Designing Hardware for Machine Learning and
Using Machine Learning to Design Hardware

John Wawrzynek

johnw@berkeley.edu
University of California, Berkeley

mailto:johnw@berkeley.edu

Machine Learning has been Great for Computer Architects!

e With the slowing of Moore’s Law and the end of
Dennard Scaling, architects have turned to
“accelerators” and purpose built processors as a way
to continue to scale performance, energy efficiency,
and cost.

e For ML kernels, relatively easy to achieve high
efficiency (compared to general purpose code) -

e Simpler control flow.
e Embarrassing parallel (loads of data-level
parallelism),
e lower precision requirements.
e Highly impactful!
e No end in sight!

Cloud TPU v3 (45 TFLOP/s)

NANDA'24

Outline

Past

Present

Future

Work at Berkeley - Early 1990’s

Community wide keen interest in parallel processing

e How to we find parallelism in problems and
exploit in hardware?

ICSI was successful at using ANN’s trained with

back-propagation for front-end signal processing of

speech signals for speech recognition tasks. MLPs

not DNNs!

DanptghiaconpregfiaativosetP(neural networks) could be a general model

for many computations and are naturally parallel.

Got funded from the ONR to design and build a “connectionist network

supercomputer (CNS)”.

Quickly realized that training and inference is dominated by multiply/add

operations and these vectorize => designed a vector processor.
NANDA 24

Input layer Hidden layer Output layer

S S YR

TO Vector Microprocessor (1995) e i i:
e World’s first single chip vector processor 1] | 1T & -
e MIPS CPU + vector lanes N i I
e Three graduate students, 1 year Hir i &

: . =3
e 15X the performance of workstation -
SPERT-II: A Vector Microprocessor System and its Application to = '*E
Large Problems in Backpropagation Training i T
John Wawrzynek, Krste Asanovié, & Brian Kingsbury James Beck, David Johnson, & Nelson Morgan
University of California at Berkeley International Computer Science Institute a3 B
Department of Electrical Engineering and Computer Sciences 1947 Center Street, Suite 600
Berkeley, CA 94720-1776 Berkeley, CA 94704-1105 [—— i T L AL §
Proceedings of MicroNeuro '96 : § o -J'"‘""'- I ‘~.:...:2:n:n§
SPERT-I ' 1 [ocioinienieinioseieiolaniniod dhalakobadabaiefoabihoiaoiatatebaintenotaiabaielabsboiehointaseinse
Board [TOChpl [[| | | | |
Vector Arithmetic Pipeline . .
Core I ; Speech
Vector Registers %l researchers
- N A » v
Xilinx | Vector Arithmetic Pipeline g | SISKXB [
FPGA e ITSPYL | | fver | | | System lived on for
8 T T T T T) T H Addmss
Inst. Vector Memory Pipeline a decade!
Host Workstation lachell | | fwmp | | | 19

Lessons from the 1990’s

1. NN training/inference dominated by multiply/add operations
* Full precision rarely needed

 Data-level parallelism (vectors/matrices)
Obviously lives on today with TPUSs, efc.

2. ANN's good general computation model

 Wide range of function approximation, regression, classification, etc.,
useful tool in optimization.

3. Software is key to adoption

GPUs with Cuda/openCL, now
TensorFlow/PyTorch

Learning Model Capabilities Scaled Directly with Hardware Advances

Late 2000’s - renewed interest in NNs, now deep
Driven by availability of high-performance hardware (GPUs)

ML models and HW development fundamentally linked:
Success in LLMs tied directly to massive hardware compute

capability (even more important than algorithm details?)

'/ A 7 4‘\ “
‘/a \\\\'/, }“i‘\.v”'\\

o
‘ 1,' 4\ ,,,‘V‘;‘
\\\!/ AN V//’*

Example: LLMs
GPT-4 trained on ~25,000 Nvidia A100 GPUs for 90-100 days, @
~1.8 trillion parameters across 120 layers (~13T tokens in training)

[https://archive.md/2RG8X]

How can we continue to scale HW performance (efficiency) to the

benefit of ML?
Scalable HW architectures + HW/AIgorithm co-design

https://archive.md/2RG8X

Increasing Number of Parallel Resources
Many PEs with Network on Chip/Package (NoC/NoP)

