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Large-scale shared-memory

• Future large-scale parallel computers must

support shared memory

• Processors rely on cache for performance, 

so scalable cache coherency protocol 

needed - CC-NUMA

• Existing implementations have been 

plagued with performance anomalies



CC-NUMA performance 

anomalies

• This talk is about a simple scheme which

– fixes various performance anomalies in CC-

NUMA machines 

– without compromising peak performance

• What performance anomalies?

– Home placement: in which CPU’s main 

memory should each object be allocated?

– Contention for widely-shared data: what 

happens when every CPU accesses the same 

object at the same time?



The challenge

• Caching is a great way to enhance best-case

• Worst-case is terrible

• What powerful ideas do we have for dealing 

with worst-case contention?

– Combining

– Randomisation

• How can we use caching most of the time, 

while using random data routing/placement 

and combining to avoid worst-case 

contention?



This talk

• Introduce proxying concept

• Briefly review results presented in earlier 

papers

• Introduce adaptive proxying

• Present simulated benchmark results

• Show that adaptive, reactive proxying can 

improve performance of susceptible 

applications

• With no reduction in performance of other 

applications



Context: large CC-NUMA multicomputer 
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The home node for a memory address

Home for location x

Home is determined 

by high-order bits of 

physical address.  All 

cache misses go first 

to home to locate a 

CPU holding a valid

copy



Widely-read data

Suppose many CPUs

have read misses on

the same address

at the same time



CPUs in right half of

machine send their

read request to 

pseudo-randomly

selected “proxy” node B

The basic idea: proxies

CPUs in left half of

machine send their

read request to 

pseudo-randomly

selected “proxy” node A

A

B



Proxies - forwarding

The “proxy” nodes

A and B forward 

the read requests to 

the home

A

B



Reading the next location...

Suppose many CPUs

have read misses on

the same address

at the same time...

and then they all access 

the next cache line

Locations on same page 

have same home node

So they all contend again

for the same home node



Reading the next location… randomisation

Suppose many CPUs

have read misses on

the same address

at the same time...

and then they all access 

the next cache line

Proxy is selected pseudo-

randomly based on low-

order address bits

So contention is spread

across nodes, read is

serviced in parallel



Combining - Pending Proxy Request Chain 

As each read request

is received by the

proxy, the client

as added to a chain

of clients to be

informed when the

reply arrives

1

1



Combining - Pending Proxy Request Chain 

As each read request

is received by the

proxy, the client

as added to a chain

of clients to be

informed when the

reply arrives

1

2

1

2



Combining - Pending Proxy Request Chain 

As each read request

is received by the

proxy, the client

as added to a chain

of clients to be

informed when the

reply arrives

1

2
1

2

3

3
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Combining - responding to clients 

When the reply arrives,

the cache line data is

forwarded along the

proxy pending request

chain
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Combining - responding to clients 
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minimise space
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make proxying
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controller design



Previously-published results
(Euro-Par’96) Proxying improves 512x512 Gauss 

Elimination by >28% on 64 processors

– But slows most other apps down, so has to be 

controlled by programmer

(Euro-Par’98) Reactive proxies: send read request 

to proxy if request is NAKed due to buffer full

– Reactive proxying doesn’t slow any apps

– But performance improvement for GE only 21-23%

– Some other apps show promising 3-10% 

(HPCS’98) With reactive proxies, first-touch page 

placement is always better than round-robin 

(and at least as good as without proxying)



This paper

• Adaptivity: if a “recent” request to node i was 

NAKed, assume the buffer is still full and route 

a read request directly to a proxy 

• Should proxy retain recently-proxied data?  

– Yes: space is allocated for proxied data in the proxy 

node’s own SLC, which is kept coherent using the 

usual protocol

– No: a separate proxy buffer points to outstanding 

proxy pending request chains

– Yes: this separate proxy buffer  retains proxied data, 

which is kept coherent using the usual protocol
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This talk
• Adaptivity: if a “recent” request to node i was 

NAKed, assume the buffer is still full and route 

a read request directly to a proxy

• Each proxy x maintains two vectors:

– LB[y]: time when last NAK received by x from y

– PP[y]: current “proxy period” for reads to node y

• When a NAK arrives at x from y, PP[y] is

– incremented if LB[y] is within given window

– decremented otherwise

– (unless PPmin PP[y] PPmax)



Results - simulated benchmark execution
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Ocean, non-contiguous storage layout
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Ocean, contiguous storage layout
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Barnes-Hut, 16K particles
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Conclusions

• There is a lot of scope for further work -

– more applications, range of architectural parameters

– clustered interconnection network

– worst-case performance of writes?

• Proxying can solve serious performance anomalies

– Using a separate proxy buffer is best

– Proxying without allocating cache space for the proxied 

data works remarkably well

– The optimum number of proxies varies erratically 

– But a conservatively small number of proxies (1 or 2 for 

64 procs) is a good choice
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