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Large-scale shared-memory

 Future large-scale parallel computers must
support shared memory

 Processors rely on cache for performance,
so scalable cache coherency protocol
needed - CC-NUMA

» EXxisting implementations have been
plagued with performance anomalies



CC-NUMA performance
anomalies

 This talk Is about a simple scheme which

— fixes various performance anomalies in CC-
NUMA machines

— without compromising peak performance
» What performance anomalies?



The challenge

Caching Is a great way to enhance best-case
Worst-case Is terrible

What powerful ideas do we have for dealing
with worst-case contention?

How can we use caching most of the time,
while using random data routing/placement
and combining to avoid worst-case
contention?



This talk

Introduce proxying concept

Briefly review results presented in earlier
papers

Present simulated benchmark results

Show that adaptive, reactive proxying can
Improve performance of susceptible
applications



Context: large CC-NUMA multicomputer
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Stanford distributed-directory
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The home node for a memory address
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Widely-read data

Suppose many CPUs
have read misses on
the same address
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The basic idea: proxies
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Proxies - forwarding
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Reading the next location...

o SuUppose many CPUs
have read misses on
e the same address

at the same time...
@

Locations on same page
® ' have same home node



Reading the next location... randomisation
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Combining - Pending Proxy Request Chain
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Combining - Pending Proxy Request Chain
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Combining - responding to clients
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Comblnlng responding to clients
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Comblnlng responding to clients
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Comblnlng responding to clients
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Comblnlng responding to clients
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Previously-published results
(Euro-Par’96) Proxying improves 512x512

by >28% on 64 processors

— But slows most other apps down, so has to be
controlled by programmer

(Euro-Par’98) send read request
to proxy If request is NAKed due to buffer full
— Reactive proxying doesn’t slow any apps
— But performance improvement for GE only 21-23%
— Some other apps show promising 3-10%

(HPCS’98) With reactive proxies,

than round-robin
(and at least as good as without proxying)



This paper

« Adaptivity: if a “recent” request to node I was
NAKed, assume the buffer is still full and route
a read request directly to a proxy

 Should proxy retain recently-proxied data?

— Yes: space Is allocated for proxied data in the proxy
node’s own SLC, which 1s kept coherent using the
usual protocol

— No: a separate proxy buffer points to outstanding
proxy pending request chains

— Yes: this separate proxy buffer retains proxied data,
which is kept coherent using the usual protocol



This talk

 Adaptivity: if a “recent” request to node I was
NAKed, assume the buffer is still full and route
a read request directly to a proxy



This talk

« Adaptivity: if a “recent” request to node I was
NAKed, assume the buffer is still full and route

a read request directly to a proxy

 Each proxy x maintains two vectors:

— LBJy]: time when last NAK received

py X fromy

— PP[y]: current “proxy period” for reads to node y

* When a NAK arrives at x fromy, P

P[y] 1S

— Incremented If LB[y] Is within given window

— decremented otherwise
— (unless PP, @ PP|y] & PP,...)



Results - simulated benchmark execution
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Gaussian elimination
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Ocean, contiguous storage layout
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Barnes-Hut, 16K particles

Barnes, 16K particles, 64 procs




0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

buffer
2

none
4

6 SLC

@ SLC
B none
O buffer




0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

2

3

Number of proxies

buffer
none

SLC

@ SLC
B none
O buffer




Conclusions

* There Is a lot of scope for further work -
— more applications, range of architectural parameters
— clustered interconnection network
— worst-case performance of writes?

 Proxying can solve serious performance anomalies
— Using a separate proxy buffer is best

— Proxying without allocating cache space for the proxied
data works remarkably well

— The optimum number of proxies varies erratically

— But a conservatively small number of proxies (1 or 2 for
64 procs) Is a good choice



Acknowledgements

 Colleagues Tony Field, Andrew Bennett
(now with Micromuse), Ashley Saulsbury
(now with Sun Labs)

» Funding: EPSRC PhD Studentship and
Research Grant “CRAMP: Combining,
Randomisation and Mixed-Policy Caching”




