COMP50006 Compilers - Exercise 4: Register allocation using graph colouring
Introduction

The idea of using graph colouring for register allocation is covered at the end of Chapter 5 of the lecture
notes. However, a good way to understand it is to work through this exercise.

Consider the following sequence of assignments:

S1: A = 100;

P1:

S2: B = 200;
P2:

S3: C=A + B;
P3:

S4: D =A% 2;
P4:

S5: E =B % 2;
P5:

S6: F=D-C;
P6:

S7: G=E+F;
P7:

We are interested in using registers for all the variables in this code sequence. Notice that we can
minimise the number of registers needed by reusing them.

For example, A and F could both be stored in the same register. We don’t need a register for F until
after the last statement to use A. There are several such instances in this sequence.

Definition: live range

The live range of a variable is the set of program points after which the variable must be safely stored.
Ezample 1: The live range of A consists of {P1, P2, P3}.

Ezample 2: The live range of D consists of {P4, P5}

Ezample 3: The live range of F consists of {P6}.

Subtlety: Can the same register be used for both D and A?

The answer is yes: storage for D is only needed after the value of A has been read. The two live ranges
do not intersect.

(as we will see later, A € liveIn(S4), and D € liveOut(S4)).

Definition: interference

Two variables interfere if their live ranges overlap.
Ezxample 1: The live ranges of A and F do not overlap.
Ezxample 2: The live ranges of A and B do overlap.

Ezample 3: The live ranges of A and D do not overlap.

Definition: interference graph

The interference graph for a program consists of

e nodes for each of the variables which have to be allocated to a register (in this example {A, B, C,
D, E, F, G}), and

e arcs between each pair of nodes whose live ranges overlap.



Definition: Colouring

A graph colouring is an assignment of colours to nodes. A graph colouring is valid if no pair of nodes
which are linked by an arc carry the same colour.

Exercise 4.1: Simple example
Construct the interference graph for the variables A, B, C, D, E, F and G in the example program fragment

above. Colour the graph using the minimum possible number of colours, and use this colouring to assign
each variable to a register. Give the final code after register allocation.

Exercise 4.2: Register allocation using graph colouring, real example
Consider the following program fragment:
VAR A : ARRAY [0..99] OF INTEGER;

PROCEDURE P(i, j, size : INTEGER)
VAR k, tmp : INTEGER;

BEGIN
FOR k := 0 TO size-1 DO
tmp := A[i+k];
Ali+k] := A[j+k];
Alj+k] := tmp;
END
END

The compiler’s intermediate representation of the body of the procedure is as follows:

tl := size-1
k=0
L1:
cmp k,tl
bgt End
t2 := Address(A)+i
t3 = t2+k
tmp := LoadIndirect(t3)
t4 := Address(A)+]
tb = t4+k
t6 := LoadIndirect(t5)
StoreIndirect (t6, t3)
StoreIndirect (tmp, t5)
k := k+1
jmp L1
End:

1. Construct the register interference graph for the variables t1, t2, t3, t4, t5, t6, k and tmp.

2. Show how the interference graph colouring algorithm can be used to minimise the number of
registers needed in this procedure.

3. What other possible optimisations are possible in this procedure? Write very brief notes on how
such optimisations might be implemented.

Paul Kelly Imperial College January 2023



