
NANDA’24

Designing Hardware for Machine Learning and
Using Machine Learning to Design Hardware

John Wawrzynek

johnw@berkeley.edu
University of California, Berkeley

1

mailto:johnw@berkeley.edu

NANDA’24

Machine Learning has been Great for Computer Architects!
● With the slowing of Moore’s Law and the end of

Dennard Scaling, architects have turned to
“accelerators” and purpose built processors as a way
to continue to scale performance, energy efficiency,
and cost.

● For ML kernels, relatively easy to achieve high
efficiency (compared to general purpose code) -
● Simpler control flow.
● Embarrassing parallel (loads of data-level

parallelism),
● lower precision requirements.

● Highly impactful!
● No end in sight!

2Cloud TPU v3 (45 TFLOP/s)

3

Future

Present

Past

Outline

NANDA’24

Work at Berkeley - Early 1990’s
● Community wide keen interest in parallel processing

● How to we find parallelism in problems and
exploit in hardware?

● ICSI was successful at using ANN’s trained with
back-propagation for front-end signal processing of
speech signals for speech recognition tasks. MLPs
not DNNs!

● Training was taking months on CPUs.

4

● Our pitch: connectionist models (neural networks) could be a general model
for many computations and are naturally parallel.

● Got funded from the ONR to design and build a “connectionist network
supercomputer (CNS)”.

● Quickly realized that training and inference is dominated by multiply/add
operations and these vectorize => designed a vector processor.

NANDA’24

T0 Vector Microprocessor (1995)
● World’s first single chip vector processor
● MIPS CPU + vector lanes
● Three graduate students, 1 year
● 15X the performance of workstation

5

Libraries for
Speech
researchers

System lived on for
a decade!

NANDA’24

Lessons from the 1990’s

1. NN training/inference dominated by multiply/add operations
• Full precision rarely needed
• Data-level parallelism (vectors/matrices)

2. ANN’s good general computation model
• Wide range of function approximation, regression, classification, etc.,

useful tool in optimization.

3. Software is key to adoption

6

Obviously lives on today with TPUs, etc.

GPUs with Cuda/openCL, now
TensorFlow/PyTorch

NANDA’24

Learning Model Capabilities Scaled Directly with Hardware Advances

7

Example: LLMs
GPT-4 trained on ~25,000 Nvidia A100 GPUs for 90-100 days,
~1.8 trillion parameters across 120 layers (~13T tokens in training)
[https://archive.md/2RG8X]

● Late 2000’s - renewed interest in NNs, now deep
● Driven by availability of high-performance hardware (GPUs)
● ML models and HW development fundamentally linked:

● Success in LLMs tied directly to massive hardware compute
capability (even more important than algorithm details?)

● How can we continue to scale HW performance (efficiency) to the
benefit of ML?
● Scalable HW architectures + HW/Algorithm co-design

https://archive.md/2RG8X

NANDA’24

Increasing Number of Parallel Resources
Many PEs with Network on Chip/Package (NoC/NoP)

Cerebras
84 Interconnected Chips

Wafer-scale Chip NoC/NoP Chip

Simba
16PEs x 36 Chiplets

8Motivation
Sophia Shao NVIDIA/UC Berkeley

https://people.eecs.berkeley.edu/~ysshao/assets/papers/shao2019-micro.pdf

NANDA’24

Scheduling a constant challenge:

Problem instances are huge (large
amount of state, large number of

operations)

● Algorithm ● Hardware

Relatively small amount of fast
hardware resources (memory,

computational units)

Scheduling

9

Particularly for multi-core architectures. How to partition and schedule execution to
efficiently use parallel resources.

Perhaps the most important part of support software.

NANDA’24 10

CoSA: Scheduling by Constrained Optimization
 for Spatial Accelerators [21’ISCA]

Mixed Integer Programming
(MIP) for scheduling DNN on
NoC accelerator with
multi-level memory hierarchies

Hardware-Aware Scheduling and
Scheduling-Informed Hardware Design

Scheduling Decisions:
1. Loop tiling
2. Loop permutation
3. Spatial mapping

Objective is to minimize
latency and energy

Jenny Huang PhD Dissertation

Three operation-level scheduling decisions

● Output Schedule:
DRAM [Weights:147456 Inputs:115200 Outputs:100352]
--

| for P in [0:4)

| for S in [0:3)

| for C in [0:16) (Spatial-X)

InputBuffer [Inputs:2016]

| for N in [0:1)

| for R in [0:3) (Spatial-X)