NoC/NoP Chip Wafer-scale Chip

PE':: PE PE
1] 111 i

|1Il|

gy PE um pEM
i ""
iy T |

(a) Simba chiplet (b) Simba package .
Cerebras WSE-3 Largest GPU
Simba 4 Trillion Transistors 80 BillionTransistors
16PEs x 36 Chiplets 46,225 mm? Silicon 814 mm? Silicon
Cerebras
Sophia Shao NVIDIA/UC Berkeley 84 Interconnected Chips

NANDA'24

https://people.eecs.berkeley.edu/~ysshao/assets/papers/shao2019-micro.pdf

Scheduling a constant challenge:

Particularly for multi-core architectures. How to partition and schedule execution to
efficiently use parallel resources.

e Algorithm e Hardware
Problem instances are huge (large Relatively small amount of fast
amount of state, large number of hardware resources (memory,
operations) computational units)

Perhaps the most important part of support software.

Hardware-Aware Scheduling and

Scheduling-Informed Hardware Design

CoSA: Scheduling by Constrained Optimization
vatial Accelerators [21°ISCA]

Jenny Huang PhD Dissertation

DNN Layer
Weights

(Q-1)x Stride + S

(P - 1) x Stride + R

S: weightwidth and height
Q: outpu tW|dth nd height

NoC Accelerator

Input Buffer

Weight Buffer

i

e

Reduction

Accumulation
Buffer

[muLT

o Adder

R,
: Inpubchannel Schedule
K: output cha |
N: batch size
Variables =~ COSA
Constraints Objectives

Scheduling Decisions:
1. Loop tiling

2. Loop permutation

3. Spatial mapping

Objective is to minimize
latency and energy

Mixed Integer Programming
(MIP) for scheduling DNN on
NoC accelerator with
multi-level memory hierarchies

10

Three operation-level scheduling decisions

e Inputs Constraints:
Problem: - 7 nested loops
R=3, S=3, P=28, Q=28, C=128, K=128, N=1
Architecture: ~ ---—-- 5 levels of memory
64 MAC
Registers AccumBuffer
8x8 1x8
entries: 1 entries: 128
Size 648 5izeT 3848
WeightBuffer InputBuffer
1x8 1x1
entries: 4096 entries: 8192
Size 4KR Size 8RB

e Output Schedule:
DRAM [Weights:147456 Inputs: 115200 Outputs:100352]

S Laop pemuton

| forSin [0:§)

| forCin [O:E) (Spatial-X)
InputBuffer [Inputs:2016] — 2. Spat|a| Mappmg

[for Nin [0:1)

Temporal Mapping
| forRin [o:§) (SW

WeightBuffer [Weights:1024]

| for Qin [O:@)

" 3TingFactors
| for Pin [O:Z)

AccumulationBuffer [Outputs:128]

for Kiin [0:@)

e)

State-of-the-art DNN accelerator schedulers

Scheduler Search Algorithm

Brute-force Approaches:

Timeloop [57] Brute-force & Random
dMazeRunner [28] Brute-force
Triton [75] Brute-force over powers of two 1 Expensive and
Interstellar [81] Brute-force . .
Marvel [17] Decoupled Brute-force tlme-consu_mlng
Feedback-based Approaches: g aan;ptle invalid I‘?’pace
AutoTVM [19] ML-based Iteration - flard to generalize
Halide [65] Beamsearch [4], OpenTuner [9], [52]
FlexFlow [42] MCMC
Gamma [45] Genetic Algorithm
Constrained Optimization Approaches: Unable to determine tiling
Polly+Pluto [15], [16], [35] factor sizes
Tensor Comprehension [77] Polyhedral Transformations
Tiramisu [11]
CoSA Mixed Integer Programming (MIP) |

2x speedup compared to the state-of-the-art
work with 116x shorter time-to-solution

Hardware-Friendly Algorithm Design
[FPGA'19]

Channel

Width” /" | 4
// / i

1x1
Conv
Output

)/ AT

Height

Input tensor Output tensor

Input tensor After Shift Output tensor

Shift moves a neighboring + 1x1 Conv aggregates
pixel to the center position spatial info along the
channel dimension

