
José Cano
School of Computing Science

University of Glasgow, Scotland, UK

NANDA Workshop
London, 10/09/2024

gicLAB

Accelerating AI at the Edge

The Power of Efficient HW/SW Co-Design

Glasgow Intelligent Computing Lab (gicLAB)

School of

Computing Science

Systems Section (GLASS)

Computing Systems

&

Machine Learning

2
https://giclab.dcs.gla.ac.uk/

gicLAB

https://giclab.dcs.gla.ac.uk/

Why AI at the Edge?

• Latency

– Real time constraints

• Bandwidth

– Huge amount of information, 5G not enough

• Reliability

– Network not always available

• Security and privacy

– Better keep private/personal info locally

• Power consumption and cost

– Lower at the edge

3

Why AI at the Edge?

• Latency

– Real time constraints

• Bandwidth

– Huge amount of information, 5G not enough

• Reliability

– Network not always available

• Security and privacy

– Better keep private/personal info locally

• Power consumption and cost

– Lower at the edge

4

Problem: DNNs demand lots of

resources and devices have very limited

capacity (compute, memory, power) !!!

Key concept: Deep Learning Acceleration Stack (DLAS)

*[P. Gibson, J. Cano, E. J. Crowley, A. Storkey, M. O'Boyle, “DLAS: A Conceptual Model for Across-Stack Deep

Learning Acceleration”, ACM TACO’24]

Neural Network Models & Datasets
(Image, video, voice, text, etc)

Optimization Techniques
(Pruning, quantization, NAS/HPO, etc)

Algorithmic Primitives & Data Formats
(GEMM, Winograd, CSR, Encryption, etc)

Systems Software
(Libraries, frameworks, compilers, etc)

Hardware
(Server class, Edge/IoT/Tiny devices)

*Across-stack

optimizations

are required to

provide efficient

solutions!

5

Outline

• SECDA Methodology

• SECDA-TFLite

• SECDA-LLM

• AXI4MLIR

• Conclusions and Future Work

6

Developing Specialized Accelerators for AI

• Motivation: specialized hardware accelerators (ASICs, FPGAs, etc) can

make AI faster and more energy efficient (e.g. at the edge)

– FPGAs are reconfigurable circuits commonly present in edge devices

• Problem: current solutions for designing AI accelerators for edge devices

with FPGAs have a very high development cost

– They require High Level Synthesis (HLS)

– FPGA synthesis is a very slow process that is repeated (over designs)

– System integration issues (e.g. accelerator and DNN framework)

• Solution: we proposed a design methodology (SECDA) to efficiently reduce

the development time of FPGA-based accelerators

– Combines cost-effective SystemC simulation with hardware execution

7

High Level Synthesis (HLS)

SECDA Methodology: Overview

• SECDA: SystemC Enabled Codesign of DNN Accelerators

8

*[J. Haris, P. Gibson, J. Cano, N. B. Agostini, D. Kaeli, “SECDA: Efficient Hardware/Software Co-Design of FPGA-

based DNN Accelerators for Edge Inference”, SBAC-PAD’21]

SECDA Methodology: Components

• Application Framework

– It is able to run the

target workloads (DNN

models) without an

accelerator (e.g. CPU)

– Examples:

• TFLite

• PyTorch Mobile

• QKeras

• llama.cpp

• …

9

SECDA Methodology: Components (2)

• Accelerator Driver

– Bridge between an

application framework

and an accelerator

– Vital for hw/sw co-design,

impacts latency and

energy consumption

– Examples

• Data packing and

unpacking

• DMA transfers

• …

10

SECDA Methodology: Components (3)

• SystemC Accelerator

– SystemC Transaction-

Level Modelling

– SystemC Simulation

– End-to-end simulation

(full DNN models)

– Starting point for High-

level Synthesis

11

SECDA Methodology: Components (4)

• SystemC Testbench

– Allows unit testing

(hardware accelerator)

– Performance tuning for

the entire accelerator

design or specific

SystemC modules

– Simulation driven by

random or sample data

12

SECDA Methodology: Components (5)

• Hardware Synthesis

– SystemC defined

accelerator

– HLS compilation to

produce RTL code (e.g.

