Purpose-built IP for High Performance
Computing?

Maya Gokhale
Computing Directorate

September 9, 2024

LLNL-PRES-869105 Lawrence leermore
Ltg National Laboratory

Exascale supercomputer nodes: commodity
commercial CPUs and GPUs

AMD node Exascale Computing Project

Ofympus Fack * 1 AMD "Trento™ CPU
L go0ots th s s Develop exascale-read
Ll RA'VLARR IS 2 S;pponsdooxw * 512 GIB DDR4 memory on CPU P Y
—— * 512 GiB HBM2e total per node applications and solutions
— » (128 GiB HBM per GPU)
System « Coherent memory across the node that address curre ntly
* 2 EF Peak DP FLOPS * 4TENVM i
.74 cor::ote racks * GPUs & CPU fully connected with AMD Intra Cta ble prObIemS of
* 29 MW Power Consumption Infinity Fabric strategic importance and

* 9,408 nodes * 4 Cassini NICs, 100 GB/s network BW

* 9.2 PB memory
(4.6 PB HBM, 4.6 PB DDR4)
* Cray Stingshot network with
dragonfly topology
= 37 PB Node Local Storage
* 716 PB Center-wide storage
* 4000 ft? foot print

national interest.

Create and deploy an
expanded and vertically
integrated software stack
on DOE HPC pre-exascale
and exascale systems.
Deliver US HPC vendor
technology advances and
deploy ECP products to
DOE HPC pre-exascale and
exascale systems.

Compute blade
* 2 AMD nodes

Lawrence Livermore \ L)
National Laboratory 499

National Nuclear Security Administration

General purpose vs purpose built

US Department of Energy perspective

= HPC nodes use commercial data center server architectures
— Invest in specific components such as low latency, high bandwidth
interconnection network
— Influence architectural direction and accelerate timeline with investment
programs: FastForward, PathForward, Advanced Memory Technologies

— Continue to pursue code refactor and rewrite
* From vector to distributed memory parallel to GPU offload ... to Al engines?

= Can microelectronics fabrication and packaging innovations

facilitate developing IP specialized to HPC?

— Is it possible to “Develop purpose-built, advanced architectures that
define new, perhaps disruptive, hardware designs?”

— Project 38 https://www.nitrd.gov/documents/HPC-Performance-
Improvements-Project-38.pdf posed that problem

— Can it be cost-effective?

Lawrence Livermore on
National Laboratory NYSE
National Nuclear Security Administration

https://www.nitrd.gov/documents/HPC-Performance-Improvements-Project-38.pdf
https://www.nitrd.gov/documents/HPC-Performance-Improvements-Project-38.pdf

Landscape of architectures

Data center, cloud, HPC

Al/ML

Security

Commodity server

Domain Specific

Fixed Function

network™

HBM

dip Jo 5667
(81IW 5T =08X952X196)
'SUBNEANOY 10}
420G patjun 0

Tonosn | 5K [%e ovepewr |!

-0 B E
suadi uoen
I Y = i)

it

=agx957x957)
1NN XL

un Ay

%62

[SIARTE)

TPU: source nextplatform.com

Input 5,
Data™~

SHA-256

wO-w15
16x 32

Register
Array
I_. AB,..,GH
Compute 8x32 ,,8 ’(,32 #5 Hash
AB,..,GH Register 2 Output
Array
Array

https://www.cast-inc.com/security/encryption-
primitives/sha-256

Pad Words
Length Counter
Compute w0-w15

Lawrence Livermore
National Laboratory

NS

National Nuclear Security Administration

Customize with specialized hardware blocks

= Standard operating procedure for large volume uses
— Hash units
— Compression
— Encryption
— Al matmul in low precision

https://www.keysight.com/blogs/en/tech/sim-
. Can it Work for HPC? sgz{igrzezl/z/s/what-is—a—chiplet-and-why-shouId-
— Challenge is the huge range of science applications and techniques (MD
— radiation transport)

— Select widely applicable kernels
« Dense and sparse matmul, mat-vec operations
« FFT
- Programmable Gather/Scatter Engine, K/V lookup accelerator
 Floating point compression for ZFP (fixed rate)

