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Why AI at the Edge?

• Latency

– Real time constraints

• Bandwidth

– Huge amount of information, 5G not enough

• Reliability

– Network not always available

• Security and privacy

– Better keep private/personal info locally

• Power consumption and cost

– Lower at the edge
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Problem: DNNs demand lots of 

resources and devices have very limited 

capacity (compute, memory, power) !!! 

   



Key concept: Deep Learning Acceleration Stack (DLAS)

*[P. Gibson, J. Cano, E. J. Crowley, A. Storkey, M. O'Boyle, “DLAS: A Conceptual Model for Across-Stack Deep 

Learning Acceleration”, ACM TACO’24]

Neural Network Models & Datasets
(Image, video, voice, text, etc)

Optimization Techniques 
(Pruning, quantization, NAS/HPO, etc)

Algorithmic Primitives & Data Formats
(GEMM, Winograd, CSR, Encryption, etc)

Systems Software
(Libraries, frameworks, compilers, etc)

Hardware 
(Server class, Edge/IoT/Tiny devices)

*Across-stack 

optimizations 

are required to 

provide efficient 

solutions!
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Outline

• SECDA Methodology

• SECDA-TFLite

• SECDA-LLM

• AXI4MLIR

• Conclusions and Future Work
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Developing Specialized Accelerators for AI

• Motivation: specialized hardware accelerators (ASICs, FPGAs, etc) can 

make AI faster and more energy efficient (e.g. at the edge)

– FPGAs are reconfigurable circuits commonly present in edge devices

• Problem: current solutions for designing AI accelerators for edge devices 

with FPGAs have a very high development cost

– They require High Level Synthesis (HLS)

– FPGA synthesis is a very slow process that is repeated (over designs)

– System integration issues (e.g. accelerator and DNN framework)

• Solution: we proposed a design methodology (SECDA) to efficiently reduce 

the development time of FPGA-based accelerators 

– Combines cost-effective SystemC simulation with hardware execution
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High Level Synthesis (HLS)



SECDA Methodology: Overview

• SECDA: SystemC Enabled Codesign of DNN Accelerators
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*[J. Haris, P. Gibson, J. Cano, N. B. Agostini, D. Kaeli, “SECDA: Efficient Hardware/Software Co-Design of FPGA-

based DNN Accelerators for Edge Inference”, SBAC-PAD’21]



SECDA Methodology: Components

• Application Framework

– It is able to run the 

target workloads (DNN 

models) without an 

accelerator (e.g. CPU)

– Examples:

• TFLite

• PyTorch Mobile

• QKeras

• llama.cpp

• …
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SECDA Methodology: Components (2)

• Accelerator Driver

– Bridge between an 

application framework 

and an accelerator

– Vital for hw/sw co-design, 

impacts latency and 

energy consumption

– Examples

• Data packing and 

unpacking

• DMA transfers

• …
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SECDA Methodology: Components (3)

• SystemC Accelerator

– SystemC Transaction-

Level Modelling

– SystemC Simulation

– End-to-end simulation 

(full DNN models)

– Starting point for High-

level Synthesis
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SECDA Methodology: Components (4)

• SystemC Testbench

– Allows unit testing 

(hardware accelerator)

– Performance tuning for 

the entire accelerator 

design or specific 

SystemC modules

– Simulation driven by 

random or sample data
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SECDA Methodology: Components (5)

• Hardware Synthesis

– SystemC defined 

accelerator

– HLS compilation to 

produce RTL code (e.g. 

