
It’s all about the primitives! Designing 
for high performance on FPGAs 
NANDA Workshop, Imperial, London, 9 Sep 2024

Suhaib A Fahmy 
suhaib.fahmy@kaust.edu.sa

1

mailto:suhaib.fahmy@kaust.edu.sa


NANDA, London, 9 Sep 2024

The prototyping trap
▶︎ “FPGAs are the ideal platform for prototyping architectural ideas”

2



NANDA, London, 9 Sep 2024

The prototyping trap
▶︎ “FPGAs are the ideal platform for prototyping architectural ideas”

▶︎ “We demonstrate a prototype of our new NIC design on an FPGA”

2



NANDA, London, 9 Sep 2024

The prototyping trap
▶︎ “FPGAs are the ideal platform for prototyping architectural ideas”

▶︎ “We demonstrate a prototype of our new NIC design on an FPGA”

▶︎ “Our architecture achieves a clock frequency of 200 MHz on ___ FPGA” 
 
 

2



NANDA, London, 9 Sep 2024

The prototyping trap
▶︎ “FPGAs are the ideal platform for prototyping architectural ideas”

▶︎ “We demonstrate a prototype of our new NIC design on an FPGA”

▶︎ “Our architecture achieves a clock frequency of 200 MHz on ___ FPGA” 
 
 

▶︎ What are we missing?

2



NANDA, London, 9 Sep 2024

These feisty architectures
▶︎ Modern FPGAs are a complex 

mix of capable computing 
resources, flexible routing, and 
high bandwidth I/O 

▶︎ Perhaps we can leverage the 
design effort put into them to 
build more performant systems 

▶︎ Let’s also think about embodied 
carbon…

3



NANDA, London, 9 Sep 2024

The evolution of the DSP Block
▶︎ FPGAs found widespread use in DSP applications so 

architectures evolved to support this 

▶︎ Xilinx Virtex-II first introduced 18×18-bit multiplier at 105 MHz 

▶︎ Virtex-4 added a 48-bit adder/subtractor/accumulator at 
500MHz and programmable input muxes to ALU 

▶︎ Virtex-5 expanded to 25×18-bit multiplier and added logic 
functions and dynamic programmability to ALU at 550 MHz 

▶︎ Virtex-6 and all 7-series added programmable pre-adders 
and input registers up to 600 MHz , the DSP48E1

4



NANDA, London, 9 Sep 2024

The evolution of the DSP Block
▶︎ Virtex UltraScale+ introduced the 

DSP48E2, multiplier 27×18-bit, added 
fourth ALU input and inline XOR, 775 
MHz 

▶︎ Versal ACAP introduced the DSP58, 
multiplier to 27×24-bit, FP32 mode, and 
complex multiplier support, 1000+ MHz 

▶︎ Crucially, these primitives are backward 
compatible

5



NANDA, London, 9 Sep 2024

The DSP48E1
▶︎ Across whole 7-series 

families, compatible with 
the later DSP48E2 and 
DSP58 

▶︎ Multiplier with adjustable 
registered inputs 

▶︎ ALU for addition/logic/
accumulation 

▶︎ Optional pre-adder

6



NANDA, London, 9 Sep 2024

The DSP48E1
▶︎ Various “attributes” are set at compile time when instantiating the primitive: 

▶︎ Number of register stages to enable 

▶︎ Direct or cascaded (from neighbours) inputs 

▶︎ Use of D-port 

▶︎ Multiplier disabled, enabled, or dynamic 

▶︎ ALU in scalar or SIMD mode

7



NANDA, London, 9 Sep 2024

The DSP48E1
▶︎ Three dynamic control signals allow functionality to change at runtime 

▶︎ INMODE: determines the functionality of the input registers and pre-
adder 

▶︎ OPMODE: controls the X, Y, and Z multiplexers that feed the ALU 

▶︎ ALUMODE: controls the function performed in the ALU 

▶︎ These signals open up a significant opportunity to further exploit DSP 
blocks

8



NANDA, London, 9 Sep 2024

DSP48E1 supported expressions
▶︎ Combining different attributes 

and dynamic signals allow the 
DSP block to support a wide 
range of different computational 
expressions on a per cycle basis 