— Chiplet mix and match might make it feasible

Lawrence Livermore v
National Laboratory N A‘S"-‘f’é

National Nuclear Security Administratic

Chiplet-based plug and play

zer|o|

Embedded FPGA generator
Application class RISC-V CPU
Al accelerator (2-20 TOPS)
Network-On-Chip

Silicon Compiler

Digital Twin System Emulator

eFabric:
> Active silicon interposer
> “Breadboard for chiplets”
> Network-On-Interposer
> 2D UCle interfaces
> 3D CLINK

Chiplets:

> 2D UCle ioBricks

> 3D CLINK eBricks

> Discretized footprints
> Interchangeable

.. o RV32...MAC..
. . L2 DRAM ML 1PU GPU H264 JESD 0P

Billions of unique System-In-Package assembly options

512 Gbps/mm on-fabric bisection bandwidth
128 Gbps/mm chiplet 2D bandwidth
128 Gbps/mm2 chiplet 3D bandwidth

<0.1 pJ/bit 3D interconnect energy efficiency

To enable plug-and-play chiplet composability, Zero ASIC has created a set of electrical and mechanical 3D

chiplet interface standards and validated the standards through tapeouts of a canonical set of processing
chiplets.

Emulation

Chiplets

Team Partners

News

o
)

Lawrence Livermore
National Laboratory

NYSE

National Nuclear Security Administration

Outline: Augment server architectures with new
IP blocks

= Memory-centric accelerators
= Scientific data compression accelerator
= CPU core interface options

= Tool chain

Lawrence Livermore e
National Laboratory N A‘S"-‘-’é
National Nuclear Security Administration

Memory-centric accelerators

= Data movement and memory access identified as key challenges to achieving
high performance
— Led to creation of US DOE Advanced Memory Technologies program Maya Gokhale, Scott Lloyd, and Chris Hajas. 2015.

Near memory data structure rearrangement. In

. Proceedings of the 2015 International Symposium on
= Data movement is necessary — but only move necessary data Memory Systems (MEMSYS '15). Association for

Computing Machinery, New York, NY, USA, 283-290.

= Motivating applications include Sparse MatVec, found in HPCG benchmark DOL:https://doi.org/10.1145/2818950.2818986

A. K. Jain, S. Lloyd and M. Gokhale, "Performance

= Our approach: Near memory programmable gather/scatter engine “Data Assessment of Emerging Memories Through FPGA

. lation," in IEEE Micro, vol. 39, no. 1, pp. 8-16, Jan.-
Rearrangement Engine (DRE)” Emu))) , PP)
Ea Igatgi‘?opirattiong € () Feb. 2019, doi: 10.1109/MM.2018.2877291.

_ gq?lz)é%dA,?ngi]] G. Scott Lloyd and Maya Gokhale. 2017. Near memory
key/value lookup acceleration. In Proceedings of the
2017 International Symposium on Memory Systems
(MEMSYS ‘17). Association for Computing Machinery,

= Key/Value Store query accelerator New York, NY, USA, 26-33.
— Motivating application is bioinformatics: K-mer database lookup to identify genetic https://doi.org/10.1145/3132402.3132434
fragments in metagenomic sample
— Gather values for batch of keys S. Lloyd and M. Gokhale, “In-memory data

rearrangement for irregular, data intensive

computing,” IEEE Computer, pp. 18-25, 2015.
S. Lloyd and M. Gokhale, “Near memory key/value lookup
acceleration,” International Symposium on Memory Systems
MEMSYS17, 2017.

Near-memory data reorganization engine
Patent number 9965187

J. Landgraf, S. Lloyd, and M. Gokhale, “Combining emulation and
simulation to evaluate a near memory key/value lookup
accelerator,” arxiv.org/abs/2105.06594, 2021.

Lawrence Livermore o
National Laboratory NYSE

National Nuclear Security Administration

https://doi.org/10.1145/3132402.3132434

Near memory gather/scatter can help applications
with irregular access patterns

= Memory bandwidth to processors increasing
— HBM channels with wide access amount benefit sequential, predictable
load/store
— Large caches and more memory channels may help some applications
— BUT irregular access such as A[B[i]] impose latency penalty, are usually
random access and can’t benefit as much from increased bandwidth

= Programmable gather/scatter hardware can help
— Operate on a batch of indices
— Gather a dense “view” into scratchpad
— Application code can vectorize the dense representation

Lawrence Livermore on
National Laboratory NYSE
National Nuclear Security Administration

