
In-Network ML
Inference at the Speed of Data

Noa Zilberman

noa.zilberman@eng.ox.ac.uk / planter@eng.ox.ac.uk

NANDA Workshop, September 2024

mailto:noa.zilberman@eng.ox.ac.uk
mailto:planter@eng.ox.ac.uk

Many people have contributed to this research over the years:

Changgang Zheng, Mingyuan Zang, Xinpeng Hong, Zhaoqi Xiong, Riyad Bensoussane, Liam

Perreault, Benjamin Rienecker, Peng Qian, Hongyi Chen, Damu Ding, Filippo Cugini, David

Bowden, Kari Koskinen, Thanh T. Bui, Siim Kaupmees, Antoine Bernabeu, Tomasz Koziak,

Lars Dittmann, Haoyue Tang, Aosong Feng, Leandros Tassiulas, Stefan Zohren , Shay

Vargaftik, Yaniv Ben-Itzhak, and others.

Acknowledgements

2
This work is partly funded by EU SMARTEDGE project (101092908) & VMWare. We acknowledge support from Intel, NVIDIA and AMD.

What is In-Network ML?

3

A brief introduction to network devices
(really brief)

4

To achieve high throughput, packet switches are pipelined

Simplified Switch Architecture

Port

Port

Port

Port

Port

Port

Port

Port

Sc
h

ed
u

le
r

P
ac

ke
t

P
ro

ce
ss

in
g

Packet

Packet

Packet

5

How fast is a
switch?

• A single device:
• 51.2Tbps - 64 x 800GE
• > 10 billions packets per second

• >1 TOPS

6

Simplified Programmable Packet Processing

Programmable

Parser

Programmable

Deparser

Programmable Match-Action Pipeline

What are the

headers in the

packet?

What are the

headers in the

packet?

What is the

processing

algorithm?

What is the

processing

algorithm?

What should the

output packet

look like?

What should the

output packet

look like?

Figure source: p4.org 7

In-Network Machine Learning
Offload inference or entire ML processes to the network.

DDBB

CC
EE

FF
AA 11

Network deviceNetwork device ServerServer

Machine Learning InferenceIn-Network

C. Zheng et al “In-Network Machine Learning Using Programmable Network Devices: A Survey,” IEEE Communications Surveys & Tutorials 2023.

A network device is not a CPU / GPU!

Resource constrained ML

Target Platforms

SwitchesSwitches

FPGAsFPGAs

DPU/SmartNICsDPU/SmartNICs

Low-end devicesLow-end devices

C. Zheng et al “In-Network Machine Learning Using Programmable Network Devices: A Survey,” IEEE Communications Surveys & Tutorials 2023.

Motivation: The 3 Ls
• Location

• Along the path
• Data aggregation
• Already exists

• Latency
• Early termination

• Load
• Reduces load on servers / GPUs
• High throughput

C. Zheng et al. “IIsy: Hybrid In-Network Classification Using Programmable Switches,” IEEE Transactions on Networking, 2024.

In-Network ML: Our Goals
• Run on commodity network devices

• Off the shelf and unmodified!

• Co-exist with networking functionality

• Must not affect performance

• Code once, deploy across different devices

• Modularity

• Easy to Use

• Stateless, no multiplication or loops, limited memory, different
architecture …

In-Network ML: Goals and Non-Goals
• Enable the technology

• Machine learning models:

• Enable N different types of ML models

• … but not necessarily latest or state of the art

• Machine learning performance (e.g., F1 score):

• Similar to an identical model running on a server / GPU

• … but less than a larger model running on a server / GPU

• Fit for purpose

• ML Performance should be good enough for the use case

• Provide a solution for improving ML performance

• No compromise on system performance

1. Direct Mapping
• A series of sequential operations
• Decision Tree, BNN, …

2. Encode Based
• Slicing the feature space
• K-means, Random Forest, …

3. Look Up Based
• Use tables for math operations
• Support Vector Machine, Naïve Bayes, …

Three Mapping Methodologies

13

1. Direct Mapping
• A series of sequential operations
• Decision Tree, BNN, …

2. Encode Based
• Slicing the feature space
• K-means, Random Forest, …

3. Look Up Based
• Use tables for math operations
• Support Vector Machine, Naïve Bayes, …

Three Mapping Methodologies

14

1. Direct Mapping
• A series of sequential operations
• Decision Tree, BNN, …

2. Encode Based
• Slicing the feature space
• K-means, Random Forest, …

3. Look Up Based
• Use tables for math operations
• Support Vector Machine, Naïve Bayes, …

Three Mapping Methodologies

15

May 2022, Oxford, UK Zheng, et al.

extraction for ML models, and ML inference. TheML fea-

tureextraction and inference can beparallel to the standard

functionality (parser operation ismerged).