Full 3x3 Conv Aggregates
neighboring pixels and
mixes channel info

« 3x3 Conv — Shift and 1x1 Conv
 Dataflow accelerator on embedded FPGA

equal top-1 accuracy, 11.6x higher frame-rate, 6.3x
better power efficiency, on ImageNet classification task

https://arxiv.org/pdf/1811.08634.pdf

ﬁw Synthesis of Efficient Neural Networks on FPGAs

1 k Neuron
LogICNEtS Truth table
InO In1 In2 In3 In4 in5 | OutO | Out1)
Use Vivado

0 0 0 0 0 0 0 0 LS to

I:> o Jojojojo 1o generate
0 0 0 0 1 0 0 0 FPGA
0 0 0 0 1 1 1 1 mapplng
0 0 0 1 0 0 1 0

uantized / Sparse Quantized
o Throughput
JSC

Up to 16 bits -3.2% 1.9x 3.8x 2.3x
NID 1.2% 9.2x 1.9x 3.2x

o Improvement (over state-of-art)
* Jet Substructure Classification (JSC)

* Particle physics experiments at Large Hadron Collider at CERN, 16 inputs (FP32), 5 classes
* Network Intrusion Detection (NID)
* Detecting malicious network packets, 49 inputs (binary), 9 classes

[*] Y. Umuroglu et al., “Logicnets: Co-designed neural networks and circuits for extreme-throughput
applications,” in Proceedings of FPL, 2020, pp. 291-297.

.

BeOr LogicNets at Berkeley

Developed a new logic synthesis algorithm for
. berkeley-abc/abc

LogicNets
The truth table converted from a neuron can be romeeesten
classified as . e v
Random-looking dense function with limited support N

* Looks almost random

* Does not have a compact SOPs m

* Depend only on a few inputs (up to 16 bits) | g
We developed a dedicated logic synthesis algorithm for - QY =

— -

this class of functions - based on Binary Decision ~—— " Yukio Miyasaka
. e e Alan Mishchenko
Diagram (BDD) minimization - variable reordering

Synthesis of LUT Networks for Random-Looking Dense Functions with Don't Cares—

Towards Efficient FPGA Implementation of DNN
Y Miyasaka, A Mishchenko, J Wawrzynek, NJ Fraser
2024 |IEEE 32nd Annual International Symposium on Field-Programmable Custom ...

ﬁ Berkeley Synthesis of Efficient Neural Networks on FPGAs
Wireless Research Center

Overview of the optimization algorithm

e Construct a Binary Decision Diagram™* (BDD) for each neuron
e Perform BDD minimization (variable reordering)
* Map BDDs into FPGA LUTs

X1 X2 X3 f
//
00 0] 0 e /
EEAE ©) ©
1 s

8 1 (1) (1) et / I
EEIH ENOSRONCEING |

1 0 | 1 / / |

1 1 0| o0 ” ” ’ ’ l
11| ol (o] |o 1|]o 1 0 1 ol [1

[*] Randal E. Bryant, “Symbolic Boolean manipulation with ordered binary-decision diagrams,” in ACM Computing Surveys, vol. 24, no. 3, pp. 293—-318, 1992.

Do Not Distribute: Access Restricted to BWRC Members and retreat attendees

ﬁw Synthesis of Efficient Neural Networks on FPGAs

Minimization using don’t cares

* We can further reduce the area by assigning some patterns to don’t care

* Allow the function to change during optimization

* Trade-off area with accuracy
* To begin with, we assigned patterns that do not appear in training-set to don’t care
* We also tried setting a threshold, named rarity

* Only the patterns with higher occurrences in training-set will be cared

* Higher rarity allows the function to change more

In0O | In1 | OutO | Out1 In0O | In1 | OutO | Out1

o

alalOo|O
~|lOo|~|O
AlaloOo|
o|l=-|~|O
N ==
~|OoO|~|O
ala|lg] -
o|~|6|0O

ﬁwc Synthesis of Efficient Neural Networks on FPGAs

Effect of rarity parameter on size and test accuracy for JSC benchmark

100
17500
15000 1 \ 0
12500 1 g
>
- 60
» 10000+ §
2 >
— 75001 :
40 <
5000 é
oll— Test Accuracy(%)
0

10° 10! 102 103 104
Rarity

* By assigning more patterns to don’t care, we can further reduce the area
* The accuracy drops quite slowly compared to the area reduction

