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Abstract. Transactional memory is a parallel programming model pro-
viding many advantages over lock-based concurrency. It is one important
attempt to exploit the potential of multicore architectures while preserv-
ing software development productivity. This paper describes the design
of a transactional memory extension for GCC, and highlights research
challenges and perspectives enabled by this design.
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1 Introduction

Despite massive investments in Transactional Memory (TM) research and devel-
opment, the academic and industrial proposals have not yet converged towards
a broadly accepted language semantics. This proves the vitality and originality
of the ongoing research, but it delays the emergence of production-quality, TM-
enabled compilers and TM-based parallel applications. This is a major roadblock
for wider adoption of TM mechanisms by the software industry. This in turn
restricts the relevance of the few available benchmarks, impacting the method-
ological soundness of the majority of TM work.

This paper describes the design of a transactional extension for the C lan-
guage, implemented in the GNU Compiler Collection (GCC). This design derives
from the pioneering work of Intel [1]. This work has recently led to an important



standardization effort let by Ali-Reza Adl-Tabatabai, from the syntax to the Ap-
plication Binary Interface (ABI), through the semantics (and memory model)
and interactions with existing programming languages and practices.

Participating in this important standardization effort is a necessary step to-
wards a mature TM technology, upon which software developers and parallel
computing research depend. In this context, we highlight some important ongo-
ing research opportunities and challenges.

Transactional memory is a set of a parallel programming constructs and
the accompanying programming patterns [6, 5]. It borrows database semantics,
terminology and designs to address the atomic execution problem. In contrast
to traditional low-level synchronization mechanisms, the programmer does not
manage locks directly but relies on a more abstract, structured concept: an
atomic block, hereafter called a transaction. From the programmer’s point of
view, atomicity is understood as two-way isolation of shared memory loads and
stores within a transaction. From an implementation point of view, it allows for
optimistic concurrency, with speculative conversion of the coarse-grain critical
section into finer-grain, object-specific ones. The ability to correctly and effi-
ciently transpose coarse-grain transactions into fine-grain, speculative concur-
rency is the key challenge for TM research and development. Both semantical
and performance issues lead to a vast amount of studies and results [9]. Because
of this implicit support for speculative execution, TM programming patterns gen-
erally include failure atomicity mechanisms, with programmer-controlled abort
and retry constructs. These constructs are, for a part, complementary to parallel
programming, and can improve the software development productivity at large.

Based on this design and implementation effort, we are conducting research
on compiler optimizations to reduce the performance penalty of STM systems.
We also study the potential of TM to support automatic parallelization, en-
hancing the support for generalized and sparse reductions in the automatic par-
allelization pass of GCC.

The structure of the paper is the following. Section 2 discusses related work
in the area of compiler support for transactional memory. Section 3 presents
the design and implementation in GCC; it also reviews ongoing research and
development regarding TM-aware and TM-specific compiler optimizations. Sec-
tion 4 discusses more long term research opportunities, before we come to some
preliminary conclusions in Section 5.

2 Related Work

Let us discuss the most closely related work, starting with the papers that influ-
enced our semantical choices and compilation strategy. This paper studies TM
in the context of unmanaged languages only, with a word-based instrumentation
of shared memory accesses in transactions. In this context, it is also natural to
assume weak isolation of transactions with respect to non-transactional code;
this comes with obvious limitations in terms of concurrency guarantees and co-
operation with legacy code [9].



Many semantical variants of transactions have been proposed and investi-
gated. The baseline semantics in our design is the one of a critical section guarded
by a single lock, shared by all transactions. This choice is consistent with the
original concept [6] and with most industrial designs; it offers composability and
liveness guarantees, and is the only one for which a sound, intuitive and rea-
sonably efficient weakly-consistent memory model has been proposed [10]. Our
design is compatible with multiple transactional memory runtimes, facilitating
its adoption in research environments and leveraging existing software support.

At compile time a TM-enabled compiler substitutes accesses to shared mem-
ory inside transactions with calls to a Software Transactional Memory library
(STM). This library may come with hardware support, like in the Sun Rock
processor; this design is called Hybrid Transactional Memory (HTM). Those ap-
proaches differ significantly in terms of shared memory accesses overhead. In the
STM approach, the role of compiler optimizations is paramount to mitigate this
overhead [16].