Verilog)

– Logic synthesis to map 

design onto the 

hardware (FPGA)
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SECDA Methodology: Components (6)

• Hardware Accelerator

– FPGA mapped 

accelerator

– Full system evaluation 

on the target hardware
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SECDA Methodology: Design Loop

• Logic synthesis is time consuming

• SECDA reduces the number of logic 

synthesis iterations via simulation

• Accelerator / driver (hw/sw) co-design 

enables easier full system integration
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• Software SystemC Simulation

– To profile the performance (e.g. cycles) of the individual components of the accelerator or the 

overall performance of data processing within the accelerator

• Hardware Execution

– To obtain more accurate and additional performance data of DNN models, such as real data 

transfer latencies between off-chip and on-chip memory



Outline

• SECDA Methodology

• SECDA-TFLite

• SECDA-LLM

• AXI4MLIR

• Conclusions and Future Work
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TFLite Delegate System & API

• TensorFlow Lite (TFLite): framework for running DNN models on resource constrained edge devices

• The Delegate system enables to offload computation using different backends (software, hardware)

– Examples: NNAPI delegate for Android, Core ML delegate for iOS, etc

• The Delegate API enables the development of custom delegates

– VM_del, SA_del, … 
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SECDA-TFLite

• A toolkit for designing 

custom FPGA-based 

accelerators for TFLite

• Instantiates the SECDA 

methodology within TFLite

• Enables fast prototyping 

and integration of new 

accelerators with 

significantly reduced 

initial setup costs
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*[J. Haris, P. Gibson, J. Cano, N. B. Agostini, D. Kaeli, “SECDA-TFLite: A Toolkit for Efficient Development of FPGA-

based DNN Accelerators for Edge Inference”, Elsevier JPDC’23]

https://github.com/gicLAB/secda-tflite

https://github.com/gicLAB/secda-tflite


Case Study: DNN Accelerators

• We demonstrate the SECDA-TFLite toolkit with a case study; we develop 3 GEMM-based Accelerators 

• Vector MAC and Systolic Array accelerators developed to accelerate CONV layers in CNN models

• FC-GEMM accelerator developed to accelerate Fully Connected Layers in Transformer models
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Systolic Array Design FC-GEMM designVector Mac Design



Runtime Model (HW execution)

• It shows how we integrate the accelerators within TFLite via Accelerator Delegate and Driver

20



• PYNQ Z1 board (Arm A9 dual-core CPU + Edge FPGA)

• 9 DNN models evaluated (7 CNNs, 2 BERT)

– ImageNet and SQuAD datasets

• TFLite 8-bit quantized models (CNN and BERT)

• Inference CPU + accelerator vs. CPU only (1/2 threads)

– Execution time

– Power measured (using USB power meter)

• We compared one of the models with VTA accelerator

Evaluation: Experimental Setup

21



• Average speedup for 

inference time of up to 

3.4x and 2.5x for CNN 

and BERT models 

respectively

• Average energy savings 

of up to 2.9x and 2.4x for 

CNN and BERT models 

respectively

Evaluation: Results
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Large Language Models (LLMs)
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• LLMs are a family of models that use the Transformer-based architecture

• Great at solving many language related tasks

– Text Generation, AI assistants, Code generation, etc

• Greatly increase upon the number of parameters used 

– PaLM 2 apparently has 340 billion parameters!

• Many optimization techniques to improve execution performance

– KV (key-value) caching

– Quantization 

– …



llama.cpp

• A pure C/C++ library with minimal external dependencies

• Enables LLM inference with minimal setup on a wide 

range of hardware devices

• Supports multi-modal, custom, and well-known LLMs 

(e.g., Llama, Falcon, GPT, Gemma)

• Utilizes GGUF (GPT-Generated Unified Format) and 

supports various type of quantization (1.5-bit, 2-bit, 3-bit, 

4-bit, 5-bit, 6-bit, and 8-bit)