ﬁ Berkeley Synthesis of Efficient Neural Networks on FPGAs
Wireless Research Center

Results of minimization using don’t cares for JSC benchmark

Method Accuracy LUT Time
Xilinx Vivado 73.0171% 35419 2373s
w/o don'’t care 73.0171% 22997 144s
w/ don’t care 73.0146% 17687 178s

By assigning the patterns not in training-set to don’t care,

* With don’t cares, area reduced 2x over Vivado’s result
accuracy was degraded only 0.0025%
Runtime was still 13x smaller than Vivado

The Future

e Advances in ML will continue to be critically dependent on advances in

Hardware Design.
e To spur ML advances, HW design must be agile: easy, fast, cheap
e None of these true now!
e Chip/accelerator design is slow, expensive (years, $10-100M)
e Consequently, we use yesterday’s application benchmarks to design

tomorrow’s HW!
e New work shows promise in applying ML to HW design challenges:

e Higher QoR: DNNs classifiers allow rapid DSE and aids verification
e Higher human productivity: Reinforcement learning automates optimal search

Virtuous Cycle: Applying ML algorithms to design HW ~
leads to better HW for accelerating ML which will lead to HW ML
better ML algorithms for HW design which will lead to ...

NANDA'24

[MLSys’20]

New Compiler Pass

Optimization
Passes

Program
Generator

Real
Benchmarks

(Action)

Cycle
Profiler

Runtime
(Reward)

Input Programs

W

NP-Hard

. + Jenny Huané'
Phase-ordering:

clang program.c -flag1 -flag2 ...

We apply deep reinforcement learning to
address the phase-ordering problem for HLS:
o Action: next optimization pass to apply
o States:
1. Program Features
2. Histogram of Applied Passes
o Reward: cycles before a pass is applied
- cycles after a pass is applied

21

https://arxiv.org/pdf/2003.00671.pdf

[MLSys’20]

o
W

-0.2 E/ @/
LA

- Uses only Histogram of Applied Passes
- Compiles and runs once per trajectory

 Fewer samples required
e 28% improvement over -O3

028 028 10000
054 0.25 0.26 0.27 I@‘g
0.2 .
3 £ Uses Program Features
- © .
S 01 and Histogram of
£ W 0,03 S Applied Passes
9 00....-0'2§ Q, Qsveesal Y A R g -)
g 07 3510 4000 @
E_O ' 2000
0

22

https://arxiv.org/pdf/2003.00671.pdf

ﬁ Logic Synthesis QoR optimization (‘22)

® Logic Synthesis results can dictate the
viability of final QoR optimization

o Under-optimized synthesized netlist
— sub-optimal post-PnR QoR

e However, diverse options for Boolean
logic optimizations (e.g. passes in
open-source synthesis tool ABC)

o Search space of possible “recipes”
grows exponentially w.r.t. length of
sequence of passes

e Users traditionally rely on ad hoc
heuristics or standard (built in) synthesis

scripts:
o This work studies a ML data-driven
approach

Do Not Distribute: Access Restricted to BWRC Members and retreat attendees

Josh Kang

30

28

26

y
N
R

Path_Dela

N
N

20

16

Exhaustive_bgm (N=17508)

.

Logic to Net Delay Ratio (%)
e 300
e 325

35(0;

37,5

40.0

42.5

e 450

®

12500 13000 13500 14000
Slice_LUTs

Preliminary DSE (FPGA Mapping)
Dotted: Default Yosys-ABC Recipe

Best Recipe is Circuit Dependent!
How to find the best recipe?

14500

PN GCN-LSTM Synthesis QoR Prediction

inl synl syn2 syn3
in2 outl —O J"c/l
_,-og QoR H MAPE (%) | Correlation
$mE out2
Graph Delay Area Delay || 2.674(%) | 0.997
Gate Level Connectivity Representation GCN LSTM FC
Area (#LUTs) || 3978 | 0998
Circuit Representation Prediction Model QoR Prediction

End-to-end prediction model architecture:
4-layer GCN, 4-layer LSTM with all hidden dimensions fixed to 64