Data Rearrangement Engine (DRE)

Page Rank View Edge
y Vertex.i List Page Rank
0 0 Vertex 0
i
float e o | INT
M M
edges Index arra
3D Stacked g edges y
DRAM
Layers
L.Tgic_ B —
Layer DRE N

Full Image
0
A |
Reduced View ‘,—’ A I N I I
0o M ’/"
| ﬁ/
N’ Sao
pixels \‘~\\
DRE
assembles view
N
pixels
Memory Subsystem
DRAM DRAM DRAM DRAM
Memory Memory |eee | Memory Memory
Vault Vault Vault Vault
IRETENE
DRE |eee | DRE DRE)
EESEVESE ST
| Shared L3 Cache |
L2 Cache | | L2 Cache L2 Cache | | L2 Cache
L1 Cache | | L1 Cache L1 Cache | | L1 Cache
CPU CPU |***| cCPU CPU
Core Core Core Core
Processor

To Switch

el

Data
Mover

Control
Processor

Data Rearrangement Engine (DRE)

assembles view based on index o oo PYETTICES

DRAM:19.4 pJ/bit, SRAM:1 pJ/bit, Off-Chip:10.3 pJ/bit, Factor:16

array

0.6

Watts

" CPU Only

CPU+DRE HMC —CPU-+DRE Narrow

0.01 0.015 0.02 0.025 0.03

0035 ___0.04

Lawrence Livermore
National Laboratory

Seconds

0.045
"l

NYSE

National Nuclear Security Administration

Execution trace in LIME FPGA-based emulator

Image Difference Power

DRAM:19.4 pJ/bit, SRAM:1 pJ/bit, Off-Chip:10.3 pJ/bit, Factor:16

06 I I I I I I I
CPUOnly —— CPU+DRE HMC ———CPU+DRE Narrow
0.5 _|
0.4 -
2!
< 0.3} _|
=
0.2 _|
0.1 | _|
0 | | | | | | | |
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
Seconds
NYSE

Lawrence Livermore
National Laboratory

API

setup Specify the location and size of application data structures and other parameters for gather/scatter
/* ImageDiff: Specify image location, dimensions, and decimation factor */
void setup(void *ref, size_t ref_width, size_t ref_height, size_t elem_sz, size_t decimate);
/* PageRank, RandomAccess, SpMV: Specify reference table and index array */
void setup(void *ref, size_t elem_sz, const void *index, size_t len);

fill Copy from DRAM to the view buffer according to the access pattern established during setup
/* Specify view buffer and window offset */
void fill(void *buf, size_t buf_sz, size_t offset);

drain Copy from the view buffer into DRAM according to the access pattern established during setup
/* Specify view buffer and window offset */
void drain(void *buf, size_t buf_sz, size_t offset);

Lawrence Livermore \ / Sf_o‘é

National Laboratory

National Nuclear Security Administration

Annoying details

Abstract view of memory modeled on FPGA
— Modeled on Hybrid Memory Cube, precursor of HBM
— Latency-centric characterization
« asymmetric read/write latencies
« Model two different memory module latencies
— Simplified memory model
« Fixed latency or statistical distribution
— Memory sees stream of read or write to physical addresses

Where does address translation occur from virtual to physical
— Scratchpad buffer on memory side holds physical addresses
— Option 1: Route addresses written to or read from scratchpad through MMU
— Option 2: Data is contiguous in physical memory
+ We used CMA
« More general approach recently published: K. Zhao, et al.,"Contiguitas: The Pursuit of Physical Memory
Contiguity in Data Centers" in IEEE Micro, vol. 44, no. 04, pp. 44-51, 2024.

Improve fidelity of simulation for specific memory type, specific interface

— E.g. https://arxiv.org/pdf/2311.10378 “Near-Memory Parallel Indexing and Coalescing: Enabling Highly
Efficient Indirect Access for SpMV”

— Model multiple independent channels as with HBM

Detect gather/scatter pattern in instruction stream
— .g. A. Naithani, J. Roelandsts, S. Ainsworth, T. Jones and L. Eeckhout, "Decoupled Vector Runahead for
Prefetching Nested Memory-Access Chains" in IEEE Micro, vol. 44, no. 04, pp. 20-26, 2024.

