
Angel: a proposed multiprocessor operating

system kernel

T. Wilkinson, T. Stiemerling and P. Osmon

Computer Science Department,

City University,

Northampton Square,

London EC1V 0HB, UK.

&

A. Saulsbury and P. Kelly

Department of Computing,

Imperial College,

180 Queens Gate,

London SW7 2BZ, UK.

Abstract

We describe an operating system design for multiprocessor systems called Angel, based

on a single, coherent, uniform virtual address space. This uni�es naming and interprocess

communication in both shared and distributed memory multiprocessors by using distributed

shared memory techniques when shared memory is not already provided by the hardware.

The design is motivated by analysis of our earlier operating system implementation,

based on message passing, and we show how the uniform address space attempts to solve

problems with that approach. In particular, we consider the use of client-server cross-

mapping to optimise interprocess communications, as used in Bershad et al.'s lightweight

RPC.

This document describes initial motivations for Angel and subsequent detailed design|

we will review and may modify many of the details described as the design progresses.

1 Introduction

This paper describes an experimental operating system being developed at City University and

Imperial College. This operating system builds on experience gained with constructing the

Meshix operating system [1, 2] at City, and the implementation of a distributed shared memory

server on top of that system [3].

A number of current operating systems share two main features: a micro-kernel implementation

in which all possible operating system services have been moved out of the kernel into user-

level processes, and the provision of (lightweight) threads to implement these servers e�ciently.

Typical examples are Amoeba [4], Mach [5], Chorus [6], and also Meshix. In these systems

the term \process" is used to de�ne a domain of protection, where inter-process communication

(IPC) generally occurs using message-passing, while a process may be composed of many threads

sharing the same address space and communicating using shared memory. A crucial issue here

has been improving the e�ciency of cross-domain remote procedure calls (RPC) on the same

machine [7].

In systems with no physically shared memory, such as a network of workstations or a distributed

memory multiprocessor (eg Topsy [8]), the execution of the threads in a process is restricted to

one workstation or node. This restriction, and the desire to provide a shared memory program-

ming environment on distributed memory systems (in preference to using message-passing), has

led to various implementations of distributed shared memory (DSM) [9] following the approach

pioneered by Li [10].

We propose to integrate DSM mechanisms into the Angel kernel so that the entire system's

address space is uni�ed under a single DSM region which handles the caching of code, migration

of data and coherency of distributed data structures. The aim is for Angel to support a single

uniform shared memory address space on a multiprocessor machine which contains both shared

and distributed memory (we do not intend Angel to be a general distributed operating system).

Such a machine is seen to be a hierarchical system containing multiprocessor clusters using
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physically shared memory, which are loosely coupled using a multi-path network. These clusters

may then in turn be interconnected using a high bandwidth serial network. The objective is to

hide the seams where bus-based snooping, directory based multi-casting and DSM are used, and

to do so in a secure fashion while retaining the performance expectations of the programming

model.

We �rst consider some of the background and motivations for the design of Angel, in particular

the e�ect of a single address space on RPC mechanisms. The next section then gives an overview

of the programming model presented by Angel, and de�nes the constituent objects, processes

and capabilities. Then we describe how the sub-components of Angel, the micro-kernel and

system services, are structured and interact to provide this model. Finally we present a plan for

further work, and summarise the main points of the paper.

An extended abstract of this paper has been published [11].

2 Lessons from earlier work

A DSM system has been prototyped on Meshix as an external pager (using a similar approach

to the implementation on Mach [12]). The following observations have been made during this

work, and also concerning Meshix in general:

� Monolithic Unix implementations can have superior IPC performance compared with more

modular message-passing designs such as Meshix. The classical approach to improving

RPC performance, the lightweight RPC optimisation developed for the DEC Fire
y sys-

tem [7], requires non-trivial modi�cation to the operating system's structure while applying

only to the local case.

� As processor cache architectures become more complex the costs in time and complexity

of changing the virtual-to-physical address map become more serious. This causes the OS

designer to avoid complex hardware architectures (and their performance advantages), and

to choose copying instead of remapping to dodge the associated problems (eg. cache &

TLB 
ushing). This copying seriously limits potential performance.

