
An End-to-End Design Flow for Automated
Instruction Set Extension and Complex

Instruction Selection based on GCC

Oscar Almer, Richard Bennett, Igor Böhm, Alastair Murray, Xinhao Qu,
Marcela Zuluaga, Björn Franke, and Nigel Topham

Institute for Computing Systems Architecture
School of Informatics

University of Edinburgh
10 Crichton Street

Edinburgh EH8 9AB
United Kingdom

Abstract. Extensible processors are application-specific instruction set
processors (ASIPs) that allow for customisation through user-defined in-
struction set extensions (ISE) implemented in an extended micro archi-
tecture. Traditional design flows for ISE typically involve a large number
of different tools for processing of the target application written in C,
ISE identification, generation, optimisation and synthesis of additional
functional units. Furthermore, ISE exploitation is typically restricted to
the specific application the new instructions have been derived from.
This is due to the lack of instruction selection technology that is capable
of generating code for complex, multiple-input multiple-output instruc-
tions. In this paper we present a complete tool-chain based on GCC
for automated instruction set extension, micro-architecture optimisation
and complex instruction selection. We demonstrate that our approach is
capable of generating highly efficient ISEs, trading off area and perfor-
mance constraints, and exploit complex custom instruction patterns in
an extended GCC platform.

1 Introduction

Industry’s demand for flexible embedded solutions providing high performance
and short time-to-market has led to the development of configurable and ex-
tensible processors. These pre-verified application-specific processors build on
proven baseline cores while allowing for some degree of customisation through
user-defined instruction set extensions (ISE) implemented as functional units in
an extended micro-architecture.

Existing design flows targeting ISE such as [1] are hardware-driven and only
consider compilers and, in particular, the ability to exploit the newly generated
ISEs, as an afterthought. This has led to a situation where code generation for
complex instructions such as ISEs is either restricted to a single application
from which the ISEs have been derived or is left at the responsibility of the

Fig. 1. Design flow of our framework for automated construction of ISEs.

(assembly) programmer. Clearly, this approach is not scalable with the growing
size and complexity of embedded applications

In contrast, our integrated design flow treats the compiler, more specifically
GCC, as a central component in the identification and exploitation of ISEs,
thus, enabling reuse of complex instruction patterns across applications. Unlike
previous work [2–8] that addresses isolated problems such as ISE identification,
selection and implementation we cover the entire design flow from the source
code level down to the physical processor implementation. We also introduce the
EnCore, our extensible processor core, allowing us to synthesise full extensible
designs from Verilog and standard cell libraries.

The diagram in figure 1 illustrates the high-level design and compilation flow
of our automated ISE framework. Initially, GCC is used to process an application
and construct a data flow graph (DFG) derived from its internal GIMPLE repre-
sentation. Subsequently, the DFG is passed to the ISE generator for the analysis
and extraction of candidate ISEs. The feedback-driven micro-architecture gener-
ator is in charge of selecting and implementing the most profitable ISEs based on
heuristics that can be enhanced with performance, area and power information.
This stage will also produce additional functional units using Verilog, suitable
for integration in the baseline processor core. The toolgen program then extends
the EnCore simulator and GCC compiler with the functionality to support the
newly generated ISEs. The extended tools can then used to compile and simu-
late new applications, enabling the fully automated reuse of complex instruction
patterns.

The remainder of this paper is structured as follows. In section 2 we present
the background on extensible processors and automated instruction set extension
as well as our specific EnCore platform. The related work is discussed in section
3. This is followed by a presentation of our GCC based design and compilation
flow in section 4. Finally, we summarise and conclude in section 5.

2 Background

In this section we briefly introduce extensible processors and automated instruc-
tion set extension in general, before we describe our specific target platform, the
extensible EnCore processor.

2.1 Extensible and Reconfigurable Processors

Fig. 2. A simplified system-level view of ARC700 family architecture, demonstrating
the pre-verified baseline core and its connection to an ISE through custom registers
and arithmetic units.