Lawrence Livermore on
National Laboratory N A‘S‘Q@_‘\

lear Security Administration

https://arxiv.org/pdf/2311.10378

Key/Value Store Lookup Accelerator

Use gather/scatter engine as component (LSU)

Memory
Channel

]

Memory
Channel

]

Memory
Channel

Memory
Channel

]

]

Memory Interconnect

FIFO -
Keys
Keys Buckets Vzlues
LSUO-R Split Hash LSU1-R Comp LSU1-W
Select
Keys Keys Buckets Values
l I Hash
l |] l I
| Stream Interconnect
Control from CPU
Memory Subsystem

Memory Memory
Channel || Channel |***

Memory
Channel

Memory
Channel

3D Stacked
Layers

[|

I

I

Switch

Logic
Layer

To Switch

el

Keys

Hash Function 1

—

\

John

|

Links

| Shared Cache |

Cache

Cache

CPU |eee
Core

CPU
Core

Processor

edabbe

Lookup Accelerator (LA)

© oo N o o b~ W DN

e 10

N

buckets

Lookup accelerator

Open Addressing
Hash Table
Probe
Sequence
Length (PSL)
== Mary value
Fred value PSL=3
¥ John value
Kelly value
Bob value
_‘%, PSL=2
Sue value
= Mike value PSL=1

Lawrence Livermore

National Laboratory

VSE

National Nuclear Security Administration

Experiment Design

= Key/value table is filled with a scientific data set consisting of k-length
genomic sequences (k-mers)

= 32 million entry table is allocated at first and filled to varying degrees

= Table entries consist of k-mers (64-bit keys) and sequence numbers
(32-bit values)

Parameters Values

Load factor 10%—90%

Hit ratio 10%, 50%, 90%

Key repeat frequency Uniform, Zipf

Memory Latency (ns) 85R/106W, 200R/400W
Query block size 1024 keys

Lawrence Livermore o
National Laboratory N A‘S‘?ﬁ'&

National Nuclear Security Administration

Lookup Algorithms Evaluated

= Accel
— Near memory hardware lookup accelerator
— Collision resolution: open addressing and Robin Hood hashing
— Hash function: adapted from SpookyHash
— Lookup uses linear probing

= Soft
— Software version of the hardware lookup algorithm
— Collision resolution: same as Accel
— Hash function: same as Accel
— Unlike the hardware, the software algorithm terminates probe sequence
search as soon as a key has been found

= STL
— Hash table uses the Standard Template Library (STL) unordered map
— Collision resolution: separate chaining with linked lists
— Hash function: simple

Lawrence Livermore on
National Laboratory NYSE
National Nuclear Security Administration

Lookup Performance

90% hit rate

Lookups/s

70

Millions

60

50

40

30

20

10

Accelerator vs. Software

ARM_32 - R85,W106 - Uniform - Hit 90%

64.32 =@ Accel
=== SOft
=@ STL

9.13

5.02

—s $ $—¢ NZ.GO

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
Load Factor

Lookups/s

Millions

70

60

50

40

30

20

10

Low vs. Moderate Latency

ARM_32 - Accel - Zipf=.99 - Hit 90%

64.46 ——R85,W106
=== R200,W400
30.42
9.13
8.24

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
Load Factor

Accel. performance does not vary with hit rate or key repeat frequency (scans entire PSL)

Accel. performance decreases with increasing load (PSL) and memory latency

Accel. performance comes from parallelism and more outstanding near memory requests

Software is slower because of serialization and fewer outstanding far memory requests

Lawrence Livermore
National Laboratory

NAYSE

National Nuclear Security Administration

Speedup of Uniform and Zipfian Key Distributions

90% hit rate
Low Latency (DRAM) Moderate Latency (SCM)
ARM_32 - Accel/Soft - R85,W106 - Hit 90% ARM _32 - Accel/Soft - R200,W400 - Hit 90%
e=@==Uniform e=@=="Zipf a=@==Uniform e=@=="Zipf
14 12.80 10 9.47
9
12
8
10 7
5.54
10.19 6
2 = 6.85
® ® 5
Q Q
g 6 & .,
3.51 4.33
4 3
2
, V\
2.90 1
0 0
0.1 0.2 03 04 0.5 0.6 0.7 0.8 09 0.1 0.2 03 04 0.5 0.6 0.7 0.8 09
Load Factor Load Factor