� Meshix provides several ad hoc caches, such as a pte cache, a page cache and a �lesystem

block cache. Ideally there should only be a single instance of these similar mechanisms.

� Meshix does not exploit �ne-grain shared memory parallelism fully because mutual exclu-

sion is organised at the level of kernel processes (which wrap key kernel data structures),

rather than individual critical regions.

� Correctly accounting for use of system services is problematic in a distributed system such

as Meshix, and can lead to non-optimal scheduling strategies.

In the following sections we review and amplify some of these points, in particular how the use

of a shared address space can reduce the penalties (due to copying, re-mapping, cache-
ushing

and context-switching) associated with IPC in a Unix-like operating system. We concentrate on

RPC as an example of a type of frequently occurring IPC, and describe the operations required

to perform RPC from the simple Unix case, through the LRPC optimisation, on to the use of

distributed shared memory.
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2.1 Optimising local and remote RPC

When a user process needs a service to be performed on its behalf by a server in a di�erent

protection domain, it must do four things:

� Pass parameters by value, in particular to specify the service required.

� Pass parameters by reference, for example a pointer to a shared bu�er.

� Synchronise with the server's response.

� Collect results returned by the server.

A fundamental measure of operating system performance is the cost of performing transactions

of this kind. If the cost is too high, not only is the performance of applications programs

reduced, but also the operating system will be built to avoid cross-references between protection

domains. This is undesirable for reasons of reliability and security. We must therefore consider

very carefully how RPC performance is a�ected by our design decisions, primarily the adoption

of a single address space.

2.2 System services in a uniprocessor Unix case

In a conventional uniprocessor Unix system, all system services are performed by the same

processor, running in the kernel protection domain instead of the user domain. The server code

is activated immediately, and is guaranteed to have access to the calling process's address space

from which to access reference parameters. In the event that the service cannot be performed

immediately (for example, a read from a disk), the process blocks in the server code, in kernel

mode, and another process is scheduled. A device interrupt activates related code, logically

part of the server but separated because it may run in a di�erent protection domain (this is a

\bottom-half routine" in Unix jargon). This interrupt routine runs in the context of the process

it interrupts, however its e�ect may make the original process runnable again. The process is

restarted when it can proceed, and can again rely on the calling user process's address space

being mapped when it comes to complete the system call.

This mechanism has the advantage that a system call is interpreted immediately. Hence, if the

system call can be satis�ed with no blocking, and therefore no rescheduling, the results can be

written directly to user space and the transaction completed with no unnecessary copying. If

rescheduling is necessary, and some of the function is performed by a device driver's interrupt

handler, then typically data passed by reference will be copied into a bu�er in kernel address

space on the way. This is unfortunate but at least it happens only if the call actually demands

it.

The main disadvantage is that it is hard to devolve system services into user-mode processes. To

do so na��vely requires all reference parameters to be copied|often twice: once into the kernel,

then from the kernel to the server process.

2.3 Remapping reference parameters

The solution chosen in Meshix and other operating systems (e.g. Mach) is to use address

remapping to pass reference parameters between processes (in fact Meshix does remapping for

all parameters). The idea is to wrap a reference parameter's virtual address as a distinct segment,

which can be mapped into another process's address space separately from the caller's address
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space, from which it was extracted. Now a reference parameter can be read and written freely

by interrupt handlers, whatever the identity of the interrupted process might be. Similarly, a

server process can access that caller's copy of the parameter directly.

However, remapping adds an overhead cost which seriously impacts the performance of many

common simple functions. One approach to this would be to copy small parameters - that is,

implement such simple calls using value parameters instead of reference ones, as is done in both

Mach and Chorus.

2.4 Lightweight RPC

In the DEC Fire
y prototype's operating system, Taos, all IPC is handled by a remote procedure

call (RPC) mechanism - calls across protection domains are supported by their Modula-2

+

compiler, which generates stub code in the caller to marshal parameters, communicate them to

the called domain and collect any results.