The work ow is realized using ve components: Input

Con gurations, Data Loader, Model Trainer & Converter,

P4Generator, and Model Compiler & Tester. The detailed

design of each component is described next.

Input con gurations. Planter is using con guration les

to drive its one-click operation. The con gurations can be

loaded from a le, or entered through an interactiveCLI.

Data Loader. Thedata loader loads datasets for training

purposes. It is use-case speci c, based on used featuresand

data format. All loaded data arestored in the same format.

Model Trainer & Converter. ML Training isconducted by

theModel Trainer, which drivesastandard training frame-

work. Trainedmodels arenext mapped to theM/A pipeline

in theModel Converter. A software test is generated to test

the validity of themappedmodel.

P4Generator. There are three parts to the P4Generator.

The Standard P4 Generator contains architecture-speci c

P4 codeand is themain program that integrates the other

P4 codes. This iswhere the standard network functionality

resides. The Common P4Generator contains the use case

speci c P4 code, such as bespoke feature extraction. The

Dedicated P4Generator creates themodel-related P4 code.

Model Compiler & Tester. TheModel Compiler & Tester

aredeployed in the control plane. TheModel Compiler gen-

erates bash scripts to compile, load, and run mapped ML

models. The Tester generates testing scripts and runs the

functionality test on the selected target.

3.2 Modular Framework Design

Planter isamodular framework. Modulesare independent

and can be exibly and easily replaced. The framework sup-

portsmany ML models, architecturemodels, target modules,

and usecasemodules. For navigation simplicity,modulesare

arranged in folders by type. This can be rearranged by users.

In addition to theabove, Planter providesaset of common

functions, such as exact-to-LPM table conversion, which

can beused by other modules. Moredetails areprovided in

Appendix B.

4 ML MODELSIN PLANTER

This section provides a detailed look into theModel Trainer

& Converter component (Figure2step ∑). Planter supports

a range of in-network ML algorithms, e.g., SVM, NB, DT,

RF, XGB, IF, KM, KNN, and NN. Among these implemented

algorithms, Planter also upgrades somepreviously proposed

implementations (e.g., DT, RF, and NB), and supports new

ML algorithms (e.g., XGB, IF, KNN, AE, and PCA). Themod-

ularity of the framework allows future support in Planter

of other types of in-network algorithms, as well as other

enhancements.

Types SVM DT RF XGB IF NB KM KNN PCA AE NN

EB G3 G3 G G2 3 G

LB 3 3 G2 3 3 G G

DM 3 3 3

Table 2: Three types of in-network ML models solu-

tions. Notation: G new or upgraded, 3 reproduced, 3 =
or G= = variations exist.

In Planter, ML algorithmsmapping can beclassi ed into

threetypes:encode-based(EB), lookup-based(LB),anddirect-

mapping (DM). Table2 showsall theML models supported

under these threeapproaches. EB solutions encode the fea-

ture space for algorithms based on input featurespace parti-

tioning. LB solutions arebased on lookup in tables of inter-

mediate results. DM approachesmap themodel directly into

thepipeline, using alternativeoperations or result approxi-

mation. This section introduces thedetails of onevariation

of each model. All variations’ implementations can be found

in Planter’s repository [69].

4.1 Encode-Based Solutions

Classi cation algorithms essentially aim to nd borders in

a feature space, either the original or a mapped one. The

area con ned by a set of borders (partitions) is labeled as

a class. Algorithms use di erent methods to de ne their

borders. Someusecomplex functions, whileothersuselinear

functions for approximation. EB solutionsmainly use linear

borders to slice the feature space with codes representing

each part of thearea in the space.

code 2

Feature n Table

Input: Fearure n value

Output: Feature n codeFeature 2 Table

Input Feature Space

0 1

2 3

4

5

code 0 code1 code 2 code 3 +1

+2

code 0

Partition 5

Input: Fearure 1 value

Output: Feature 1 code

…

Feature Tables Decision Table

Decision Table

Input: All codes

Output: Decision

Logic (Optional)

Logical Operations

Feature 1 Table

Input: Fearure 1 value

Output: Feature 1 code

code 1

Partition 3

P
a
rt

it
io

n
 4

P
a
rt

it
io

n
 1

P
a
rt

it
io

n
 2

Figure 3: Methodology of EB solutions.

