
Adaptive proxies:

handling widely-shared data

in shared-memory

multiprocessors

Sarah A M Talbot
Oceanography Lab, T H Huxley School of the Environment

Paul H J Kelly
Software Performance Optimisation Group, Dept of Computing

Imperial College, London

Large-scale shared-memory

• Future large-scale parallel computers must

support shared memory

• Processors rely on cache for performance,

so scalable cache coherency protocol

needed - CC-NUMA

• Existing implementations have been

plagued with performance anomalies

CC-NUMA performance

anomalies

• This talk is about a simple scheme which

– fixes various performance anomalies in CC-

NUMA machines

– without compromising peak performance

• What performance anomalies?

– Home placement: in which CPU’s main

memory should each object be allocated?

– Contention for widely-shared data: what

happens when every CPU accesses the same

object at the same time?

The challenge

• Caching is a great way to enhance best-case

• Worst-case is terrible

• What powerful ideas do we have for dealing

with worst-case contention?

– Combining

– Randomisation

• How can we use caching most of the time,

while using random data routing/placement

and combining to avoid worst-case

contention?

This talk

• Introduce proxying concept

• Briefly review results presented in earlier

papers

• Introduce adaptive proxying

• Present simulated benchmark results

• Show that adaptive, reactive proxying can

improve performance of susceptible

applications

• With no reduction in performance of other

applications

Context: large CC-NUMA multicomputer

Network interface

Network buffers

Node controller

SLC DRAM

First-level cache

CPU

Interconnection network

Full-crossbar

interconnection

network

Stanford distributed-directory

protocol with singly-linked

sharing chains

The home node for a memory address

Home for location x

Home is determined

by high-order bits of

physical address. All

cache misses go first

to home to locate a

CPU holding a valid

copy

Widely-read data

Suppose many CPUs

have read misses on

the same address

at the same time

CPUs in right half of

machine send their

read request to

pseudo-randomly

selected “proxy” node B

The basic idea: proxies

CPUs in left half of

machine send their

read request to

pseudo-randomly

selected “proxy” node A

A

B

Proxies - forwarding

The “proxy” nodes

A and B forward

the read requests to

the home

A

B

Reading the next location...

Suppose many CPUs

have read misses on

the same address

at the same time...

and then they all access

the next cache line

Locations on same page

have same home node

So they all contend again

for the same home node

Reading the next location… randomisation

Suppose many CPUs

have read misses on

the same address

at the same time...

and then they all access

the next cache line

Proxy is selected pseudo-

randomly based on low-

order address bits

So contention is spread

across nodes, read is

serviced in parallel

Combining - Pending Proxy Request Chain

As each read request

is received by the

proxy, the client

as added to a chain

of clients to be

informed when the

reply arrives

1

1

Combining - Pending Proxy Request Chain

As each read request

is received by the

proxy, the client

as added to a chain

of clients to be

informed when the

reply arrives

1

2

1

2

Combining - Pending Proxy Request Chain

As each read request

is received by the

proxy, the client

as added to a chain

of clients to be

informed when the

reply arrives

1

2
1

2

3

3

Combining - Pending Proxy Request Chain

As each read request

is received by the

proxy, the client

as added to a chain

of clients to be

informed when the

reply arrives

1

2
1

2

3

3

4

4

Combining - responding to clients

When the reply arrives,

the cache line data is

forwarded along the

proxy pending request

chain

1

2
1

2

3

3

4

4

Combining - responding to clients

1

2
1

2

3

3

4

4

When the reply arrives,

the cache line data is

forwarded along the

proxy pending request

chain

Combining - responding to clients

1

2
1

2

3

3

4

4

When the reply arrives,

the cache line data is

forwarded along the

proxy pending request

chain

Combining - responding to clients

1

2
1

2

3

3

4

4

When the reply arrives,

the cache line data is

forwarded along the

proxy pending request

chain

Combining - responding to clients

1

2
1

2

3

3

4

4

We chose a linked

pending chain to

minimise space

overhead and

make proxying

easy to add to node

controller design

Previously-published results
(Euro-Par’96) Proxying improves 512x512 Gauss

Elimination by >28% on 64 processors

– But slows most other apps down, so has to be

controlled by programmer

(Euro-Par’98) Reactive proxies: send read request

to proxy if request is NAKed due to buffer full

– Reactive proxying doesn’t slow any apps

– But performance improvement for GE only 21-23%

– Some other apps show promising 3-10%

(HPCS’98) With reactive proxies, first-touch page

placement is always better than round-robin

(and at least as good as without proxying)

This paper

• Adaptivity: if a “recent” request to node i was

NAKed, assume the buffer is still full and route

a read request directly to a proxy

• Should proxy retain recently-proxied data?

