
COMP50006 Compilers

Exercise 6: Common sub-expression elimination using avail-
able expressions

Introduction We naturally expect our compiler to spot where an expression
is being recomputed unnecessarily.

If we look at expression trees, it’s easy to imagine how we might identify repeated
subtrees. However things look a bit more complicated when we look across
sequences of assignments, in a program with complex control flow. In this
exercise we explore how to identify common sub-expressions in three-address
code.

We introduce “available expressions analysis”. We aim to discover which expres-
sions will have been computed by the time control arrives at each instruction in
the program. We can then see whether we are recomputing an expression which
is already available - that is, one which has already been evaluated, and whose
value would be the same.

An expression is available at an instruction if its value has definitely been com-
puted — and it has not been subsequently invalidated. It would be invalidated
if an assignment to any of its variables might have been executed.

Note the care needed with “might” versus “must”. The value must have been
evaluated (so if control flow joins, we need the expression to be available on all
incoming paths). It’s not available if it might be invalidated along any path.

Three-address code For this exercise, we assume a compiler architecture
with a “three-address code” intermediate representation (IR). This is a low-level
control-flow-graph in which all operations have been broken down into the most
primitive operations. The most complex operation is three-address arithmetic,
of the form “c = a

⊕
b”. The name reflects that such an operation names

at most three operands. This is a representation that comes before instruction
selection, which may produce code that packs more than one primitive operation
into each instruction.

Local common sub-expressions: straight-line code Here we see the
“Avail” sets at the points before and after execution of a sequence of assignments
in a three-address IR:
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Three-address operation Available expressions
∅

a = b+c
{b+c}

d = c+f
{b+c, c+f}

b = a-f
{c+f, a-f}

f = z*2
{z*2}

Initially the set is empty. After the assignment to a, we have an available
expression “b+c”. The assignment to d gives us another. The reassignment to
b invalidates “b+c”, but adds “a-f”. The assignment to f invalidates both.

Global common sub-expressions: branches Consider this example:

c = a+b

f = d+e

d = x*2

branch

g = x*2

i = g+h

j=a+b

1

2
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k=d+e8

m=g+h9

entry

exit

0

10

Here it’s clear that only “a+b” and “x*2” are available after the join - so only
“j=a+b” can be eliminated.1

Straight-line code is clearly easier to analyse than general control flow. Some
compilers (and textbooks) recommend breaking the code up into “basic blocks”
— sequences of code with no branches and no labels. Then the CFG has basic
blocks as nodes, and data flow analysis operates on basic blocks, rather than
on primitive three-address operations. Doing this may help with compilation
time - but complicates the presentation. Optimising basic blocks is sometimes

1The expression “x*2” represents a different opportunity - we can use a related dataflow
analysis called “very busy expressions” for this.
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described as “local” optimisation, while optimisation at the level of the CFG
for a whole function is called “global”.

Available expressions as a dataflow analysis problem We define, for
each node n of the DFG, AvailIn(n) and AvailOut(n). These are sets of ex-
pressions - which for our purposes are never more complicated than “a

⊕
b”.

We define U to be the set of all the expressions in the program - in the case of
the example above,

U = {a+ b, d+ e, g + h, x ∗ 2, }

We know that the following must hold:

AvailIn(n) =
⋂

p∈preds(n)

AvailOut(p)

AvailOut(n) = gen(n) ∪ (AvailIn(n)− kill(n))

Where pred(n) is the set of predecessors of node n in the CFG. The crucial part
is gen(n) and kill(n):

gen(n) = the expression, if any, in the RHS of the instruction, assuming it’s a simple arithmetic operation

and

kill(n) = the set of expressions killed by n: all expressions in U that depend on the variable n assigns to.

We also know that
AvailOut(0) = ∅

Where node 0 is the entry point of the program’s CFG.

The exercise

The challenge for you in this exercise is to write down the pseudocode to set up
and solve for AvailIn and AvailOut for all the nodes in a program. You need
to think about how to initialise the AvailIn and AvailOut sets, how to iterate,
and how to detect termination.

(The level of detail intended here is as shown in the lecture slides, Chapter 6
part 2 slide 23 “Solving the dataflow equations”).

Efficiency

(1) Should we visit the CFG nodes starting from the top, or from the bottom,
as we did with live variable analysis? Why?

(2) Can you see how to implement your algorithm using bit-vectors - that is,
using the bits in a 64-bit word to represent the AvailIn and AvailOut sets?
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Using it

Write down the steps needed to use available expressions to actually optimise
three-address code (in abstract terms).

Strategy

What performance consideration might lead you to not eliminate a common
subexpression?
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Exercise 5: Common sub-expression elimination using available ex-
pressions

Sample solutions

The basic iteration structure is exactly what you expect - and very similar to
what we did with live variable analysis. The subtlety is how we initialise the
AvailIn and AvailOut sets. Suppose N is the set of all node ids:

AvailOut(0) = ∅
for n ∈ N − {0}

AvailIn(n) = AvailOut(n) = U
do {

for n ∈ N − {0}
AvailIn(n) =

⋂
p∈preds(n) AvailOut(p)

AvailOut(n) = gen(n) ∪ (AvailIn(n)− kill(n))
} while any AvailOut(n) changes

As we iterate, information propagates through the control-flow graph, theAvailIn
and AvailOut sets get smaller, until we have removed all the expressions that
are not available at each point. We aim, at the end, to have the largest sets
that satisfy the dataflow equations.

Efficiency

Available expressions is a forward analysis - information propagates in a forward
direction. Thus, it makes sense to try to visit the nodes in a forward direction,
in order to propagate information as fast as we can.

When we compute U , we can assign a bit index for each expression - and pre-
compute the bitwise representation of each node’s kill(n).

Using it

You need to look at each node, check it’s RHS, and see whether that expression
is in that node’s AvailIn set. If so, find the instruction that generates it, and
insert an instruction to copy the result to a new temporary register. You can
then replace this node’s RHS with that register.

Strategy

Common sub-expression requires the allocation of an additional register. If this
were to cause spilling, it’s unlikely that the optimisation would be profitable.
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Beyond the course

Functions Suppose instead of primitive arithmetic operations “a*b” where a
and b are scalars, we have expressions like “dotproduct(v,w)”, where v and w
are vectors. We would like to do similar optimisations - common sub-expression
elimination, loop-invariant code motion etc. What does the compiler need to
know about functions like “dotproduct” for this to work? A Haskell compiler
can do this — what about in your (other) favourite languages?

Algebraic equivalences Consider “d = a+b; e = d+c; f = b+c; g = a+f”.
After execution, we should have that e = (a + b) + c, and g = a + (b + c).
Extending our algorithm to catch this is not so easy!

A more ambitious version of this is to go beyond associativity and commutativ-
ity, and to consider distributivity: consider

a ∗ (b+ c) (1)

and
a ∗ b+ a ∗ c (2)

The former does less work. That latter exposes sub-expressions that might
appear elsewhere in the program - or might be loop-invariant. When should we
rewrite expressions like (1) to (2), and when should we rewrite the other way?

Associativity Find values for floating-point (float) variables a, b and c so
that a+ (b+ c) ̸= (a+ b) + c.

Bonus: Find values for floating-point (float) variables a, b and c so that
min(a,min(b, c)) ̸= min(min(a, b), c).
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