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A prief introduction to network devices

(really brief)




Simplified switch Architecture

To achieve high throughput, packet switches are pipelined
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* A single device:
How fastis a * 51.2Tbps - 64 x 800GE
switch? * > 10 billions packets per second
e >T1TOPS




Simplified Programmable Packet Processing

“ What are the A What is the What should the
headers in the processing output packet

\p?cket? - algorithm? look like?
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In-Network Machine Learning

Offload inference or entire ML processes to the network.

In-Network Machine Learning Inference

Resource constrained ML Prog;gr:;zrable{ Programmable MatT-Action Pipeline \ Prcg;;?’;nrrgearble
=Qx E=E B=E =
A network device is not a CPU / GPU! =lexal a5 — &
= D | e —
1 > (> 1 1

C. Zheng et al “In-Network Machine Learning Using Programmable Network Devices: A Survey,” IEEE Communications Surveys & Tutorials 2023.




larget Platforms

Switches DPU/SmartNICs

| ow-end devices

C. Zheng et al “In-Network Machine Learning Using Programmable Network Devices: A Survey,” IEEE Communications Surveys & Tutorials 2023.




Motivation: The 4 LS

 Location
* Along the path

- Data aggregation v \

» Already exists ./ \

e Latency

e Early termination S
y | |
 Load
« Reduces load on servers / GPUs IIIII-
* High throughput .

C. Zheng et al. “llsy: Hybrid In-Network Classification Using Programmable Switches,” IEEE Transactions on Networking, 2024.




Nn-Network ML: Qur Goals

<

 Run on commodity network devices

e Off the shelf and unmodified!
» Co-exist with networking functionality
* Must not affect performance

* Code once, deploy across different devices

* Modularity
* Easy to Use

 Stateless, no multiplication or loops, limited memory, different
architecture...




Nn-Network ML: Goals and Non-Goals

* Enable the technology
* Machine learning models:
 Enable Ndifferent types of ML models
* ... but not necessarily latest or state of the art
* Machine learning performance(e.g., F1score):
« Similar to an identical model running on a server / GPU
e ... butlessthanalarger model running on a server / GPU
e Fit for purpose
ML Performance should be good enough for the use case
e Provide a solution for improving ML performance

 No compromise on system performance




I hree Mapping Methodologies

1. Direct Mapping
» A series of sequential operations
* Decision Tree, BNN, ...

2. Encode Based
 Slicing the feature space
e K-means, Random Forest, ...

3. Look Up Based
* Use tables for math operations
e Support Vector Machine, Naive Bayes, ...




I hree Mapping Methodologies

1. Direct Mapping |
* A series of sequential operations ! Feature Extraction ¢
* Decision Tree, BNN, ...




Ihree Mapp S
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Input: Fearure n value Input: All codes

2. Encode Based
 Slicing the feature space
 K-means, Random Forest, ... . £l Input: Fearure 1 value
@ & @ codg 2 Logical Operations

. : : : i Output: Feature 1 code
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I hree Mapp

Nng Methodologies

Input Feature Space
Inputs: x4, X2, ..., X

Decision Process

IR} + IR} + - IR} = b!
IR? + IR% + ---IR3 = b?

IR¥ + IR% + - IRK = b¥

3. Look Up Based

Feature Tables Logic Operations

Feature n Table |::> Logical Operations

Input: Fearure n value x,,

Feature 2 Table Decision (Optional)

Feature 1 Table Decision Table

Input: Fearure 1 value x Input: Votes

Output: IR}, IR?, ..., IR} Output: Decision

* Use tables for math operations
e Support Vector Machine, Naive Bayes, ...




Mapping vs Resources
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- Experience (switch-ASIC):
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- Stages and logic-per-stage are limiting

- Memory is not as limiting
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- Key: maximize independence, look up in parallel:  fea

- Features

- Trees/ hyperplanes/ probabilities

< |UUTVEVY

17

—t
—
D
()

featureM



Planter: Rapid Prototyping of In-Network ML

[ Bash Scripts

Training Mapping Deployment & \Testing
[ Dataset ]—»[ Trained Model Data Plane Code p ﬂ[ Target ]
Parameter ~ Control Plane Code

selection & auto tunning [ Testing Code

. 7 " : . . i . . . ” 202 .
7 P LAN I ER C heng.et al "Planter: rapid prototypllng of in r.metwork machine learning inference” CCR 2024
https://github.com/In-Network-Machine-Learning/Planter



https://github.com/In-Network-Machine-Learning/Planter

Planter: A Modular Framework

Models: SVM, Tree ensembles(Random Forest, XGBoost, ...), K-Means, Naive Bayes, KNN, PCA,

Auto-Encoder, Neural Network, Q-Learning, ...