Despite operating in a highly distributed environment, Bershad et al. [7] observed that most

RPC's are in fact local (95%{99%), not remote, and furthermore that the total parameter/result

size is normally small (< 200 bytes). The cost of a local RPC transferring a fairly small set of

parameters/results is dominated by the excess copying of the parameters/results, and by the

context switch cost of changing the virtual address space and rescheduling.

To overcome these problems, a \lightweight" RPC was developed for Taos, which reduced the

local RPC time by a factor of about three. The details of their mechanism are a little involved,

but essentially they require a preliminary initialisation when the client �rst registers with the

server in which, among other things, a read-write shared memory region accessible to both the

client and the server is created. This region is used for parameter and result passing. When the

call is made the client's stub routine copies the parameters to a stack in the shared region. It

then traps to the kernel which, after validation, dispatches into the server directly (without a

rescheduling; essentially the same process acts in the server on the user's behalf). The server

can refer to the parameters directly without further copying. On return, results are copied from

the shared region (where the server built them) back to the original caller.

We see that using once-and-for-all client-server cross-mapping, it is possible to reduce parame-

ter/result copying to just once. Bershad et al. describe other savings which arise through careful

design to avoid dispatching costs. They also deal with clients consisting of multiple threads

which might each make concurrent calls to the server.

2.5 LRPC under DSM

Under distributed shared memory, the distinction between local and remote RPC becomes

blurred. With a single, coherent shared virtual address space, as proposed for Angel, the

client-server cross-mapped region used for LRPC need not be physically shared. If it is not

then the thread dispatched in the server on a remote node will immediately demand-load the

cross-mapped region (unless we arrange for it to be shipped in anticipation, as an optimisation).

The cost of this implementation of IPC compared with a highly-tuned non-local mechanism (e.g.

Schroeder and Burrows [13]) is higher, but in principle only because a large region is transferred

across the network instead of a message containing just the data required. The presence of mul-

tiple threads will result in page contention unless care is taken to ensure that di�erent threads'

parameter/result stacks lie in disjoint pages.

There are important advantages to this implementation of non-local RPC:
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1. As with LRPC, the caller's and callee's code is the same whether the call is local or non-

local.

2. In LRPC the decision to place a server locally or non-locally must be done when, or before,

the client subscribes to it, since it is then that the cross-mapped region is established if

the server is local. With LRPC under DSM, the location of the server can be changed at

any time (subject of course to any particular hardware requirements).

3. Like LRPC, the identity of the thread which performs the service is the same as the caller's.

This means that no scheduling is involved, and the accounting of resource usage is correctly

attributed to the calling process.

4. The server is naturally entered by multiple threads concurrently (locks must be used to

protect critical regions). This means that parallelism is naturally exploited.

This discussion has assumed that the non-local server will be executed non-locally. This requires

the kernel to migrate the caller's thread to the node where the server is placed. This is often the

right strategy (since the server will typically have a large context while we have gone to some

trouble to reduce the size of the calling thread's context). It is not the only strategy: we could

have invoked the server at the caller's PE, paging in data needed from wherever the server was

last activated.

This would still allow multiple threads to be executing in the server in parallel, but potentially

with poor performance. The critical point is that the LRPC under DSM approach gives us the

freedom to choose. We must observe, though, that to reap this bene�t we must have control

over whether calls to the server are handled locally or forwarded to the node holding the server's

context.

A �nal point is that, if we choose a local instantiation of the server, then data structures which

are shared between invocations will automatically be distributed, cached and kept coherent by

the underlying DSM mechanism. A good example of such a shared data structure is the disk

block cache|where this distributed multicache behaviour is precisely what is required.

2.6 The e�ect of uniform shared address space

With the single, coherent uniform shared address space, we gain a simpli�ed view of Bershad

et al's LRPC mechanism because it is made easy and natural for processes to share access to

common data regions. We also have a way of unifying local RPC with non-local (message-

passing) RPC, using the DSM mechanism.

By clarifying and unifying these mechanisms we regain some of the simplicity and performance

of the conventional Unix system call mechanism. We have replaced a client-server interaction

based on message passing by one based on a thread moving from client to server and back again,

pausing only for security validation. Unlike the Unix case, we can have an arbitrarily-complex

protection structure; the cost is copying the parameters once each time a protection boundary

is crossed. We have also gained the freedom to migrate the server at run-time in a completely

transparent fashion.