▶︎ Here T1–T5 use only the pre-
adder and multiplier, T6–T9 do 
not use the multiplier, while T10–
T29 use all functions

9



NANDA, London, 9 Sep 2024

DSP48E1 supported expressions
▶︎ These supported expressions can be 

expressed as graphs which can be 
matched to during compilation 

▶︎ It is important to note that the register 
positions in any code must match those 
of the DSP block to be able to map 
successfully 

▶︎ This presents a challenge to the 
mapping tool with explicitly scheduled 
designs

10



NANDA, London, 9 Sep 2024

Maximising frequency
▶︎ Depending on the features used, the 

number of pipeline stages required to 
achieve maximum frequency changes 

▶︎ (Note these experiments were on V6, and 
frequencies are higher on VU+/Versal) 

▶︎ Enabling all features to use with dynamic 
programmability requires a pipeline 
depth of 4 cycles

11



NANDA, London, 9 Sep 2024

Mapping DFGs to DSP blocks

▶︎ We found that synthesis tools tend to mostly only utilise the multipliers in 
the DSP blocks when inferring, often additional operations are not 
absorbed into the DSP block 

▶︎ Frequency of inferred circuits well below the capabilities of the DSP 
blocks due to mismatched pipelining 

▶︎ What if we feed architectural information up the design flow?

12



NANDA, London, 9 Sep 2024

Mapping DFGs to DSP blocks
▶︎ Our flow reads a C representation 

of an arithmetic expression (mult, 
add, sub) and generates a DFG 

▶︎ We analyse this DFG, matching 
against the templates the DSP 
block supports 

▶︎ We update intermediate wires to 
the correct wordlengths to allow 
inference 

13



NANDA, London, 9 Sep 2024

Mapping DFGs to DSP blocks
▶︎ Two traditional designs are 

generated 

▶︎ Combinational implementation 
with ample output registers for 
retiming by the tool 

▶︎ Pipelined implementation 
following traditional 
approaches (with suitable 
balancing of branches)

14



NANDA, London, 9 Sep 2024

Mapping DFGs to DSP blocks

▶︎ An HLS implementation with 
suitable directives is generated 

▶︎ Our approach uses the matched 
templates to generate both a low-
level instantiated graph of DSP 
blocks (Inst) as well as an RTL 
implementation suitably 
pipelined (DSPRTL)

15



NANDA, London, 9 Sep 2024

Mapping results

16



NANDA, London, 9 Sep 2024

Mapping results

17



NANDA, London, 9 Sep 2024

Key takeaways
▶︎ Consideration of DSP block structure and 

pipelining is essential in fully exploiting 
them at maximum performance 

▶︎ It is possible to achieve the highest 
performance from portable RTL 
descriptions, as long as the DSP block 
structure has been used to guide pipelining 

▶︎ Overall latency (and FF usage) may increase 
due to the enforced 4-cycle DSP block 
pipeline

18



NANDA, London, 9 Sep 2024

DSP blocks in larger designs
▶︎ DSP block frequencies have scaled 

significantly across FPGA generations 

▶︎ Meanwhile, general design frequency has 
not scaled as well 

▶︎ A 300MHz design is still considered “fast” 
though DSP blocks on current devices 
support three times that frequency 

▶︎ We proposed a flow that multi-pumps DSP 
blocks to reduce usage in large designs

19

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36 1

Multipumping Flexible DSP Blocks for Resource
Reduction on Xilinx FPGAs

Bajaj Ronak, Student Member, IEEE, and Suhaib A. Fahmy, Senior Member, IEEE

Abstract—For complex datapaths, resource sharing can help

reduce area consumption. Traditionally, resource sharing is ap-

plied when the same resource can be scheduled for different

uses in different cycles, often resulting in a longer schedule.