= Zipfian has less speedup because software has more query hits in CPU cache (lower)
= At higher load factors, the software is disadvantaged with more cache misses (convergence)

Lawrence Livermore o
National Laboratory N A‘S&’i

National Nuclear Security Administration

Speedup of 10% and 90% Hit Rate

Zipf skew factor 0.99

Speedup

12

10

Low Latency (DRAM) Moderate Latency (SCM)

ARM_32 - Accel/Soft - R85,W106 - Zipf=.99 ARM_32 - Accel/Soft - R200,W400 - Zipf=.99

e=@==hit 10% ==@==hit 90% e=@==hit 10% ==@==hit 90%

12
10.91
10.19

10

'\ 8
6.62 6.85

4 433

Speedup
(@)}

2.90

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
Load Factor

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
Load Factor

= Hit rate does not affect speedup at low load factors since probe sequence is short
= Software is challenged on longer searches (low hit, high load) with more sequential memory accesses

= Higher latency pushes the trend even more

Lawrence Livermore a
National Laboratory N A‘S“fi
National Nuclear Security Administration

Key points

= Interface matters
— Blocks of requests/responses to enable efficient pipelining

= Evaluation matters

— Under what conditions will the hardware IP block be worthwhile?
— FPGA-based emulator was a big investment in time

* Fast

« High visibility

* But ...
— Combining with software SST simulator gave new insights and

adjustments to the design

https://github.com/IlInl/lime

https://github.com/LLNL/lime-apps

Lawrence Livermore on
National Laboratory NYSE
National Nuclear Security Administration

https://github.com/llnl/lime
https://github.com/LLNL/lime-apps

Compression for HPC: block compression of 1D,

2D, 3D floating point arrays

zfp: Compressed Floating-Point
and Integer Arrays

Open-source software for compressed floating-point arrays

zfp

zfp Versions

2fp Compression

zfp and Derivatives

zfp Arrays

Floating Point Compression
Publications

Related Projects

zfp Video

This video describes how zfp
saves storage, time, and
compute power. Watch on
YouTube.o

Learn More

« For bug reports and
questions, contact:
Zfp@linl.gove

« GitHub repositoryz and
latest version 1.0.0

* See also the menu above
including lists of
publications and related
projects

« Science & Technology
Review. The Laboratory's
Habit of Innovationg

2fp is an R&D 100 winnerls

Home / Projects: Inspired R&D at the Heart of LLNL Computing

zfp is a BSD licensed open-source library for compressed floating-point and integer arrays that support
high throughput read and write random access. One of zfp's unique features is its support for efficient in-
memory representation of multidimensional numerical data for computations like differential equation
solvers, data analysis, and visualization, with significant reductions in memory usage. zfp is primarily written
in C and C++ but also has Python, Fortran, and other bindings. zfp is loosely based on the algorithm
described in the following paper:

Peter Lindstrome , "Fixed-Rate Compressed Floating-Point Arrayse ," IEEE Transactions on Visualization
and Computer Graphics= , 20(12): 2674-2683, December 2014, doi:10.1109/TVCG.2014.2346458

zfp was designed to achieve high compression ratios and therefore uses lossy but optionally error-
bounded compression. Bit-for-bit lossless compression of integer and floating-point arrays is also
supported. zfp provides high-quality compression and is fast, achieving throughputs of up to 2 GB/s per
CPU core and 800 GB/s aggregate throughput on recent GPUs. zfp supports several different back-ends,
including OpenMP, CUDA, and HIP. An FPGA implementatione is also available.

2fp is hosted as open source on GitHubw and can also be installed with package managers like condax ,
spacke , RPMa , and MacPortss . Separate condas and pips packages are available for zfPy, the Python
interface to zfp. HDF5 users may be interested in the H5Z-ZFPs compression plugin. zfp is supported by
software tools and libraries like Intel®IPPs , HDF5s @, ADIOS: , BLOSCw , E4Ss , MVAPICH2: ,
Openlinventors ™, TTKz , VTK-mg , and Zarre .

zfp development is supported by the U.S. Department of Energy's Exascale Computing Projects , by the
Advanced Scientific Computing Research Programa , and by the Advanced Simulation and Computing
Programe . Advanced features such as variable-rate random-access arrays were investigated on LLNL's
Variable Precision Computing Project.

