
1

“Turing Tariff” Reduction: architectures, compilers

and languages to break the universality barrier

Paul H J Kelly

Group Leader, Software Performance Optimisation

Department of Computing, Imperial College London

This talk includes work done by or influenced by: David Ham (Imperial Maths), Andy Davison (Imperial), Lawrence Mitchell (Durham)

Gerard Gorman, Michael Lange (Imperial Earth Science Engineering – Applied Modelling and Computation Group)

Mike Giles, Gihan Mudalige, Istvan Reguly (Mathematical Inst, Oxford)

Fabio Luporini, Graham Markall, Florian Rathgeber, Francis Russell, George Rokos, Tianjiao Sun (Computing, Imperial)

Spencer Sherwin (Aeronautics, Imperial), Chris Cantwell (Cardio-mathematics group, Mathematics, Imperial)

Michelle Mills Strout, Chris Krieger, Cathie Olschanowsky (Colorado State University)

Carlo Bertolli, Doru Bercea (IBM Research), Richard Veras, Ram Ramanujam (Louisiana State University)

Doru Thom Popovici, Franz Franchetti (CMU), Karl Wilkinson (Capetown), Chris–Kriton Skylaris (Southampton)

Sajad Saeedi (Ryerson University), Luigi Nardi (Stanford/Lund University), Ridgway Scott (University of Chicago) 1

2

A little bit about my research

A little bit of history

A bit about how our algorithms textbooks are wrong/misguided

A bit about how our architecture textbooks are wrong/misguided

A bit about how our compilers textbooks are wrong/misguided

The book I should be writing

It’s all about skiing

“Turing Tariff” Reduction: architectures, compilers

and languages to break the universality barrier

This is not a
research talk

It’s a polemic

Whose purpose
is to provoke
discussion

Firedrake is
used in:

Thetis:
unstructured
grid coastal
modelling
framework

What is it used for? By whom?

• Estuary of the River Severn: huge tidal energy
opportunity

• Significant causes for concern over ecological impact

• Should we do it? How? Where? How much energy?
How much impact?

•https://doi.org/10.1016/j.apenergy.2009.11.024

https://doi.org/10.1016/j.apenergy.2009.11.024

• Estuary of the River Severn: huge tidal energy
opportunity

• Significant causes for concern over ecological impact

• Should we do it? How? Where? How much energy?
How much impact?

•https://doi.org/10.1016/j.apenergy.2009.11.024

Tidal barrage simulation using Thetis (https://thetisproject.org/)

https://doi.org/10.1016/j.apenergy.2009.11.024
https://thetisproject.org/

Firedrake is
used in:

Gusto:
atmospheric
modelling
framework
being used
to prototype
the next
generation
of weather
and climate
simulations
for the UK
Met Office

Three-dimensional simulation of a thermal rising through
a saturated atmosphere. From A Compatible Finite
Element Discretisation for the Moist Compressible Euler
Equations (Bendall et al,
https://arxiv.org/pdf/1910.01857.pdf)

What is it used for? By whom?

https://arxiv.org/pdf/1910.01857.pdf

Firedrake is
used in:

Icepack: a
framework
for modeling
the flow of
glaciers and
ice sheets,
developed at
the Polar
Science
Center at the
University of
Washington

Larsen ice shelf model, from the Icepack tutorial
by Daniel Shapero
(https://icepack.github.io/icepack.demo.02-
larsen-ice-shelf.html)

What is it used for? By whom?

https://icepack.github.io/icepack.demo.02-larsen-ice-shelf.html

Firedrake: a finite-
element framework

Automates the finite
element method for
solving PDEs

Alternative
implementation of
FEniCS language, 100%
Python using runtime
code generation

PyOP2: stencil DSL for
unstructured-mesh

Explicit access descriptors
characterise access footprint of
kernels

UFL specifies the (weak form of
the) partial differential equation
and how it is to be discretised

