Adaptive proxies:

handling widely-shared data
In shared-memory
multiprocessors

Sarah A M Talbot
Oceanography Lab, T H Huxley School of the Environment

Paul H J Kelly

Software Performance Optimisation Group, Dept of Computing

Imperial College, London

Large-scale shared-memory

 Future large-scale parallel computers must
support shared memory

 Processors rely on cache for performance,
so scalable cache coherency protocol
needed - CC-NUMA

» EXxisting implementations have been
plagued with performance anomalies

CC-NUMA performance
anomalies

 This talk Is about a simple scheme which

— fixes various performance anomalies in CC-
NUMA machines

— without compromising peak performance
» What performance anomalies?

The challenge

Caching Is a great way to enhance best-case
Worst-case Is terrible

What powerful ideas do we have for dealing
with worst-case contention?

How can we use caching most of the time,
while using random data routing/placement
and combining to avoid worst-case
contention?

This talk

Introduce proxying concept

Briefly review results presented in earlier
papers

Present simulated benchmark results

Show that adaptive, reactive proxying can
Improve performance of susceptible
applications

Context: large CC-NUMA multicomputer

O Full-crossbar
- interconnection

network

Stanford distributed-directory
protocol with singly-linked

sharing chains

The home node for a memory address

O O O
O O O
O O O
O O O
O O O
O O O
O O O
O O O

o Home for location X

° mome IS determinem

e | Dy high-order bits of
physical address. All
cache misses go first
to home to locate a
CPU holding a valid

Y

Widely-read data

Suppose many CPUs
have read misses on
the same address

] @]
at the same time
@
@ @
@ @

The basic idea: proxies

® o O _
CPUs In half of
e o e Mmachine send their
read request to
@ e o @ pseudo-randomly
selected “proxy” node
O O
O O

CPUSs In half of

e Machine send their
read request to

pseudo-randomly

selected “proxy’’ node
O O O

Proxies - forwarding

@ @ ® @
x The “proxy” nodes
®l® ©® @ ® /and? forward
ol e o o othereadrequeststo
the home

Reading the next location...

o SuUppose many CPUs
have read misses on
e the same address

at the same time...
@

Locations on same page
® ' have same home node

Reading the next location... randomisation

O

o SuUppose many CPUs
have read misses on
e the same address
at the same time...

O
- : R
Proxy Is selected pseudo-

e | randomly based on low-

_ order address bits D

Combining - Pending Proxy Request Chain
O O O O O O O O
As each read request
@ &6 & & & @& @ jsreceived by the
proxy, the client
as added to a chain
of clients to be

e o
Informed when the

e o reply arrives

O O

Combining - Pending Proxy Request Chain

O O O O O O O
As each read request
—el e o e o o o @ j5ieceived by the
proxy, the client
as added to a chain
of clients to be

e o
Informed when the

e o reply arrives

O O

Combining - Pending Proxy Request Chain
O O O O O O O O
As each read request
—el e o e o o o @ j5ieceived by the
proxy, the client
as added to a chain
of clients to be

O
Informed when the
® reply arrives
O
3
® —@ O O O O O .E

Combining - Pending Proxy Request Chain

O O O O O 4 @
As each read request
—el e o e o o |0 @ j5received by the

4 proxy, the client
i as added to a chain

of clients to be

O
Informed when the
® ® reply arrives
O O
3

e o

—el o
o &4
o | e
e | o
e | o
e _~3
°* %

O O O
O O O
O O O
O O O
O O O
O O O
O O O
O O

Combining - responding to clients

4 @

® @ When the reply arrives,
the cache line data is
° forwarded along the
3 o Proxy pending request
T chain
O O
O O
> @—
2
O O