Multipumping is a method whereby a resource is clocked at a

frequency that is a multiple of the surrounding circuit, thereby

offering multiple executions per global clock cycle. This allows

a single resource to be shared among multiple uses in the same

cycle. This concept maps well to modern field-programmable gate

arrays (FPGAs), where hard macro blocks are typically capable of

running at higher frequencies than most designs implemented in

the logic fabric. While this technique has been demonstrated for

static resources, modern digital signal processing (DSP) blocks

are flexible, supporting varied operations at runtime. In this

paper, we demonstrate multipumping for resource sharing of

the flexible DSP48E1 macros in Xilinx FPGAs. We exploit their

dynamic programmability to enable resource sharing for the

full set of supported DSP block operations, and compare this

to multipumping only multipliers and DSP blocks with fixed

configurations. The proposed approach saves on average 48%

DSP blocks at a cost of 74% more LUTs, effectively saving 30%

equivalent LUT area and is feasible for the majority of designs,

in which clock frequency is typically below half the maximum

supported by the DSP blocks.

Keywords—Digital signal processing, field programmable gate
arrays, design automation, arithmetic synthesis.

I. INTRODUCTION

Modern FPGAs include a number of embedded hard blocks,
including memory blocks, DSP blocks, and embedded pro-
cessors that offer performance, power, and area benefits over
“soft” implementations of the same functions [1]. The DSP
blocks in modern Xilinx FPGAs support a range of arithmetic
functions, selected through control signals that can be dynam-
ically set at runtime, though this is not typically exploited by
vendor tools. Since hard blocks are a limited resource, it is
prudent to share these resources where possible. Traditionally,
operations scheduled in non-overlapping schedule times (STs)
can be mapped to the same hardware resource in the binding
stage by adding multiplexers at the inputs and de-multiplexers
at the outputs of the block. However, this generally increases
schedule length.

Multipumping is another technique that reduces hard block
utilisation, without increasing schedule length and initiation
interval (II). The shared block is run at a frequency that is
a multiple of the surrounding circuit, hence offering multiple
computational cycles per global cycle. This is possible with
DSP blocks since they support much higher frequencies than
the typical complete circuit, and therefore can be clocked
to enable multiple operations to be scheduled in the same

V2Pro V4 V5 V6 V7

0

200

400

600

800

Device

F
re
qu

en
cy

(M
H
z)

MaxFreq
MaxFreq/2

Fig. 1: Reported frequencies on Xilinx Virtex devices for
over 350 papers (1100 designs) published in recent FPGA
conferences.

clock cycle. Canis el al. [2] demonstrated the technique by
mapping two multiply operations onto a single multipumped
DSP (mpDSP) block per global clock. The multiplier in the
DSP block, becomes a shared resource that can be mapped to
by finding multiple multiplications that can be scheduled in
the same cycle. Multipumping has also been used to enable
multiported memories with fewer resources [3].

The DSP blocks in modern Xilinx FPGAs support frequen-
cies of over 500 MHz on a Virtex 6 [4], while complete systems
will typically have a frequency of around 150–250 MHz.
Multipumping relies on there being a significant difference
between overall circuit frequency and the supported frequency
of the hard block to be multipumped. A factor of two makes
multipumping feasible.

To demonstrate the feasibility of multipumping, we analysed
FPGA designs presented from 2010 onwards at four key FPGA
conferences.

1) The ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays (FPGA).

2) The IEEE International Symposium on Field-
Programmable Custom Computing Machines (FCCM).

3) The International Conference on Field Programmable
Logic and Applications (FPL).

4) The International Conference on Field Programmable
Technology (FPT).

Fig. 1 shows a box plot of the reported operating frequencies
for designs in all papers analysed, split across Xilinx Virtex de-
vice families. The median (indicated by the line inside the box)
and third quartile (top of the box) frequencies are of particular
interest here. The datasheet maximum operating frequency of



NANDA, London, 9 Sep 2024

DSP blocks in larger designs
▶︎ Multi-pumping runs a resource at a multiple 

of the clock frequency of surrounding logic 

▶︎ Multi-pumping multipliers can be beneficial 
but uses more LUTs (MulOnlyMP) 

▶︎ Using more DSP block features reduces the 
chances for resource sharing (MP) 

▶︎ Using dynamic programmability expands 
this further and achieves significant 
improvements (RTRMP)

20

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36 10

TABLE V: Resource usage and maximum frequency across all implementations, using SDC-based scheduling (normalized against
MulOnlyMP). Freq in MHz.