< Area (In-Distribution) Delay (In-Distribution) 5 Area (Unseen Synthesis Recipe) , Delay (Unseen Synthesis Recipe)
® arithmetic 2103 - arithmetic , © . ithmeti 2~ 910 ithmeti el
o | & af arithmetic . 9 arithmetic - ﬁf
glo4 - control ﬁgf’f'?w g . control ﬁ;ﬁ?ﬁﬁ §104 . control j § by u,:r’ﬁé
o *defese ¢ v
o P o 3 - .
; : o 2 : g
) il - 102 % P 4 2,42
3103 g H . g .ﬁ i 3
#* - - ey =
x N & X Ky
$102 ¥ 3 10! 107 . ;
< il 7 3 - 5)
- I [. X @W/ °
g ; a 3 e g
I . 5. s @
=10 102 10° 10¢ 16° 10! 102 100 & 103 i * T 6 103
True Area (# LUTs, log scale) True Delay (ns, log scale) True Area (# LUTs, log scale) True Delay (ns, log scale)

16 tech-independent optimization commands in ABC are considered.

Supervised dataset with ground-truth post-synthesis QoR labels (from Vivado Design Analysis)

Learning A Continuous and Reconstructible
Latent Space for Hardware Accelerator Design (VAESA)

2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

Input

Latency &
Energy

al

Loss Function

L — Ly + Lppedictons

{4

Latency & Energy
Predictor
. —

>

Latent Space

e HW design space exploration (DSE) exponentially Iarge in design parameters & discontinuous
e Design challenge: Design Simba-like (multicore) architectures for DNNs optimizing for latency and energy

e parameters such as # of PEs, weight and input buffer sizes, ... 3.6 x 1017 configurations!

e We use a variational autoencoder (VAE) to learn a compressed and continuous representation

Bayesian Optimization !

Statistical Performance 3

Feedback from
HW Simulation

Model

B—_» Decoder

Latent Space

@

DNN Layer

/
| Scheduler |
(CoSA)

HW Evaluator
imeloop

(latent) of the design space - new designs can be generated from the latent space
e Eases search (Bayesian optimization, and gradient-based search)
e Demonstrated on AlexNet, ResNet-50, ResNeXt-50, Deep Bench, ...

e Significantly improves optimization results versus.searehes in original design space (5%) and 6.8X better

carmnla affirianAyy

ﬁ BT Efficient and Scalable RTL Verification

Wireless Research Center

Percentage of FPGA project time spent in verification

Demands for efficient and /

scalable RTL verification
- . 40%-50% |
e Significant project time, compute, and human Median projecttime spent |
resources dedicated to verification in industrial chip i icalion
design development
.. . . Percentage of FPGA Project Time Spentin Verification
e \Verification closure requires: e e
o Formal Property Verification: overcoming the
State—space eXp|OSi0n problem in Mean peak number of FPGA engineers
assertion-based verification
— Learned Formal Proof Strengthening 2%
o Constrained Random Verification: efficient £
generation of constraint-satisfying solutions 38%
— GPU-Enabled, High-Throughput

SAT Solution Sampling

2012 2014 2018 2022

Mean Peak Number of Engineers on FPGA Projects
= Design Engineers = Verification Engineers

Source:

Untesticid| SIEMENS

https://blogs.sw.siemens.com/verificationhorizons/2022/10/30/part-3-the-2022-wilson-research-group-functional-verification-study/

Do Not Distribute: Access Restricted to BWRC Members and retreat attendees

Berkeley
Wireless Research Center

LFPS (ICCAD’23)

° Neural model to predict which subset of

tool-generated helper invariants should be

used as assumptions in k-induction proofs for
assertion-based formal verification

@@

—IT

Helper Auto-Generation
(Assertion Mining)

® 98.2% prediction accuracy; 98.3% F-1
e Data augmentation improves prediction L
by up to 23.2%
77777777777777 Dataset Generation ~ Supervised Training
Generate Induction
Helpers LFPS Model Proof with
Found Helpers
Commercial
Assertion Predict Helper Set Commercial

Target RTL Effectiveness

Assertions

Synthesis Tool FV Proof Engine

9

Proof
Strengthening

Helper
Templates

RTL Graph

Helper Subset Search:
e Evaluate Next Helper Effectiveness
e lteratively Build Helper Set (x_1,x_2, ... x_L)

