable: the top-to-bottom, left-to-right execution 

order is also valid since all dependence constraints (as shown by the 

arrows) are still satisfied.

• Interchanging the loop does not improve vectorisability or 

parallelisability
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Interchange: counter-example

for I1 = 0 to 3 do

  for I2 = 0 to 3 do

    A[I1,I2] := A[I1 ± ?, I2 ± ?] + B[I1, I2] 

Can you think of a loop like this that cannot 

safely be interchanged?
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Interchange: counter-example

for I1 = 0 to 3 do

  for I2 = 0 to 3 do

    A[I1,I2] := A[I1 ± 1, I2 ± 1] + B[I1, I2] 

Can you think of a loop like this that cannot 

safely be interchanged?
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Interchange: counter-example

for I1 = 0 to 3 do

  for I2 = 0 to 3 do

    A[I1,I2] := A[I1 – 1, I2 + 1] + B[I1, I2] 
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Interchange: counter-example

Before 

interchange

for I1 = 0 to 3 do

  for I2 = 0 to 3 do

    A[I1,I2] := A[I1 – 1, I2 + 1] + B[I1, I2] 
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Interchange: counter-example

After 

interchange:

New traversal 

order crosses 

dependence 

arrows 

backwards

for I1 = 0 to 3 do

  for I2 = 0 to 3 do

    A[I1,I2] := A[I1 – 1, I2 + 1] + B[I1, I2] 
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Interchange: condition

• A loop is interchangeable if all dependence constraints 

(as shown by the arrows) are still satisfied by the top-to-

bottom, left-to-right execution order 

• How can you tell whether a loop can be interchanged?

Look at its dependence direction vectors:

Is there a dependence direction vector with the form 

(<,>) ?

• ie there is a dependence distance vector (k1,k2) with 

k1>0 and k2<0 ?

• If so, interchange would be invalid

Because the arrows would be traversed backwards

All other dependence directions are OK.
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SkewingConsider this variation on the wavefront loop:

• The inner loop's control variable runs from k1 to k1+3.

• The iteration space of this loop has 42 iterations just like the original loop.

• If we draw the iteration space with each iteration SK1,K2 at coordinate 

position (K1,K2), it is skewed to form a lozenge shape:

This loop 

performs the 

same computation 

as the original.
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Skewing preserves semantics

To see that this 

loop performs the 

same 

computation, lets 

work out its 

dependence 

structure.  

First label each 

iteration with the 

element of A to 

which it assigns

Skewing doesn’t actually 
change the order in which the 
loop body is executed

The loop body is 

   A[k1,k2-k1] := A[k1-1,k2-k1]+A[k1,k2-k1-1]

• E.g. iteration S23 does:

   A[2,1] := A[1,1]+A[2,0]
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Thus the dependence structure of the skewed loop is shown 

by marking the iteration space with all the dependences:

Can this loop nest be vectorised?

Can this loop nest be interchanged?
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Skewing changes effect of interchange
Thus the dependence structure of the skewed loop is shown 

by marking the iteration space with all the dependences:

Original execution order
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Thus the dependence structure of the skewed loop is shown 

by marking the iteration space with all the dependences:

Transposed execution order

Interchange after skewing
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You can think of loop 

interchange as changing 

the way the iteration space 

is traversed

Alternatively, you can think 

of it as a change to the 

way the runtime code 

instances are mapped onto 

the iteration space

Traversal is always 

lexicographic – ie left-to-

right, top-down
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The inner loop is now 

vectorisable, since it has 

no loop-carried 

dependence

• The skewed iteration 

space has N rows and 

2N-1 columns, but still 

only N2 actual statement 

instances.

Iterations in each 

row are 

independent
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Original loop interchangeable 

but not vectorisable.

We skewed inner loop by outer 

loop by factor 1.

Still not vectorisable, but 

interchangeable.

• Interchanged, skewed loop is 

vectorisable.

Bounds of new loop not simple!

Is skewing ever invalid?

Does skewing affect interchangeability?

Does skewing affect dependence 

distances?

Can you predict value of skewing?

