Compilers - Exercise 5: Earliest execution time analysis

In this exercise we will use data-flow analysis to compute a lower bound on the
execution time of the code. Assume that we have as input a control-flow graph
(CFG) as described in the lecture notes:

> data CFGNode = Node Id Instruction [Register] [Register] [Id] [Id]
> - defs uses succs preds

We will pretend that all instructions take 1 unit of time to execute — even
function calls. The output of the analysis will be, for every node in the graph,
the earliest time at which this node could have been reached, assuming that
the start node is reached at time 0. Nodes that are never reached are assigned
the special value Infinity. If all final (ie exit) nodes of the graph have the
value Infinity, the code will never terminate. In fact, nodes assigned Infinity
correspond to unreachable nodes that may be removed from the control flow
graph.

1. One of the data-flow equations clearly will take the form
timeOut(n) = timeln(n) 4+ 1

(a) What is the equation for defining timeln in terms of termOut?

(b) As shown in the lecture notes, we use iteration to solve the system
of DFA equations timeln(n) and timeOut(n) for each node n in the
CFG.

What are the initial assignments for timeIn(n) and timeOut(n)?

(c) Do any nodes need to be initialized with a value different from the
others?

(d) Is this a forward or backward data-flow analysis?

2. Draw the control flow graph for the following code, and show the operation
of the iteration algorithm using the equations of part 1.

start:
a=b+c
d =a< 10
LO:
if d goto L1 else L2
b=a-1
L1:
a=1f(d,e)
if a goto LO else L2
L2:
a=>o
end

Paul Kelly Imperial College London 2023. Acknowledgement: This exercise
is loosely based on parts of Homework 4 of Andrew Myers’ CS412 Introduction to
Compilers course at Cornell (http://www.cs.cornell.edu/courses/cs412/2000SP/hw/hw4.html ).