2.7 Reducing context-switch costs

The remaining cost of cross-domain calls arises from the need to change the memory map. With

virtual caches this involves 
ushing, or use of process-id tagging to invalidate cache lines. Both

mechanisms result in a great deal of code complexity and are a common source of obscure bugs.
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Another problem concerns cache misses. Context switching carries a hidden cost in loading data

from the new context into the cache, and this is often large compared to other costs of context

switching (see Mogel and Borg [14]). These issues will be examined more closely in a subsequent

document [15].

2.8 Aliasing in the address space

In a single uniform address space, a virtual address may refer to one physical address on one

node, and a di�erent address on a di�erent node. When a page is copied lazily, using copy-on-

write, we have two virtual addresses referring to the same physical address on one node. After

a write occurs, the mapping changes. This is essentially a form of aliasing, since now the virtual

addresses refer to di�erent physical addresses, and we must be very careful to propagate changes

in the map coherently lest writes be lost. An example of such a problem is ensuring coherency

of TLBs in a shared-memory cluster (see [16] for a discussion of this area).

3 Angel operating system overview

The remainder of this paper presents the Angel operating system currently being designed

speci�cally to address the problems outlined above. The most important feature is use of a sin-

gle, uniform, coherent virtual address space, and much of the detail follows from this decision.

The main experimental objective is to investigate the importance of this decision in rectifying

the problems of poor RPC performance, replicated cache mechanisms, and di�culties arising

from sophisticated memory hierarchies. In particular, we would like to free the designers of

systems services and parallel applications code from details of exactly how shared memory is

implemented, thus providing a homogeneous programming model despite the underlying hetero-

geneous structure of the machine on which it executes.

The programming model that Angel provides is that of a single shared virtual address space,

an \object space". All notions of identity, protection and synchronisation are based on addresses

within this space

1

. The object space is divided into many protected objects, many processes

execute concurrently in this space, and process access to objects is controlled by capabilities.

The terms object, process and capability are de�ned below, after a discussion of the single address

space.

3.1 Single coherent shared virtual address space

Single-level storage was introduced in Atlas [17], and extended to include the �lesystem in

Multics [18]. In both these systems, each process has a distinct, inconsistent address space: a

given virtual address in one process may refer to a quite di�erent object in a di�erent process.

By contrast, in Angel we have chosen to disallow inconsistent address spaces, instead ensuring

that every object, no matter what process it is used by, has a single, distinct virtual address

(although access control may allow the object to be manipulated only by selected processes).

This was proposed by Redell [19] and has been implemented in IBM's system 38 [20]. The

main reason is to ease sharing of objects between processes, and in a parallel system this is a

particularly important consideration. This has led to more recent single address space operating

systems such and Clouds [21] and Psyche [22]. In Angel we extend the consistent address space

to span multiple PEs in a distributed-memory system, maintaining coherence where necessary

using DSM techniques.

1

We assume the emergence of 64-bit processors to make this viewpoint feasible.
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There are several reasons to expect bene�ts from this decision. Within a single processor,

there are advantages available in the management of virtual caches [15]. When coding parallel

applications, shared objects are guaranteed to appear at the same address to all cooperating

processes, wherever they are located. This enhances the freedom of the operating system to

migrate processes, without compromising the e�ciency or ease of programming in the local case.

3.2 Objects

In Angel an object is a protection domain. An object consists of a contiguous protected range of

addresses (for simplicity a whole number of pages), and all component addresses can be accessed

under the same conditions: if access is allowed to one address in the object, it is similarly allowed

for all the others. This does not imply that the hardware access permissions on the constituent

pages are all the same, only that the access rights are the same (for example the DSM coherence

algorithm will change access permissions to pages).

Objects are created by a process using an explicit object creation primitive. To simplify man-

agement and allocation, objects are created with a particular size, are not extensible, and may

not overlap. A memory address which corresponds to no object is always illegal. Object creation

results in a set of capabilities for that object being returned. Before it can be used, the object

must be mapped into a process's address space by resolving one of its capabilities.