Compiler generates PyOP2
kernels and access descriptors

PyOP2

Non-FE loops
over the mesh

UFL “Two-
stage” Form

Compiler

Unified Form
Language

Multicore
Manycore

/GPU

Future/

other

Rathgeber, Ham, Mitchell et al, ACM TOMS 2016

In
production

In
development

Some prototyping

Loo.py loop transformations

GEM: tensor
contractions

GEM: abstract representation
supports efficient flop-reduction
optimisations

Loo.py: vectorization etc

Distributed MPI-parallel PyOP2
implementation

Loo.py representation

https://www.firedrakeproject.org/

https://www.firedrakeproject.org/

Firedrake’s sibling
project “Devito”
automates the
finite difference
method

Architecture and performance of Devito, a system for
automated stencil computation. Fabio Luporini, Michael
Lange, Mathias Louboutin, Navjot Kukreja, Jan
Hückelheim, Charles Yount, Philipp Witte, Paul H. J.
Kelly, Felix J. Herrmann, Gerard J. Gorman. ACM TOMS
(accepted). https://arxiv.org/abs/1807.03032https://www.devitoproject.org/

2D diffusion operator from tutorial https://www.devitoproject.org/

https://arxiv.org/search/cs?searchtype=author&query=Luporini%2C+F
https://arxiv.org/search/cs?searchtype=author&query=Lange%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Louboutin%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Kukreja%2C+N
https://arxiv.org/search/cs?searchtype=author&query=H%C3%BCckelheim%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Yount%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Witte%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Kelly%2C+P+H+J
https://arxiv.org/search/cs?searchtype=author&query=Herrmann%2C+F+J
https://arxiv.org/search/cs?searchtype=author&query=Gorman%2C+G+J
https://arxiv.org/abs/1807.03032
https://www.devitoproject.org/
https://www.devitoproject.org/

PyOP2/OP2

Unstructured-mesh stencils

GiMMiK

Small-matrix multiplication

Firedrake

Finite-element

SLAMBench2

Dense SLAM – 3D vision

PRAgMaTIc

Dynamic mesh adaptation

TINTL

Fourier interpolation
Unsteady
CFD - higher-
order flux-
reconstruction

Finite-volume
CFD

Real-time 3D
scene
understanding

Adaptive-
mesh CFD

Ab-initio
computational
chemistry
(ONETEP)

Finite-element

Formula-1,
UAVs

Aeroengine
turbo-
machinery

Domestic
robotics,
augmented
reality

Tidal turbine
placement

Solar energy,
drug design

Weather and
climate

Software productsContexts Application domains

Generalised
common sub-
expressions

Vectorisation,
parametric
polyhedral tiling

Lazy, data-
driven compute-
communicate

Multicore graph
worklists

Optimisation of
composite FFT
operations

Tiling for
unstructured-
mesh stencils

Technologies

Domain-

specific

optimisation

Targetting MPI,

OpenMP,

OpenCL,

Dataflow/

FPGA, from

HPC to mobile,

embedded and

wearable

Runtime code
generation

Finite-
difference

Devito: finite difference

Glaciers

Hypermapper:

design optimisation

Urban
masterplanning

Flowsheets

SuperEight

Octtree adaptive mesh for
dense SLAM

Feynmann: plenty of room at the bottom
…..

December 1959(1959, talk at the American Physical Society)

h
tt

p
s
:/
/e

n
.w

ik
ip

e
d

ia
.o

rg
/w

ik
i/
T

h
e

re
's

_
P

le
n
ty

_
o

f_
R

o
o
m

_
a
t_

th
e

_
B

o
tt
o
m

Feynmann: plenty of room at the bottom
…..