Skewing and interchange: summary
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Summary: dependence
Dependence equation for single loop:

• Suppose Sp refers to A[φp(I)]

• Suppose Sq refers to A[φ q(I)]

• A dependence of some kind occurs between Sp and Sq if there exists a solution to 

the equation

  φ p(I1) = φ q(I2)
 

• for integer values of I1 and I2 lying within the loop bounds

• For multidimensional arrays, and nested for-loops, we generalise this to a 

system of simultaneous dependence equations for two iterations, (I1
1, I2

1) 

and (I1
2, I2

2)

• Iteration space graph, lexicographic schedule of execution

Arrows in graph show solutions to dependence equation

• Dependence distance vectors characterise families of congruent 

arrows
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Summary: transformations

• A loop can be executed in parallel if it has no loop-carried 

dependence

• A loop nest can be interchanged if the transposed 

dependence distance vectors are lexicographically 

forward

• Strip-mining is always valid

• Tiling = strip-mining + interchange

Skewing is always valid

• Skewing can expose parallelism by aligning parallel 

iterations with one of the loops

Skewing can make interchange (and therefore tiling) 

valid

Not explained yet
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Student 

question:
“why is 

antidependence 

a dependence?”

Loop-carried true dependence:

  for i

    A[i] = A[i-1] + B[i]

Loop-carried anti-dependence:

  for i

    A[i] = A[i+1] + B[i]
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“Loop-carried anti-dependence”

• Consider this example:

• When executed we get:

June 25

for (int i=0; i<7; i++) 
  c[i] = c[i+1] + b[i];

Z

c[0] = c[1] + b[1];
c[1] = c[2] + b[2];
c[2] = c[3] + b[3];
c[3] = c[4] + b[4];
c[4] = c[5] + b[5];
c[5] = c[6] + b[6];
c[6] = c[7] + b[7];

Each iteration uses a 

value which is overwritten 

in the next iteration

We need the use to 

happen before the 

overwrite

So we have a precedence 

requirement due to an 

anti-dependence

The anti-dependence 

arrows go from one 

iteration to the next

The anti-dependence is 

carried by the loop
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Implementing shared-memory parallel loop

“self-scheduling” loop 

FetchAndAdd() is atomic 
operation to get next un-
executed loop iteration:

Int FetchAndAdd(int *i) { 

  lock(i);

  r = *i;

  *i = *i+1;

  unlock(i);

  return(r);

}

if (myThreadId() == 0) 
  i = 0;
barrier();
// on each thread
while (true) {
  local_i = FetchAndAdd(&i);
  if (local_i >= N) break;
  A[local_i] = A[local_i] + B[local_i];
}
barrier();

for (i=0; i<N; i++) {
  A[i]  = A[i] + B[i];
}

There are smarter ways to implement 

FetchAndAdd….

Barrier(): block until 
all threads reach this 
point

Optimisations: 

•  Work in chunks

•  Avoid unnecessary barriers

•  Exploit “cache affinity” from loop to loop
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if (myThreadId() == 0) 
  i = 0;
barrier();
while (true) {
  local_i = FetchAndAdd(&i);
  if (local_i >= N) break;
  A[local_i] = A[local_i] + B[local_i];
}
barrier();

if (myThreadId() == 0) 
  i = 0;
barrier();
while (true) {
  local_i = FetchAndAdd(&i);
  if (local_i >= N) break;
  A[local_i] = A[local_i] + B[local_i];
}
barrier();

Thread #0 Thread #1

for (i=0; i<N; i++) {
  A[i]  = A[i] + B[i];
}

Thread #0 gets some sequence of 

iterations to do
Thread #1 gets some sequence of 

iterations to do
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if (myThreadId() == 0) 
  i = 0;
barrier();
while (true) {
  local_i = FetchAndAdd(&i);
  if (local_i >= N) break;
  A[local_i] = A[local_i+1] + B[local_i];
}
barrier();

if (myThreadId() == 0) 
  i = 0;
barrier();
while (true) {
  local_i = FetchAndAdd(&i);
  if (local_i >= N) break;
  A[local_i] = A[local_i+1] + B[local_i];
}
barrier();

