

NextGen Accelerators: Flexible, Scalable, Efficient – Together³

Pedro Petersen Moura Trancoso

Full Professor, Computer Science and Engineering Chalmers University of Technology Gothenburg, Sweden

NextGen Accelerators: Flexible, Scalable, Efficient – Together³

https://www.scientificamerican.com/article/what-causes-the-feeling-of-deja-vu/

All has been said before!

Motivation...

Accelerators design tradeoff

- X High efficiency
- ✓ Flexible

Accelerators design

Accelerators design how-to...

IKEA MEATBALLS AT HÖME (SERVES 4)

https://twitter.com/IKEAUK/status/1252269467515617280?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1252269467515617280%7Ctwgr%5E%7Ctwcon%5Es1_c10

From generic to dedicated VSA: A Hybrid Vector-Systolic Architecture

12

2024-12-20

- M. V. Maceiras, M. Waqar Azhar and P. Trancoso, "VSA: A Hybrid Vector-Systolic Architecture," 2022 IEEE 40th International Conference on Computer Design (ICCD), Olympic Valley, CA, USA, 2022, pp. 368-376
- M. V. Maceiras, M. W. Azhar and P. Trancoso, "Exploiting the Potential of Flexible Processing Units." In Proc. of the IEEE 35th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD 2023), pp. 1-12

CHALMERS

From generic to dedicated

VSA hardware, software, experimental setup


```
Algorithm 2 GEMM using custom instruction

1: for all i \in \{1, ..., M/SA\_R\} do

2: v\_r = LOAD\_ROW\_SET(i)

3: for all j \in \{1, ..., N/SA\_C\} do

4: v\_c = LOAD\_COL\_SET(i)

5: v\_t = INIT\_TILE(i,j)

6: v\_t = SA(v\_r, v\_c, v\_t)

7: end for

8: STORE(v\_t)

9: end for
```

Experimental Setup:

- RISC-V VPU
- Simulation: gem5+McPAT
- Implementation (eProcessor / 65nm)
- Index and unitary data load
- Workloads: AlexNet, ResNet18/50, Skin (DeepHealth)

From generic to dedicated Vector Processing Unit vs. Systolic Array

Different phases of same application benefit differently from VPU or SA – Hybrid can achieve the best of both worlds!

2024-12-20

From generic to dedicated VSA speedup and energy savings

Minimal area overhead of 0.1%

Up to 3.5x speedup

Up to 70% energy savings in cache

From generic to dedicated Open questions...

Which extensions make sense?

Which are quality metrics? (performance/area)

???

How many extensions to be supported at the same time?

How should we configura a multi-engine accelerator?

How dedicated should a generic engine be?

VEDL Very Efficient Deep Learning in IoT

From dedicated to generic FiBHA: Fixed Budget Hybrid CNN Accelerator

Observation: ML Models are increasingly and more heterogenenous

- F. Qararyah, M. W. Azhar and P. Trancoso, "FiBHA: Fixed Budget Hybrid CNN Accelerator," 2022 IEEE 34th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), Bordeaux, France, 2022, pp. 180-190
- F. Qararyah, M. W. Azhar, and P. Trancoso, "An Efficient Hybrid Deep Learning Accelerator for Compact and Heterogeneous CNNs," ACM Transactions on Architecture and Code Optimimization (TACO) 21(2), Article 25 (June 2024), 26 pages.

From dedicated to generic

SESL & SEML: When to use which?

SplitCNN

19 2024-12-20

From dedicated to generic FiBHA example

Implemented in HLS, evaluated on FPGA!

2024-12-20

From dedicated to generic Results

FiBHA hybrid accelerator balances heterogeneity & resource budget

≅4x Throughput improvement

≅2x Energy efficiency

From dedicated to generic Open questions...

Which engines should be made available?

Which combinations of engines and configurations into a multi-engine accelerator?

???

Which configurations depending on goals?

How generic should a dedicated engine be?

"Science Fiction" => The Vision Flexible, Scalable, Efficient – Together¹⁻²⁻³

23 2024-12-20

The Vision Flexible, Scalable, Efficient – Together¹

Units working together

The Vision

Flexible, Scalable, Efficient – Together²

Tiles working together

The Vision Flexible, Scalable, Efficient – Together³

We also accelerate...

SSF-AutoPiM

- Develop energy-efficient hardware accelerators for autonomous vehicles
- Deep learning application
- Novelty: combine near- and in-memory proc.
- Our contribution: near-memory processing
- Collaboration: Bar-Ilan University

X. Wang, M. A. Maleki, M. W. Azhar, P. Stenström, and P. Trancoso, "Challenges and Directions for Autonomous Driving Hardware Accelerators", ACACES 2024, Italy, July 2024

SSF-QuantumStack

- Develop a full software stack for programming quantum computers
- <u>Novelty</u>: Bring all together physics, computer science and engineering; improve programmability for QC
- Our contribution: hardware acceleration for QC simulation and error correction
- Collaboration: CSE and WACQT

2024-12-20

CHALMERS