December 1959(1959, talk at the American Physical Society)

h
tt

p
s
:/
/e

n
.w

ik
ip

e
d

ia
.o

rg
/w

ik
i/
T

h
e

re
's

_
P

le
n
ty

_
o

f_
R

o
o
m

_
a
t_

th
e

_
B

o
tt
o
m

>60 years of exponential progress since then

We’re much closer to such limits

Much debate about where they really lie

What is clear is that we’re a lot closer

We are confronted more and more with fundamental physical
concerns

Particularly wrt communication latency, bandwidth and energy.

Cf Moore’s Law:
“circuit density
doubles every 18
months”

60 years
=40x18months

So Moore’s Law
would predict 240=
1012 increase

25

So where we
had one vacuum
tube/valve in
1959, we might
expect 10^12
transistors now Ferranti Computer Systems Ltd Pegasus valve computer circuit board, c. 1964

https://blog.sciencemuseum.org.uk/the-pegasus-computer/

Cerebras co-founder Sean Lie holding the Wafer Scale Engine.
Image: Cerebras Systems

Ferranti Pegasus (1956-59) Cerebras CS-1 (2020)

1.2 trillion
transistors

400k cores

18GB
SRAM

20KW

https://blog.sciencemuseum.org.uk/the-pegasus-computer/

26

Algorithmic complexity and scheduling

We teach that access to a hash table is O(1), ie
independent of the size of the hash table

And that it doesn’t matter how you want to
access your hash table, it’s still O(1)

Suppose
there were
no more
room at the
bottom

How should
that change
how we
think?

About
algorithms?

27

Algorithmic complexity and scheduling

We teach that access to a hash table is O(1), ie
independent of the size of the hash table

But the hash table is implemented using a RAM
distributed 3D space

So wire length increases with RAM size

And caching doesn’t help since access is randomised

Column address decoder

R
o
w

 a
d

d
re

s
s
 d

e
c
o

d
e
r

Suppose
there were
no more
room at the
bottom

How should
that change
how we
think?

About
algorithms?

29

Algorithmic complexity and scheduling

We know that matrix-matrix multiply is O(n3)

But in a deep memory hierarchy, access time depends
on reuse distance

So naïve “for i for j for k” loop nest suffers reuse access
latency that grows with N

Anecdotally, execution time ~O(n5)

+= ×
i

j

k

k

C A B
for (i=0; i<N; i++)

for (j=0; j<N; j++)

for (k=0; k<N; k++)

C[i][j]+=A[i][k]*B[k][j]

i j

Each row of A is reused for a series of dot-products

But if the cache is too small, it doesn’t fit

Suppose
there were
no more
room at the
bottom

How should
that change
how we
think?

About
algorithms?

30

Algorithmic complexity and scheduling

Tiling for cache bounds the reuse distance so that
reused submatrix fits in cache

With a deep hierarchy we have to do this at every
level of the cache, recursively

Doing this leads to a big-O performance improvement

Finding schedules with good locality is really an
algorithmic challenge

A
lp

e
rn

,
B

.,
 C

a
rt

e
r,
 L

.,
 F

e
ig

,
E

.
e
t

a
l.
 T

h
e
 u

n
if
o
rm

 m
e
m

o
ry

h
ie

ra
rc

h
y
 m

o
d
e
l
o
f

c
o
m

p
u
ta

ti
o
n
A

lg
o
ri
th

m
ic

a
(1

9
9

4
)

1
2

:
7

2
.

for (kk = 0; kk < N; kk += S)

for (jj = 0; jj < N; jj += S)

for (i = 0; i < N; i++)

for (k = kk; k < min(kk+S,N); k++)

for (j = jj; j < min(jj+S, N); j++)

C[i][j] += A[i][k] * B[k][j];

Suppose
there were
no more
room at the
bottom

How should
that change
how we
think?

About
algorithms?