WeightBuffer [Weights:1024]

| for Q in [0:28)

| for P in [0:7)

AccumulationBuffer [Outputs:128]

| for K in [0:128)

| for C in [0:8)

Registers [Weights:1]

| for N in [0:1)

11

● Inputs Constraints:

Problem: ----- 7 nested loops
R=3, S=3, P=28, Q=28, C=128, K=128, N=1

Architecture: ----- 5 levels of memory

Registers
8x8

entries: 1
size: 64B

64 MAC

WeightBuffer
1x8

entries: 4096
size: 4KB

AccumBuffer
1x8

entries: 128
size: 384B

InputBuffer
1x1

entries: 8192
size: 8KB

2. Spatial Mapping

Temporal Mapping

3. Tiling Factors

1. Loop Permutation

State-of-the-art DNN accelerator schedulers

12

1. Expensive and
time-consuming
2. Sample invalid space
3. Hard to generalize

Unable to determine tiling
factor sizes

One-pass solution

2x speedup compared to the state-of-the-art
work with 116x shorter time-to-solution

NANDA’24

Hardware-Friendly Algorithm Design

13

• 3x3 Conv → Shift and 1x1 Conv
• Dataflow accelerator on embedded FPGA

equal top-1 accuracy, 11.6x higher frame-rate, 6.3x
better power efficiency, on ImageNet classification task

Synetgy: Image Classification without 3x3 Convolution [FPGA’19]

https://arxiv.org/pdf/1811.08634.pdf

Synthesis of Efficient Neural Networks on FPGAs

LogicNets*
In0 In1 In2 In3 In4 in5 Out0 Out1

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1

0 0 0 0 1 0 0 0

0 0 0 0 1 1 1 1

0 0 0 1 0 0 1 0

Truth table

∑

×

×

×

f

Neuron

Quantized / Sparse
connection
Up to 16 bits

Quantized

w0

w1

w2

[*] Y. Umuroglu et al., “Logicnets: Co-designed neural networks and circuits for extreme-throughput
applications,” in Proceedings of FPL, 2020, pp. 291–297.

…

• Jet Substructure Classification (JSC)
• Particle physics experiments at Large Hadron Collider at CERN, 16 inputs (FP32), 5 classes

• Network Intrusion Detection (NID)
• Detecting malicious network packets, 49 inputs (binary), 9 classes

Use Vivado
LS to
generate
FPGA
mapping

Benchmark Accuracy Throughput Latency LUT

JSC -3.2% 1.9x 3.8x 2.3x

NID 1.2% 9.2x 1.9x 3.2x

Improvement (over state-of-art)

Synthesis of Efficient Neural Networks on FPGAs

LogicNets at Berkeley

• Developed a new logic synthesis algorithm for
LogicNets

• The truth table converted from a neuron can be
classified as
Random-looking dense function with limited support
• Looks almost random
• Does not have a compact SOPs
• Depend only on a few inputs (up to 16 bits)

• We developed a dedicated logic synthesis algorithm for
this class of functions - based on Binary Decision
Diagram (BDD) minimization - variable reordering

Yukio Miyasaka
Alan Mishchenko

Synthesis of Efficient Neural Networks on FPGAs

Do Not Distribute: Access Restricted to BWRC Members and retreat attendees

Overview of the optimization algorithm

• Construct a Binary Decision Diagram* (BDD) for each neuron
• Perform BDD minimization (variable reordering)
• Map BDDs into FPGA LUTs

[*] Randal E. Bryant, “Symbolic Boolean manipulation with ordered binary-decision diagrams,” in ACM Computing Surveys, vol. 24, no. 3, pp. 293–318, 1992.

Synthesis of Efficient Neural Networks on FPGAs

Minimization using don’t cares

• We can further reduce the area by assigning some patterns to don’t care
• Allow the function to change during optimization
• Trade-off area with accuracy

• To begin with, we assigned patterns that do not appear in training-set to don’t care
• We also tried setting a threshold, named rarity

• Only the patterns with higher occurrences in training-set will be cared
• Higher rarity allows the function to change more

In0 In1 Out0 Out1

0 0 1 0
0 1 0 1
1 0 1 1
1 1 1 0

In0 In1 Out0 Out1

0 0 1 0
0 1 Φ Φ
1 0 1 1
1 1 1 0

Synthesis of Efficient Neural Networks on FPGAs

Effect of rarity parameter on size and test accuracy for JSC benchmark

• By assigning more patterns to don’t care, we can further reduce the area
• The accuracy drops quite slowly compared to the area reduction