ZHW hardware codec fully
interoperable with zfp

* Encode with zhw, decode with zfp
* Encode with zfp, decode with zhw

ZHW supports fixed rate 1, 2, 3D arrays
organized as blocks

ZHW implemented in SystemC, using
templating features of C++ to
parameterize floating point format
(32b or 64b), block size, and
compression factor

Lawrence Livermore
National Laboratory

National Nuclear Security Administration

ZHW: hardware ZFP compression pipeline for floating

point arrays

encode
. Transform,
Normalize block, reorder block,
Block (4¢) of Find max convert to convert to Block Encode bit Serialize bit
floating-point exponent integer negabinary buffer planes planes Reduced
.numbers enter find_emax FP fwd_cast encode_block block_ encode_ints plane encode_stream :tre;m Ic:f bits
in a stream FP . block block [buffer | block or bloc
emax Stream Split emax
44+2 ss1p'it 49 6d+1 1 2 p+3
i minbits
FIFO maxbits
maxprec
minexp
Estimated cycles
d = block dimension . :
b = bit planes Configuration
from CPU
decode Convert from
o . negabinary,
Qeserlallze Decode bit Block reorder block, F)onvert from Block (49) of
ZFP encoded bit planes planes buffer transform integer to FP floating-point
stream of bits decode_stream plane decode_ints block_ decode_block block inv_cast .numbers exit
for block block buffer | block FP | inastream
emax emax
p+3 2 1 6d+1 44
r minbits
maxbits FIFO
maxprec
minexp
Estimated cycles
. : d = block dimension
Configuration b = bit planss
from CPU

ZFP: software floating point library for scientific floating point arrays. 2023 R&D 100 award winner.
M. Barrow, Z. Wu, S. Lloyd, M. Gokhale, H. Patel, and P. Lindstrom, “Zhw: A numerical codec for big data scientific computation,” Field Programmable

Technology Conference (FPT '22), December 2022.

Lawrence Livermore
National Laboratory

N

National Nuclear Security Administration

ZHW Encoder as an IP block

= Encoder is synthesizable at
293MHz

= |P block outperforms Vision 5
RISC-V64 core by 3.43X

= Slower than x86 Mac laptop

= Provide encoder as custom
instruction issued by RISC-V
core in SoC

X. Liu, P. Gonzalez-Guerrero, I. B. Peng, R. Minnich, and M.
B. Gokhale, “Accelerator integration in a tile-based soc:
lessons learned with a hardware floating point compression
engine,” SC-W '23: Proceedings of the SC’23 Workshops of
The International Conference on High Performance
Computing, Network, Storage, and Analysis, 2023.

ENCODER ELAPSED TIME IN

FP

SECONDS FOR ONE BLOCK

N
™M
~
~
.
w
2 3
S ©
s/
q I
MAC RISC-V 64 ZHW
ZHW Encode Pipeline
Transform, reorder
Normalize block, block, convert to Encode bit Serialize bit
convert to integer negabinary planes plane planes
block block ZFP
fwd_cast ; | encode_block y encode_ints | exp encode_stream ~

Block (49) of
floating-point|
numbers ente|
in a stream

y \ ZFP bit
stream exits in
64bit long flits

Configuration from CPU

Lawrence Livermore
National Laboratory

Encoder uses LBNL Mosaic SoC

= Tile architecture, heterogeneous VoSALC
and configurable i1 s B t
— HW: RSIC-V CPU, scratchpad, NoC JB?;E i
— SW: RISC-V tool chain with 12 D‘h*
customized NoC message protocols | Boon] 1
. . 2 Top] ({ Top | E_,t
— Configuration: tools to generate 25 g sPl g hen 2o
=y = Adapter
different tile sizes and layouts -
= Full implementation in Verilog -
RTL, testing framework with i ’
Memory Tile J
FPGA
Lawrence Livermore NA' S%‘%

National Laboratory

9%4/24
ZHW encoder as an accelerator tile on NoC

= Connect ZHW RTL with standard ZHW Tile
NoC interface N
— NoC buffer to convert clock | comes) & NoC widtn ate_ i,
frequency in different domains e | 3 il I i
— NoC decoder/encoder handles v
header metadata and transfers data | ocnp CoR ——mais minis |z
to/from accelerator (header: input ouer | | i
command, output destination and ZFP Blocks 5 "y
command) . N oo
— Width converter (NoC data width is <
32bits and ZHW is 64 bits)
|:| Provided by MoSAIC |:| Standard modules adapted from open source
= Control&Status RegiSter Customized for ZHW ZHW pipeline compiled with systemc-clang
programming
— Accelerator config (maxbits, minbits)
— Output NoC routing information
(dest, op, size)
Kagrence Lvermors Georgia NIYSE