Verilog)

– Logic synthesis to map

design onto the

hardware (FPGA)

13

SECDA Methodology: Components (6)

• Hardware Accelerator

– FPGA mapped

accelerator

– Full system evaluation

on the target hardware

14

SECDA Methodology: Design Loop

• Logic synthesis is time consuming

• SECDA reduces the number of logic

synthesis iterations via simulation

• Accelerator / driver (hw/sw) co-design

enables easier full system integration

15

• Software SystemC Simulation

– To profile the performance (e.g. cycles) of the individual components of the accelerator or the

overall performance of data processing within the accelerator

• Hardware Execution

– To obtain more accurate and additional performance data of DNN models, such as real data

transfer latencies between off-chip and on-chip memory

Outline

• SECDA Methodology

• SECDA-TFLite

• SECDA-LLM

• AXI4MLIR

• Conclusions and Future Work

16

TFLite Delegate System & API

• TensorFlow Lite (TFLite): framework for running DNN models on resource constrained edge devices

• The Delegate system enables to offload computation using different backends (software, hardware)

– Examples: NNAPI delegate for Android, Core ML delegate for iOS, etc

• The Delegate API enables the development of custom delegates

– VM_del, SA_del, …

17

SECDA-TFLite

• A toolkit for designing

custom FPGA-based

accelerators for TFLite

• Instantiates the SECDA

methodology within TFLite

• Enables fast prototyping

and integration of new

accelerators with

significantly reduced

initial setup costs

18

*[J. Haris, P. Gibson, J. Cano, N. B. Agostini, D. Kaeli, “SECDA-TFLite: A Toolkit for Efficient Development of FPGA-

based DNN Accelerators for Edge Inference”, Elsevier JPDC’23]

https://github.com/gicLAB/secda-tflite

https://github.com/gicLAB/secda-tflite

Case Study: DNN Accelerators

• We demonstrate the SECDA-TFLite toolkit with a case study; we develop 3 GEMM-based Accelerators

• Vector MAC and Systolic Array accelerators developed to accelerate CONV layers in CNN models

• FC-GEMM accelerator developed to accelerate Fully Connected Layers in Transformer models

19

Systolic Array Design FC-GEMM designVector Mac Design

Runtime Model (HW execution)

• It shows how we integrate the accelerators within TFLite via Accelerator Delegate and Driver

20

• PYNQ Z1 board (Arm A9 dual-core CPU + Edge FPGA)

• 9 DNN models evaluated (7 CNNs, 2 BERT)

– ImageNet and SQuAD datasets

• TFLite 8-bit quantized models (CNN and BERT)

• Inference CPU + accelerator vs. CPU only (1/2 threads)

– Execution time

– Power measured (using USB power meter)

• We compared one of the models with VTA accelerator

Evaluation: Experimental Setup

21

• Average speedup for

inference time of up to

3.4x and 2.5x for CNN

and BERT models

respectively

• Average energy savings

of up to 2.9x and 2.4x for

CNN and BERT models

respectively

Evaluation: Results

22

Outline

• SECDA Methodology

• SECDA-TFLite

• SECDA-LLM

• AXI4MLIR

• Conclusions and Future Work

23

Large Language Models (LLMs)

24

• LLMs are a family of models that use the Transformer-based architecture

• Great at solving many language related tasks

– Text Generation, AI assistants, Code generation, etc

• Greatly increase upon the number of parameters used

– PaLM 2 apparently has 340 billion parameters!