Extensible processors contain a number of variable components, essentially
opening up design spaces inside the processor core for exploration by the designer
of an ASIP-based system. Extensions to registers and supporting arithmetic logic
are implemented outside of a prefab baseline core, the latter implementing all of
the expected basic RISC functionality. In this manner users may make the best
use of the degrees of freedom provided, with the knowledge that their extensions
will not make unpredictable timing changes to the core as a whole. Architectures
are extended by implementing extensions in SystemC or Verilog with respect to
the architecture’s extension interface. Examples of extensible processors include
the ARC700 (see figure 2), Tensilica’s XTensa [9], and Altera’s NiosII.

Many extensible processors offer large degrees of flexibility through custom-
specific instruction set extensions (ISE), which may help improve performance
of compute-intensive kernels. As a result of this specialisation an optimised
application-specific processor is derived from a generic processor template.

In order to explore different ISEs during the design stage and to trade off
various, partially contradictory design goals (e.g. performance, power, chip area)
tool support is indispensable. Existing commercial (e.g. [9]) and academic (e.g.
[1]) tools analyse an application written in C, identify candidate instruction
templates, modify the application’s source code and insert handles to the newly
created instructions. In general, the overall effectiveness of this approach de-
pends on the designer’s ability to generate complex instruction templates that
(a) can replace a sufficiently large number of simple machine instructions, (b)
are frequently executed and (c) can be efficiently implemented.

The automation of ISE exploration has been actively studied in recent years,
leading to a number of algorithms [6, 2, 7, 8] which derive the partitioning of
hardware and software under micro-architectural constraints. Most current ap-
proaches to automated ISE incorporate two phases:

1. Identification: whereby basic blocks are analysed to produce ISEs in the
form of DFGs.

2. Selection: whereby a subset of the identified ISEs of the previous phase are
chosen for implementation.

When extending an instruction set to cover a complete class of applications
we can expect larger numbers of extension instructions to be identified, effec-
tively representing the union of the extension instructions required by each ap-
plication in the class. Even with a single complex application it is possible to
find large numbers of potential extension instructions, each of which adds to the
die area of the system. To avoid bloating the die area with large numbers of
extension instructions it is important to identify and exploit such commonality
between instructions and, where possible, to share hardware resources when this
represents a good trade-off between die area and execution time. Brisk et al [10]
have explored an approach based on finding the longest common sub-string, in
order to determine which parts of a pipelined data path may be shared. This
work was extended by Zuluaga et al in [11] in order to introduce parameters to
control the process of merging data paths for resource sharing. The latter work
focuses more on parameter exploration, allowing for integration into a design
space exploratation framework.

2.2 Compiler Transformation for Instruction Set Extension

Early efforts to combine code transformation and ISE have been targeted at
CDFG transformation towards a more efficient arithmetic structure [12]. This
operates post automated ISE (AISE), so does not directly contribute to the
design space search but improves upon the result.

In [13] it is shown that an exploration of if-conversion and loop-unrolling
source-to-source transformations is successful in enabling better performing AISE.
This work utilises control-flow transformations to move larger regions of the tar-
get application into the AISE algorithm at-once. The work in [13] demonstrates
that new search methods and heuristics can be developed to control the appli-
cation of transformations, with respect to the new set of goals inherent in ISE
as compared to code generation.

More wide-ranging exploration for the space of compiler transformations in
combination with instruction set extensions has been attempted in [14]. The
work of [14] concluded that there is an unpredictable correlation between the
set of transforms used prior to AISE and the speedup obtained overall. It is
likely that further machine-learning approaches addressing this space will yield
far better results than hand-crafted heuristics.

Decode Operands Execute Result Commit

Early
Mux

Late
Mux ALU

Tags

Data

Tags

Data

Tags

Result
select

Hit &
Select
Logic

fast
sum

Load data

fast
track

slow
track

Data
Data

Tags

AlignFetch

Tags

Data

Tags

Data

Tags
Hit &
Select
Logic

Data
Data

Tags
Q

B

I

L

P
C

P
C

P
C

P
C

P
C

P
C

P
C

1

0

1

0

Next PC
Logic

Commit
Logic

Next
Fetch

PC

P
C

Pipe

DMP

CPU

GP
Register

File
r0 - r31

By-
pass

Scoreboard
r32 - r55

AFU / CFA Datapath
(multi-cycle operation)

Early
Mux

B
ypa

ss logic

AFU
Register

File
r32 - r55

Fig. 3. Architecture of the 7-stage EnCore processor.