32

Turing tax tariffs

Alan Turing realised we could use digital technology to

implement any computable function

He then proposed the idea of a “universal” computing

device – a single device which, with the right program, can

implement any computable function without further

configuration

“Turing Tax”, or “Turing Tariffs”: the overhead

(performance, cost, or energy) of universality in this sense

The performance (time/area/energy) difference between a

special-purpose device and a general-purpose one

One of the fundamental questions of computer

architecture is to how to reduce the Turing Tax

Suppose
there were
no more
room at the
bottom

How should
that change
how we
think?

About
architecture
?

33

Turing tariffs

Fetch-execute is the original Turing tariff
Suppose
there were
no more
room at the
bottom

How should
that change
how we
think?

About
architecture
?

34

Turing tariffs

Fetch-execute is the original Turing tariff

FPGAs pay Turing tariffs in the reconfigurable fabric

Suppose
there were
no more
room at the
bottom

How should
that change
how we
think?

About
architecture
?

35

Turing tariffs

Fetch-execute is the original Turing tariff

FPGAs pay Turing tariffs in the reconfigurable fabric

Registers are a Turing Tariff

Because if we know the program’s dataflow, we can use wires and

latches to pass data from functional unit to functional unit

Memory

But if we can stream data from where it’s produced to where it’s used,

maybe we don’t need so much RAM?

Suppose
there were
no more
room at the
bottom

How should
that change
how we
think?

About
architecture
?

36

Turing tariffs

Fetch-execute is the original Turing tariff

FPGAs pay Turing tariffs in the reconfigurable fabric

Registers are a Turing Tariff

Because if we know the program’s dataflow, we can use wires and

latches to pass data from functional unit to functional unit

Memory

But if we can stream data from where it’s produced to where it’s used,

maybe we don’t need so much RAM?

Cache

If we know exactly when the reuse will occur, we can program

movement to and from local fast memory explicitly

Suppose
there were
no more
room at the
bottom

How should
that change
how we
think?

About
architecture
?

37

Turing tariffs

Fetch-execute is the original Turing tariff

FPGAs pay Turing tariffs in the reconfigurable fabric

Registers are a Turing Tariff

Because if we know the program’s dataflow, we can use wires and

latches to pass data from functional unit to functional unit

Memory

But if we can stream data from where it’s produced to where it’s used,

maybe we don’t need so much RAM?

Cache

If we know exactly when the reuse will occur, we can program

movement to and from local fast memory explicitly

Floating-point arithmetic:

If we know the dynamic range of expected values…

Suppose
there were
no more
room at the
bottom

How should
that change
how we
think?

About
architecture
?

38

Turing tariffs – how architects pay

Fetch-execute, decode

Registers, forwarding

Dynamic instruction scheduling, cracking, packing, renaming

Cache tags

Cache blocks

Cache coherency

Prefetching

Branch prediction

Speculative execution

Address translation

Store-to-load forwarding, write combining, address decoding, ECC,

DRAM refresh

Mis-provisioning: unused bandwidth, unusable FLOPs, under-used

accelerators

Suppose
there were
no more
room at the
bottom

How should
that change
how we
think?

About
architecture
?

Basically the whole
computer architecture
textbook

39

How architects avoid Turing tariffs

SIMD: amortise fetch-execute over a vector or matrix of operands

VLIW, EPIC, register rotation

Macro-instructions: FMA, crypto, conflict-detect, custom ISAs

Streaming dataflow: FPGAs, CGRAs

Systolic arrays

Circuit switching instead of packet switching

DMA

Predication

Long cache lines

Non-temporal loads/stores, explicit prefetch instructions

Scratchpads

Multi-threading

Message passing

Suppose
there were
no more
room at the
bottom

How should
that change
how we
think?

About
architecture
?

40

How compilers avoid Turing tariffs

Generating code to avoid the need for interpretive mechanisms in

hardware:

Vectorisation

Static instruction scheduling

Offloading

Predication

Message aggregation

Synchronisation minimization

Generating code that is specialized for a specific purpose:

Function inlining, type disambiguation, object inlining

Specialisation: metaprogramming, JIT, metatracing

Suppose
there were
no more
room at the
bottom

How should
that change
how we
think?