All objects are persistent, once created an object does not depend upon the existence of its

creator [23]. This means that as long as the object is referenced it will remain present in the

object space. Objects can be explicitly deleted, but if a process dies before removing an object

only it referenced, this object must be cleared away, to retrieve the virtual address space it

occupies, and to save backing store (see Bishop's thesis [24]).

3.3 Processes

A process

2

is a locus of control and permissions. A process comes into existence when it is

created by its parent process, and disappears when it voluntarily dies or is killed by another

process with appropriate access rights.

The context of a process includes it's control object, a mapping object and any other objects

the process can access. A process may have access to many objects at once, depending on the

capabilities it has resolved. There is no other restriction on what objects a process may access. A

typical process will share read-execute access to several code objects (including shared libraries),

it will have a stack segment which may be private or shared with other processes with which

it cooperates, may have some private data, and may share read-write data objects with other

processes, for example for cross-domain communication.

3.4 Capabilities

Although the entire object space is shared by all processes, it can be protected on an object by

object basis. Therefore, although the potential exists for a process to access any object, it may

only do so if it possesses the necessary capabilities.

2

Originally we used the term thread instead to emphasise that processes were lightweight and did lots of

sharing, but since everything appeared to be a thread we decided to use process anyway. A thread can then be

used to describe a process in a group of processes that have identical context.
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Figure 1: The layers of the proposed system

A capability may be stored in any object and is represented only by an address, the address

of the service which provided it (for example an object manager). It is the position of the

capability which is important, and it may only be moved or copied by the issuing service. All

the related information, such as object start address, length and access rights, are maintained in

the service's protected data space. A capability allows a process to perform certain operations

(de�ned later) on a given object. A capability cannot confer rights to more than one object. In

particular, there is no notion of \objects within objects".

When a capability is resolved, the processes mapping object is updated to allow access to the

given object with the given rights. Mapping objects can be shared between processes, which then

share exactly the same context. The possession of a capability by a process does not necessarily

allow it to be resolved by that process. The implementation of capabilities will be discussed

further in a subsequent document.

4 Angel structure and components

Like other micro-kernel operating systems, we propose in Angel to remove many of the man-

agement issues from the kernel into user-level servers. System services such as device drivers are

implemented through processes executing on protected objects outside of the micro-kernel, as

are global process management issues such as time-slicing and load-balancing, and process sleep

and wakeup synchronisation.

The components of Angel can be divided into four layers (Figure 1). At the lowest level

resides the basic system hardware. To operate the hardware are the two layers, the micro-

kernel providing priority run queues and exception handler dispatch, and system services above

this providing the services necessary for a minimal working system (device drivers, the process

management, distributed shared memory handling, etc.).

Above the kernel, system services and management may reside one or more applications. We

might consider software at this level to be an application program such as a DBMS, or the �le

system, shell and library calls to emulate a particular operating system.
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4.1 The hardware layer

The hardware platform presently available to support Angel is the Topsy architecture [8],

developed at City University over the past four years. Topsy comprises single board computers

interconnected by the MeshNet high performance (12 Mbytes/sec/channel) mesh topology

network. MeshNet is implemented as a set of two ASIC's designed to support the message

passing primitives used in the Meshix operating system. For further details, see [1, 2].

This hardware platform is less than ideal for supporting a distributed shared memory. Per-

formance will be very disappointing compared with localised shared memory hardware, unless

memory to memory communications latency less than or of the order of a microsecond can be

achieved for small pages.

A second version of Topsy is planned in which clusters of high performance processors sharing

main memory, with cache coherency ensured by snooping, substituted for the single processors

at each communications mode in the current version of Topsy. The new version will also have

signi�cantly increased bandwidth and reduced latency of communications.

This new machine will therefore o�er the bene�ts of a mixed localised and low latency distributed

and physically shared memory as a platform to support Angel's distributed shared memory.

4.2 The micro-kernel

The main responsibilities of the micro-kernel are to manage a local priority run queue, and to

dispatch handlers to deal with exceptions. We can view the micro kernel as providing the lowest

level support for smooth transfer of control between processes and their protection domains on

each processing element.