2.3 The EnCore Processor

The EnCore processor is developed entirely within the Institute for Computer
Systems Architecture (ICSA) at the University of Edinburgh. The core is writ-
ten in Verilog, and currently exists as two main variants; five and seven stage
pipeline depth versions, each having varying cache configurations. Both feature
a reasonably complete implementation of the ARCompact instruction set (as
defined by the commercial ARC700 core), to the point that the arc-elf32 version
of GCC can be used for compilation of C code for the processor. The EnCore
does not currently feature an MMU, but this is in development and is likely to
be incorporated into a later version of the EnCore.

The EnCore has been tested with various configurations in FPGA fabric,
and has through this method been verified as correctly executing compiled C
code obtained through the GCC arc-elf32 compiler. The five stage core closes
timing at 25MHz using a Spartan-3 1600E FPGA as the implementation fabric,
utilising approximately 50% of the available resources, and is expected to run
two or three times faster using a newer FPGA family. The seven stage pipeline
variant is expected to tolerate a roughly 40% higher clock frequency than this.

The core can be extended using modules written in Verilog derived from the
ISEs. While it is expected that these will increase the logic in the core, in some
cases by a large factor, we are not expecting it to impact the maximum operating
frequency to a large degree. ISEs incorporated do not affect the critical path of
the core itself, and are timed to fit with the clock frequency of the main core
pipeline.

The mechanism by which the main core and the extension logic communi-
cate is covered in figures 3 and 4(a). Essentially the extension registers of the
ARCompact ISA are mapped to a set of 10 vectors, of which up to three can be
selected in each extension instruction. There is also a permutation field, allowing
for the elements in the vectors to be permuted before being sent to the extension
logic.

We are currently in the process of finalising a tape-out of the five-stage variant
of the EnCore for fabrication, configured with 4kB of instruction cache and 4kB
of direct-mapped data cache. This is being attempted using a 130nm process, and
it is expected to run at or close to 250MHz (ten times faster than the FPGA
implementation). The total area for the EnCore using this process is roughly
1mm2 including all the caches.

0000V0

r47r43r39r35V10

r46r42r38r34V9

r45r41r37r33V8

r44r40r36r32V7

r55r54r53r52V6

r51r50r49r48V5

r47r46r45r44V4

r43r42r41r40V3

r39r38r37r36V2

r35r34r33r32V1

(a) Extension register file organisation. (b) Processor layout.

Fig. 4. Extension register file organisation and layout of the EnCore processor.

3 Related Work

ASIP design automation is a much studied area. Tensilica have the most notable
automated effort [9] within commercial offerings, in that their approach is au-
tomated from source to structural extension of their XTensa processor [15]. For
the purposes of research however, their tools are not open enough to explore the
algorithms and alternative methodologies which are potentially beneficial to the
overall process. In addition, there is at the time of writing no feedback apparent
between the identification and selection phases of their approach. The user is ex-
pected to choose the design point from a pareto curve of area versus acceleration,
as opposed to specifying constraints which the tool will meet automatically.

The combination of the LISATek and CoSy commercial packages has proven
in the past to be a useful methodology for design space exploration of ASIPs
including ISE. This approach has become known as “Compiler-in-Loop Design
Space Exploration” [16]. Although the combination did not originally contain an
automated component for the identification of new instructions later academic
work has successfully combined a measure of design automation at this level
[1]. It should be noted that the approach in [1] does not allow for mapping
the new instructions to an application other than that originally analysed. This
is because the new instructions are inserted as they are generated, treated as
compiler intrinsics.

Other architectural approaches to this problem include ADRES [4], and
Chameleon [17] amongst others. These depart from the standard RISC method-
ology to combine ISE with more eclectic hardware. The ADRES architecture [4]
combined a VLIW processor with a coarse-grained reconfigurable array (CGRA),
mapping from C-code to the ILP available on both the VLIW and CGRA units.
The array is regularly arranged in a 2D grid, without specialisation towards any
particular application other than via the width and height of the grid and the
interconnect. The Chameleon architecture [17] and associated Montium tile pro-
cessor are targeted very much towards streaming DSP applications, focusing on
producing a low-power high-speed architecture able to be reconfigured for a vari-
ety of applications. A run-time mapping tool has been produced to dynamically
map applications to the tiled architecture, making use of the fast reconfiguration
time of the architecture. The architecture is largely fixed at the structural level,
although new tiles could be produced with a more static ASIP bias, due to the
heterogeneity of the tiled architecture.