Thread #0 Thread #1

for (i=0; i<N; i++) {
  A[i]  = A[i+1] + B[i];
}

Thread #0 gets some sequence of 

iterations to do
Thread #1 gets some sequence of 

iterations to do

What could possibly go wrong?
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if (myThreadId() == 0) 
  i = 0;
barrier();
while (true) {
  local_i = FetchAndAdd(&i);
  if (local_i >= N) break;
  A[local_i] = A[local_i+1] + B[local_i];
}
barrier();

if (myThreadId() == 0) 
  i = 0;
barrier();
while (true) {
  local_i = FetchAndAdd(&i);
  if (local_i >= N) break;
  A[local_i] = A[local_i+1] + B[local_i];
}
barrier();

Thread #0 Thread #1

for (i=0; i<N; i++) {
  A[i]  = A[i+1] + B[i];
}

Thread #0 gets some sequence of 

iterations to do, eg: 0, 2, 4, 6…
Thread #1 gets some sequence of 

iterations to do, eg: 1, 3, 5, 7…

What could possibly go wrong?
This example has a loop-carried anti-dependence.

We must read from A before overwriting A
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Feeding curiosity: solving the dependence equation
from z3 import *

N=100

i1 = Int("i1")

i2 = Int("i2")

# consider a loop like this:

#  for i = 1 to N

#   a[phi1(i)] = a[phi2(i)] + b[i]

# So the dependence equation is

#   exists i1, i2: 1<i<n s.t. phi1(i1) == phi2(i2)

def DependenceTest(bounds, dependence_equation):    

    s = Solver()    

    s.add( bounds, dependence_equation )    

    if s.check() == unsat:

        print ("No dependence is present")

    else:

        print("Dependence is found, for example when:")

        m = s.model()

        print ("i1 = %s (LHS)" % m[i1])

        print ("i2 = %s (RHS)" % m[i2])

June 25

print("for i = 1 to N")

print("  a[i] = a[i-1] + b[i]")

DependenceTest( And(i1>=1, i1<N, i2>=1, i2<N), 

                                i1 == i2-1 )

Example 1:

for i = 1 to N

  a[i] = a[i-1] + b[i]

Dependence is found, for example when:

i1 = 1 (LHS)

i2 = 2 (RHS)

Just add the constraints and call the solver

(not examinable)
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Feeding curiosity: solving the dependence equation
def DependenceTest(bounds, dependence_equation):

    s = Solver()

    s.add( bounds, dependence_equation )

    if s.check() == unsat:

        print ("No dependence is present")

    else:

        print("Dependence is found, for example when:")

        m = s.model() 

        print ("i1 = %s (LHS)" % m[i1])

        print ("i2 = %s (RHS)" % m[i2])

        # Is there a loop-carried true dependence?

        s2 = Solver()

        s2.add( bounds, dependence_equation, i1<i2 )

        if s2.check() == unsat:

            print ("No loop-carried true dependence is present")

        else:

            print("Loop-carried true dependence found, for example when:")

            m = s2.model()

            print ("i1 = %s" % m[i1])

            print ("i2 = %s" % m[i2]) 

         # Is there a loop-carried anti-dependence?

        s3 = Solver()

        s3.add( bounds, dependence_equation, i1>i2 )

        if s3.check() == unsat:

            print ("No loop-carried anti-dependence is present")

        else:

            print("Loop-carried anti-dependence found, for example when:")

            m = s3.model()

            print ("i1 = %s" % m[i1])

            print ("i2 = %s" % m[i2])

June 25

print("for i = 1 to N")

print("  a[i] = a[i-1] + b[i]")

DependenceTest( And(i1>=1, i1<N, i2>=1, i2<N), 

                                i1 == i2-1 )

Example 1:

for i = 1 to N

  a[i] = a[i-1] + b[i]

Dependence is found, for example when:

i1 = 1 (LHS)

i2 = 2 (RHS)

Loop-carried true dependence found, for example 
when:

i1 = 1

i2 = 2

No loop-carried anti-dependence is present

Extend to distinguish loop-carried true and anti-dependencies
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Feeding curiosity: solving the dependence equation
def DependenceTest(bounds, dependence_equation):

    s = Solver()

    s.add( bounds, dependence_equation )

    if s.check() == unsat:

        print ("No dependence is present")

    else:

        print("Dependence is found, for example when:")

        m = s.model() 

        print ("i1 = %s (LHS)" % m[i1])

        print ("i2 = %s (RHS)" % m[i2])