4.2.1 The local priority run queue

The micro-kernel supports a simple priority based run queue per processing element. Newly

created processes (created by exceptions), are added to the local run queue at their designated

priority. Additional queue maintenance such as time-slicing or load balancing may be provided

by system services if desired.

4.2.2 Exception dispatch

Each processing element will experience exceptions which interrupt the execution of a process.

Exceptions take three basic forms:

� System exceptions are events such as external device interrupts.

� Process exceptions are events such as divide by zero or a system trap. These events are

the consequence of some action by the currently executing process, either intentional or

accidental.

� Object exceptions are memory and protection faults which may be handled di�erently

depending on the object concerned.

When an exception occurs, the micro-kernel allocates a new process record, and dispatches that

process into an exception handler object at the system service level. Exception handler objects
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may be registered with the micro kernel at any time, (capabilities permitting), and consequently

exception handlers may be replaced \on-the-
y".

Generally, system exceptions may be handled without removing the running process from the

run queue. However process and object exceptions are generated as a result of the behaviour

of the running process. The currently running process is removed from the run queue (i.e. it

is suspended) by the micro-kernel when a process or object exception occurs, it is then the

responsibility of the appropriate system service to replace the process when the appropriate

exception action has been taken.

Di�erent exception handlers may be installed for di�erent processing elements, and for certain

process exceptions. The only requirement being that they be capable of cooperating when

necessary.

One process exception is reserved by the micro-kernel, and will not cause a process to be spawned.

This exception enables a process to exit itself. The occurrence of this exception causes the micro-

kernel merely to remove the current process, and schedule the next process from the local priority

run-queue - it is the means by which exception handler processes may themselves terminate.

Stray objects left as a result will eventually be garbage collected.

4.3 System services

As described above, the micro-kernel only provides a minimum of mechanisms for process man-

agement. It contains no device drivers, process management agents or networking facilities. All

of these are provided by ordinary processes, albeit often with very privileged protection domains.

Enhancements may be made to a running system by simple installation of new protected objects

which may then o�er their services to the system. Additionally, services may be replaced whilst

the system remains operational. The ability to perform maintenance whilst keeping the system

operational is important in large distributed machines.

System services could consist of: device drivers, network drivers, memory managers, macro-

schedulers, process synchronisation managers and name servers. Each service may potentially

have its own domain of protection, and this provides a degree of protection from \not entirely

trusted" services. Additional services may be added as required without a�ecting those already

available or the micro-kernel. Such a system makes it possible to run di�erent operating system

interfaces at the same time without interference - since each is implemented as a set of protected

object services.

4.3.1 Device drivers

Device drivers will consist of many processes to perform di�erent aspects of their functionality.

State information is maintained in static data objects.

For example, a SCSI disk driver might be decomposed into two separate processes within the

driver object. A disk block transfer is initiated by a process spawning a disk driver process, and

providing it capabilities to access the disk block data, and other parameters. The trap to invoke

the disk device driver will cause the micro-kernel to suspend the calling process. The disk device

driver process will stash the identity of the calling process, and information about the request

made, into its static data object. If the disk device is not busy, the request can be immediately

instigated, otherwise it is left in the device queue. The driver process then exits.

Eventually the device will complete a request and assert an interrupt. The micro-kernel will
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invoke another process in the device driver to handle the interrupt The interrupt handler will

�nd the necessary information about the transfer request in the device driver data object. The

interrupt handler must replace the initiating process on the local run-queue, and schedule any

pending disk requests before exiting.

All device driver objects must be written so they are re-entrant. Multiple processes may be

actioned at the same time to utilise a certain device and the device drivers must cope with this.

4.3.2 Network Drivers

Network device drivers are a special instance of most device drivers since they must respond

and handle system interrupts which have essentially not been requested by the local processing

element. It is also important to keep the network driver operation as general as possible (rather

than only supporting DSM speci�c operations). It is envisaged that a network message will be

composed of a header followed by an arbitrary length message body. The header will indicate

a thread to be invoked to handle the message, this thread will then be passed a pointer to the

message body.