9pA/24

Accelerator Software Programming — CPU

centric method

= Utilizing existing MoSAIC APIs with
custom RISC-V instructions

= mPut/mGet — address-based

communication

— Originally designed to communicate
with scratchpad tile

— Used to configure CSRs in ZHW

= gPut/qGet — message queue bypass

CPU cache/memory hierarchy
— Use software for loop to send/retrieve
data

int rd_zhw(int tile_id, int =*data,

int temp;

int received_data_poll;
received_data_poll);
/* Check if queue is empty x/
if (received_data_poll == 1){

gPoll(tile_id,

return -1;

}else{

/* Pop headers from queue */

gGet(tile_id,
qGet(tile_id,

temp);
temp) ;

/* Pop data from queue x*/

for (int i=0;

i<size; i++)

qGet (tile_id, datalil);

return

}

return 1;

15

int size) {

Lawrence Livermore :
National Laboratory %.:g{lgla

nal Nuclear Security Administration

a74/24

Scratchpad DMA optimization

. . . . RISC-V CPU qPut(FP) qGet(ZFP)
= CPU-centric approach incurs significant CPU
instruction overhead (80% for single block) 24 oo Campess
= Optimization: Utilize stand-alone scratchpad
. RISC-V CPU m : ;
tile to transfer data S
J— Create neW instruction: mGetDMA Scratchpad Memory ‘mstie(lgP)
— Revise scratchpad logic to send output to e
. . encoaer ompress otal: cycles
assigned memory tile/address i enees mPuZEP) e
— Reduce number of CPU instructions g’}’)‘;ﬁ;fjf; R f;i’) ol e
— Offload memory operations to scratchpad qPut(FP) 302 | mGetDMA(addr) 20
NoC 12 | NoC 9
SP read, mPut(FP) 38.5
8 /* Retrieve data using SPAD DMA, data preloaded in Compress, qPut(ZEP) 80 Igﬁ,’ipm mPut(ZFP) 1182
spad2 */ NoC 21.5 | NoC 21.5
set(ZF) 31 data write i
o mGetH((spad2_tile << 12), TEST_SIZE_L0G2): i] e
10 mGetDMA ((zhw_tile << 12) + ZHW_STREAM_ADDR, 0); // send
to dedicated zhw address for input data streaming
Lawrence Livermore Georgia \ L)
National Laboratory Tech N\ 499

National Nuclear Security Administration

9A/24

Evaluation

= Baseline performance scales linearly as

number of floating point blocks increases
— qgPut/gGet instruction count scales linearly

= SP DMA has better speedup scalability
— Average cycles per block decrease for higher
number of blocks

AVERAGE BLOCK LATENCY
RATE=16

600 /

LATENCY
(CYCLES)

200 \

1 2 4
TOTAL NUMBER OF FLOATING POINT BLOCKS

e PUt/qGet === SP DMA

END-TO-END LATENCY

END-TO-END LATENCY

(CYCLES)

(CYCLES)

END-TO-END LATENCY

2.8x

B
|I 198

[y

RATE=16

M gPut/qGet mSP DMA

5.2x

||I .
<
o

|
2

NUMBER OF FLOATING POINT BLOCKS

1295

END-TO-END LATENCY

3.0x

N
©
©
o
N
III .
|
1

RATE=32

M gPut/qGet mSP DMA

5.2x

1507

o0

o0

o~
.

2
NUMBER OF FLOATING POINT BLOCKS

2475

6.3x

6.4x

2879

Lawrence Livermore
National Laboratory

Gr Georgia
Tech.