        # Is there a loop-carried true dependence?

        s2 = Solver()

        s2.add( bounds, dependence_equation, i1<i2 )

        if s2.check() == unsat:

            print ("No loop-carried true dependence is present")

        else:

            print("Loop-carried true dependence found, for example when:")

            m = s2.model()

            print ("i1 = %s" % m[i1])

            print ("i2 = %s" % m[i2]) 

         # Is there a loop-carried anti-dependence?

        s3 = Solver()

        s3.add( bounds, dependence_equation, i1>i2 )

        if s3.check() == unsat:

            print ("No loop-carried anti-dependence is present")

        else:

            print("Loop-carried anti-dependence found, for example when:")

            m = s3.model()

            print ("i1 = %s" % m[i1])

            print ("i2 = %s" % m[i2])

June 25

print("for i = 1 to N")

print("  a[i] = a[i] + b[i]")

DependenceTest( And(i1>=1, i1<N, i2>=1, i2<N), 

                                i1 == i2 )

Example 2:

for i = 1 to N

  a[i] = a[i] + b[i]

Dependence is found, for example when:

i1 = 1 (LHS)

i2 = 1 (RHS)

No loop-carried true dependence is present

No loop-carried anti-dependence is present

In this case the dependence is present but not loop-carried
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Feeding curiosity: solving the dependence equation
def DependenceTest(bounds, dependence_equation):

    s = Solver()

    s.add( bounds, dependence_equation )

    if s.check() == unsat:

        print ("No dependence is present")

    else:

        print("Dependence is found, for example when:")

        m = s.model() 

        print ("i1 = %s (LHS)" % m[i1])

        print ("i2 = %s (RHS)" % m[i2])

        # Is there a loop-carried true dependence?

        s2 = Solver()

        s2.add( bounds, dependence_equation, i1<i2 )

        if s2.check() == unsat:

            print ("No loop-carried true dependence is present")

        else:

            print("Loop-carried true dependence found, for example when:")

            m = s2.model()

            print ("i1 = %s" % m[i1])

            print ("i2 = %s" % m[i2]) 

         # Is there a loop-carried anti-dependence?

        s3 = Solver()

        s3.add( bounds, dependence_equation, i1>i2 )

        if s3.check() == unsat:

            print ("No loop-carried anti-dependence is present")

        else:

            print("Loop-carried anti-dependence found, for example when:")

            m = s3.model()

            print ("i1 = %s" % m[i1])

            print ("i2 = %s" % m[i2])

June 25

print("for i = 1 to N")

print("  a[2*i] = a[2*i-1] + b[i]")

DependenceTest( And(i1>=1, i1<N, i2>=1, i2<N), 

                                2*i1 == 2*i2-1 )

Example 3:

for i = 1 to N

a[2*i] = a[2*i-1] + b[2*i]

No dependence is present
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Feeding curiosity: solving the dependence equation
def DependenceTest(bounds, dependence_equation):

    s = Solver()

    s.add( bounds, dependence_equation )

    if s.check() == unsat:

        print ("No dependence is present")

    else:

        print("Dependence is found, for example when:")

        m = s.model() 

        print ("i1 = %s (LHS)" % m[i1])

        print ("i2 = %s (RHS)" % m[i2])

        # Is there a loop-carried true dependence?

        s2 = Solver()

        s2.add( bounds, dependence_equation, i1<i2 )

        if s2.check() == unsat:

            print ("No loop-carried true dependence is present")

        else:

            print("Loop-carried true dependence found, for example when:")

            m = s2.model()

            print ("i1 = %s" % m[i1])

            print ("i2 = %s" % m[i2]) 

         # Is there a loop-carried anti-dependence?

        s3 = Solver()

        s3.add( bounds, dependence_equation, i1>i2 )

        if s3.check() == unsat:

            print ("No loop-carried anti-dependence is present")

        else:

            print("Loop-carried anti-dependence found, for example when:")

            m = s3.model()

            print ("i1 = %s" % m[i1])

            print ("i2 = %s" % m[i2])