Neural Model-Guided Search

Learned Formal Proof Strengthening (ICCAD’23)

4)
(A
(-]
2ok
+ Rz
Neural Model: Learning to
Predict Helper Effectiveness
- J
Assertion Set
Embedding
Assertion cLS Helper
Encoder — — Head —> Effectiveness
(LSTM/Transformer) Prediction
[T cireuit
Context
l Embedding
RTL Graph]
EEE
===
:;:::::t E— Pooling based on
— . : .
Encodar Assertion2Node Mapping
(GEN) —]
(i |

mBerkeley Learned Formal Proof Strengthening (ICCAD’23)

Wireless Research Center

Model 1R1W FIFO 000-Read Buffer DMA Controller
Accuracy Precision Recall | Accuracy Precision Recall | Accuracy Precision Recall
MLP AE 0.698 0.711 0.804 0.769 0.764 0.967 0.925 0.667 0.053
LSTM AE 0.941 0.929 0.971 0.982 0.987 0.987 0.978 0.747 0.966
Transformer AE 0.946 0.957 0.948 0.982 0.984 0.991 0.987 0.969 0.983
o il sl AE) | 0967 0385 0977 | 0582 058 099 | 0988 0978 0981

Accuracy Fl-score
1.0 _— pass@k
0.95 /f\/ gl * Search Method k IRIW FIFO OoO-Read Buffer DMA Controller
0.8 1 0.24 + 0.21 0.35 + 0.21 0.24 + 0.16
090 e Random Search 3 047 +023 0.64 + 0.15 0.39 + 0.17
05 0.7 000 Read Buffer 5 055 -020.23 0.79 160.15 041 + 0.15
: —<— DMA Controller 1 0.60 0.60 0.00
LEPS-Guided Beam Search 3 060 0.60 0.00
0.80 o5 5 0.60 0.60 0.00
GCN CCE + Transformer AE ! et Ll 00
0.75 0.4 . 3 0.60 0.80 0.20
1 > 3 4 5 1 > 3 4 5 LFPS-Guided Beam Search 5 0.80 0.80 020
A Aug. Positive Data Size A Aug. Positive Data Size ° ° -

Do Not Distribute: Access Restricted to BWRC Members and retreat attendees

ﬁ GPU-Enabled SAT Solution Sampling

Differential Modeling of SAT problems ASP-DAC25 | DEMOTIC: A Differentiable Sampler
for Multi-Level Digital Circuits

Arash Ardakani, Minwoo Kang, Kevin He, Qijing Huang, Vighnesh Iyer, Suhong Moon, John Wawrzynek

. Boolean Satisfiability critical algorithm in hardware
verification (and synthesis).
- SAT solution sampling used in Constrained Random

Verification (CRV) of hardware On ISCAS-85 benchmark suite. DEMOTIC outperforms the

* Our Approach: state-of-the-art sampler by more than 100x in most cases.

- Relaxation of assignments (0 or 1) to real value — | —
bet 0and 1 & () Ci;i‘:ﬁ‘f # Inputs | # Outputs #Glf:f:“ #Yé';“;f.’)le’ #(CCI;;;)“ DEMOTIC ‘ UNIGEN3 ‘ CMSGEN ‘ DIFESAMPLER
etween U an
cl7 5 2 6 25 19 850 813 162,707 116,968
n a n cd432 36 7 160 539 516 2,054,518 1.5 10,070 105
X = eR X = € {0.1 499 41 32 202 683 717 1,123,605 15 5,704 28
(X1,X2, ’xn) (X1,XZ, ’xn) { 2 } 880 60 26 383 1198 1115 510, 760 0.2 4,379 15
¢1355 41 32 546 1683 1613 648,736 0.2 3,109 0.9
¢1908 33 25 880 2436 2381 367,720 TO 2,213 TO
2670 233 140 1269 3642 3274 323,617 TO 1,385 TO
¢3540 50 22 1669 4680 4611 65,156 TO 1,073 TO
— i i i . i ¢5315 178 123 2307 6994 6698 180, 085 TO 655 TO
Modgl as optimization problem: copvex W|th L2 loss. oo - = g geos i 1018 e ¥ o
Implies guaranteed convergence with gradient €7552 207 108 3513 9971 9661 64,483 TO 430 TO
descent.
~ similarto back-propagation
algorithm DAC'24 Late Breaking Results: Differential and