About
compilers?

Analysis is not always the interesting part....

It’s more fun the higher you start!

Syntax

Points-to

Class-hierarchy

Dependence

Shape

.....

Types

Call-graph

Polyhedra

Register allocation

Instruction selection/scheduling

Storage layout

Tiling

Parallelisation

Mapping

Loop nest ordering

….

h
tt

p
:/

/w
w

w
.n

ik
k
ie

m
c
d

a
d

e
.c

o
m

/s
u

b
F

ile
s
/2

D
E

x
a

m
p

le
s
.h

tm
l

Compilation is like skiing

Suppose
there were
no more
room at the
bottom

How should
that change
how we
think?

About
compilers?

http://www.nikkiemcdade.com/subFiles/2DExamples.html

Analysis is not always the interesting part....

It’s more fun the higher you start!

Syntax

Points-to

Class-hierarchy

Dependence

Shape

.....

Types

Call-graph

Polyhedra

Register allocation

Instruction selection/scheduling

Storage layout

Tiling

Parallelisation

Mapping

Loop nest ordering

….

h
tt

p
:/

/w
w

w
.n

ik
k
ie

m
c
d

a
d

e
.c

o
m

/s
u

b
F

ile
s
/2

D
E

x
a

m
p

le
s
.h

tm
l

Compilation is like skiing

General-purpose

programming

languages make you

pay Turing tariffs!

http://www.nikkiemcdade.com/subFiles/2DExamples.html

Analysis is not always the interesting part....

It’s more fun the higher you start!

Syntax

Points-to

Class-hierarchy

Dependence

Shape

.....

Types

Call-graph

Polyhedra

Register allocation

Instruction selection/scheduling

Storage layout

Tiling

Parallelisation

Mapping

Loop nest ordering

….

h
tt

p
:/

/w
w

w
.n

ik
k
ie

m
c
d

a
d

e
.c

o
m

/s
u

b
F

ile
s
/2

D
E

x
a

m
p

le
s
.h

tm
l

Compilation is like skiing

General-purpose

programming

languages make you

pay Turing tariffs!

The real art of

domain-specific

compiler

construction is

compiler

architecture: the

design of the

representations

that make hard

problems easy

http://www.nikkiemcdade.com/subFiles/2DExamples.html

44

Computer architecture – the book

David Patterson

John Hennessy

Computer Architecture: A

Quantitative Approach

Six editions since 1990

Revolutionary landmark

book brought

experimental discipline to

processor design

Almost entirely devoid of

theory

45

Computer architecture – the future?

Computer Architecture

An Asymptotic Approach

46

Computer architecture – the future?

Computer Architecture

An Asymptotic Approach

A manifesto

For computer architecture at the end of

Moore’s Law

Where we confront fundamental physical

constraints

Where we have to account for fundamental

costs

Where architectural efficiency is paramount

48

Conclusions - propositions

Parallelism is (usually) easy – locality is hard

Don’t spend your whole holiday carrying your skis uphill

Domain-specific compiler architecture is not about
analysis! It is all about designing representations, and
doing the right thing at the right level

When there’s no more room at the bottom, all efficient
computers will be domain-specific

Design of efficient algorithms will be about designing
efficient domain-specific architectures

All compilers will have a place-and-route phase

A:

B:

C:

D:

E:

F:

49

Acknowledgements

Partly funded by

NERC Doctoral Training Grant (NE/G523512/1)

EPSRC “MAPDES” project (EP/I00677X/1)

EPSRC “PSL” project (EP/I006761/1)

Rolls Royce and the TSB through the SILOET programme

EPSRC “PAMELA” Programme Grant (EP/K008730/1)

EPSRC “PRISM” Platform Grant (EP/I006761/1)

EPSRC “Custom Computing” Platform Grant (EP/I012036/1)

AMD, Codeplay, Maxeler Technologies