Code generation utilising complex instructions is a topic which has been
addressed widely by those wishing to target SIMD and DSP instructions (such
as Multiply-Accumulate). Nuzman et al have produced extensions to GCC which
are able to map SIMD instructions automatically to standard C code, for a range
of platforms [18]. The SWARP [5] preprocessor on the other hand uses loop
distribution, unrolling, and pattern matching to exploit complex multimedia
instructions. Yet another graph-based approach of Leupers et al [3] is able to
map simple MAC and SIMD instructions using a manually constructed model of
each instruction. It would be difficult to extend this approach to accommodate
an automated flow.

4 ISE Design and Compilation Flow

In this section we present our framework for automated processor specialisation
and complex instruction selection.

4.1 Overview

Each tool in the framework is represented by a separate binary, with the ma-
jority of information passed between tools in human-readable serialised formats
(largely XML). The overall DSE process is driven by a script of the user’s choos-
ing. The tools include:

– GCC.emitcdfg: a source (.c, .f, .cpp, etc) to XML DFG translator built into
GCC.

– GCC.encorecc: GCC with a modified extensible gas (assembler), taking spec-
ification of the new instructions and mapping them in the code, producing
a binary for the extended architecture.

– isegen: an implementation of a modified version of the ISEGEN [2] algorithm,
including the capability to incorporate feedback on area, power, and actual
hardware latency.

– uarchgen: an implementation of isomorphism-driven selection and resource
sharing based on [11] for ISE; generates a specification in XML of the selected
ISEs, along with Verilog extensions to the EnCore baseline. Information on
instruction area, actual latency, power consumption, can be fed back to the
isegen tool for inclusion in heuristic calculations.

– toolgen: generates extension object source for the ARCompact simulator,
and encore.s which is used to extend the assembler used in GCC.encorecc.

– Simulator: partially cycle-accurate, ISA-extensible ARCompact simulator.
Dynamically linked libraries can be passed to the simulator to describe the
behaviour of new instructions.

See Figure 1 for detail of how these tools are expected to interact in the
setting of AISE DSE. The following points give further details on the working
and use of the tools outlined in Figure 1.

4.2 ISE Generation

The conversion of source code to a format which can be analysed by the var-
ious ISE algorithms is not entirely trivial. For the purposes of this project, a
modified version of GCC (gcc.emitcdfg) is used to convert the source code from
whatever input language it utilises, through GIMPLE (the GCC tree-based SSA
IR), finally to a DFG representation in memory. This DFG representation is
then emitted as XML. The profile information is added through the use of the
GCC profiling options, which are available in the GIMPLE IR when the appro-
priate command line flags are set. The XML is then passed to the isegen tool
for analysis and extraction of candidate ISEs (templates).

An implementation of the ISEGEN identification algorithm is present in the
isegen tool; the procedural nature of the algorithm allows for modification and/or
extension of the heuristic function(s). The heuristic functions are made more
flexible through the use of dynamic linking for additional functions over graphs
processed, and command line parameters for changing weights and other internal
parameters of the partitioning algorithm. It should be noted that the ISEGEN
algorithm is the Kernighan-Lin partitioning algorithm with a specific (published)
[2] heuristic. This tool represents the “Identification” phase of the standard AISE
design-flow, but the framework blurs the line between this phase and the later
“Selection” phase due to feedback. Feedback in this sense is in the form of graphs,
and their associated performance information (latency, area, and power). This
information can then be used when the tool is exploring potential templates
(sub-graphs of application data-flow graphs) for nomination as candidates for
core extension.

4.3 ISE Implementation

Implementation of ISEs requires that instruction selection from the list of avail-
able templates, instruction coding, micro-architectural structure, and latency
information (for scheduling) are all defined or derived. In our framework, this is

Fig. 5. A small example instruction that has been matched to a small example basic
block. The white nodes represent parts of the IR to be implemented by normal scalar
instructions, the light-gray nodes will be implemented by an extension instruction and
the dark-grey nodes represent data movement in and out of the extension unit.