• Many optimization techniques to improve execution performance

– KV (key-value) caching

– Quantization

– …

llama.cpp

• A pure C/C++ library with minimal external dependencies

• Enables LLM inference with minimal setup on a wide

range of hardware devices

• Supports multi-modal, custom, and well-known LLMs

(e.g., Llama, Falcon, GPT, Gemma)

• Utilizes GGUF (GPT-Generated Unified Format) and

supports various type of quantization (1.5-bit, 2-bit, 3-bit,

4-bit, 5-bit, 6-bit, and 8-bit)

• Open source, with active and rapidly growing community

25

https://github.com/ggerganov/llama.cpp

https://github.com/ggerganov/llama.cpp

LLMs (and SLMs) on Edge Devices

• Running LLMs on the edge has become popular with

concerns on network availability, security and privacy

• Executing LLMs on edge devices is difficult due to

computation and memory demands

• The problem is further exacerbated on resource-

constrained edge devices

• Hence, we need to develop specialized hardware

accelerators to efficiently process LLMs with limited

resources

26

SECDA-LLM

• A toolkit for designing custom

FPGA-based accelerators for LLMs

• Instantiates the SECDA

methodology within llama.cpp

• Enables fast prototyping and

integration of new accelerators with

significantly reduced initial setup

costs

27

node 0

……

node N

Accelerator Driver

Profiler

SystemC

Integration

SystemC Acc

Simulation

AXI API

FPGA Acc

FPGA Eval

HW-Synthesis

llama.cpp

graph_executor

GGML

Backend

Operations

context_handler

LLM

LLMSECDA

Required Optional

Offload

*[J. Haris, R. Saha, W. Hu, J. Cano, “Designing Efficient LLM Accelerators for Edge Devices”, ARC-LG @ ISCA’24]

Connecting llama.cpp

• SECDA-LLM uses llama.cpp as the

“Application Framework”

• Enables acceleration of LLMs

based on GGUF (GPT-Generated

Unified Format)

• Target operations (matmul, softmax)

are offloaded from the GGML (GPT-

Generated Model Language)

backend to our custom accelerator

• A context_handler is created to

pass operation parameters and

metadata to the Accelerator Driver

28

node 0

……

node N

Accelerator Driver

Profiler

SystemC

Integration

SystemC Acc

Simulation

AXI API

FPGA Acc

FPGA Eval

HW-Synthesis

llama.cpp

graph_executor

GGML

Backend

Operations

context_handler

LLM

LLMSECDA

Required Optional

Offload

node 0

……

node N

Accelerator Driver

Profiler

SystemC

Integration

SystemC Acc

Simulation

AXI API

FPGA Acc

FPGA Eval

HW-Generation

llama.cpp

graph_executor

GGML

Backend

Operations

context_handler

LLM

LLMSECDA

Required Optional

Offload

Simulation Design Loop

• The Accelerator Driver initiates the

simulation-based design loop

enabling rapid accelerator prototyping

• The Accelerator design specified in

SystemC allows quick development

without the need of traditional HDLs

such as Verilog or VHDL

• End-to-end simulation verifies

correctness across real LLMs

• Simulation profiling tracks metrics,

e.g., cycle counts, PE utilization, on-

chip memory utilization

29

node 0

……

node N

Accelerator Driver

Profiler

SystemC

Integration

SystemC Acc

Simulation

AXI API

FPGA Acc

FPGA Eval

HW-Synthesis

llama.cpp

graph_executor

GGML

Backend

Operations

context_handler

LLM

LLMSECDA

Required Optional

Offload

Hardware Generation and Evaluation

• The developer can quickly evaluate

accelerator designs through SystemC

HLS and FPGA synthesis

• The Hardware-Synthesis tool

– JSON-based configuration file

– Automated HLS and bitstream

generation

• AXI-API connects the FPGA

accelerator with the driver

– No driver code change required

• Hardware profiling tracks real time

performance

30

Case study: MatMul Acceleration

• Using SECDA-LLM we developed a specialized FPGA-based accelerator for LLM inference

• We accelerate the MatMul kernel, the most expensive operation within LLMs (~97% for TinyLlama)