June 25

print("for i = 1 to N")

print("  a[3*i] = a[5*i-10] + b[i]")

DependenceTest( And(i1>=1, i1<N, i2>=1, i2<N), 

                                3*i1 == 5*i2-20 )

Example 4:

for i = 1 to N

  a[3*i] = a[5*1-20] + b[i]

Dependence is found, for example when:

i1 = 5 (LHS)

i2 = 7 (RHS)

Loop-carried true dependence found, for example 
when:

i1 = 5

i2 = 7

Loop-carried anti-dependence found, for example 
when:

i1 = 15

i2 = 13

In this case we have both true and anti-dependences: weird!
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S1 : A[0] := 0

   for i = 1 to 8

S2 :   A[i] := A[i-1] + B[i]

Appears to be inherently sequential

Feeding curiosity (not examinable)

Loop-carried dependences can

sometimes still be parallelised

+

+

+

+

+

+

+

+

0B[1]

B[2]

B[3]

B[4]

B[5]

B[6]

B[7]

B[8]

A[1]

A[2]

A[3]

A[4]

A[5]

A[6]

A[7]

A[8]
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S1 : A[0] := 0

   for i = 1 to 8

S2 :   A[i] := A[i-1] + B[i]

Appears to be inherently sequential

Feeding curiosity (not examinable)

Loop-carried dependences can

sometimes still be parallelised

+

+

+

+

+

+

+

+

0B[1]

B[2]

B[3]

B[4]

B[5]

B[6]

B[7]

B[8]

A[1]

A[2]

A[3]

A[4]

A[5]

A[6]

A[7]

A[8]

1 1 1 1 1 1 1B: 1

1 1 1 1 1 1>>1: 1 +
2 2 2 2 2 2 2A1: 1

2 2 2 2 21 +
2 3 4 4 4 4 4A2: 1

2 3 4>>4: 1 +
2 3 4 5 6 7 8A3: 1

>>2:

“Parallel scan” or “parallel prefix sum”

But parallel is possible:
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Feeding curiosity (not examinable)

Loop-carried dependences can

sometimes still be parallelised

S1 : A[0] := 0

   for i = 1 to 8

S2 :   A[i] := A[i-1] + B[i]

Appears to be inherently sequential

But parallel implementation is possible

1 1 1 1 1 1 1B: 1

1 1 1 1 1 1>>1: 1 +
2 2 2 2 2 2 2A1: 1

2 2 2 2 21 +
2 3 4 4 4 4 4A2: 1

2 3 4>>4: 1 +
2 3 4 5 6 7 8A3: 1

>>2:

“Parallel scan” or “parallel prefix sum”

Each step is a 

vector-parallel 

operation

Of decreasing 

size

We have log(N) 

steps
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S1 : A[0] := 0

   for i = 1 to 8

S2 :   A[i] := A[i-1] + B[i]

Appears to be inherently sequential

But parallel implementation is possible

1 1 1 1 1 1 1B: 1

>>1: +
2 2 2 2 2 2 2A1: 1

+
2 3 4 4 4 4 4A2: 1

>>4: +
2 3 4 5 6 7 8A3: 1

>>2:

We can see that the last element is computed with a reduction tree 

Feeding curiosity (not examinable)

Loop-carried dependences can

sometimes still be parallelised
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S1 : A[0] := 0

   for i = 1 to 8

S2 :   A[i] := A[i-1] + B[i]

Appears to be inherently sequential

But parallel implementation is possible

1 1 1 1 1 1 1B: 1

>>1: +
2 2 2 2 2 2 2A1: 1

+
2 3 4 4 4 4 4A2: 1

>>4: +
2 3 4 5 6 7 8A3: 1

>>2:

All the elements are computed by reduction trees of depth log(N) – for example element 7

Feeding curiosity (not examinable)

Loop-carried dependences can

sometimes still be parallelised
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Feeding curiosityS1 : A[0] := 0

   for i = 1 to 8

S2 :   A[i] := A[i-1] + B[i]

Appears to be inherently sequential

But parallel implementation is possible

1 1 1 1 1 1 1B: 1

1 1 1 1 1 1>>1: 1 +
2 2 2 2 2 2 2B: 1

2 2 2 2 21 +
2 3 4 4 4 4 4B: 1

2 3 4>>4: 1 +
2 3 4 5 6 7 8B: 1

>>2:

