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AI Accelerators: Motivations

❑ The proliferation of AI applications is pushing on accelerating AI on hardware. 

❑ Nvidia’s Blackwell is part of this trend to meet the computational demands of AI.

❑ As AI applications move beyond HPC and data centers to edge devices, 
GPUs and TPUs are not enough anymore.

❑ AI accelerators on the edge pose stringent constraints on power consumption, 
latency, memory footprint and cost.

❑ Neural processing units (NPUs) are becoming a standard in heterogeneous 
platforms to enable AI inference on the edge. 
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D. Garisto, “Accelerating AI: The cutting-edge chips powering the computing 

revolution”, Nature, News Feature, Vol.630, June 2024.



Survey 
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https://arxiv.org/abs/2306.15552

https://arxiv.org/abs/2306.15552
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Energy Efficiency

Sources: https://nicsefc.ee.tsinghua.edu.cn/project.html

[Jhang et al.] “Challenges and Trends of SRAM-Based Computing-In-Memory for AI Edge Devices“ IEEE Trans. On Circ. and 

Sys. I - 2021

Memory cell array +
WL drivers

https://nicsefc.ee.tsinghua.edu.cn/project.html


Memory usage per layer & Energy cost of RAM accesses 
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Memory usage changes significantly per layer of
DNN models [A. Erdem, TACO 2020]

Data transfers from/to off-chip memory
dominate the energy consumption

Energy per operation values from [Horowitz, ISSCC 2014]



Towards In-Memory Computing 
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Trend of HW accelerators to integrate processing and memory resources

Improved compute density and energy efficiency



Analog vs. Digital In-Memory Computing

Analog IMC

▰ Based on emerging NVM technologies 
such as Resistive RAM (ReRAM) and 
Phase Change Memory (PCM).

▰ Better energy efficiency

▰ Sensitivity to process and temperature 
variations

▰ Circuits nonidealities leads to low density 
and computing inaccuracies

Digital IMC

▰ Fully digital SRAM-based technologies

▰ Compatible for integration in SoC 
nanotechnologies.

▰ Deterministic behavior

▰ Robusteness

▰ Accuracy

▰ Higher computation density 

▰ More flexibility
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To optimize the energy efficiency in terms of TOPs/Watt, In-Memory Computing represents an effective 
path towards the next generation of HW accelerators for data-intensive DNN tasks on the edge. 

S. Perri, C. Zambelli, D. Ielmini, C. Silvano, “Digital In-Memory Computing to Accelerate Deep Learning 

Inference on the Edge”. IPDPS (RAW Workshops) 2024
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Analog vs. Digital In-Memory Computing: 
A system-level perspective

J. Sun et al., “Analog or Digital In-Memory Computing? Benchmarking Through Quantitative Modeling”, 

ICCAD 2023, 10.1109/iccad57390.2023.10323763
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Digital IMC architecture - ISSCC 2023

[G. Desoli et al.] “16.7 A 40-310TOPS/W SRAM-Based All-Digital Up to 4b In-Memory

Computing Multi-Tiled NN Accelerator in FD-SOI 18nm for DL Edge Applications,” IEEE

Int. Solid-State Circ. Conf. (ISSCC), 2023

• 32Kb SRAM-based IMC supporting 1, 2, and 4b 

operations; 

• 256-bit word-length; 

• 4 sub-arrays, each 32x256 bit;

• Each sub-array has a local row decoder, sense 

amplifiers, output buffers, I/O and computing 

circuitry; 

8T SRAM cells with decoupled read and write ports



Digital IMC-based NPU System-on-Chip in 18nm

10[G. Desoli et al.] “16.7 A 40-310TOPS/W SRAM-Based All-Digital Up to 4b In-Memory Computing Multi-Tiled

NN Accelerator in FD-SOI 18nm for DL Edge Applications,” IEEE Int. Solid-State Circ. Conf. (ISSCC), 2023
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Digital IMC-based NPU System-on-Chip in 18nm 
(cont’d)

[G. Desoli et al.] “16.7 A 40-310TOPS/W SRAM-Based All-Digital Up to 4b In-Memory Computing Multi-Tiled

NN Accelerator in FD-SOI 18nm for DL Edge Applications,” IEEE Int. Solid-State Circ. Conf. (ISSCC), 2023

4.2 mm2

31 mm2



Layer-wise Exploration of NPU Compiler’s 
Optimization Space 
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F. Indirli et al., “Layer-wise E  loration of a NPU Com iler’s 

Optimization Space, ICCTA 2024



Layer-wise Exploration of NPU Compiler’s 
Optimization Space 

14

          

          

              

                  

                  

   

          

          

              

   

                  

                  

             

                                 

          

                 

      

       

            

   

           

             

        

Te t is not S     cannot dis lay

         

    

       

    

          

    

    

       

    

           

     

    

       

    

           

     

    

       

   

    

             

      

    

       

        