Synthesis of Efficient Neural Networks on FPGAs

Results of minimization using don’t cares for JSC benchmark

Method Accuracy LUT Time
Xilinx Vivado 73.0171% 35419 2373s
w/o don’t care 73.0171% 22997 144s
w/ don’t care 73.0146% 17687 178s

• By assigning the patterns not in training-set to don’t care,
• With don’t cares, area reduced 2x over Vivado’s result
• accuracy was degraded only 0.0025%

• Runtime was still 13x smaller than Vivado

NANDA’24

The Future
● Advances in ML will continue to be critically dependent on advances in

Hardware Design.
● To spur ML advances, HW design must be agile: easy, fast, cheap

● None of these true now!
● Chip/accelerator design is slow, expensive (years, $10-100M)
● Consequently, we use yesterday’s application benchmarks to design

tomorrow’s HW!

20

Virtuous Cycle: Applying ML algorithms to design HW
leads to better HW for accelerating ML which will lead to
better ML algorithms for HW design which will lead to …

● New work shows promise in applying ML to HW design challenges:
● Higher QoR: DNNs classifiers allow rapid DSE and aids verification
● Higher human productivity: Reinforcement learning automates optimal search

21

AutoPhase: Reinforcement Learning for HLS
 Phase-Ordering [MLSys’20]

Phase-ordering:
clang program.c -flag1 -flag2 ...

We apply deep reinforcement learning to
address the phase-ordering problem for HLS:

o Action: next optimization pass to apply
o States:

1. Program Features
2. Histogram of Applied Passes

o Reward: cycles before a pass is applied
− cycles after a pass is applied

NP-Hard
Jenny Huang

https://arxiv.org/pdf/2003.00671.pdf

22

• Fewer samples required
• 28% improvement over -O3

AutoPhase: Reinforcement Learning for HLS
 Phase-Ordering [MLSys’20]

- Uses only Histogram of Applied Passes
- Compiles and runs once per trajectory

Uses Program Features
and Histogram of
Applied Passes

https://arxiv.org/pdf/2003.00671.pdf

Logic Synthesis QoR optimization (‘22)

Do Not Distribute: Access Restricted to BWRC Members and retreat attendees

● Logic Synthesis results can dictate the
viability of final QoR optimization

○ Under-optimized synthesized netlist
→ sub-optimal post-PnR QoR

● However, diverse options for Boolean
logic optimizations (e.g. passes in
open-source synthesis tool ABC)

○ Search space of possible “recipes”
grows exponentially w.r.t. length of
sequence of passes

● Users traditionally rely on ad hoc
heuristics or standard (built in) synthesis
scripts:

○ This work studies a ML data-driven
approach

Josh Kang

Preliminary DSE (FPGA Mapping)

Dotted: Default Yosys-ABC Recipe

Best Recipe is Circuit Dependent!
How to find the best recipe?

GCN-LSTM Synthesis QoR Prediction

End-to-end prediction model architecture:
 4-layer GCN, 4-layer LSTM with all hidden dimensions fixed to 64

in1

in2

in3

out1

out2

Gate Level Connectivity
Graph

Representation GCN LSTM FC

Circuit Representation Prediction Model

Delay Area

QoR Prediction

syn1 syn2 syn3

16 tech-independent optimization commands in ABC are considered.

Supervised dataset with ground-truth post-synthesis QoR labels (from Vivado Design Analysis)

NANDA’24

Learning A Continuous and Reconstructible
Latent Space for Hardware Accelerator Design (VAESA)
2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

● HW design space exploration (DSE) exponentially large in design parameters & discontinuous
● Design challenge: Design Simba-like (multicore) architectures for DNNs optimizing for latency and energy

● parameters such as # of PEs, weight and input buffer sizes, … 3.6 x 1017 configurations!

● We use a variational autoencoder (VAE) to learn a compressed and continuous representation
(latent) of the design space - new designs can be generated from the latent space

● Eases search (Bayesian optimization, and gradient-based search)
● Demonstrated on AlexNet, ResNet-50, ResNeXt-50, Deep Bench, …
● Significantly improves optimization results versus searches in original design space (5%) and 6.8X better

sample efficiency
25

Efficient and Scalable RTL Verification

Do Not Distribute: Access Restricted to BWRC Members and retreat attendees

Demands for efficient and /
scalable RTL verification

● Significant project time, compute, and human
resources dedicated to verification in industrial chip
design development

● Verification closure requires:
○ Formal Property Verification: overcoming the

state-space explosion problem in
assertion-based verification
→ Learned Formal Proof Strengthening