Benchmarks Original MulOnlyMP MP RTRMP

DSPs LUTs Regs Freq DSPs LUTs Regs Freq DSPs LUTs Regs Freq DSPs LUTs Regs Freq

Chebyshev (1) 1 0.78 1.06 1 1 1 1 1 1 0.22 0.27 0.62 1 0.22 0.27 0.6
Mibench2 (2) 2 0.33 0.46 2.08 1 1 1 1 1 0.53 0.68 1 1 0.53 0.68 1
FIR2 (3) 2 0.59 0.54 2.05 1 1 1 1 2 0.43 0.51 1.27 2 0.43 0.51 1.27
SG Filter (4) 1.5 0.21 0.45 2 1 1 1 1 1.25 0.17 0.3 1 1 0.27 0.44 0.98
Horner Bezier (5) 2 0.38 0.58 2.03 1 1 1 1 1.75 0.35 0.52 1.02 1 0.64 0.87 0.98
Poly1 (6) 2 0.42 0.67 2.03 1 1 1 1 1.5 0.28 0.59 1.01 1.5 0.28 0.59 1.01
Poly2 (7) 1.67 0.34 0.49 2 1 1 1 1 1.33 0.26 0.43 1 1 0.37 0.55 1
Poly3 (8) 1.5 0.38 0.6 2 1 1 1 1 1.25 0.42 0.49 1 1 0.56 0.73 1
Poly4 (9) 1.5 0.36 0.62 2 1 1 1 1 1.5 0.3 0.45 1.24 1.5 0.3 0.45 1.24
Poly5 (10) 1.71 0.25 0.45 2.07 1 1 1 1 1.71 0.17 0.27 1.28 1 0.35 0.68 0.99
Poly6 (11) 1.92 0.23 0.38 2.09 1 1 1 1 1.83 0.19 0.32 1.09 1 0.56 0.73 1.05
Poly7 (12) 1.89 0.26 0.42 2.16 1 1 1 1 1.89 0.16 0.33 1.31 1.11 0.47 0.67 1.04
Poly8 (13) 1.88 0.22 0.39 2.07 1 1 1 1 1.75 0.16 0.3 1.04 1.25 0.23 0.52 1
Quad Spline (14) 1.86 0.33 0.58 2.06 1 1 1 1 1.29 0.52 0.62 1.02 1 0.78 0.8 1.01
ARF (15) 2 0.49 0.65 2.08 1 1 1 1 1.75 0.49 0.7 1.04 1 0.84 1.07 1
EWF (16) 2 0.64 0.73 2.05 1 1 1 1 1.5 0.72 0.7 1.04 1 0.81 0.83 1.02
Motion Vector (17) 2 0.38 0.6 2.03 1 1 1 1 1 0.76 0.91 0.94 1 0.76 0.91 0.94
Smooth Triangle (18) 1.89 0.36 0.6 2.52 1 1 1 1 1.78 0.45 0.57 1.26 1 0.66 0.83 0.89

Geo Mean 1.77 0.36 0.55 1.99 1 1 1 1 1.47 0.32 0.47 1.05 1.11 0.46 0.64 0.99

Impv (%) 1 1 1 1 -47 68 53 5.2 -11 54 36 -0.9
LUTeqv Impv (%) 1 1 14

0 1 2 3 4 5

0.6

0.8

1

LUTs

D
S
P
48
E
1s

Original
MulOnlyMP

MP
RTRMP

Fig. 6: DSP48E1-LUT usage trade-off for SDC-based schedul-
ing.

in DSP utilisation compared to Original, however this is at the
cost of a 2.8⇥ and 1.8⇥ increase in LUTs and Regs respec-
tively. Note, however, that these values are for a computation
kernel in a larger system, which can utilise many LUTs for the
surrounding logic. Thus, the percentage increase in LUT usage
for the full system may not be significant, as demonstrated
in [2]. Despite the significant increase in LUTs, LUTeqv is
reduced by 13%. As expected, the frequency achieved using
MulOnlyMP is in most cases close to half of Original.