Some researchers propose transactional memory as an enhancement to
OpenMP [11, 2]. These proposals include a variety of new transactional direc-
tives, such as #pragma omp sections transaction grouping together indepen-
dent sections that are treated as transactions. OpenTM [2] is implemented in
GCC and supports two nesting variants: open and closed nesting. Open nesting
publishes the state of an inner transaction in case the outer transaction aborts
whereas closed nesting discards the changes from the inner transactions caus-
ing no side effects; open nesting allows for additional optimizations to happen at
compilation and runtime, but breaks major assumption about transactional exe-
cution (it is intended for expert library developers). An extension to the omp for
directive is also proposed, omp transfor, executing the loop iterations in paral-
lel as transactions. Furthermore, the programmer may specify the scheduling of
these loop iterations and enforce sequential commit of the transactions (relying
on the quiescence mechanism) to enable a memory consistency behavior com-
patible with weakly isolated, single-lock execution [10]. Milovanović et al. [11]
study the interaction between OpenMP 3.0 tasks and transactional execution.
In particular, an optional list holds the shared memory locations to instrument
or not instrument. This mechanism provides the programmer with a verbose
yet effective means to reduce instrumentation overhead. A similar mechanism is
proposed in IBM’s TM-enabled XL Compiler [8]. We decided not to bind our
TM extensions and compiler support to OpenMP, keeping our design as generic
and simple as possible. This choice does not contradict future TM extensions of
GCC’s OpenMP passes and runtime.

Intel develops McRT, a runtime system for multicore architectures, which
includes an STM library implementation. It comes with language and compiler
support for transactions [16], and transactional versions of C library functions
such as malloc and free [7]. Concluding from their experience with transactional
workloads, the overhead of strong isolation [13], and the desired TM properties
for the most important concurrent programming patterns, they advocate for a
combination of single-lock semantics, weakly isolated transactions and weakly



consistent model [10]. This combination also drives our own design as it avoids
many performance pitfalls, semantical flaws and unrealistic assumptions on the
compilers.

Tanger is an open source compiler framework that supports the use of trans-
actions [4]. It is based on the LLVM (low level virtual machine) intermediate
representation and generates code for the TinySTM library [15]. Further en-
hancements to Tanger allow the conflict detection algorithm of TinySTM to
operate on objects in an unmanaged environment [12]. This project influenced
our implementation and led to the selection of TinySTM as the first runtime for
the TM-enabled GCC.

3 Design

This section presents the design decisions and additional mechanisms for TM
support in GCC (called GTM). One of the major design goals is to be orthogonal
to other parallel programming models. Thus, the implementation is not based
on OpenMP.

int gvar;
int main () {

int a = 15;
#pragma tm atomic
{

gvar = ++a;
}

printf ("Global variable %d\n", gvar);
}

Fig. 1. Simple example

We wish to support the optimistic execution of transactions, in the form
of the simple example in Figure 1. To make this possible in C and in GCC,
several enhancements are necessary. Besides some minor modifications to the C
front-end to add support for the #pragma tm atomic and __tm_abort, we imple-
mented two compilation passes: the expansion and the checkpointing pass. New
GIMPLE tree codes GTM_TXN, GTM_TXN_BODY, and GTM_RETURN are introduced
while parsing the transactified source code. The construction of the control flow
graph is altered according to the OpenMP scheme for atomic sections: a basic
block is split everytime a GTM_DIRECTIVE is encountered; this scheme simplifies
the identification and management of transactions during the expansion pass.

3.1 Expansion

The first pass is called gtm exp. It performs the following expansion tasks:



– function instrumentation, for all functions marked as callable from a trans-
action;

– recombination of the previously split basic blocks;
– instrumentation of shared-memory loads and stores with calls to the STM

runtime — read or write barriers.

We currently instrument all pointer-based accesses. GCC’s escape informa-
tion will be used to later restrict this instrumentation to shared locations only.

In addition, the pass checks for language restrictions that apply for transac-
tions. For instance, invocations of __tm_abort are only valid in the scope of a
transaction. To access and process transactions conveniently, a gtm region tree
is built. The region tree facilitates the flattening of inner transactions.