4.3.3 Memory management

The purpose of memory management under Angel is not to provide separate, virtual address

spaces as in Unix (where each process has addresses starting from zero), rather it is to provide

a uniform protected single address space, identical for all processes. Each virtual address corre-

sponds to at most one physical location at once. Complete memory management will be the job

of both hardware to provide faults and protection, and the various system services to manage

these.

Each protection domain may have di�erent permissions, allowing access to a di�erent subset

of the valid object pages, memory services must create and manage appropriate tables for the

memory management hardware. The memory management for a processing element handles the

following issues:

� Objects will be sparsely arranged throughout the memory map, and certain VM addresses

will lie between objects. References to such addresses are a protection violation for the

referencing process.

� A page may be inaccessible in the current protection domain for the operation being

attempted. Again this is a protection violation for the referencing process.

� A page may be a valid virtual address, and permission for access is available within the

current protection domain, however a physical page containing the relevant code or data

may not be immediately accessible. A free physical page must be allocated and the page

contents transferred from backing store, or from another node. Up-to-date page copies

must be acquired.

� A fault is required to ensure an up-to-date page copy is acquired. Similarly, a copy of a

page held elsewhere may have to be protected against writing to ensure that coherency is

assured (using a DSM protocol).

� A page may have been copied \lazily", using copy-on-write. In this case there is aliasing -

two virtual addresses refer to the same physical address on a node.
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The memory map is not alias-free, but it is coherent ; a virtual address maps to the same physical

address from whatever protection domain the reference is made. Access rights are the only

di�erence between protection domains. It should be noted that the coherence of the memory

map is distinct from the concept of data pages being coherent.

The memory managers will have to work in close co-operation with network and disk services

in order to provide an optimised service. Actions such as page re-mapping and aliasing can

reasonably be used in order to reduce the amount of data copying between them. In certain

areas their operations may slightly overlap, or at least make use of common procedure calls.

Certain system services such as the memory managers, the network and disk device drivers

must be guaranteed to be in physical memory, since it is unlikely that they will be able to page

themselves in.

4.3.4 Scheduling

A system wide scheduler must provide three functions. Firstly, it is responsible for the handling

of spawn. Spawn is a speci�c exception trap which is used by processes to invoke other processes

and to pass objects to them. The spawn facility provides a higher level of process creation than

available through the basic exception mechanism but does so at the expense of creation speed.

Secondly, the scheduler is responsible for the load balancing of processes to other nodes. The

macro-scheduler has full access to the local run-queue information on a node and to the global

system process information. Using this information a macro scheduler can detect \hot spots"

- where any node in the system is running many processes while the rest of the system is

relatively unloaded. In such circumstances the macro-scheduler may decide to transfer a process

to another node in an attempt to spread the workload. Process migration is performed by passing

the process state information to another macro scheduler on a remote node. Any code or data

associated with the process can be paged on demand through the distributed shared memory

mechanism

3

.

Finally, some services may require speci�c resources. For example, a tape device service must

be executed on the node with the tape hardware. In such situations, a spawn call to the service

object will automatically be load balanced onto the node containing the relevant hardware. In

addition to these functions, the scheduler may operate some kind of scheduling policy on the

processes in the system. This may be necessary for example to provide an interactive service, or

to guarantee deadlines in a real-time operating system.

4.3.5 Process synchronisation

Synchronisation between processes is provided by use of a mechanism similar to Unix's sleep

and wakeup. The single address space is used for the synchronisation namespace, so allowing

processes to reside on the same processor or at an arbitrary position within the network with

respect to those they synchronise with.

The sleep and wakeup operations take a virtual memory address as their synchronisation point.

In order to use a memory address as a synchronisation point, the address must reside within an

object for which the process holds an appropriate capability.

Unlike similar mechanisms, many addresses may be slept upon in parallel, the sleeping process

3

Among several possible optimisations, there is scope to accrue information about a process's working set,

and perhaps to transfer that working set in anticipation of demand paging. However, it is questionable whether

this will obtain a signi�cant performance gain.
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being released when a one or more of them are woken up. This allows for a more 
exible system

to be implemented, especially where error recovery is involved (which often complicates simple

sleep/wakeup synchronisation schemes).