• Open source, with active and rapidly growing community
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https://github.com/ggerganov/llama.cpp

https://github.com/ggerganov/llama.cpp


LLMs (and SLMs) on Edge Devices

• Running LLMs on the edge has become popular with 

concerns on network availability, security and privacy

• Executing LLMs on edge devices is difficult due to 

computation and memory demands 

• The problem is further exacerbated on resource-

constrained edge devices

• Hence, we need to develop specialized hardware 

accelerators to efficiently process LLMs with limited 

resources
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SECDA-LLM

• A toolkit for designing custom 

FPGA-based accelerators for LLMs

• Instantiates the SECDA 

methodology within llama.cpp

• Enables fast prototyping and 

integration of new accelerators with 

significantly reduced initial setup 

costs

27

node 0

……

node N

Accelerator Driver

Profiler

SystemC 

Integration

SystemC Acc

Simulation

AXI API

FPGA Acc

FPGA Eval

HW-Synthesis

llama.cpp

graph_executor

GGML

Backend

Operations

context_handler

LLM

LLMSECDA

Required Optional

Offload

*[J. Haris, R. Saha, W. Hu, J. Cano, “Designing Efficient LLM Accelerators for Edge Devices”, ARC-LG @ ISCA’24]



Connecting llama.cpp

• SECDA-LLM uses llama.cpp as the 

“Application Framework”

• Enables acceleration of LLMs 

based on GGUF (GPT-Generated 

Unified Format)

• Target operations (matmul, softmax) 

are offloaded from the GGML (GPT-

Generated Model Language) 

backend to our custom accelerator

• A context_handler is created to 

pass operation parameters and 

metadata to the Accelerator Driver
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node 0

……

node N

Accelerator Driver

Profiler

SystemC 

Integration

SystemC Acc

Simulation

AXI API

FPGA Acc

FPGA Eval

HW-Generation

llama.cpp

graph_executor

GGML

Backend

Operations

context_handler

LLM

LLMSECDA

Required Optional

Offload

Simulation Design Loop

• The Accelerator Driver initiates the 

simulation-based design loop 

enabling rapid accelerator prototyping

• The Accelerator design specified in 

SystemC allows quick development 

without the need of traditional HDLs 

such as Verilog or VHDL

• End-to-end simulation verifies 

correctness across real LLMs

• Simulation profiling tracks metrics, 

e.g., cycle counts, PE utilization, on-

chip memory utilization
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node 0

……
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Accelerator Driver

Profiler

SystemC 

Integration

SystemC Acc

Simulation

AXI API

FPGA Acc

FPGA Eval

HW-Synthesis

llama.cpp

graph_executor

GGML

Backend

Operations

context_handler

LLM

LLMSECDA

Required Optional

Offload

Hardware Generation and Evaluation

• The developer can quickly evaluate 

accelerator designs through SystemC 

HLS and FPGA synthesis

• The Hardware-Synthesis tool

– JSON-based configuration file

– Automated HLS and bitstream 

generation

• AXI-API connects the FPGA 

accelerator with the driver 

– No driver code change required

• Hardware profiling tracks real time 

performance

30



Case study: MatMul Acceleration

• Using SECDA-LLM we developed a specialized FPGA-based accelerator for LLM inference

• We accelerate the MatMul kernel, the most expensive operation within LLMs (~97% for TinyLlama)

• We use block floating point (BFP) quantization (common in llama.cpp) with Q3_K_Q8_K configuration

– Weights use Q3_K super-blocks, i.e. ~3.5 bit quantization

– Inputs use Q8_K super-blocks, i.e. ~9.1 bit quantization
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Q3_K super-block Data Format

block scalars

super-block scalar

weights3 bits

6 bits

16 bits

256 values



Case study: Accelerator Design
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• Simple opcodes to configure and control the accelerator

• The scheduler enables MatMul tiling to increase data reuse

• Super-Block Vector Processor

– Exploits parallelism across super-blocks

– Q3_K_Q8_K format specific optimizations



Runtime Model (HW execution)
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• It shows how we integrate the accelerators within llama.cpp via Accelerator Driver



• PYNQ Z1 board

– Arm A9 dual-core CPU @ 650 MHz

– Xilinx Z020 edge FPGA

– 512 MB DDR3 memory

• TinyLlama model, 1.1B parameters (460MB~)

– With Q3_K_Q8_K BFP quantization

– Guanaco dataset

• We evaluate inference latency across different 

hardware configurations

– CPU only (2 threads)

