

Designing Hardware for Machine Learning and Using Machine Learning to Design Hardware

John Wawrzynek

johnw@berkeley.edu University of California, Berkeley

Machine Learning has been Great for Computer Architects!

- With the slowing of Moore's Law and the end of Dennard Scaling, architects have turned to "accelerators" and purpose built processors as a way to continue to scale performance, energy efficiency, and cost.
- For ML kernels, relatively easy to achieve high efficiency (compared to general purpose code) -
 - Simpler control flow.
 - Embarrassing parallel (loads of data-level parallelism),
 - lower precision requirements.
- Highly impactful!
- No end in sight!

Cloud TPU v3 (45 TFLOP/s)

Outline

Work at Berkeley - Early 1990's

- Community wide keen interest in *parallel processing*
 - How to we find parallelism in problems and exploit in hardware?
- ICSI was successful at using ANN's trained with back-propagation for front-end signal processing of speech signals for speech recognition tasks. MLPs not DNNs!

- Ournpitchasementionintmodelse (neural networks) could be a general model for many computations and are naturally parallel.
- Got funded from the ONR to design and build a "connectionist network supercomputer (CNS)".
- Quickly realized that training and inference is dominated by multiply/add operations and these vectorize => designed a vector processor.

T0 Vector Microprocessor (1995)

- World's first single chip vector processor
- MIPS CPU + vector lanes
- Three graduate students, 1 year
- 15X the performance of workstation

SPERT-II: A Vector Microprocessor System and its Application to Large Problems in Backpropagation Training

John Wawrzynek, Krste Asanović, & Brian Kingsbury University of California at Berkeley Department of Electrical Engineering and Computer Sciences Berkeley, CA 94720-1776 James Beck, David Johnson, & Nelson Morgan International Computer Science Institute 1947 Center Street, Suite 600 Berkeley, CA 94704-1105

Proceedings of MicroNeuro '96

Libraries for Speech researchers

System lived on for a decade!

Lessons from the 1990's

1. NN training/inference dominated by multiply/add operations

- Full precision rarely needed
- Data-level parallelism (vectors/matrices)

Obviously lives on today with TPUs, etc.

- 2. ANN's good general computation model
 - Wide range of function approximation, regression, classification, etc., useful tool in optimization.
- 3. Software is key to adoption

GPUs with Cuda/openCL, now TensorFlow/PyTorch

NANDA'24

Learning Model Capabilities Scaled Directly with Hardware Advances

- Late 2000's renewed interest in NNs, now deep
- Driven by availability of high-performance hardware (GPUs)
- ML models and HW development fundamentally linked:
 - Success in LLMs tied directly to massive hardware compute capability (even more important than algorithm details?)

Example: LLMs GPT-4 trained on ~25,000 Nvidia A100 GPUs for 90-100 days, ~1.8 trillion parameters across 120 layers (~13T tokens in training) [https://archive.md/2RG8X]

- How can we continue to scale HW performance (efficiency) to the benefit of ML?
 - Scalable HW architectures + HW/Algorithm co-design

Increasing Number of Parallel Resources Many PEs with Network on Chip/Package (NoC/NoP)

NoC/NoP Chip

Wafer-scale Chip

(a) Simba chiplet

(b) Simba package

Cerebras WSE-3 4 Trillion Transistors 46,225 mm² Silicon Largest GPU 80 BillionTransistors 814 mm² Silicon

Cerebras 84 Interconnected Chips

Simba 16PEs x 36 Chiplets

Sophia Shao NVIDIA/UC Berkeley

NANDA'24

Scheduling a constant challenge:

Particularly for multi-core architectures. How to partition and schedule execution to efficiently use parallel resources.

• Algorithm

Problem instances are huge (large amount of state, large number of operations)

Perhaps the most important part of support software.

• Hardware

Relatively small amount of fast hardware resources (memory, computational units) Hardware-Aware Scheduling and Scheduling-Informed Hardware Design

CoSA: Scheduling by Constrained Optimization

Datial Accelerators [21'ISCA]

Jenny Huang PhD Dissertation

Scheduling Decisions:

- Loop tiling
- 2. Loop permutation
- 3. Spatial mapping

Objective is to minimize latency and energy

Mixed Integer Programming (**MIP**) for scheduling DNN on NoC accelerator with multi-level memory hierarchies

Three operation-level scheduling decisions

State-of-the-art DNN accelerator schedulers

2x speedup compared to the state-of-the-art work with **116x** shorter time-to-solution