3.2 Checkpointing

In case a transaction is rolled back, the effects on registers and stack variables
have to be undone. The procedure to revert to the architectural state before
entering the transaction consists of a call to setjmp combined with saving the
contents of variables. We refer to this mechanism as checkpointing. An alterna-
tive to checkpointing variables, is to copy and restore the active stack frame as
described in [4]. When the transaction rolls back the old stack frame is substi-
tuted for the new one to restore the previous state. Which of the two approaches
is superior depends on the use case. If many variables are live-in to the trans-
action, copying a continuous amount of memory is expected to be faster than
copying each variable exclusively. In case the amount of live-in variables is small
compared to the active stack frame, copying and replacing variables is faster. We
believe that the latter use case is more common. Thus, the second compiler pass
implements the checkpointing scheme similar to the one in [16]. In addition the
setjmp/longjmp mechanism is used to restore the actual register file. During
the compiler pass one additional basic block is introduced. This basic block is
connected via the control flow so that it is executed in case of a rollback and
restores the values of variables. The saving of the values (and storing them into a
temporary variable) is done before calling setjmp. In order to reduce the number
of copy and restore operations, only variables that are live-in to the transaction
are considered. The availability of liveness information require the pass to op-
erate on SSA-form. For a seamless integration with the previous gtm_exp pass,
the gtm_checkpoint pass removes the marker and adds the real checkpointing
scheme. The outcome of this procedure is illustrated in Figure 2: the instruction
sequence before the call to setjmp captures the value of the live-in variable a
and saves it into the temporary variable txn_save_a. In case the transaction has
to roll back, the library executes a call to longjmp and returns to the location
where the setjmp was called. Thus, it returns from the setjmp with a non-zero
return value. Subsequently, the basic block on the right hand side of Figure 2
gets executed and the value of the variable is restored to a. The Φ node on the
next basic block merges the different versions of a.



. . .
txn_handle.14 = __builtin_stm_new ();

jmp_buf.15 = __builtin_stm_get_env (txn_handle.14);

txn_save_a.16_13 = a_2;

ssj_value.16 = _setjmp (jmp_buf.15);

if (ssj_value.16 == 0)

goto <bb 5>;

else

goto <bb 4> (<L2>);

<L2>:;

a_15 = txn_save_a.16_13;

# a_16 = PHI <a_15, a_2>

<bb 5>:

__builtin_stm_start (txn_handle.14, jmp_buf.15, &0);

. . .

false

true

live-in: a

Fig. 2. Checkpointing mechanism after the gtm checkpoint pass.

3.3 Optimizations

This paragraph outlines some opportunities and directions for optimization.
First exploiting the properties of the underlying intermediate representation

(GIMPLE) yields some benefits. GIMPLE distinguishes between memory and
register variables. Thus, a variable living in memory needs to be loaded into a reg-
ister prior to being used. All memory loads are already assigned to a temporary
variable. In order to reduce the number of introduced temporaries, the existing
loads and stores could be directly substituted by calls to the STM run-time,
reducing the number of temporary variables and, so, the work of optimizers.

Second the STM barriers, represented as builtins (or intrinsics), should make
use of the function attributes provided within GCC. Optimizers determine the
amount of valid optimizations depending on the function attribute. The current
approach is to set an attribute signifying that the function call does not throw an
exception for all barriers. Relaxing this conservative choice for stm_load barriers
to a pure attribute, usually used for functions not writing to memory, seems
promising to enable few optimizations while preserving the correctness of the
optimized code. Not all STM barriers qualify for relaxed attributes. For instance
the stm_start and stm_commit-barriers enclosing the body of a transaction, are



to remain as strict as possible. Otherwise store sinking or load hoisting optimizers
may sink stores out of transactions and loads into them. Both optimizations
potentially violate the intention of the programmer and weaken the boundaries
set by transactions. Thus, the resulting code would not be correct.

The third optimization is to subdivide the passes in order to exploit the opti-
mizations on SSA form. The expansion pass would be split into two phases. The
remaining first part would only expand the stm_start and stm_commit barriers.
Whereas the second part is placed at the end of the SSA optimization passes and
introduces the stm_load and stm_store barriers. The proposed design utilizes
the optimizations on SSA form and respects the properties of transactions.

When transactions occur in OpenMP parallel sections, we may rely on the
shared/private clauses to refine the set of variables and locations to be instru-
mented by memory barriers. This optimization was proposed in previous trans-
actional extensions to OpenMP [11, 2], but it may of course be designed as a
best-effort enhancement of our language-independent TM design.

Further design and implementation of these optimization is under way in the
context of the transactional-memory branch of GCC. This branch initiated
from our design, and was opened in October 2008 by Richard Henderson (Red
Hat). It uses the same ABI as Intel,4, it implements an Inter-Procedural Analysis
(IPA) pass to decide which functions to clone and interacts conservatively with
SSA-based optimizations. It is not yet fully functional, but should subsume our
initial implementation by the end of 2008.