Targets: Switches(Intel), FPGA(AMD), DPU (NVIDIA), loT Gateway (DELL), low cost (RaPi),

software switch, ...

ML Libraries: Scikit-learn, TensorFlow, ...

Features: Packet-level, Flow-level, File(csv, json)

Datasets: UNSW, CICIDS, AWID3, KDD, NASDAQ, Requet, EDGEIIOT, Iris, ...

Use Cases: Cybersecurity, Finance, loT, Smart Grid, Manufacturing, Networking, ...

C. Zheng et al "Planter: rapid prototyping of in-network machine learning inference” CCR 2024.
@ P LA N T E R https://github.com/In-Network-Machine-Learning/Planter



https://github.com/In-Network-Machine-Learning/Planter

Anomaly Detection in smarttdge o

Improving dynamic swarms’ operation

Using in-network ML to react instantly to incidents, security threats, or
changes in operating conditions

Context-aware
networking

Automatic discovery and
dynamic swam formation

o4
DPU Netw?rk se.curlty &
isolation

Embedded security
&isolation

/

EU Horizon SmartEdge Project, https://www.smart-edge.eu/ 20



https://www.smart-edge.eu/

System Performance
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C. Zheng et al "Planter: rapid prototyping of in-network machine learning inference” CCR 2024.
PLANTER

https://github.com/In-Network-Machine-Learning/Planter
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https://github.com/In-Network-Machine-Learning/Planter

System Performance - switch ASIC vs FPGA

Throughput 100Gb/s 64x 100Gb/s
Added latency 170ns-320ns ~0ns-<1us
Memory Up to GBs Up to 10’s of MBs
Externs (semi) programmable Fixed
Utilization (typical) 6%-7% LUT 0-4 stages,

~4% RAM 17%-57% Memory

R P L ANTE R C. Zheng et al "Planter: rapid prototyping of in-network machine learning inference” CCR 2024.
https://github.com/In-Network-Machine-Learning/Planter
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https://github.com/In-Network-Machine-Learning/Planter

ML Performance

Anomaly Detection, Random Forest, confidence threshold 0.7

Small | Medium | Large Baseline
Features 4 S 6 25
Trees 6 10 14 200
Max Depth 4 S 6 —
Accuracy 97.05 97.17 97.78 99.51
Precision 98.06 98.12 98.60 99.677
Recall 88.55 89.04 91.36 99.75
F1 score 92.60 92.94 94.58 08.88

"+ PLANTER

Zheng et al, lIsy: Hybrid In-Network Classification Using Programmable Switches, 2024
U




Anomaly Ue

ection - Hybrid Deployment

Goal: increasing M

Normal

— o
=) Malicious
=== Unknown

_ performance & reducing back-end resources




ML Performance

Anomaly Detection, Random Forest, confidence threshold 0.7

Small | Medium | Large Baseline
Features 4 5 6 25
Trees 6 10 14 200
Max Depth 4 5 6 —
Accuracy 97.05 97.17 97.78 99.51
Precision 98.06 98.12 98.60 99.67
Recall 88.55 89.04 91.36 99.75
F1 score 92.60 92.94 94.58 08.88
Hybrid Accuracy | 98.58 98.94 99.31 —
Hybrid F1 96.64 97.53 98.41 —

"+ PLANTER

Zheng et al, lIsy: Hybrid In-Network Classification Using Programmable Switches, 2024
U




Anomaly Uetection - Hybrid Moade|

Same model in a hybrid deployment

— 90

o B

zi1.50 . —30 1 N_\—A—AH

3 2370 i

1.25 1 o

21,00 W £99

o _ +

=i £1=0.9759 %901

£0.75 1 NSpry i 40 -

2050 fmmmmmmmmmm e ﬂ_:_w&@__.:'r:t\. 530

= Baseline (0.49%) f1=0.9888  £201

20.25 1 910 -

E OOO T T T T T T T T T O T T T T T T T T T
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Switch confidence threshold Switch confidence threshold