Hardware-Friendly Algorithm Design

Synetgy: Image Classification without 3x3 Convolution [FPGA'19]

- $3x3 \text{ Conv} \rightarrow \text{Shift and } 1x1 \text{ Conv}$
- Dataflow accelerator on embedded FPGA

equal top-1 accuracy, **11.6x** higher frame-rate, **6.3x** better power efficiency, on ImageNet classification task

Synthesis of Efficient Neural Networks on FPGAs

Improvement (over state-of-art)

• Jet Substructure Classification (JSC)

Wireless Research Center

- Particle physics experiments at Large Hadron Collider at CERN, 16 inputs (FP32), 5 classes
- Network Intrusion Detection (NID)
 - Detecting malicious network packets, 49 inputs (binary), 9 classes

[*] Y. Umuroglu et al., "Logicnets: Co-designed neural networks and circuits for extreme-throughput applications," in Proceedings of FPL, 2020, pp. 291–297.

- Developed a new logic synthesis algorithm for LogicNets
- The truth table converted from a neuron can be classified as

Random-looking dense function with limited support

- Looks almost random
- Does not have a compact SOPs
- Depend only on a few inputs (up to 16 bits)
- We developed a dedicated logic synthesis algorithm for this class of functions - based on Binary Decision Diagram (BDD) minimization - variable reordering

Yukio Miyasaka

Alan Mishchenko

Synthesis of LUT Networks for Random-Looking Dense Functions with Don't Cares— Towards Efficient FPGA Implementation of DNN

Y Miyasaka, A Mishchenko, J Wawrzynek, NJ Fraser 2024 IEEE 32nd Annual International Symposium on Field-Programmable Custom ...

Overview of the optimization algorithm

- Construct a Binary Decision Diagram* (BDD) for each neuron
- Perform BDD minimization (variable reordering)
- Map BDDs into FPGA LUTs

[*] Randal E. Bryant, "Symbolic Boolean manipulation with ordered binary-decision diagrams," in ACM Computing Surveys, vol. 24, no. 3, pp. 293–318, 1992.

Do Not Distribute: Access Restricted to BWRC Members and retreat attendees

Minimization using don't cares

- We can further reduce the area by assigning some patterns to don't care
 - Allow the function to change during optimization
 - Trade-off area with accuracy
- To begin with, we assigned patterns that do not appear in training-set to don't care
- We also tried setting a threshold, named rarity
 - Only the patterns with higher occurrences in training-set will be cared
 - Higher rarity allows the function to change more

Synthesis of Efficient Neural Networks on FPGAs

Effect of rarity parameter on size and test accuracy for JSC benchmark

- By assigning more patterns to don't care, we can further reduce the area
- The accuracy drops quite slowly compared to the area reduction

Results of minimization using don't cares for JSC benchmark

Method	Accuracy	LUT	Time
Xilinx Vivado	73.0171%	35419	2373s
w/o don't care	73.0171%	22997	144s
w/ don't care	73.0146%	17687	178s

- By assigning the patterns not in training-set to don't care,
 - With don't cares, area reduced 2x over Vivado's result
 - accuracy was degraded only 0.0025%
- Runtime was still 13x smaller than Vivado

The Future

- Advances in ML will continue to be critically dependent on advances in Hardware Design.
 - To spur ML advances, HW design must be agile: easy, fast, cheap
 - None of these true now!
 - Chip/accelerator design is slow, expensive (years, \$10-100M)
 - Consequently, we use yesterday's application benchmarks to design tomorrow's HW!
- New work shows promise in applying ML to HW design challenges:
 - Higher QoR: DNNs classifiers allow rapid DSE and aids verification
 - Higher human productivity: Reinforcement learning automates optimal search

<u>Virtuous Cycle:</u> Applying ML algorithms to design HW leads to better HW for accelerating ML which will lead to better ML algorithms for HW design which will lead to ...

AutoPhase: Reinforcement Learning for HLS Phase-Ordering [MLSys'20] NP-Hard

♦ Jenny Huang Phase-ordering: clang program.c -flag1 -flag2 ...