4 Research Perspectives

This section gives some ideas how potential research is enabled by the support for
transactional memory in GCC. The optimistic concurrency exhibited by trans-
actions combined with their guaranteed consistent execution can be exploited to
the benefit of many research projects.

Further research may target the optimization of transactional barriers as well
as emerging combinations of compiler and run-time support in order to speed up
execution time of transactions and investigate trade-offs between compiler and
runtime support to implement transactional features. In addition, the current
implementation provides the entry point for research concerning the implications
from the memory model on transactions with GCC.

The next section shows results demonstrating the potential of combining the
automatic parallelization (parloops) pass and the TM infrastructure in GCC.
The results show the speedup using transactions compared to synchronization
primitives based on (POSIX thread) locks and higher level OpenMP critical
sections.

4.1 Optimizations and Extensions

Transactional environments require special mechanisms to enable developers to
apply common programming patterns. It is the case of the publication and priva-
4
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition-20#ABI



tization patterns that frequently arise while programming with locks [10]: they
feature concurrent accesses to shared variables inside and outside transactions.
The absence of races is guaranteed by the lock semantics and by any weak mem-
ory model that subsumes Release Consistency (RC).

Semantical support for these patterns is particularly helpful when transactify-
ing legacy code with non-speculative critical sections. Indeed, weak isolation and
weak memory consistency models do not guarantee that such publication and
privatization patterns will behave consistently with a lock-based implementation.
Current STM designs propose quiescence as the mechanism to solve the prob-
lem occuring while one transaction tries to privatize a data member whereas the
other tries to write into it [10]. Quiescence enforces an ordering of transactions
so that transactions complete in the same order as they started. Besides allowing
the programmer to use well known constructs and follow classical programming
patterns, this mechanism comes with a significant performance penalty. We be-
lieve that further research in this area is inevitable to speed up the execution of
transactions while retaining a consistency model compatible with easy transac-
tification of lock-based code — here single-lock semantics is sufficient [10].

Calling legacy code from inside transactions constitutes another problem for
programming in a transactional environment, because effects of these functions
can not be rolled back. The same holds true for system calls. The solution is
to let transactions execute in, or transition to, irrevocable mode. The runtime
assures that the irrevocable transaction is the only one executing and, thus, can
not conflict with other transactions. Hence, the transaction runs to completion.
[17] presents possible implementations and applications of irrevocable transac-
tions, whereas [14] also evaluates different optimized strategies to implement
irrevocability. Further research concerning irrevocability could benefit from the
presented implementation.

Link-Time Optimization (LTO) as well as Just-In-Time (JIT) compilation
are well-known compilation approaches that are not yet extensively applied to
transactional workloads. The former has a high potential for pointer-analysis-
based optimizations (like escape analyses to eliminate unnecessary barriers),
while the latter can substitute dynamic code generation and transaction instru-
mentation rather than static cloning of functions callable from transactions.

4.2 Parallelization of Irregular Reductions

Reduction operations are a computational structure frequently found in the core
of many irregular numerical applications. A reduction is defined from associa-
tive and commutative operators acting on simple variables (scalar reductions)
or array elements inside a loop (histogram reductions). If there are no other
dependencies but those caused by reductions, the loop can be transformed to
be executed fully parallel, since — due to the associativity and commutativity
of their operands — iterations of a reduction loop can be reordered without
affecting the correctness of the final result.

Currently, the automatic loop parallelization pass in GCC is capable of rec-
ognizing scalar reductions. Once the reduction pattern has been detected the



int image [1024][768];
int main ()
{

int hist [256];

#pragma omp parallel for
for (i=0, i <1024; i++)

for (j=0; j <768; j++)
{

/* Some reduction - independent
* work parameterized with M
*/

WORK;
pixval = image[i][j];
/* Begin critical section */
hist[pixval ]++;
/* End critical section */

}
}

Fig. 3. Example of a reduction pattern

code generation step relies on the OpenMP expansion machinery to distribute
iterations of the loop into several threads. Reduction parallelization employs a
privatization algorithm: the transformed loop has a parallel prefix, where each
thread accumulates partial results in local copies of the reduction variable, fol-
lowed by a cross-thread merging phase in which partial results are combined into
the shared (reduction) variable.