Fig. 6. The shape of a basic block that has been mapped to four separate extension
instructions, two of which are entirely parallel and another two have internal depen-
dencies. Colours are as in figure 5.

the job of the uarchgen tool. In addition, the tool provides specific information
on the performance of templates passed to it (area, latency, power consumption)
in order that this data can be passed back to the isegen tool to update and
complement its heuristics. DesignCompiler and ModelSim are used in order to
perform the relevant synthesis and analysis of generated structural Verilog.

It has been shown by members of our research group that an appropriate
level of resource sharing between functional units implementing each a single ISE
results in a significantly simpler hardware design whilst only modestly increasing
the average instruction latency [11].

Based on existing resource-sharing techniques, the new heuristic controls the
degree of resource sharing between a given set of custom instructions, given
that design objectives are not always extremes as minimum execution time, or
minimum die area. On the contrary, there are many possible intermediate points
in the area-delay relationship, any one of which may be ideal for a given system.

Each instruction is represented as a data flow graph represented by a set of
vertices V and a set of edges E, where vertices are operators, inputs or outputs,
and edges indicate the data dependencies between them. Resource sharing is
induced by the search for maximum common sub-strings between two paths. A
maximum common sub-string is a sub-sequence of vertices that maximises area
reduction. The area of a sub-string is given by the sum of the areas of each
operation within the sub-string.

4.4 ISE Exploitation

Current ISE methodologies are typically limited to single applications, i.e. there
is no compiler support available for complex instructions patterns generated by
previous ISE identification and synthesis stages. Instead, the ISE identification
tool specifies where the instructions should be used.

To be able to attempt to re-use instructions in additional programs to the
ones they were generated for we implemented a complex instruction selector
within GCC. Unusually, this performs instruction selection at the GIMPLE level.
The reason for this is that it identifies matches based on the same internal rep-
resentation as the ISE identification tool and this representation is constructed
from GIMPLE, it also avoids the well-known difficulties in extending the expand
GENERIC-to-RTL pass with machine-specific higher level instructions. Only
complex instructions are matched by this pass, so many GIMPLE nodes will not
be covered, these are handled by standard instruction selection in the back-end.
The standard back-end is not used with the complex instructions as its pattern
matching capabilities are not able to handle the large graphs that describe the
instructions being considered here.

This pass operates by constructing the data flow graph of the instructions
found during the ISE identification stage (the structure is described in an input
XML file) and constructing the same internal representation as used by the ISE
identification tool for each basic block. A sub-graph isomorphism library based
on the VF2 algorithm [19] is used to find where each instruction may be used
in each basic block. Once all matches have been found the original GIMPLE is

modified, the GIMPLE nodes that are to be covered by an extension instruction
are removed and an extended asm node is inserted in their place. This node is
constructed in the exactly the same way as the C front-end constructs this type
of node when an extended asm statement is used in a C program. The reason
for using extended asm nodes is that they provide the level of flexibility that
we require due to having to be able to handle arbitrary instruction specifica-
tions that are described in the input XML, including unusual register allocation
constraints that are not specified in the back-end, i.e. the vectors and permu-
tation units described in section 2.3. Additionally, as it is expected that this
tool will be used with-in an iterative design space exploration loop any solution
that required recompiling the compiler for each new instruction specification was
unacceptable.

A trivial hand-written example of an instruction matched to a basic block
is shown in figure 5. The graph shows a basic block that contains two non-
dependent integer multiplies and an addition, the multiplies are implemented
by an extension instruction. The copy nodes (shaded dark-grey) should be able
to be eliminated during register allocation, so won’t actually result in any move
instructions being used. Figure 6 shows a more realistic example where four
instructions are matched to a larger basic block.

5 Summary and Future Work

We have presented a compiler-centric end-to-end design flow for automated in-
struction set extension and complex instruction selection based on GCC. Tar-
geting an extensible baseline processor our tools analyse an application, identify
and implement optimised instruction set extensions and extend the entire soft-
ware development tool chain including simulator and compiler. Using a graph
isomorphism based instruction selector this extended GCC compiler is able to
automatically exploit and reuse complex instruction patterns and, hence, pro-
vides a much more scalable and powerful approach to ISE exploitation than any
of the existing methodologies.

Future work will focus on integrating our tools with GCC-ICI to enable joint
iterative search over compiler transformations and ISE. Furthermore, we will
further improve the data movement between the base and extension registers as
our current approach may occasionally introduce redundant register-to-register
copy operations.