“Parallel scan” or “parallel prefix sum”

This is the 

“naïve” parallel 

scan

It does more 

work than the 

sequential scan – 

but it does use 

parallelism

There are “work-

efficient” parallel 

scans

Eg see Mark 

Harris, GPU 

Gems Ch39 
https://developer.nvidia.com/gp

ugems/gpugems3/part-vi-gpu-

computing/chapter-39-parallel-

prefix-sum-scan-cuda
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Compilers -   That wraps it up!
 
We have seen….
• How to build a simple non-optimising compiler for a simple imperative 

language 
• With functions
• With local variables, static variables, heap data, inheritance
• We have seen how an optimising compiler might work – 

• intermediate representations, lowering, 
• dataflow analysis, register allocation, code motion optimisations, 
• instruction selection 
• SSA

• Dependence analysis and parallelisation
• Loop-carried dependence
• Dependence distance
• Vectorisation and parallelisation

• You have been introduced to a world of topics fundamental to how your 
code actually gets executed, and what can be done to make it efficient



106

Compilers -   Chapter 8: 

Loop scheduling optimisations

Part 4: Representing loop 

    transformations as matrix 

    multiplications

June 25

• Lecturer: 
– Paul Kelly (p.kelly@imperial.ac.uk)

https://xkcd.com/2343/ 

This section is not 
examinable

mailto:p.kelly@imperial.ac.uk
https://xkcd.com/2343/
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Matrix representation of loop transformations

• To skew the inner loop by the outer loop by factor 1 we 

adjust the loop bounds, and replace I1 by K1, and I2 by 

K2-K1.  That is,

  (K1,K2) = (I1,I2) . U

• where U is a 2 x 2 matrix

• That is, 

  (K1,K2) = (I1,I2) . U = (I1,I2+I1)

Th
e 

m
at
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x 

re
p

re
se

n
ta
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o

n
 is

 n
o

t 
ex

am
in

ab
le

𝐔 = 
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Matrix representation of loop transformations

• To skew the inner loop by the outer loop by factor 1 we 

adjust the loop bounds, and replace I1 by K1, and I2 by 

K2-K1.  That is,

  (K1,K2) = (I1,I2) . U

• where U is a 2 x 2 matrix

• That is, 

  (K1,K2) = (I1,I2) . U = (I1,I2+I1)

The inverse gets us back again:

  (I1,I2) = (K1,K2) . U
-1 = (K1,K2-K1)

Th
e 

m
at

ri
x 

re
p

re
se

n
ta

ti
o

n
 is

 n
o

t 
ex

am
in
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𝐔−𝟏 = 
1 −1
0    1
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• Matrix U maps each statement instance SI1I2 to its position in 

the new iteration space, SK1K2:

Original iteration space:

Transformed iteration space:
The 

dependences 

are subject to 

the same 

transformation.

The subscripts are mapped back using U-1

(K1,K2) = (I1,I2) . U = (I1,I2+I1)

(I1,I2) = (K1,K2) . U
-1 = (K1,K2-K1)

Th
e 
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Using matrices to reason about dependence

Recall that:

• There is a dependence between two iterations (I1
1,I2

1) and 

(I1
2,I2

2) if there is a memory location which is assigned to in 

iteration (I1
1,I2

1), and read in iteration (I1
2,I2

2).

  ((unless there is an intervening assignment))

• If (I1
1,I2

1) precedes (I1
2,I2

2) it is a data-dependence.

• If (I1
2,I2

2) precedes (I1
1,I2

1) it is a anti-dependence.

• If the location is assigned to in both iterations, it is an output-

dependence.

• The dependence distance vector (D1,D2) is (I1
1-I1

2,I2
1-I2

2). Th
e 

m
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ri
x 
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p
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Transforming dependence vectors

• If there is a dependence between two iterations (I1
1,I2

1) and (I1
2,I2

2)

• Then iterations (I1
1,I2

1) . U and (I1
2,I2

2) .U will also read and write the 

same location

• The transformation U is valid iff 

  (I1
1,I2

1) . U precedes (I1
2,I2

2) . U

  whenever there is a dependence between 

  (I1
1, I2

1) and (I1
2, I2

2).