It is proposed to unify asynchronous and synchronous process interactions. A process may sleep

on an address, or it may simply decide to register an asynchronous procedure to deal with an

eventual wakeup on that address (rather like the signal mechanism in Unix). The process

which performs the waking does not know how the wakeup will be dealt with. Finally, a wakeup

on a particular address will persist until either its associated object is removed, or a sleep

collects it. The behaviour allows a wakeup to be issued before a sleep.

The sleep and wakeupmechanisms have to be e�cient and fast, and as such cannot be con�gured

with multiple calls to the system service, each of which will involve a trap.

4.4 Applications

The design of Angel is deliberately intended to leave the design of applications and operating

system \look and feel" as free as possible. As such we shall not explore the construction of

applications too deeply, however there are one or two areas of particular interest.

Possibly one of the most important utilisations of the object space will be for a �le system of

some sort. The object-capability structure imposes a natural picture of a �lesystem in which all

entities have a place.

The root of the �lesystem's directory tree is represented by a well-known object. This object

manages capabilities for other objects, handing them back to an interrogating process when

requested, subject to the �lesystem's permissions policy. By having a tree of directory objects

interpret symbolic names we can reconstruct a Unix-like directory structure. By contrast,

though, once an object has been accessed via a directory, it can be mapped into the client

process's space of valid addresses and can be read and written using load and store instructions

like any other object.

The persistence of objects in such a �lesystem depends on the memory management strategy,

which is left as an orthogonal variable in the design of operating systems on top of Angel.

The capability mechanisms in Angel will enable several independent applications to operate

on the Angel operating system without ever needing to interact - except perhaps at the lowest

level where system device drivers, schedulers and name servers must coordinate.

5 Implementation plan

We have described an operating system architecture with desirable structural properties. We

have not yet demonstrated experimentally that the architecture can be implemented e�ciently

enough for the programming model to be acceptable. We propose a programme of implementa-

tion work to investigate this:

1. The �rst implementation will use a single uniprocessor processing element, and will con-

sist of the micro kernel, with its scheduler, protection management and trap/interrupt

handling, together with a rudimentary capability manager and simple device drivers. The

memory management will consist simply of allocating physical core pages and mapping

them on demand.
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2. The second main stage is to add the network device driver and add a per-PE process to

manage coherency between PE's. This will involve implementing inter-processor sleep and

wakeup.

3. The third step is to exercise and optimise the IPC mechanisms, in particular looking at

migration of callers to the PE where the server should run, and tuning the DSM coherency

mechanism for anticipated IPC patterns.

4. With e�cient IPC in place, it should be exercised in the use of a performance-critical system

service, such as �ling. Various distributed �lesystem design options will be investigated in

order to examine how the 
exibility needed should be supported by the operating system.

5. At this point, we should be ready to consider higher-level issues such as non-volatile object

storage, load balancing, and various approaches to reliability and availability enhancement.

6. At the same time, multiprocessor shared-memory nodes will be introduced, and this will

involve some re-engineering of the micro-kernel and IPC mechanisms.

Conclusion

We have brie
y analysed some shortcomings of common operating system structures, and in

particular Meshix, our message-passing based system. With the objectives of providing a clean

programming model, and providing structural independence from details of how data sharing is

implemented, we have motivated the use of a single, coherent, uniform virtual address space as

a fundamental structure to support both parallel applications programs and system services.

Returning to the lessons from our earlier work (Section 2), we have shown

� how client-server cross-mapping, as used to optimise the local IPC case in the LRPC work,

can be extended using DSM to allow free process placement in a distributed memory

system.

� how the use of synchronised lightweight processes instead of message passing allows in-

creased parallelism in server execution.

� how the reduced address map complexity simpli�es and allows optimisations with hardware

with a complex memory hierarchy.

� how device drivers can run in separated protection domains while still manipulatingmemory-

mapped control registers directly.

The critical practical problem is the e�ciency with which these objectives can be met, and we

�nished by outlining a plan for implementation of a prototype operating system to investigate

this experimentally.
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