    

         

     

    

    

        

     

          

  

Scheduling   

 uffer allocation

 inding   Lowering

 ra h   timi .

  timi ed NN to ology

Low level IR

Ma  ed low level IR

Post o timi ation  

Code generation

.c
NPU config
instructions

.estimated
runtime
statistics

.onn 
NN Model

   
Descri tion

Decom .

 arams

 ac end

 arams



Layer-wise Exploration of NPU Compiler’s 
Optimization Space 
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Graph transformations and mappings on PEs
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Graph transformations and mappings on PEs

18Performance improvement



Automatic Exploration of Mapping AI 
Workloads to Digital SRAM-based IMC

▰ IMC can deliver massive amounts of OPS/cycle by reducing 
data movement and exploiting parallelism.

▰ Per-layer mapping exploration space is huge!

▰ Need of automatic exploration of AI mapping strategies to 
better exploit the computing resources of IMC-based NPUs.
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Automatic Exploration of Mapping AI 
Workloads to Digital SRAM-based IMC
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• T. Andrulis, J. S. Emer, V. Sze, "CiMLoop: A Flexible, Accurate, 

and Fast Compute-In-Memory Modeling Tool", 2024, 

arxiv.org/abs/2405.07259 https://github.com/mit-emze/cimloop

• G. Palermo, C. Silvano, V. Zaccaria: «ReSPIR: A Response

Surface-Based Pareto Iterative Refinement for Application-

Specific Design Space Exploration». IEEE Trans. CAD, (2009)

https://github.com/mit-emze/cimloop


Mapping GEMMs on Spatial Architectures

21Marco Ronzani, Cristina Silvano «FactorFlow: Mapping GEMMs on Spatial Architectures through

Adaptive Programming and Greedy Optimization Author(s)”, Accepted to ASP-DAC 2025



Proposals to exploit IMC on FPGAs

www.supercomputing-icsc.it/en/icsc-home/
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Digital IMC architectures on FPGAs (1)

[X. Wang et al.] “Com ute-Capable Block RAMs for Efficient Deep Learning Acceleration on FP As”,

IEEE Int. Symp. On Field-Programmable Custom Computing Machine (FCCM), 2021

Spice simulations on a 28nm process technology at 0.9V have shown that the cycle time in the computational mode is 1.6x

higher than the memory mode. For a 64Kb BRAM the area overhead is less than 8%
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Digital IMC architectures on FPGAs (2)

[A. Arora et al.] “CoMeFa: Deploynig Compute-in-Memory on FPGAs for Deep Learning Acceleration”,

ACM Trans. On Rec. Tech. and Sys., Vol. 16, n°3, 2023

• The Compute-in-memory block integrates PEs in the sense amplifiers; 

• One bit-serial PE for each bitline;

• Additional logic (comparators, multiplexers, etc.) are introduced; 

Verilog designs evaluated on a 20kb BRAM

for several applications
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Digital IMC architectures on FPGAs (3)

[Y. Chen et al.] “ RAMAC: Compute-in-BRAM Architectures for Multiply-Accumulate on FP A”, IEEE

Int. Symp. On Field-Programmable Custom Computing Machine (FCCM), 2023

Two operation modes:

- Memory mode: a conventional BRAM

- Computation mode: data are copied to the dummy BRAM

and processed in SIMD fashion (bit-serial multiplication &

bit-parallel addition)
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When applied to accelerate AlexNet and ResNet-34 DNNs

the achieved speed up is higher than 1.5

The BRAMAC architecture introduces an area overhead of 17%
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Digital IMC architectures on FPGAs (4)

[Y. Liet al.] “An All-digital Compute-in-memory FPGA Architecture for Deep Learning Acceleration”, ACM Trans. On Rec. Tech. and Sys., Vol. 17, n°1, 2024

• The Compute-in-memory block uses 10T memory cells; 

• In the compute mode, DataIn transfers Activations;

• Activations are multiplied by the weights stored in the memory;

• The products furnished by bit-serial multipliers are then 

accumulated by an adder tree; 

• In the memory mode, the weighs are stored

• 8-bit activations and weights

For experiments on DL models:

- 45nm technology process @100MHz

- 64 x 512 memory cell array

- The counterparts are DSP-based architectures

(Intel Agilex)

Some sample results



Open challenges, trends 
and conclusions

27
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1. Need of specific design methodologies and EDA tools

Automatic compilation and mapping frameworks are needed to exploit DIMC

Expertise in DL algorithms, hardware architectures, compilers. 

2. Make DIMC able to operate at different data precision

Introducing the SIMD paradigm to achieve accuracy/power/latency/area tradeoffs

3. Increase reconfigurability

For ASICs introducing multiple operating modes through emerging device technolgies, e.g. RFETs   

For both ASICs and FPGAs adopting runtime resources management to optimize power and speed 

at each layer and to support tensor transformations



Thank you for your attention
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