Comblnlng responding to clients

04 ©

® ®When the reply arrives,
the cache line data is

® ® forwarded along the

3 o Proxy pending request

T chain

@ o
@ o
&—0—
2
@ o

Comblnlng responding to clients

@4 ©

® ®When the reply arrives,
the cache line data is

® ® forwarded along the
3 o Proxy pending request
T chain
O O
O O
> @—
2
O O

Comblnlng responding to clients

®4 @

® ®When the reply arrives,
the cache line data is

® ® forwarded along the
o3 @ Proxy pending request
chain

O O

O O

O O

2
O O

Comblnlng responding to clients

e o o
el o o
o ot o
o e @
e o o
e o o
e 03 e
e o, o

@4 ©

e o NVe chosealink@\

pending chain to
e o minimise space
overhead and

»,| make proxying
easy to add to node

° ° _controller design/

Previously-published results
(Euro-Par’96) Proxying improves 512x512

by >28% on 64 processors

— But slows most other apps down, so has to be
controlled by programmer

(Euro-Par’98) send read request
to proxy If request is NAKed due to buffer full
— Reactive proxying doesn’t slow any apps
— But performance improvement for GE only 21-23%
— Some other apps show promising 3-10%

(HPCS’98) With reactive proxies,

than round-robin
(and at least as good as without proxying)

This paper

« Adaptivity: if a “recent” request to node I was
NAKed, assume the buffer is still full and route
a read request directly to a proxy

 Should proxy retain recently-proxied data?

— Yes: space Is allocated for proxied data in the proxy
node’s own SLC, which 1s kept coherent using the
usual protocol

— No: a separate proxy buffer points to outstanding
proxy pending request chains

— Yes: this separate proxy buffer retains proxied data,
which is kept coherent using the usual protocol

This talk

 Adaptivity: if a “recent” request to node I was
NAKed, assume the buffer is still full and route
a read request directly to a proxy

This talk

« Adaptivity: if a “recent” request to node I was
NAKed, assume the buffer is still full and route

a read request directly to a proxy

 Each proxy x maintains two vectors:

— LBJy]: time when last NAK received

py X fromy

— PP[y]: current “proxy period” for reads to node y

* When a NAK arrives at x fromy, P

P[y] 1S

— Incremented If LB[y] Is within given window

— decremented otherwise
— (unless PP, @ PP|y] & PP,...)

Results - simulated benchmark execution

357'* =

°I'Q 0
30—

(J [J
25—
0

20—
15—
10—
5_
T T
il
-10— U
-15—F I I [I I I I I [[T \

Ocean Ocean Barnes FMM Water
contld non- NSQ

GE’ CFD FFT

Gaussian elimination

@ SLC
B none
O buffer

1
2 3 none
4

) S 5 SLC
Number of proxies ’ g

o
-
@
=

AL
D)
(@)
v
-
@

e
V)
(0p)
-
@
-
(@)

—
-
@
<
-
@
-
-
qu;
D
O

O

Number of proxies

Ocean, contiguous storage layout

! 2
3 4
Number of proxies

CFD, 64x64

14

- /\ R —
————— L

4
4
\

Speedup relative to no-proxy

buffer

2
3 none

5 SLC

Barnes-Hut, 16K particles

Barnes, 16K particles, 64 procs

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

buffer
2

none
4

6 SLC

@ SLC
B none
O buffer

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

2

3

Number of proxies

buffer
none

SLC

@ SLC
B none
O buffer

Conclusions

* There Is a lot of scope for further work -
— more applications, range of architectural parameters
— clustered interconnection network
— worst-case performance of writes?

 Proxying can solve serious performance anomalies
— Using a separate proxy buffer is best

— Proxying without allocating cache space for the proxied
data works remarkably well

— The optimum number of proxies varies erratically

— But a conservatively small number of proxies (1 or 2 for
64 procs) Is a good choice

Acknowledgements

 Colleagues Tony Field, Andrew Bennett
(now with Micromuse), Ashley Saulsbury
(now with Sun Labs)

» Funding: EPSRC PhD Studentship and
Research Grant “CRAMP: Combining,
Randomisation and Mixed-Policy Caching”