Fig. 6 shows the tradeoff between relative DSP block and
LUT usage for all variations of multipumping, for SDC-
based scheduling. We normalise DSP48E1 and LUT count

for each benchmark against the non-multipumped implemen-
tations. MulOnlyMP implementations have significantly in-
creased LUT usage, compared to MP and RTRMP. This is due
to the mapping of add/sub operations in the FPGA fabric since
only the multipliers are multipumped. The LUT overheads
for MP and RTRMP are significantly reduced, as full DSP
block functionality is multipumped. For MP, DSP block usage
is higher than RTRMP due to the limited opportunities for
multipumping DSP blocks with identical configurations. We
can also see that RTRMP tends to save more DSP blocks with
a comparable LUT count to MP.

Compared to MulOnlyMP, MP utilises 47% more DSP
blocks, however, as the sub-blocks of the DSPs are also
utilised, it uses 68% fewer LUTs and 53% fewer Regs. RTRMP
exploits both the sub-blocks and dynamic programmability of
DSP blocks, thus multipumping the same number of DSP
blocks as MulOnlyMP in most cases, with a significant re-
duction in LUTs and Regs of 54% and 36% respectively.
Compared to Original, RTRMP results in a 37% reduction in
DSP block usage, and a 27% and 17% increase in LUT and
Register usage respectively, effectively saving 25% LUTeqv .

4) FDS-Based Flexible Multipumping: Table VI shows the
resource usage and maximum frequency across all benchmarks
using FDS-based scheduling, normalised against MulOnlyMP
implementations. Table VII compares the geometric mean of
normalised results against the SDC-based approach. We see
some slight improvements resulting from the better matching
of DSP block configurations. As shown in Table VII, both
SDC-based and FDS-based scheduling are not able to achieve
DSP block reduction by half for RTRMP due to odd numbers
of DSPs being scheduled in some STs. The additional resource
sharing in Section VI-E overcomes this and is able to achieve a



NANDA, London, 9 Sep 2024

Building a soft processor
▶︎ Recognising that the DSP 

block can implement all the 
functionality of a processor 
ALU, we set about building a 
soft processor that uses it 

▶︎ Control unit translates 
instructions into INMODE, 
OPMODE, ALUMODE control 
signals

21



NANDA, London, 9 Sep 2024

Building a soft processor
▶︎ iDEA FPGA soft processor: over 400MHz on Xilinx Virtex 6 and all 7-series 

devices, half the size of other soft cores and double frequency

22



NANDA, London, 9 Sep 2024

Coarse grained reconfigurable arrays
▶︎ Arrays of processing elements (PEs) 

interconnected by a programmable 
interconnect 

▶︎ Coarser grained than FPGAs, leading 
to simpler compilation and 
configuration 

▶︎ Dataflow arrangement allows PEs to 
pass data between them for enhanced 
parallelism

23

FU

babp

RF

Reg

o

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

(a) (b)

Mem Unit

I/O

Fig. 2. (a) 4×4 array of ADRES PEs, (b) Enlarged view of PE, where the
solid inputs are from neighboring PEs, long dashed input is optional from
the memory unit, and the short dashed input is a constant input. Only toroid
connection for one PE is shown.

xbar

r_a

r_b

r_c

r_d

FU

ba

REG

o_0

o_1

o_2

o_3

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

(a) (b)

D
at

a 
M

em

I/O

Mem

Fig. 3. (a) 4×4 array of HyCUBE PEs, (b) Enlarged view of PE, where
inputs are from neighboring PEs.

C. HyCUBE
HyCUBE is a CGRA that supports single-cycle, multi-hop

(combinational) communication between PEs [3], shown in
Fig. 3. This has the benefit of allowing for a more flexible
scheduler, specifically with regard to which OPs are intended
to execute in different clock cycles. The PE consists of a
crossbar switch, an FU, and configuration memory. At the
input of the PE, the data has the ability to be registered or
to bypass the register, and proceed into the crossbar switch,
whereby it can be forwarded to a neighboring PE or to the
FU for computation. We investigate how the single-cycle,
multi-hop network compares to a more traditional CGRA (i.e.,
ADRES). The FU is identical to that in ADRES, described
above.