VSE

National Nuclear Security Administration

Tool chain

Lawrence Livermore

o
National Laboratory N A‘S‘:ﬁ

National Nuclear Security Administration

ZHW uses C++ abstraction features

Heavily templated design

template<typename FP, int DIM, typename B>
SC_MODULE (encode)

Constant expressions, functions, enums, and internal
structs

SC_MODULE(encode_stream) {
static constexpr int tbc_w = log2rz(bp w(DIM)*FP::bits+FP::ebits+1)+1;
static constexpr int buf_w = max(bp w(DIM),B::dbits)+B::dbits;
enum state e {START, ZERO, EXPO, PLANES, PAD};
struct state_t { // ...
¥
bool pack bits(state_t &ts, sc_uint<tbc_w> bc, sc_bv<buf w> bp) { // ...
}
bool out bits(state t &ts, bool done) { // ...
}
¥

Lawrence Livermore 4l
National Laboratory N A‘S&‘-‘?i

National Nuclear Security Administration

SCCL Overview

Front end Hcode Lowering Hcode to bitstream
SystemC RTL
—
prog.cpp Generator
Module
Analysis
| SystemC- -
Clang | specific Thread) Hcode SystemVerilog
Matchers | | structural Analysis AST RTL
Info.
Synthesis
Front end analyzes Transforms
* Templated modules
* Module inheritance Hcode phase
* Functions translates SystemC
* User-defined classes and C++ descriptions Backend phase is
into a simplified independent of Clang: RTL
SystemC-oriented AST generators only need HCode

Wu, Z., Gokhale, M.B., Lloyd, S., & Patel, H.D. (2023). SCCL: An open-source SystemC to RTL translator. 2023 IEEE 31st Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), 23-33.

Lawrence Livermore \L N7
National Laboratory 499

National Nuclear Security Administration

From System Verilog to FPGA/ASIC

= SCCL-generate System Verilog compiled through FPGA tool
chain
— Hardware worked correctly on FPGA board

= SCCL-generate System Verilog did not initially pass through

open source ASIC tool chain OpenRoad automatically
— Unsupported features
— Bugs

= Using SiliconCompiler OpenRoad tool chain, synthesis,
Place&Route completed with7nm and 45nm technology nodes

Lawrence Livermore on
National Laboratory NYSE
National Nuclear Security Administration

ASIC synthesis results for decoder and encoder

= Decoder was compiled using SiliconCompiler
and OpenRoad

(https://www.siliconcompiler.com/):

o Used Asap7 7 nm technology
o f _maxwas 27.963 MHz
o Area was 49,053.8 um?

= Encoder was compiled using
SiliconCompiler:
o Used Asap7 7 nm technology

o Bestf _maxwas 292.701 MHz
o Areawas 23,318.7 um?

= Decoder was compiled through CMC:
o Used OpenPDK45 45 nm technology ip: decoder
o Max frequency was 31.2 MHz . asap?

o Areawas 330,625 um? : 49853.860uUMA2
: 27.963MHz

Decoder A generated py sSiliconcompilier

U Waterloo collaboration

Lawrence Livermore \ L)
National Laboratory 499

National Nuclear Security Administration

Scott Lloyd: Xueyang Liu: Patricia Gonzalez-Guerrero:
DRE and Lookup ZHW on MoSaic MoSaic
Accelerator, ZHW

SystemC to SystemVerilog: Michael Barrow: ZHW decoder

Zhuanhao Wu Michael Gionet: ZHW flow in SiliconCompiler, Boom core
Hiren Patel Peter Lindstrom: ZFP library
Maya Gokhale Joshua Landgraf: Lookup accelerator in SST

Lawrence Livermore

National Laboratory NVYSE

National Nuclear Security Admi

Discussion

Specialized HPC-centric hardware modules can improve performance
— Programmable DMA engine for irregular memory access can potentially

improve performance
« Coordination with cache hierarchy and MMU required

— Zhw shows speedup over RISC-V core, but further improvements will require
algorithm/hardware co-design

= Large variety of scientific data, problems, approaches
— Are there kernels/operations used widely enough to justify expense in labor,
fab, maintenance?

Tool chains continue to challenge
— Hardware tool access should be as ubiquitous as software
* Open source

 Proprietary but free
 Interoperable

Verification/Validation

— Multiple levels

— SystemC valuable for hardware/software interface validation
— RTL simulation uncovers lower layers of issues

M Lawrence Livermore el
National Laboratory N A‘S‘é’i‘\
National Nuclear Security Administration

This work was performed under the auspices of the U.S. Department

| |
H\I Lawrence Livermore
| |
National Laboratory e e iemos et vosioy ierconra