Massively Parallel Sampling of SAT Formulas

Arash Ardakani’, Minwoo Kang®, Kevin He, Vighnesh Iyer, Suhong Moon, John Wawrzynek

e Leverage GPUs with standard e
libraries, batch processing

- “NN model” of logic circuits

Berkeley
Wireless Research Center

inl— outl
in2—
in3—) out2

Gate-Level Connectivity

~

5 1
O/‘)—(—O
Gate-Level
Netlist Graph

IR-Level G

& / .
Netlist A
Graph | Mem16 |

\ /
_

Circuit Representation

(ongoing)

Test Parameters
|

==
GCN FC

Verification Finetune Model

GCN
IR-Level HCRL Model

syn1syn2 syn3
|

GCN LSTM FC

Synthesis Finetune Model

)

Branch / Functional
Coverage

Coverage Prediction

GCN

Gate-Level HCRL Model

O ER
=%
Critical

Path Delay

Area

QoR Prediction

- |

RTL
(*v, *5v, RTL Parser / Elaboration :ﬁg;";:t:: PyTorch
* scala) } Yosys-ABC / FIRRTL ~om) DataLoader
~ -
Top-Level Netlist PyG / Networkx PyTorch
(*.gml) Subgraph Sampling Dataset

Self-Supervised Training for Digital
Circuit Representation Learning

e Design abstraction level as inductive bias

e Scalable representation learning of larger /
realistic designs, while training with low-level
information

e Adequate training data remains a challenge!

Chip Layout as Image Generation

“Chip Placement with Diffusion”
Vint Lee, Chun Deng, Leena Elzeiny, Pieter Abbeel, John Wawrzynek
Under review at NeurlPS’24, https://arxiv.org/abs/2407.12282

Block (x2)

FrOm Encoder ResGNN block AttGNN block

Sinusoidal > >
macro-cell/standard-cell Encodings %_ olg| H e Hig|E(glElH M b
netlist to layout minimizing 1P
H PWL Figure 2: Diagram of our denoising model. Residual connections, edge feature inputs, nonlinearities,

f et : _ and normalization layers have been ommitted for clarity.
Existing learning-based = .
methods use Reinforcement
learning:
e Slow, per-netlist iteration o
We employ a Denoising
Diffusion Probabilistic Model -
(DDPM) formulation,
(a) Original Circuit (b) After Clustering (c) Diffusion-based Placement

with universal guidance

https://arxiv.org/abs/2407.12282

The Future of ML for HW mw w

e Emerging body of work:

Many solid results on ML for physical design problems
(placement/routing)
Some in logic and high-level synthesis
Most build estimators of power, cost, or performance to aid
in search
Very few positive results on “generative techniques”
e ex: “Design an LDPC decoder with 1Gsamp/s
throughput and 10mW for SKO9OFD”
e LLMs good for designer/tools interaction
e not suitable for optimization
e “Large Circuit-Models”? “Small Circuit-Models?”
“Small-circuit Models?”
e Challenges: Training sets, and correctness
guarantees, constraint satisfaction

Co-authors / Collaborators

e 10 Vector Microprocessor: Krste Asanovic, Brian Kingsbury, James Beck,
David Johnson, Nelson Morgan

e CoSA: Qijjing Huang, Minwoo Kang, Grace Dinh, Thomas Norell, Aravind
Kalaiah, James Demmel, Sophia Shao

e Synetqy: Yifan Yang, Qijing Huang, Bichen Wu, Tianjun Zhang, Liang Ma,
Giulio Gambardella, Michaela Blott, Luciano Lavagno, Kees Vissers, Kurt
Keutzer

e LogicNets: Yukio Miyasaka, Alan Mishchenko, Nick Fraser

e Autophase: Qijing Huang, Ameer Haj-Ali, William Moses, John Xiang, lon Stoica,
Krste Asanovic

e VAESA: Qijjing Huang, Charles Hong, Mahesh Subedar, Sophia Shao

e Learned Formal Proof Strengthening: Minwoo Kang, Azade Nova, Eshan Singh,
Geetheeka Sharron Bathini, Yuriy\Viktorov

Thanks!