– CPU + accelerator     

Evaluation: Experimental Setup
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• CPU + Acc achieves 11x speedup in terms of 

token generation

– Around 1.7s per token (~2s per word) 

– Compared to only CPU 19.2s (~26s per word)

• We also tracked more in-depth profiling of 

accelerator + driver performance across 

different design iterations

– v1: simplest design

– v2: exploits super-block parallelism

– v3: introduced scheduler to enable data-reuse

Evaluation: Results

35



Outline

• SECDA Methodology

• SECDA-TFLite

• SECDA-LLM

• AXI4MLIR

• Conclusions and Future Work

36



AXI4MLIR

• Motivation: Efficient host-driver code is required to maximise accelerator performance

• Problem: Creating and optimizing this host-driver code is difficult and time consuming

• Solution: “AXI4MLIR: User-Driven Automatic Host Code Generation for Custom AXI-Based Accelerators” 

– Efficient host-code for custom AXI-Stream-based accelerators using the MLIR compiler framework

– We leverage the SECDA methodology to rapidly prototype new custom accelerators

• Vision: automatic generation and usage of optimized domain specific accelerators

37

*[N. Bohm Agostini, J. Haris, P. Gibson, M. Jayaweera, N. Rubin, A. Tumeo, J. L. Abellán, J. Cano, D. Kaeli, 

“AXI4MLIR: User-Driven Automatic Host Code Generation for Custom AXI-Based Accelerators”, CGO’24]



AXI4MLIR: Approach

• MLIR is a unifying software framework for 

compiler development (sub-project of LLVM 

compiler infrastructure) 

• AXI4MLIR

– MLIR extensions to describe custom 

accelerators with arbitrary instructions

– Simple Host-Accelerator communication 

abstraction and AXI library 

implementation

– Implements host code generation to 

drive accelerators connected through an 

AXI-Stream Interface

38

https://github.com/AXI4MLIR/axi4mlir

https://github.com/AXI4MLIR/axi4mlir


Case study: Accelerator System Level Design

• We developed simple, scalable MatMul 

accelerators (different tile sizes, opcodes 

and dataflow)

• Accelerators support different dataflows 

via instructions (Instruction Decoder)

• Input data streamed via AXI interconnect 

stored into global A/B buffers (via the Data 

Loader)

• Processing Engine contains local A/B 

cache to compute the required dot product 

within a MAC array

39

MMv416



Manual vs. AXI4MLIR Generate Host Code

40

Up to 1.65x speedup

and 56% cache references



Additional Results (check paper)

• ResNet18 with Conv Layer accelerator

– Performance Counters

• Cache References

• Branch instructions

• Task Clock

– Varied tile sizes

• TinyBert with Matrix Multiplication accelerator

– Oracle (DSE) selection of best parameters

41
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Conclusions

• SECDA is a design methodology to efficiently reduce the development time of FPGA-based 

accelerators

• SECDA-TFLite is a new open source toolkit that improves/eases the development of new FPGA-based 

accelerators for edge DNN inference employing TFLite and the SECDA methodology

• SECDA-LLM is a new toolkit that improves/eases the development of new FPGA-based accelerators 

for edge LLM inference employing llama.cpp and the SECDA methodology

• AXI4MLIR extends the MLIR compiler framework with new attributes that can be used to describe 

custom linear algebra accelerators with arbitrary instructions
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Future Work

• On-going

– Support more types of layers (e.g. transpose conv), cores (e.g. shift-based), sparsity

– Create similar development toolkits for other DNN frameworks such as PyTorch, TVM, etc

– Expand SECDA-LLM as an open-source platform

• Planned 

– SECDA-MLIR: Create a SystemC MLIR dialect to generate SystemC modules

– SECDA-PIM: Designing and Simulating PIM-Based Accelerators

– SECDA-Tools: Open Source Bazel package for Rapid Accelerator Prototyping

• Potential

– SECDA-Gene: Heterogenous Acceleration for Genome Analysis

– SECDA-Train: Developing Custom Accelerator for DNN Training
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