References

1. Leupers, R., Karuri, K., Kraemer, S., Pandey, M.: A design flow for configurable
embedded processors based on optimized instruction set extension synthesis. In:
Design Automation & Test in Europe (DATE), Munich, Germany (2006)

2. Biswas, P., Banerjee, S., Dutt, N.D., Pozzi, L., Ienne, P.: ISEGEN: An iterative
improvement-based ISE generation technique for fast customization of processors.
IEEE Transactions on VLSI 14(7) (2006)

3. Leupers, R., Bashford, S.: Graph-based code selection techniques for embedded
processors. ACM Trans. Des. Autom. Electron. Syst. 5(4) (2000) 794–814

4. Mei, B., Vernalde, S., Verkest, D., Man, H.D., Lauwereins, R.: ADRES: An ar-
chitecture with tightly coupled VLIW processor and coarse-grained reconfigurable
matrix. Field-Programmable Logic and Applications LNCS 2778 (2003) 61–70

5. Pokam, G., Bihan, S., Simonnet, J., Bodin, F.: SWARP: a retargetable preprocessor
for multimedia instructions. Concurr. Comput. : Pract. Exper. 16(2-3) (2004) 303–
318

6. Peymandoust, A., Pozzi, L., Ienne, P., Micheli, G.D.: Automatic instruction set
extension and utilisation for embedded processors. In Proceedings of the 14th
International Conference on Application-specific Systems, Architectures and Pro-
cessors, The Hague, The Netherlands. (2003)

7. Atasu, K., Dundar, G., Ozturan, C.: An integer linear programming approach for
identifying instruction-set extensions (2005)

8. Pozzi, L., Atasu, K., Ienne, P.: Exact and approximate algorithms for the extension
of embedded processor instruction sets. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 25(7) (2006) 1209–1229

9. Goodwin, D., Petkov, D.: Automatic generation of application specific processors.
In: CASES ’03: Proceedings of the 2003 international conference on Compilers,
architecture and synthesis for embedded systems. (2003) 137–147

10. Brisk, P., Kaplan, A., Sarrafzadeh, M.: Area-efficient instruction set synthesis
for reconfigurable system-on-chip designs. In: DAC ’04: Proceedings of the 41st
annual conference on Design automation, New York, NY, USA, ACM Press (2004)
395–400

11. Zuluaga, M., Topham, N.: Resource sharing in custom instruction set extensions.
In: Proceedings of the 6th IEEE Symposium on Application Specific Processors.
(Jun. 2008)

12. Ienne, P., Verma, A.K.: Arithmetic transformations to maximise the use of com-
pressor trees. In: Proceedings of the IEEE International Workshop on Electronic
Design, Test and Applications, Perth, Australia. (2004)

13. Bonzini, P., Pozzi, L.: Code transformation strategies for extensible embedded
processors. In: CASES ’06: Proceedings of the 2006 international conference on
Compilers, architecture and synthesis for embedded systems, New York, NY, USA,
ACM Press (2006) 242–252

14. Bennett, R., Murray, A., Franke, B., Topham, N.: Combining source-to-source
transformations and processor instruction set extension for the automated design-
space exploration of embedded systems. In: LCTES 2007. (2007) 83–92

15. Inc, T.: XTensa LX Product Brief - http://www.tensilica.com/pdf/xtensa LX.pdf
16. Hohenauer, M., Scharwaechter, H., Karuri, K., Wahlen, O., Kogel, T., Leupers,

R., Ascheid, G., Meyr, H.: Compiler-in-loop architecture exploration for efficient
application specific embedded processor design (2004)

17. Smit, G.J.M., Andr B. J. Kokkele and, P.T.W., Hlzenspie, P.K.F., van de Burgwal,
M.D., , Heysters, P.M.: The Chameleon architecture for streaming DSP applica-
tions. EURASIP Journal on Embedded Systems (2007)

18. Nuzman, D., Rosen, I., Zaks, A.: Auto-vectorization of interleaved data for SIMD.
SIGPLAN Not. 41(6) (2006) 132–143

19. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism
algorithm for matching large graphs. IEEE Transactons on Pattern Analysis and
Machine Intelligence 26(10) (Oct. 2004) 1367–1372