To describe themapping of ageneral EBmodel, consider

the input features. To slice input features into classes, a typi-

cal methodusesfeaturetablesandadecision table.Asshown

in Figure 3, based on a well-trained model, feature space

(e.g., two-dimensional space) is sliced into 6 areas (i.e., area
0 to area 5) by 5 partitions (i.e., partition Partition 1 to partition
Partition 5). To map this ML model to M/A pipeline, this input

featurespaceuses two feature tables to record themapping

4

1. Direct Mapping
• A series of sequential operations
• Decision Tree, BNN, …

2. Encode Based
• Slicing the feature space
• K-means, Random Forest, …

3. Look Up Based
• Use tables for math operations
• Support Vector Machine, Naïve Bayes, …

Three Mapping Methodologies

16

• Experience (switch-ASIC):

• Stages and logic-per-stage are limiting

• Memory is not as limiting

• Key: maximize independence, look up in parallel:

• Features

• Trees / hyperplanes / probabilities

Mapping vs Resources

17

tree1

tree2

treeN

Decision

feature1

feature2

featureM

Stage 1 Stage 2

Stage 3

Planter: Rapid Prototyping of In-Network ML

Training

Parameter

selection & auto tunning

Mapping Deployment & Testing

Dataset Trained Model Data Plane Code

Control Plane Code

Testing Code

Bash Scripts

Target

C. Zheng et al "Planter: rapid prototyping of in-network machine learning inference” CCR 2024.
https://github.com/In-Network-Machine-Learning/Planter

https://github.com/In-Network-Machine-Learning/Planter

Models: SVM, Tree ensembles (Random Forest, XGBoost, …), K-Means, Naïve Bayes, KNN, PCA,

Auto-Encoder, Neural Network, Q-Learning, …

Targets: Switches (Intel), FPGA (AMD), DPU (NVIDIA), IoT Gateway (DELL), low cost (RaPi),

software switch, …

ML Libraries: Scikit-learn, TensorFlow, …

Features: Packet-level, Flow-level, File (csv, json)

Datasets: UNSW, CICIDS, AWID3, KDD, NASDAQ, Requet, EDGEIIOT, Iris, …

Use Cases: Cybersecurity, Finance, IoT, Smart Grid, Manufacturing, Networking, …

Planter: A Modular Framework

C. Zheng et al "Planter: rapid prototyping of in-network machine learning inference” CCR 2024.
https://github.com/In-Network-Machine-Learning/Planter

https://github.com/In-Network-Machine-Learning/Planter

Anomaly Detection in SmartEdge

Using in-network ML to react instantly to incidents, security threats, or
changes in operating conditions

Improving dynamic swarms’ operation

EU Horizon SmartEdge Project, https://www.smart-edge.eu/ 20

https://www.smart-edge.eu/

System Performance

21

C. Zheng et al "Planter: rapid prototyping of in-network machine learning inference” CCR 2024.
https://github.com/In-Network-Machine-Learning/Planter

https://github.com/In-Network-Machine-Learning/Planter

System Performance – Switch ASIC vs FPGA

22

C. Zheng et al "Planter: rapid prototyping of in-network machine learning inference” CCR 2024.
https://github.com/In-Network-Machine-Learning/Planter

FPGA (Alveo U280) Switch (Intel Tofino)

Throughput 100Gb/s 64x 100Gb/s

Added latency 170ns-320ns ~0ns- <1µs

Memory Up to GBs Up to 10’s of MBs

Externs (semi) programmable Fixed

Utilization (typical) 6%-7% LUT
~4% RAM

0-4 stages,
1%-5% Memory

https://github.com/In-Network-Machine-Learning/Planter

ML Performance

23Zheng et al, IIsy: Hybrid In-Network Classification Using Programmable Switches, 2024

Goal: increasing ML performance & reducing back-end resources

Anomaly Detection – Hybrid DeploymentAnomaly Detection – Hybrid Deployment

Normal
Malicious
Unknown 24

ML Performance

25Zheng et al, IIsy: Hybrid In-Network Classification Using Programmable Switches, 2024

Anomaly Detection - Hybrid ModelAnomaly Detection - Hybrid Model

Error Rate & Fraction of Traffic Handled by the Switch vs Switch Confidence Threshold

Same model in a hybrid deployment

26
Zheng et al, IIsy: Hybrid In-Network Classification Using Programmable Switches, 2024

Example: Traffic Analysis for Smart IoT Gateways

• SmartEdge smart factories use case

• Operate on IoT and sensor data

• Provide continuous threat defence
• In-band feature extraction and mitigation
• Proactive logging
• Unsupervised labeling of traffic
• Continuous updates of in-network model

• Federated learning using multiple gateways

• Runs on P4Pi (P4 on Raspberry Pi) and DELL IoT Gateway 5200

Terminate data at the IoT Gateway

Zang et al, Towards Continuous Threat Defense: In-Network Traffic Analysis for IoT Gateways, 2023

Zang et al, Federated In-Network Machine Learning for Privacy-Preserving IoT Traffic Analysis, 2024 27

IoT Gateway

Example: Attack Detection on BT Network

• Any path through the network

• Without affecting existing network functions.