• We use block floating point (BFP) quantization (common in llama.cpp) with Q3_K_Q8_K configuration

– Weights use Q3_K super-blocks, i.e. ~3.5 bit quantization

– Inputs use Q8_K super-blocks, i.e. ~9.1 bit quantization

31

Q3_K super-block Data Format

block scalars

super-block scalar

weights3 bits

6 bits

16 bits

256 values

Case study: Accelerator Design

32

• Simple opcodes to configure and control the accelerator

• The scheduler enables MatMul tiling to increase data reuse

• Super-Block Vector Processor

– Exploits parallelism across super-blocks

– Q3_K_Q8_K format specific optimizations

Runtime Model (HW execution)

33

• It shows how we integrate the accelerators within llama.cpp via Accelerator Driver

• PYNQ Z1 board

– Arm A9 dual-core CPU @ 650 MHz

– Xilinx Z020 edge FPGA

– 512 MB DDR3 memory

• TinyLlama model, 1.1B parameters (460MB~)

– With Q3_K_Q8_K BFP quantization

– Guanaco dataset

• We evaluate inference latency across different

hardware configurations

– CPU only (2 threads)

– CPU + accelerator

Evaluation: Experimental Setup

34

• CPU + Acc achieves 11x speedup in terms of

token generation

– Around 1.7s per token (~2s per word)

– Compared to only CPU 19.2s (~26s per word)

• We also tracked more in-depth profiling of

accelerator + driver performance across

different design iterations

– v1: simplest design

– v2: exploits super-block parallelism

– v3: introduced scheduler to enable data-reuse

Evaluation: Results

35

Outline

• SECDA Methodology

• SECDA-TFLite

• SECDA-LLM

• AXI4MLIR

• Conclusions and Future Work

36

AXI4MLIR

• Motivation: Efficient host-driver code is required to maximise accelerator performance

• Problem: Creating and optimizing this host-driver code is difficult and time consuming

• Solution: “AXI4MLIR: User-Driven Automatic Host Code Generation for Custom AXI-Based Accelerators”

– Efficient host-code for custom AXI-Stream-based accelerators using the MLIR compiler framework

– We leverage the SECDA methodology to rapidly prototype new custom accelerators

• Vision: automatic generation and usage of optimized domain specific accelerators

37

*[N. Bohm Agostini, J. Haris, P. Gibson, M. Jayaweera, N. Rubin, A. Tumeo, J. L. Abellán, J. Cano, D. Kaeli,

“AXI4MLIR: User-Driven Automatic Host Code Generation for Custom AXI-Based Accelerators”, CGO’24]

AXI4MLIR: Approach

• MLIR is a unifying software framework for

compiler development (sub-project of LLVM

compiler infrastructure)

• AXI4MLIR

– MLIR extensions to describe custom

accelerators with arbitrary instructions

– Simple Host-Accelerator communication

abstraction and AXI library

implementation

– Implements host code generation to

drive accelerators connected through an

AXI-Stream Interface

38

https://github.com/AXI4MLIR/axi4mlir

https://github.com/AXI4MLIR/axi4mlir

Case study: Accelerator System Level Design

• We developed simple, scalable MatMul

accelerators (different tile sizes, opcodes

and dataflow)

• Accelerators support different dataflows

via instructions (Instruction Decoder)

• Input data streamed via AXI interconnect

stored into global A/B buffers (via the Data

Loader)

• Processing Engine contains local A/B

cache to compute the required dot product

within a MAC array

39

MMv416

Manual vs. AXI4MLIR Generate Host Code

40

Up to 1.65x speedup

and 56% cache references

Additional Results (check paper)