○ Constrained Random Verification: efficient
generation of constraint-satisfying solutions
→ GPU-Enabled, High-Throughput

SAT Solution Sampling

https://blogs.sw.siemens.com/verificationhorizons/2022/10/30/part-3-the-2022-wilson-research-group-functional-verification-study/

Learned Formal Proof Strengthening (ICCAD’23)

LFPS (ICCAD’23)

● Neural model to predict which subset of
tool-generated helper invariants should be
used as assumptions in k-induction proofs for
assertion-based formal verification

● 98.2% prediction accuracy; 98.3% F-1
● Data augmentation improves prediction

by up to 23.2%

Josh Kang

Learned Formal Proof Strengthening (ICCAD’23)

Do Not Distribute: Access Restricted to BWRC Members and retreat attendees

• Boolean Satisfiability critical algorithm in hardware
verification (and synthesis).

– SAT solution sampling used in Constrained Random
Verification (CRV) of hardware

• Our Approach:

– Relaxation of assignments (0 or 1) to real value
between 0 and 1

– Model as optimization problem: convex with L2 loss.
Implies guaranteed convergence with gradient
descent.

– Similar to back-propagation

algorithm

– “NN model” of logic circuits

● Leverage GPUs with standard
libraries, batch processing

● DAC’24 paper results show scaling advantage over
state-of-the-art SAT solvers

● ASP-DAC’25 paper on circuit-sat

GPU-Enabled SAT Solution Sampling

Differential Modeling of SAT problems

DAC’24

ASP-DAC’25

On ISCAS-85 benchmark suite. DEMOTIC outperforms the
state-of-the-art sampler by more than 100x in most cases.

(Ongoing) Hierarchical SSL of Digital Circuits

Self-Supervised Training for Digital
Circuit Representation Learning

● Design abstraction level as inductive bias
● Scalable representation learning of larger /

realistic designs, while training with low-level
information

● Adequate training data remains a challenge!

NANDA’24

Chip Layout as Image Generation

● From
macro-cell/standard-cell
netlist to layout minimizing
HPWL

● Existing learning-based
methods use Reinforcement
learning:
● Slow, per-netlist iteration

● We employ a Denoising
Diffusion Probabilistic Model
(DDPM) formulation,

● with universal guidance
improve the HPWL and
legality of generated
samples

● Primarily trained with
synthetic data

31

“Chip Placement with Diffusion”
Vint Lee, Chun Deng, Leena Elzeiny, Pieter Abbeel, John Wawrzynek

Under review at NeurIPS’24, https://arxiv.org/abs/2407.12282

https://arxiv.org/abs/2407.12282

NANDA’24

The Future of ML for HW
● Emerging body of work:

● Many solid results on ML for physical design problems
(placement/routing)

● Some in logic and high-level synthesis
● Most build estimators of power, cost, or performance to aid

in search
● Very few positive results on “generative techniques”

● ex: “Design an LDPC decoder with 1Gsamp/s
throughput and 10mW for SK90FD”

● LLMs good for designer/tools interaction
● not suitable for optimization

● “Large Circuit-Models”? “Small Circuit-Models?”
“Small-circuit Models?”

● Challenges: Training sets, and correctness
guarantees, constraint satisfaction

32

NANDA’24

Co-authors / Collaborators
● T0 Vector Microprocessor: Krste Asanovic, Brian Kingsbury, James Beck,

David Johnson, Nelson Morgan
● CoSA: Qijing Huang, Minwoo Kang, Grace Dinh, Thomas Norell, Aravind

Kalaiah, James Demmel, Sophia Shao
● Synetgy: Yifan Yang, Qijing Huang, Bichen Wu, Tianjun Zhang, Liang Ma,

Giulio Gambardella, Michaela Blott, Luciano Lavagno, Kees Vissers, Kurt
Keutzer

● LogicNets: Yukio Miyasaka, Alan Mishchenko, Nick Fraser
● Autophase: Qijing Huang, Ameer Haj-Ali, William Moses, John Xiang, Ion Stoica,

Krste Asanovic
● VAESA: Qijing Huang, Charles Hong, Mahesh Subedar, Sophia Shao
● Learned Formal Proof Strengthening: Minwoo Kang, Azade Nova, Eshan Singh,

Geetheeka Sharron Bathini, Yuriy Viktorov
● GPU-Enabled SAT Solution Sampling: Arash Ardakani, Josh Kang
● Chip Placement with Diffusion: Vint Lee, Chun Deng, Leena Elzeiny, Pieter Abbeel

33

Thanks!

34