• Information sharing across nodes

Distributed ML Deployment

Zheng et al, DINC: Toward Distributed In-Network Computing, 2023
28

BT Network Topology

Backbone WAN with 1008 Nodes

Example: Price Movement Forecasting

Higher
Intelligence

High-frequency Traders

Lower
Latency

Algorithmic Traders

Programmable Switches

In-network ML

Hong et al., In-Network Machine Learning for Limit Order Books, HPSR 2023 29

LOBIN: In-Network Price Movement Forecasting

Hong et al., In-Network Machine Learning for Limit Order Books, HPSR 2023 30

45% of traffic and 1.97 Billion USD per day processed on a switch.

Summary

• Commodity network devices as inference engines

• Support of:
• Rapid prototyping on a range of network devices
• High throughput, low latency
• Modular: “bring your own model”
• Distributed, federated and hybrid deployments

• A lot left to explore, try and research! Code is open!

Moving Intelligence to the Network

31

https://github.com/In-Network-Machine-Learning/Planter

https://github.com/In-Network-Machine-Learning/Planter

More Information
• Publications (Selected):

❑ C. Zheng et al, "Planter: rapid prototyping of in-network machine learning inference", Computer Communication Reviews, 2024.

❑ C. Zheng et al, “IIsy: Hybrid In-Network Classification Using Programmable Switches,” IEEE Transactions on Networking, 2024.

❑ C. Zheng et al, “In-Network Machine Learning Using Programmable Network Devices: A Survey,” IEEE Communications Surveys
& Tutorials, 2023.

❑ M. Zang et al, “Towards Continuous Threat Defense: In-Network Traffic Analysis for IoT Gateways,” IEEE IoT Journal, 2023.

❑ C. Zheng et al, DINC: Toward Distributed In-Network Computing, ACM CoNEXT, 2023.

❑ X. Hong et al, "In-Network Machine Learning for Real-Time Transaction Fraud Detection“, ECAI 2024.

❑ M. Zang et al, "Federated In-Network Machine Learning for Privacy-Preserving IoT Traffic Analysis", ACM TIOT, 2024.

❑ M. Hemmatpour et al, "GridWatch: A Smart Network for Smart Grid“, IEEE SmartGridComm 2024.

• Open source repositories:

❑ Planter: https://github.com/In-Network-Machine-Learning/Planter

❑ IIsy: https://github.com/In-Network-Machine-Learning/IIsy

❑ DINC: https://github.com/In-Network-Machine-Learning/DINC

❑ P4Pir: https://github.com/In-Network-Machine-Learning/P4Pir

❑ QCMP: https://github.com/In-Network-Machine-Learning/QCMP

32

https://eng.ox.ac.uk/computing/projects/in-network-ml/

planter@eng.ox.ac.uk

https://github.com/In-Network-Machine-Learning/Planter
https://github.com/In-Network-Machine-Learning/IIsy
https://github.com/In-Network-Machine-Learning/DINC
https://github.com/In-Network-Machine-Learning/P4Pir
https://github.com/In-Network-Machine-Learning/QCMP
https://eng.ox.ac.uk/computing/projects/in-network-ml/
mailto:planter@eng.ox.ac.uk
https://eng.ox.ac.uk/computing/join-us/

	Slide 1: In-Network ML Inference at the Speed of Data
	Slide 2: Acknowledgements
	Slide 3: What is In-Network ML?
	Slide 4: A brief introduction to network devices
	Slide 5: Simplified Switch Architecture
	Slide 6: How fast is a switch?
	Slide 7: Simplified Programmable Packet Processing
	Slide 8: In-Network Machine Learning
	Slide 9: Target Platforms
	Slide 10: Motivation: The 3 Ls
	Slide 11: In-Network ML: Our Goals
	Slide 12: In-Network ML: Goals and Non-Goals
	Slide 13: Three Mapping Methodologies
	Slide 14: Three Mapping Methodologies
	Slide 15: Three Mapping Methodologies
	Slide 16: Three Mapping Methodologies
	Slide 17: Mapping vs Resources
	Slide 18: Planter: Rapid Prototyping of In-Network ML
	Slide 19: Planter: A Modular Framework
	Slide 20: Anomaly Detection in SmartEdge
	Slide 21: System Performance
	Slide 22: System Performance – Switch ASIC vs FPGA
	Slide 23: ML Performance
	Slide 24: Anomaly Detection – Hybrid Deployment
	Slide 25: ML Performance
	Slide 26: Anomaly Detection - Hybrid Model
	Slide 27: Example: Traffic Analysis for Smart IoT Gateways
	Slide 28: Example: Attack Detection on BT Network
	Slide 29
	Slide 30
	Slide 31: Summary
	Slide 32: More Information