The reduction recognition routine in the automatic parallelization pass can be
extended to detect sparse reductions. Sparse reductions correspond to inductive
dependences on the reduction variable/array that only exists for a fraction of
the loop iterations. This is generally the case for moderate-to-large reductions
with indirection variables (e.g., histograms), as well as some reductions guarded
with data-dependent control flow.

A parallel reduction algorithm has to be chosen for the code generation of
sparse reductions. A simple solution is that of enclosing the accesses to the reduc-
tion variable/array within a critical section. The main drawback of the typical
lock-based implementation of this method is that it exhibits a very high synchro-
nization overhead. We can leverage the infrastructure for transactional memory
programming within GCC to devise an alternative approach to reduction paral-
lelization in which we enclose the critical section in an atomic transaction, and
let the underlying STM runtime detect and resolve possible conflicting accesses
to same array locations. Many scientific and numerical applications operate on
large and sparse datasets; they are amenable to transactional parallelization
since we can optimistically assume that only few conflicting accesses to the same
memory locations will manifest at runtime.

As a motivating example we show here the results of parallelization of a
synthetic loop containing a histogram reduction, see Figure 3. To model the effect
of varying amount of work besides the reduction within the loop, we employ a



WORK section consisting in an additional loop nest which iterations have been
parameterized with variable M . This loop only operates on data independent of
the reduction operation. Loop iterations are distributed between 4 threads, and
we compare three different synchronization schemes, namely locks (pthreads),
OpenMP critical directive and transactions. The latter is achieved through the
use of the #pragma tm atomic. Calls to the STM library (TinySTM v.0.9.0b1
[15]) for read/write barrier instrumentation and transaction rollback/restart are
automatically instantiated by the GTM compiler.
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Fig. 4. Speedup over sequential execution using locks, OpenMP critical sections, and
transactions

To account for the effect of different degrees of contention we consider his-
togram creation for two synthetic images: a completely black image (our worst
case), and an image with randomly generated pixel values.

We show in Figure 4 the results of the execution of the example loop on a
Intel Core 2 Quad CPU (4MB L2 cache). On the X-axis we consider increasing
amounts of work in the loop body by increasing the value of the parameter M.
On the Y-axis we plot the speedup of the various parallelization schemes against
the serial version of the loop.

In the random image there is low contention for array locations, and the per-
formance of the optimistic TM approach is always better than the others. We
can achieve speedups with this technique even for small values of M . However, as
expected, high contention on array elements has a strong impact on the perfor-
mance of TM. This can be seen comparing the trend of the TM curve in the two
plots, and is justified by the fact that the overhead for frequent transaction roll-
back and restart is greater than that carried by the locks. Clearly this behavior
is also affected by the value of M . When there is little work besides the reduc-
tion in the loop the overhead is predominant for all of the proposed techniques,
but in high-contention scenarios TM is the one that is mostly affected by this
parameter, not only because it influences the frequency of aborts and rollbacks,



but also because the overhead for starting and committing a transaction is not
amortized by other computation.

These two factors are directly related to the sparsity of the dataset on which
we operate and to the granularity of the transaction, for this reason we consider
them as the two main parameters to be investigated in real workloads to dis-
cover the boundaries wherein a reduction parallelization algorithm that exploits
transactions is successful. First experimental results are encouraging, since they
show that adequately tuning these parameters transactional approach to irreg-
ular reduction parallelization can bring significant performance improvements
with respect to the use of locks.

5 Conclusion

We presented a transactional memory extension of the GNU Compiler Collec-
tion, and stressed its language-independent and STM-oriented design (yet com-
patible with hybrid hardware/software implementations). We also highlighted
key optimization challenges and opportunities; together with Yoo et al. [18] and
the more pessimistic study of Cascaval et al. [3], we stress the importance of
compiler and joint language-compiler studies for the future adoption of TM in
real world applications. We believe that GCC’s infrastructure is well suited to
address the 4 main issues identified by Yoo et al. [18]:

1. false conflicts (choose optimal instrumentation granularity);
2. over instrumentation (leverage inter-prodecural escape analysis);
3. privatisation safety (reduce the amount of quiescing transactions);
4. overhead amortization.

We also initiated research towards integrating TM in an enhanced automatic
parallelization strategy, where much of its design and implementation can be
reused for the parallelization of sparse, generalized reductions. In this context,
and together with failure atomicity (explicit abort), TM may also be used as a
runtime support for speculative execution.
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