
Backwards-compatible bounds checking for arrays and pointers in CprogramsRichard W M Jones and Paul H J KellyDepartment of ComputingImperial College of Science, Technology and Medicine180 Queen's Gate, London SW7 2BZAbstractThis paper presents a new approach to enforcing arraybounds and pointer checking in the C language. Check-ing is rigorous in the sense that the result of pointerarithmetic must refer to the same object as the orig-inal pointer (this object is sometimes called the 'in-tended referent'). The novel aspect of this work isthat checked code can inter-operate without restrictionwith unchecked code, without interface problems, withsome e�ective checking, and without false alarms. This\backwards compatibility"property allows the overheadsof checking to be con�ned to suspect modules, and alsofacilitates the use of libraries for which source code isnot available. The paper describes the scheme, its pro-totype implementation (as an extension to the GNU Ccompiler), presents experimental results to evaluate itse�ectiveness, and discusses performance issues and thee�ectiveness of some simple optimisations.1 Introduction and related workC is unusual among programming languages in provid-ing the programmer with the full power of pointers.Languages in the Pascal/Algol family have arrays andpointers, with the restriction that arithmetic on point-ers is disallowed. Languages like BCPL allow arbitraryoperations on pointers, but lack types and so requireclumsy scaling by object sizes.An advantage of the Pascal/Algol approach is thatarray references can be checked at run-time fairly e�-ciently, in fact so e�ciently that there is a good casefor bounds-checking in production code. Bounds check-ing is easy for arrays because the array subscript syn-tax speci�es both the address calculation and the arrayPresented at AADEBUG'97, Link�oping, Sweden.

within which the resulting pointer should point.A pointer in C can be used in a context divorcedfrom the name of the storage region for which it is valid,it's \intended referent", and this has prevented a fullysatisfactory bounds checking mechanism from being de-veloped. There is overwhelming evidence that boundschecking is desirable, and a number of schemes havebeen presented. The main di�erence between our workand Kendall's bcc[13] and Ste�en's rtcc[7] is that inour scheme the representation of pointers is unchanged.This is crucial, since it means that inter-operation withnon-checked modules and libraries still works (and muchchecking is still possible). Compared with interpretativeschemes like Sabre-C[14], we o�er the potential for muchhigher performance. Patil and Fischer [10, 11] present asophisticated technique with very low overheads, usinga second CPU to perform checking in parallel. Unfor-tunately, their scheme requires function interfaces to bechanged to carry information about pointers, so alsohas the inter-operation problem.Another approach is exempli�ed by the commercially-available checking package Purify [6]. Purify processesthe binary representation of the software, so can handlebinary-only code. Each memory access instruction ismodi�ed to maintain a bit map of valid storage regions,and whether each byte has been initialised. Accessesto unallocated or uninitialised locations are reportedas errors. Purify catches many important bugs, and isfairly e�cient. However, Purify does not catch abuseof pointer arithmetic which yields a pointer to a validregion which is not the intended referent. Fischer andPatil [10, 11] provide evidence for the importance of thisre�nement.Our goals in this paper are to describe a method ofbounds checking C programs that ful�lls the followingcriteria:� Backwards compatibility| the ability to mix checkedcode and unchecked libraries (for which the sourcemay be proprietary or otherwise unavailable)� Works with all common C programming styles

� Rigorously rejects violations of the ANSI C stan-dard� Checks static and stack objects as well as objectsdynamically allocated with malloc� Understands scope of automatic variables� Performance | including the ability to be able todistribute programs with checks compiled inThere remain some circumstances in which checking isincomplete; as we describe later, these are fairly un-common in practice. The main shortcoming of the im-plementation described in this paper is that the perfor-mance is currently poor. However, the approach hasfundamental performance advantages over previously-published work. Because checked code inter-operateseasily with unchecked code, the performance penaltyis con�ned to those modules where it is needed. Fur-thermore, there is substantial scope for optimisation ofloop-invariant pointers and pointers which are induc-tion variables. Because the pointer representation isunchanged, there is no residual overhead once checkingcode is eliminated. We return to this issue in Section 5.1.1 Overview of this paperThe next section reviews the problem of bounds check-ing for C, and the limitations the language places onthe checking that can be done. In the following section,the new approach is introduced, and we explain how,unlike earlier schemes, our bounds checking scheme al-lows inter-operation with unchecked code. Then we givesome details of our implementation, and discuss someoptimisations and their e�ectiveness. Finally, we dis-cuss the e�ectiveness of the scheme in the light of ourexperience with some large and well-known C programs.2 Objects, bounds checking in C, and itslimitationsANSI C conveniently allows us to de�ne an object asthe fundamental unit of memory allocation. Objectsare created by declarations or allocations such as thoseshown in Table 1, which may be static, automatic (i.e.stack-allocated), or dynamically allocated.Objects are stored sequentially in memory and can-not overlap. Operations are permitted which manipu-late pointers within objects, but pointer operations arenot permitted to cross between two objects. There isno ordering de�ned between objects, and the program-mer should never be allowed to make assumptions abouthow objects are arranged in memory.