• In the transformed loop the dependence distance vector is also 

transformed, to 

  (D1,D2) . U

• U is a valid transformation if all the program’s dependence distance 

vectors are still “forward” when transformed by U
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• What do we mean by “precedes”?

• “Lexicographic” is dictionary order – both “baz” and “can” precede 

“cat”

• So (1,2) precedes (1,3)

• But (0,3) precedes (1,4)

• A dependence distance vector (D1,D2) is lexicographically “forward” 

if it precedes (0,0)

Transforming dependence vectors

Definition: Lexicographic ordering:

(I1,J1) precedes (I2,J2)

if I1 < I2, or I1 = I2 and J1 < J2

Th
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Example: loop given earlier
Before transformation we had two 

dependences:

1. Distance: (1,0), direction: (<,.)

2. Distance: (0,1), direction: (.,<)

• After transformation by matrix 

• (i.e. skewing of inner loop by outer) we 

get:

1. Distance: (1,0).U = (1,1), direction: (<,<)

2. Distance: (0,1).U = (0,1), direction: (.,<)

(0,1)

(1,0)

(0,1)

(1,1)
The matrix representation is not examinable
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We can also represent loop interchange by a matrix transformation.

After transforming the skewed loop by matrix 

(i.e. loop interchange) we get:

1. Distance: (1,0).U.V = (1,1).V = (1,1), direction: (<,<)

2. Distance: (0,1).U.V = (0,1).V = (1,0), direction: (<,.)

• The transformed iteration space is the transpose of the skewed iteration 

space: 

Th
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Summary
• (I1,I2) . U maps each statement instance (I1,I2) to its new position (K1,K2) 

in the transformed loop's execution sequence

• (D1,D2) . U gives new dependence distance vector, giving test for validity

Captures skewing, interchange and reversal

Compose transformations by matrix multiplication 

  U1 . U2

Resulting loop's bounds may be a little tricky

Efficient algorithms exist [Banerjee90] to maximise parallelism by 

skewing and loop interchanging

Efficient algorithms exist to optimise cache performance by finding the 

combination of blocking, block size, interchange and skewing which 

leads to the best reuse [Wolf91]
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Restructuring compilers - conclusions: 

Restructuring compilers can find parallelism

And enhance locality

For a very restricted class of programs

For-loops over arrays with array subscripts that are 

simple (“affine”) expressions involving loop control 

variables

But for this restricted class there is a rather elegant theory 

(the “polyhedral” or “polytope” model, 

http://en.wikipedia.org/wiki/Polytope_model)

Extending beyond this is a big research problem

Current compilers (GCC, Clang/LLVM, Intel, Microsoft etc) 

can do some of this, in theory – but are often defeated by 

program complexity

http://en.wikipedia.org/wiki/Polytope_model
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 Polyhedral:

 The Polyhedral Model (aka Polytope method) takes the ideas in this lecture much 
further, notably 

• Automatic code generation using the matrix model shown here

• Checking validity of such transformations

• Calculating parallelism and locality metrics for alternative versions

https://en.wikipedia.org/wiki/Polytope_model

https://normrubin.github.io/lectures/poly_final.html

https://polyhedral.info/

https://www.impact-workshop.org/ 

http://doi.acm.org/10.1145/197405.197406
https://polyhedral.info/
https://polyhedral.info/
https://polyhedral.info/
https://www.impact-workshop.org/
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Feeding curiosityMatrix transpose
Try this link to the the Compiler Explorer:
https://godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(filename:'1',fontScale:14,fontUsePx:'0',j:1,lang:c%2B%2B,selection:(endColumn:2,endLineNumber:20,positionColumn:2,positionLi

neNumber:20,selectionStartColumn:2,selectionStartLineNumber:20,startColumn:2,startLineNumber:20),source:'%23define+SIZE+10240%0A//%23define+SIZE+20480%0A%23defin

e+TOTALBYTES+SIZE*SIZE*4%0A%0Aint+A%5BSIZE%5D%5BSIZE%5D%3B%0Aint+B%5BSIZE%5D%5BSIZE%5D%3B%0A%0A%23define+IB+32%0A%23define+JB+32%0A%0Avo

id+P(int+N,+int+M)%0A%7B%0A++int+i,+j%3B%0A%0A++for+(i%3D0%3B+i%3CN%3B+i%2B%2B)+%7B%0A++++for+(j%3D0%3B+j%3CN%3B+j%2B%2B)+%7B%0A++++++B%5Bi%