IV. FPGA ARCHITECTURE OPTIMIZATIONS

We now describe FPGA architecture-specific optimizations
explored to improve the RTL produced by CGRA-ME. Opti-
mizations deemed impactful: 1) Embedding the MUX select
in SRAM configuration, 2) DSP utilization, 3) Multi-ported
memory replication, and 4) Floorplanning. Optimizations have
been integrated into CGRA-ME, along with other improve-
ments for an enhanced FPGA-overlay flow.

Before outlining our optimizations, we first describe CGRA-
ME’s default behavior for generating Verilog. 1) MUXes pro-
duced by CGRA-ME are specified using a traditional Verilog

case-statement. The back-end RTL synthesis tools then infers
a MUX implementation using a network of LUTs. 2) FU
functionality for CGRA-ME-generated Verilog consists of the
standard operators: +, −, ∗, ≫, and so on. Again, the RTL
synthesis is free to infer a hardware implementation for each
OP. 3) For multi-ported memories, Verilog by CGRA-ME is
very generic. On each clock cycle, data is read from all read
ports from each corresponding read address. Each write port
has a write-enable (WE) signal, and these are checked in
specific order, implying port-level priority when writing to a
specific address. No data-hazard checking is performed.

A. Optimizing Multiplexer Implementation
Both of the modeled CGRAs contain an abundance of

MUXes. ADRES has 4 MUXes per PE, of varying sizes. The
bypass MUX is 5:1 or 6:1, MUXes a and b are either 7:1
or 8:1, and the output MUX is 2:1. The first row of PEs
contain 8:1 and 6:1 MUXes to communicate with memory,
so a 4 × 4 ADRES CGRA will have eight 8:1, four 6:1
and four 2:1 MUXes along the first row. The remaining rows
will have twenty-four 7:1, twelve 5:1 and twelve 2:1 MUXes
combined, totalling 64 MUXes, either with 16- or 32-bit
datapaths. HyCUBE also contains an abundance of MUXes,
four 2:1 MUXes at the input of the crossbar switch, six 6:1 and
two 2:1 within the crossbar switch itself, totalling 42 MUXes
per PE. A 4×4 HyCUBE will therefore have 672 MUXes,
again either with 16- or 32-bit datapaths. Because FPGAs
are inefficient at implementing wide MUXes, and because
CGRAs employ bus-based routing, we have identified them
as a significant area/performance bottleneck and propose an
optimization to improve their area and speed.

Fig. 4 illustrates the optimization concept. Fig. 4(a) shows
a 6:1 MUX, having 3 select inputs (dashed) and 6 data inputs
and Fig. 4(b) shows a traditional implementation that uses two
6-input LUTs. The three select inputs are exposed as inputs to
the two 6-input LUTs. These select inputs would normally be
attached to configuration cells, and the specific 0/1 values in
the configuration cells would be set according to the CGRA
mapping results. For example, if the CGRA mapping results
indicate that input i2 is to be passed to the MUX output,
then the configuration cells would be set to 010 (2 in binary).
Fig. 4(c) shows the optimized version of the LUT, which relies
on our ability to directly modify the SRAM configuration cells

6-LUT 6-LUT
s0
i3
i2
i1
i0

s1
s1
s2

s0
i5
i4

s ss ... s

MUX

i3

i2

i1
i0

i5

i4

s[2..0]

(a) (b) (c)

f=i2
i4
i3
i2
i1
i0

i5

Fig. 4. (a) Traditional 6:1 MUX, (b) 6:1 MUX realized as a LUT, (c) 6:1
MUX with proposed technique. Signals that are dashed are embedded within
SRAM configuration in (c).