– Yes: space is allocated for proxied data in the proxy

node’s own SLC, which is kept coherent using the

usual protocol

– No: a separate proxy buffer points to outstanding

proxy pending request chains

– Yes: this separate proxy buffer retains proxied data,

which is kept coherent using the usual protocol

This talk
• Adaptivity: if a “recent” request to node i was

NAKed, assume the buffer is still full and route

a read request directly to a proxy

This talk
• Adaptivity: if a “recent” request to node i was

NAKed, assume the buffer is still full and route

a read request directly to a proxy

• Each proxy x maintains two vectors:

– LB[y]: time when last NAK received by x from y

– PP[y]: current “proxy period” for reads to node y

• When a NAK arrives at x from y, PP[y] is

– incremented if LB[y] is within given window

– decremented otherwise

– (unless PPmin PP[y] PPmax)

Results - simulated benchmark execution
G

E

G
E

G
E

C
F

D

C
F

D

C
F

D

F
F

T

F
F

T

F
F

T

O
c
e
a
n
-c

o
n
ti
g

O
c
e
a
n
-C

o
n
ti
g

O
c
e
a
n
-c

o
n
ti
g

O
c
e
a
n
-N

o
n
-C

o
n
ti
g

O
c
e
a
n
-N

o
n
-C

o
n
ti
g

O
c
e
a
n
-N

o
n
-C

o
n
ti
g

B
a
rn

e
s

B
a
rn

e
s

B
a
rn

e
s

F
M

M

F
M

M

F
M

M

W
a
te

r-
N

s
q

W
a
te

r-
N

s
q

W
a
te

r-
N

s
q

-15

-10

-5

0

5

10

15

20

25

30

35

Proxy caching:

separate buffer

none

SLC

GE CFD FFT Ocean

contig

Ocean

non-

contig

Barnes FMM Water

nsq

Gaussian elimination

1
2

3
4

5
6

7
8

 SLC

 none

 buffer
29.5

30

30.5

31

31.5

32

 SLC

 none

 buffer

Number of proxies

FFT

1
2

3
4

5
6

7
8

 SLC

 none

 buffer
10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

12

 SLC

 none

 buffer

Number of proxies

Ocean, non-contiguous storage layout

1
2

3
4

5
6

7
8

 SLC

 none

 buffer
-12

-10

-8

-6

-4

-2

0

2

4

6

8

 SLC

 none

 buffer

Number of proxies

Ocean, contiguous storage layout

1
2

3
4

5
6

7
8

 SLC

 none

 buffer
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

 SLC

 none

 buffer

Number of proxies

CFD

1
2

3
4

5
6

7
8

 SLC

 none

 buffer
0

2

4

6

8

10

12

14

S
p

e
e

d
u

p
 r

e
la

ti
v

e
 t

o
 n

o
-p

ro
x
y

Number of proxies

CFD, 64x64

 SLC

 none

 buffer

Number of proxies

Barnes-Hut, 16K particles

1
2

3
4

5
6

7
8

S1

S2

S3
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

S
p

e
e

d
u

p
 r

e
la

ti
v

e
 t

o
 n

o
-p

ro
x
y

Number of proxies

Barnes, 16K particles, 64 procs

SLC

none

buffer

Number of proxies

FMM

1
2

3
4

5
6

7
8

 SLC

 none

 buffer
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 SLC

 none

 buffer

Number of proxies

Water-nsq

1
2

3
4

5
6

7
8

 SLC

 none

 buffer
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 SLC

 none

 buffer

Number of proxies

Conclusions

• There is a lot of scope for further work -

– more applications, range of architectural parameters

– clustered interconnection network

– worst-case performance of writes?

• Proxying can solve serious performance anomalies

– Using a separate proxy buffer is best

– Proxying without allocating cache space for the proxied

data works remarkably well

– The optimum number of proxies varies erratically

– But a conservatively small number of proxies (1 or 2 for

64 procs) is a good choice

Acknowledgements

• Colleagues Tony Field, Andrew Bennett

(now with Micromuse), Ashley Saulsbury

(now with Sun Labs)

• Funding: EPSRC PhD Studentship and

Research Grant “CRAMP: Combining,

Randomisation and Mixed-Policy Caching”