Error Rate & Fraction of Traffic Handled by the Switch vs Switch Confidence Threshold

!:" P LANTE R Zheng et al, lIsy: Hybrid In-Network Classification Using Programmable Switches, 2024
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cxample: Traffic Analysisfor smart lol Gateways

Terminate data at the loT Gateway

 SmartEdge smart factories use case

e OperateonloT and sensor data

. . 0T Gat
* Provide continuous threat defence o1 bateway

* In-band feature extraction and mitigation
* Proactive logging

* Unsupervised labeling of traffic

e Continuous updates of in-network model

ML Model

P4Pir

* Federated learning using multiple gateways
* Runs on P4Pi (P4 on Raspberry Pi)and DELL loT Gateway 5200

Zang et al, Towards Continuous Threat Defense: In-Network Traffic Analysis for loT Gateways, 2023

. PLANTER

Zang et al, Federated In-Network Machine Learning for Privacy-Preserving loT Traffic Analysis, 2024 27




-xample: Attack Detectionon 51 Network

Distributed ML Deployment o
* Any path through the network
» Without affecting existing network functions.

* Information sharing across nodes

Pi ANTER BT Network Topology
Backbone WAN with 1008 Nodes

Zheng et al, DINC: Toward Distributed In-Network Computing, 2023 )8




-xample: Price Movement Forecasting

~ 11l ~ 11l
I Lower Higher I

Latency o Intelligence
! Programmable Switches !

High-frequency Traders Algorithmic Traders

Hong et al., In-Network Machine Learning for Limit Order Books, HPSR 2023 29




L OBIN: In-Network Price Movement Forecasting

Training Data + Configurations Control Plane & Servers
[ I |

Trained ML Model P4 ML Code Gen. ™ Std Code Generator
Y

W ET Y I GLEE | P4 LOB Code Gen. ~@ggJu¢: eneratc

Write/update table rules Load model
l ¥
LOB Feature Extraction = Standard P4
|:> L= & ML Inference Pro gram

— @ D (| || | I
Data Plane — | o | — ] | =] A N R R N A e

45% of traffic and 1.97 Billion USD per day processed on a switch.

Hong et al., In-Network Machine Learning for Limit Order Books, HPSR 2023 30




Summary

Moving Intelligence to the Network
« Commodity network devices as inference engines

e Support of:

* Rapid prototyping on a range of network devices
* High throughput, low latency

* Modular: “bring your own model”

 Distributed, federated and hybrid deployments

* Alot left to explore, try and research! Code is open!
https://github.com/In-Network-Machine-Learning/Planter

1*‘ P |_A N T E R 31



https://github.com/In-Network-Machine-Learning/Planter

More Informat

O D https://eng.ox.ac.uk/computing/projects/in-network-ml/
planter@eng.ox.ac.uk
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C. Zheng et al, "Planter: rapid prototyping of in-network machine learning inference”, Computer Communication Reviews, 2024.
C. Zhenget al, “llsy: Hybrid In-Network Classification Using Programmable Switches,” IEEE Transactions on Networking, 2024.

C. Zheng et al, “In-Network Machine Learning Using Programmable Network Devices: A Survey,” IEEE Communications Surveys
& Tutorials, 2023.

M. Zang et al, “Towards Continuous Threat Defense: In-Network Traffic Analysis for loT Gateways,” IEEE |oT Journal, 2023.
C. Zheng et al, DINC: Toward Distributed In-Network Computing, ACM CoNEXT, 2023.

X. Hong et al, "In-Network Machine Learning for Real-Time Transaction Fraud Detection®, ECAl 2024.

M. Zang et al, "Federated In-Network Machine Learning for Privacy-Preserving loT Traffic Analysis", ACM TIOT, 2024.

M. Hemmatpour et al, "GridWatch: A Smart Network for Smart Grid”, [IEEE SmartGridComm 2024.

* Open source repositories:
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Planter: https://qithub.com/In-Network-Machine-Learning/Planter

lIsy: https://qgithub.com/In-Network-Machine-Learning/llsy

. ) . ~ ~ Lo . w&cl" @VeCi"
DINC: https://qithub.com/In-Network-Machine-Learning/DINC https-

P4Pir: https://qithub.com/In-Network-Machine-Learning/P4Pir UK/compytip 0in-4
~us

OCMP: https://qgithub.com/In-Network-Machine-Learning/QCMP

Y PLANTER
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