��

Source: I Taras and J Anderson, FCCM 2019



NANDA, London, 9 Sep 2024

FPGA overlays
▶︎ Rather than target LUT-based FPGA 

architecture, build a coarse grained 
architecture on top and target that 

▶︎ Design flow now deals with larger word-level 
operations, so simpler and faster 

▶︎ Circumvent the (slow, cumbersome) backend 
flow, except to build the overlay (once) 

▶︎ Retain flexibility over an ASIC CGRAs through 
having different, reconfigurable overlays

24



NANDA, London, 9 Sep 2024

FPGA overlays
▶︎ Rather than target LUT-based FPGA 

architecture, build a coarse grained 
architecture on top and target that 

▶︎ Design flow now deals with larger word-level 
operations, so simpler and faster 

▶︎ Circumvent the (slow, cumbersome) backend 
flow, except to build the overlay (once) 

▶︎ Retain flexibility over an ASIC CGRAs through 
having different, reconfigurable overlays

24



NANDA, London, 9 Sep 2024

Overlays on FPGAs
▶︎ If we build an overlay without considering the FPGA, we are unlikely to reach 

reasonably frequency or efficient area utilisation 

▶︎ Consider the DySER CGRA mapped to an FPGA: replace the functional unit 
with one built around the DSP block 

▶︎ 25% area reduction and 
150% throughput increase 
compared to original design 

▶︎ Hence: need architectural 
optimisation!

25

MUL 

B Register

Pre-Adder

C

M

INMODE

OPMODE

B

A

D

C

1
0

0

ALUMODE

P

16

16

16

16

5

7

4 1

4

16

SRLs

SRLDELAY 24

MUXSEL 10

Immediate 16

DSP48E1

SRLs

SRLs

SRLs

X

Y

Z



NANDA, London, 9 Sep 2024

Overlays on FPGAs
▶︎ Some effort required to address the non-commutativity of inputs and to 

increase pipeline depth

26



NANDA, London, 9 Sep 2024

Scaling overlay designs
▶︎ Clustering more functionality in FUs reduces routing overhead 

▶︎ 20×20 Overlay (800 DSP Blocks) mapped on Virtex-7 
(XC7VX690T) at 380 MHz 

▶︎ Can support up-to 2400 operation nodes, peak throughput of 
912 GOPS 

▶︎ Scales with newer architectures

27



NANDA, London, 9 Sep 2024

On-chip just-in-time compilation
▶︎ Simpler compilation for overlays 

can run on embedded processors 
in under a second vs minutes for 
traditional flow on workstation 

▶︎ Processor awareness of overlay 
state can allow dynamic runtime 
allocation of resources 

▶︎ New kernels can be compiled 
and mapped at runtime

28

Clustering Replication

8 Kernel Instances

4N-1D Architecture 4N-2D Architecture 4N-2D Architecture



NANDA, London, 9 Sep 2024

On-chip just-in-time compilation
▶︎ We propose a workflow 

where individual kernels 
are prepared in advance 
during application 
staging 

▶︎ Overlay makes this rapid 
and the runtime switching 
between kernels an order 
of magnitude faster than 
traditional PR

29



NANDA, London, 9 Sep 2024

On-chip just-in-time compilation
▶︎ The simpler compilation flow can run 

on embedded processor, e.g. Arm in 
Zynq in under a second 

▶︎ Processor is aware of the state of the 
overlay at any point in time —dynamic 
allocation including replication, 
placement and routing on the overlay 

▶︎ New kernels can be compiled and 
mapped at runtime

30



NANDA, London, 9 Sep 2024

Optimising overlay routing
▶︎ Flexible island-style interconnect 

consumes significant area 

▶︎ Most arithmetic functions are 
reductions of some sort — tailor 
the interconnect to reduce its 
overhead: DeCO 

▶︎ Optimised around a set of 
benchmark feed forward dataflow 
graphs but more general

31

Cluster

Programmable 
Routing Network

Data Forwarding 
(DF) Link



NANDA, London, 9 Sep 2024

Optimising overlay routing
▶︎ Flexible island-style interconnect 

consumes significant area 

▶︎ Most arithmetic functions are 
reductions of some sort — tailor 
the interconnect to reduce its 
overhead: DeCO 

▶︎ Optimised around a set of 
benchmark feed forward dataflow 
graphs but more general