• ResNet18 with Conv Layer accelerator

– Performance Counters

• Cache References

• Branch instructions

• Task Clock

– Varied tile sizes

• TinyBert with Matrix Multiplication accelerator

– Oracle (DSE) selection of best parameters

41

Outline

• SECDA Methodology

• SECDA-TFLite

• SECDA-LLM

• AXI4MLIR

• Conclusions and Future Work

42

Conclusions

• SECDA is a design methodology to efficiently reduce the development time of FPGA-based

accelerators

• SECDA-TFLite is a new open source toolkit that improves/eases the development of new FPGA-based

accelerators for edge DNN inference employing TFLite and the SECDA methodology

• SECDA-LLM is a new toolkit that improves/eases the development of new FPGA-based accelerators

for edge LLM inference employing llama.cpp and the SECDA methodology

• AXI4MLIR extends the MLIR compiler framework with new attributes that can be used to describe

custom linear algebra accelerators with arbitrary instructions

43

Future Work

• On-going

– Support more types of layers (e.g. transpose conv), cores (e.g. shift-based), sparsity

– Create similar development toolkits for other DNN frameworks such as PyTorch, TVM, etc

– Expand SECDA-LLM as an open-source platform

• Planned

– SECDA-MLIR: Create a SystemC MLIR dialect to generate SystemC modules

– SECDA-PIM: Designing and Simulating PIM-Based Accelerators

– SECDA-Tools: Open Source Bazel package for Rapid Accelerator Prototyping

• Potential

– SECDA-Gene: Heterogenous Acceleration for Genome Analysis

– SECDA-Train: Developing Custom Accelerator for DNN Training

44

Acknowledgements

45

1) Researchers and students at

3) Collaborators from Academia

2) Funding bodies

4) Collaborators from Industry and Labs

gicLAB

José Cano
Jose.CanoReyes@glasgow.ac.uk

School of Computing Science, University of Glasgow, UK

Thank you! Questions?

gicLAB

Accelerating AI at the Edge

The Power of Efficient HW/SW Co-Design

	Slide 1
	Slide 2: Glasgow Intelligent Computing Lab (gicLAB)
	Slide 3: Why AI at the Edge?
	Slide 4: Why AI at the Edge?
	Slide 5: Key concept: Deep Learning Acceleration Stack (DLAS)
	Slide 6: Outline
	Slide 7: Developing Specialized Accelerators for AI
	Slide 8: SECDA Methodology: Overview
	Slide 9: SECDA Methodology: Components
	Slide 10: SECDA Methodology: Components (2)
	Slide 11: SECDA Methodology: Components (3)
	Slide 12: SECDA Methodology: Components (4)
	Slide 13: SECDA Methodology: Components (5)
	Slide 14: SECDA Methodology: Components (6)
	Slide 15: SECDA Methodology: Design Loop
	Slide 16: Outline
	Slide 17: TFLite Delegate System & API
	Slide 18: SECDA-TFLite
	Slide 19: Case Study: DNN Accelerators
	Slide 20: Runtime Model (HW execution)
	Slide 21: Evaluation: Experimental Setup
	Slide 22: Evaluation: Results
	Slide 23: Outline
	Slide 24: Large Language Models (LLMs)
	Slide 25: llama.cpp
	Slide 26: LLMs (and SLMs) on Edge Devices
	Slide 27: SECDA-LLM
	Slide 28: Connecting llama.cpp
	Slide 29: Simulation Design Loop
	Slide 30: Hardware Generation and Evaluation
	Slide 31: Case study: MatMul Acceleration
	Slide 32: Case study: Accelerator Design
	Slide 33: Runtime Model (HW execution)
	Slide 34: Evaluation: Experimental Setup
	Slide 35: Evaluation: Results
	Slide 36: Outline
	Slide 37: AXI4MLIR
	Slide 38: AXI4MLIR: Approach
	Slide 39: Case study: Accelerator System Level Design
	Slide 40: Manual vs. AXI4MLIR Generate Host Code
	Slide 41: Additional Results (check paper)
	Slide 42: Outline
	Slide 43: Conclusions
	Slide 44: Future Work
	Slide 45: Acknowledgements
	Slide 46