We apply **deep reinforcement learning** to address the phase-ordering problem for HLS:

- Action: next optimization pass to apply
- o <u>States</u>:
 - 1. Program Features
 - 2. Histogram of Applied Passes
- Reward: cycles before a pass is applied

- cycles after a pass is applied

AutoPhase: Reinforcement Learning for HLS Phase-Ordering [MLSys'20]

Uses only Histogram of Applied Passes
Compiles and runs once per trajectory

- **Fewer** samples required
- **28%** improvement over -O3

Logic Synthesis QoR optimization ('22)

Logic Synthesis results can dictate the viability of final QoR optimization

ireless Research Center

- Under-optimized synthesized netlist \rightarrow sub-optimal post-PnR QoR
- However, diverse options for Boolean logic optimizations (e.g. passes in open-source synthesis tool ABC)
 - Search space of possible "recipes" grows exponentially w.r.t. length of sequence of passes
- Users traditionally rely on ad hoc heuristics or standard (built in) synthesis scripts:
 - This work studies a ML data-driven approach

Preliminary DSE (FPGA Mapping)

Dotted: Default Yosys-ABC Recipe

Best Recipe is Circuit Dependent! How to find the best recipe?

GCN-LSTM Synthesis QoR Prediction

End-to-end prediction model architecture:

4-layer GCN, 4-layer LSTM with all hidden dimensions fixed to 64

Learning A Continuous and Reconstructible Latent Space for Hardware Accelerator Design (VAESA)

2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

- HW design space exploration (DSE) exponentially large in design parameters & discontinuous
- Design challenge: Design Simba-like (multicore) architectures for DNNs optimizing for latency and energy
 - parameters such as # of PEs, weight and input buffer sizes, ... 3.6 x 10¹⁷ configurations!
- We use a *Variational autoencoder (VAE)* to learn a compressed and continuous representation (latent) of the design space new designs can be generated from the latent space
- Eases search (Bayesian optimization, and gradient-based search)
- Demonstrated on AlexNet, ResNet-50, ResNeXt-50, Deep Bench, ...
- Significantly improves optimization results versus searches in original design space (5%) and 6.8X better sample efficiency.

Demands for efficient and / scalable RTL verification

- Significant project time, compute, and human resources dedicated to *verification* in industrial chip design development
- Verification closure requires:
 - Formal Property Verification: overcoming the state-space explosion problem in assertion-based verification
 → Learned Formal Proof Strengthening
 - Constrained Random Verification: efficient generation of constraint-satisfying solutions
 → GPU-Enabled, High-Throughput SAT Solution Sampling

Percentage of FPGA project time spent in verification

Mean peak number of FPGA engineers

Source: Wilson Research Group and Siemens EDA, 2022 Functional Verification Study Unrestricted (© Siemens 2022) Functional Verification Study

SIEMENS

Model	1R1W FIFO			OoO-Read Buffer			DMA Controller		
	Accuracy	Precision	Recall	Accuracy	Precision	Recall	Accuracy	Precision	Recall
MLP AE	0.698	0.711	0.804	0.769	0.764	0.967	0.925	0.667	0.053
LSTM AE	0.941	0.929	0.971	0.982	0.987	0.987	0.978	0.747	0.966
Transformer AE	0.946	0.957	0.948	0.982	0.984	0.991	0.987	0.969	0.983
Full LFPS Model (GCN CCE + Transformer AE)	0.967	0.985	0.977	0.982	0.986	0.990	0.988	0.978	0.981

~		pass@k					
Search Method		1R1W FIFO	OoO-Read Buffer	DMA Controller			
	1	0.24 ± 0.21	0.35 ± 0.21	0.24 ± 0.16			
Random Search	3	0.47 ± 0.23	0.64 ± 0.15	0.39 ± 0.17			
	5	0.55 ± 0.23	0.79 ± 0.15	0.41 ± 0.15			
Transformer AE Only	1	0.60	0.60	0.00			
LFPS-Guided Beam Search	3	0.60	0.60	0.00			
	5	0.60	0.60	0.00			
CCN CCE Transformer AE	1	0.60	0.80	0.20			
LEDS Cuided Deem Search	3	0.60	0.80	0.20			
LFPS-Guided Beam Search	5	0.80	0.80	0.20			

GPU-Enabled SAT Solution Sampling

Differential Modeling of SAT problems

- Boolean Satisfiability critical algorithm in hardware verification (and synthesis).
 - SAT solution sampling used in Constrained Random Verification (CRV) of hardware
- Our Approach:

Berkelev

Wireless Research Center

 Relaxation of assignments (0 or 1) to real value between 0 and 1

$$\mathbf{x} = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$$
 $\tilde{\mathbf{x}} = (x_1, x_2, ..., x_n) \in \{0, 1\}^n$

- Model as optimization problem: convex with L2 loss.
 Implies guaranteed convergence with gradient descent.
- Similar to back-propagation algorithm
- "NN model" of logic circuits
- Leverage GPUs with standard libraries, batch processing

.