5D%5Bj%5D+%3D+A%5Bj%5D%5Bi%5D%3B%0A++++%7D%0A++%7D%0A%7D'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:c

lang_trunk,filters:(b:'0',binary:'1',binaryObject:'1',commentOnly:'0',debugCalls:'1',demangle:'0',directives:'0',execute:'1',intel:'0',libraryCode:'0',trim:'1',verboseDemangling:'0'),flags

ViewOpen:'1',fontScale:14,fontUsePx:'0',j:1,lang:c%2B%2B,libs:!(),options:'-Ofast+-

march%3Dznver4',overrides:!(),selection:(endColumn:1,endLineNumber:1,positionColumn:1,positionLineNumber:1,selectionStartColumn:1,selectionStartLineNumber:1,startColu

mn:1,startLineNumber:1),source:1),l:'5',n:'0',o:'+x86-64+clang+(trunk)+(Editor+%231)',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4

Collision detect
Try this link to the the Compiler Explorer:
https://godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(filename:'1',fontScale:14,fontUsePx:'0',j:1,lang:c%2B%2B,selection:(endColumn:13,endLineNumber:18,positionColumn:13,positio

nLineNumber:18,selectionStartColumn:13,selectionStartLineNumber:18,startColumn:13,startLineNumber:18),source:'%23define+SIZE+10240%0A//%23define+SIZE+20480%0A%23

define+TOTALBYTES+SIZE*SIZE*4%0A%0Aint+A%5BSIZE%5D%3B%0Aint+B%5BSIZE%5D%3B%0Aint+C%5BSIZE%5D%3B%0Aint+D%5BSIZE%5D%3B%0A%0A%23define+IB+32

%0A%23define+JB+32%0A%0Avoid+P(int+N,+int+M)%0A%7B%0A++int+i,+j%3B%0A%0A++for+(i%3D0%3B+i%3CN%3B+i%2B%2B)+%7B%0A++++++C%5BB%5Bi%5D%5D+%2B%

3D+A%5BB%5Bi%5D%5D+%2B+D%5Bi%5D%3B%0A++%7D%0A%7D'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:33.333333333333336,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(co

mpiler:icxlatest,filters:(b:'0',binary:'1',binaryObject:'1',commentOnly:'0',debugCalls:'1',demangle:'0',directives:'0',execute:'1',intel:'0',libraryCode:'0',trim:'1',verboseDemangling:'0'),

flagsViewOpen:'1',fontScale:14,fontUsePx:'0',j:1,lang:c%2B%2B,libs:!(),options:'-Ofast+-

march%3Dznver4+',overrides:!(),selection:(endColumn:1,endLineNumber:1,positionColumn:1,positionLineNumber:1,selectionStartColumn:1,selectionStartLineNumber:1,startCol

umn:1,startLineNumber:1),source:1),l:'5',n:'0',o:'+x86-64+icx+2025.0.0+(Editor+%231)',t:'0')),k:33.333333333333336,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:output,i:(compilerName:'x86-

64+clang+(trunk)',editorid:1,fontScale:14,fontUsePx:'0',j:1,wrap:'1'),l:'5',n:'0',o:'Output+of+x86-

64+icx+2025.0.0+(Compiler+%231)',t:'0')),k:33.33333333333333,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4
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Feeding curiosity

Ask me about….

• Loop interchange for locality
• For i, j, k matrix multiply vs

• For i, k, j matrix multiply

• See /homes/phjk/ToyPrograms/ACA24-25/MM – compare speed of 

versions MM1.c, MM2.c

• Tiling for locality
• For the transpose example shown in the last chapter

• For matrix multiply (see version MM3.c)

• Stencils and convolutions
• skewed, split, diamond

• Graphs and unstructured meshes
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