31

Cluster

Programmable 
Routing Network

Data Forwarding 
(DF) Link

M
U

L 

B Register

Pre-Adder

C M

IN
M

O
DE

O
PM

O
D

E BADC

1 00

ALU
M

O
DE

P

16161616

57

4
1

4

16

M
U

XSEL

8
DSP48E1

XYZ

M
U

L 

B Register

Pre-Adder

C M

IN
M

O
DE

O
PM

O
D

E BADC

1 00

ALU
M

O
DE

P

16161616

57

4
1

4

16

M
U

XSEL

8
DSP48E1

XYZ

M
U

L 

B Register

Pre-Adder

C M

IN
M

O
DE

O
PM

O
D

E BADC

1 00

ALU
M

O
DE

P

16161616

57

4
1

4

16

M
U

XSEL

8
DSP48E1

XYZ

M
U

L 

B Register

Pre-Adder

C M

IN
M

O
DE

O
PM

O
D

E BADC

1 00

ALU
M

O
DE

P

16161616

57

4
1

4

16

M
U

XSEL

8
DSP48E1

XYZ



NANDA, London, 9 Sep 2024

Optimising overlay routing
▶︎ Compared DeCO against two overlays: 

▶︎ 5x5 DSP block based DySER overlay 
(Overlay-I) 

▶︎ 5x5 DSP block based island-style 
overlay (Overlay-II) 

▶︎ Significant LUT savings of 87–96% 
compared to Overlay-II and I 

▶︎ Reconfiguration in 2us vs 382us for 
standard FPGA flow

32

0

10

20

30

40

50

60

70

LUTs FFs DSP	Blocks

Resource	Consumption	of	Overlays

Overlay-I Overlay-II DeCO



NANDA, London, 9 Sep 2024

References
▶︎ Mapping for Maximum Performance on FPGA DSP Blocks 

B. Ronak and S. A. Fahmy 
IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, vol. 35, no. 4, Apr 2016 

▶︎ Multi-pumping Flexible DSP Blocks for Resource Reduction on Xilinx FPGAs 
B. Ronak and S. A. Fahmy 
IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, vol. 36, no. 9, Sep 2017 

▶︎ Coarse Grained FPGA Overlay for Rapid Just-In-Time Accelerator Compilation 
A. K. Jain, D. L. Maskell, S. A. Fahmy 
IEEE Transactions on Parallel and Distributed Systems, vol. 33 no. 6, Jun 2022. 

▶︎ Streaming Overlay Architecture for Lightweight LSTM Computation on FPGA SoCs 
L. Ioannou, S. A. Fahmy 
ACM Transactions on Reconfigurable Technology and Systems, vol. 16 no. 1, Mar 2023

33



NANDA, London, 9 Sep 2024

Other uses of DSP blocks

▶︎ Multiple wide multiplexers within can be used for routing word-level 
signals around architectures – HopLiteDSP 

▶︎ Cascade connections and proximity to block RAMs can build large GEMM 
structures at very high frequency – Cascades, SuperTile 

▶︎ Any compile flow that deals with graphs of mul/sub/add can be more 
efficient by mapping to DSPs with architecture information

34



NANDA, London, 9 Sep 2024

Current areas of research
▶︎ Integrating DSP blocks into the FU designs of overlay/CGRA generators 

▶︎ Requires adapted scheduling to accommodate deeper pipeline depths 

▶︎ Use in dynamically-scheduled dataflow circuits 

▶︎ Since dynamic control is per arithmetic node, clustering arithmetic can 
reduce control overhead 

▶︎ Building large multipliers that achieve maximum DSP block frequency 

▶︎ Using e-graphs to capture primitive structure

35



NANDA, London, 9 Sep 2024

Opportunities

▶︎ Today’s more structurally aware compilers can capture architectural 
features and map to them efficiently 

▶︎ Let’s throw away RTL as the IR for high level architecture design — flexible 
pipelining is key 

▶︎ FPGAs are a compute platform missing better tooling, not a prototyping 
platform!

36



NANDA, London, 9 Sep 2024

About KAUST
▶︎ One the shores of the Red Sea, an 

hour from the port city of Jeddah 

▶︎ A graduate-only research 
university: MS and PhD programs 

▶︎ All students receive scholarships 

▶︎ Postdocs and Research Scientists 
receive good salaries 

▶︎ Access to world-class facilities

37