ASP-DAC'25 DEMOTIC: A Differentiable Sampler for Multi-Level Digital Circuits

Arash Ardakani, Minwoo Kang, Kevin He, Qijing Huang, Vighnesh Iyer, Suhong Moon, John Wawrzynek

On ISCAS-85 benchmark suite. DEMOTIC outperforms the state-of-the-art sampler by more than 100x in most cases.

CircuitSAT Instance	# Inputs	# Outputs	# Logic Gates	# Variables (CNF)	# Clauses (CNF)	DEMOTIC	UNIGEN3	CMSGEN	DIFFSAMPLER
c17	5	2	6	25	19	850	813	162,707	116,968
c432	36	7	160	539	516	2,054,518	1.5	10,070	105
c499	41	32	202	683	717	1, 123, 605	1.5	5,704	28
c880	60	26	383	1198	1115	510,760	0.2	4,379	15
c1355	41	32	546	1683	1613	648,736	0.2	3,109	0.9
c1908	33	25	880	2436	2381	367,720	TO	2,213	TO
c2670	233	140	1269	3642	3274	323,617	TO	1,385	TO
c3540	50	22	1669	4680	4611	65,156	TO	1,073	TO
c5315	178	123	2307	6994	6698	180,085	TO	655	TO
c6288	32	32	2416	7280	7219	40,325	то	14	TO
c7552	207	108	3513	9971	9661	64, 483	ТО	430	ТО

DAC'24

Late Breaking Results: Differential and Massively Parallel Sampling of SAT Formulas

Arash Ardakani^{*}, Minwoo Kang^{*}, Kevin He, Vighnesh Iyer, Suhong Moon, John Wawrzynek University of California, Berkeley {arash.ardakani, minwoo_kang}@berkeley.edu

(Ongoing) Hierarchical SSL of Digital Circuits

Berkelev

Wireless Research Center

Chip Layout as Image Generation

"Chip Placement with Diffusion" Vint Lee, Chun Deng, Leena Elzeiny, Pieter Abbeel, John Wawrzynek Under review at NeurIPS'24, <u>https://arxiv.org/abs/2407.12282</u>

• From

macro-cell/standard-cell netlist to layout minimizing HPWL

- Existing learning-based methods use Reinforcement learning:
 - Slow, per-netlist iteration
- We employ a <u>Denoising</u> <u>Diffusion Probabilistic Model</u> (<u>DDPM</u>) formulation,
- with universal guidance

Figure 2: Diagram of our denoising model. Residual connections, edge feature inputs, nonlinearities, and normalization layers have been ommitted for clarity.

(a) Original Circuit NANDA'24

(b) After Clustering

(c) Diffusion-based Placement

The Future of ML for HW

HW ML

- Emerging body of work:
 - Many solid results on ML for physical design problems (placement/routing)
 - Some in logic and high-level synthesis
 - Most build estimators of power, cost, or performance to aid in search
 - Very few positive results on "generative techniques"
 - ex: "Design an LDPC decoder with 1Gsamp/s throughput and 10mW for SK90FD"
 - LLMs good for designer/tools interaction
 - not suitable for optimization
 - "Large Circuit-Models"? "Small Circuit-Models?"
 "Small-circuit Models?"
 - Challenges: Training sets, and correctness guarantees, constraint satisfaction

NANDA'24

Co-authors / Collaborators

- <u>T0 Vector Microprocessor</u>: Krste Asanovic, Brian Kingsbury, James Beck, David Johnson, Nelson Morgan
- <u>CoSA</u>: Qijing Huang, Minwoo Kang, Grace Dinh, Thomas Norell, Aravind Kalaiah, James Demmel, Sophia Shao
- <u>Synetgy</u>: Yifan Yang, Qijing Huang, Bichen Wu, Tianjun Zhang, Liang Ma, Giulio Gambardella, Michaela Blott, Luciano Lavagno, Kees Vissers, Kurt Keutzer
- LogicNets: Yukio Miyasaka, Alan Mishchenko, Nick Fraser
- <u>Autophase:</u> Qijing Huang, Ameer Haj-Ali, William Moses, John Xiang, Ion Stoica, Krste Asanovic
- <u>VAESA</u>: Qijing Huang, Charles Hong, Mahesh Subedar, Sophia Shao
- <u>Learned Formal Proof Strengthening</u>: *Minwoo Kang, Azade Nova, Eshan Singh,* Geetheeka Sharron Bathini, Yuriy Wiktorov

Thanks!