Bounds checking is not blocked or weakened by theuse of a cast (i.e. type coercion). Casts can properlybe used to change the type of the object to which apointer refers, but cannot be used to turn a pointerto one object into a pointer to another. A corollaryis that bounds checking is not type checking: it doesnot prevent storage from being declared with one datastructure and used with another.More subtly, note that for this reason, bounds check-ing in C cannot easily validate use of arrays of structswhich contain arrays in turn.Casts and unions can be used to create a pointerfrom an object of any other type, in a machine-dependentway. This cannot be checked using our technique, norby earlier approaches to bounds checking, since there isno object for the pointer to be derived from.3 The technique and its advantagesIn this section we review earlier approaches and explainthe basis for the new approach.3.1 Earlier approaches to carrying boundsinformation
base:

pointer:

limit:

Enhanced pointer

Storage object

Figure 1: Modi�ed pointer representation: pointer{base-address{extent tripleIn earlier work in this area[5, 14, 13, 7, 8, 10, 11], boundsinformation is carried with each pointer at run-time. Asimple approach is to represent each pointer as a triple:the pointer, together with the storage region's base ad-dress and limit or extent. Checking is then straight-forward. The larger size of pointers requires changes instorage allocation, and the code generator must be mod-i�ed to copy pointers correctly. The change in pointersize can be avoided by replacing each pointer with anindex into a table, which contains the pointer-base-limittriple.The net e�ect of both methods is the same. Whenthe program, at runtime, comes to use a pointer, itmust �rst verify that the operation that is about to be2

int a; A simple variableint a[10]; An arraystruct f /*...*/ g a; A single recordstruct f /*...*/ g a[10]; An array of recordsmalloc(10); A single unit of memory allocated with mallocTable 1: Typical objects.performed is correct. It uses the information about thebase and size of the array or structure being pointed toto decide if a particular index is legal.3.2 Unchanged pointer representationThe problem with both these schemes is that the mod-i�ed pointer representation is not interpreted correctlyby code compiled without bounds checking enabled.This is a problem wherever a pointer is passed to orfrom an unchecked procedure, whether as a parameter,a result, or in a global variable. It is, of course, oftenpossible to translate pointers where necessary (calledencapsulation in bcc[13] and rtcc[7]), but this is incon-venient and di�cult to do reliably (e.g. where a func-tion pointer may refer either to checked or an uncheckedroutine). Because of these di�culties, in rtcc only op-erating system calls are encapsulated { all libraries mustbe recompiled.In this paper we show that the pointer representa-tion need not be changed. This avoids the need eitherfor encapsulation or recompilation. The result is im-proved functionality (e.g. to work with modules andlibraries provided in binary-only form), and potentiallyalso improved performance, since well-tested modulescan run without checking.3.3 Checking pointer use: how the schemeworksGiven these considerations, in our method pointers arerepresented as simple addresses, as in ordinary C pro-grams. We maintain a table of all known valid stor-age objects. Using the table we can map a pointer toa descriptor of the object into which it points, whichcontains the base, extent and additional information toimprove error reporting.We have to check both pointer arithmetic and pointeruse. Pointer arithmetic must be checked because the re-sult must never be allowed to refer to an object di�erentfrom the one from which it is originally derived. Thisis because the object for which the pointer is valid canonly be determined by checking the pointer itself, bylooking it up in the object table.

Every valid pointer-valued expression in C derivesits result from exactly one original storage object. Ifthe result of the pointer calculation refers to a di�erentobject, it is invalid.Although it sometimes useful to know where an in-valid pointer has been calculated, reporting every in-stance can yield many false alarms. We therefore re-place such incorrectly-derived pointers with a pointervalue which is always invalid, called ILLEGAL (De�nedas (void *)-2 in our implementation). This ensuresthat a bounds error is reported when the pointer is ac-tually used.3.4 Example: pointers to objects
d eb c fa

Dead space between objects

p1
p2 p3Figure 2: Objects arranged in memory.Figure 2 shows an example layout for several objectsof various sizes, perhaps arising from static allocations,or from calls to malloc. Suppose we have pointers p1,p2 and p3 referring to the objects, or perhaps to their in-ternal components (their type is immaterial since castsmay have been used). Table 2 shows permissible pointeroperations given the rule that pointer operations areonly permitted to take place within an object, and notbetween objects.3

p2 - p1 Permitted. Both pointers are within the sameobject.p3 - p2 Not permitted. Makes assumptions about thelayout of objects in memory.Increment p2 until p2 == p3 Not permitted. As soon as p2 is incrementedbeyond the end of object b, a bounds error willbe reported.Table 2: Permissible operations on pointers p1{p3in Figure 23.5 Problem: legal out-of-range array point-ersAn awkward complication arises with arrays. Considerthe (correct) code in Figure 3.f()f int *p;int *a = (int *) malloc (100 * sizeof(int));for (p = a; p < &a[100]; ++p)*p = 0;return a;g Figure 3: Iterating over an array.On exit from the loop, p points to a[100]. The �nal++p increments p beyond the range for which it is valid,although the resulting pointer is never used. Accord-ing to the de�nition of permissible pointer operationsabove, this should be agged as an error since p maynow point to a di�erent object.The ANSI C standard[1] (section 3.3.6, lines 24{27)states that for an array declared Type a[N];, a pro-grammer may only generate pointers to elements a[0],a[1], up to a[N]. The last element does not literallyexist, and any attempt to dereference a pointer to a[N]will result in unde�ned behaviour (or in our case, abounds error). It is not permissible to create a pointerto, for instance, element a[-1] of an array, and suchprograms will not be portable to architectures whereall objects are stored in separate segments.To overcome this problem, we place at least one byteof dead space between objects in memory (allocationsare often aligned to 4 or 8 byte boundaries in mem-ory so there may be several bytes between adjacent ob-jects). A pointer to a[N] can now be distinguished froma pointer to the next adjacent object in memory1 (seethe Appendix for an example).1There is a subtle assumption here: if the size of the object werenot an integer multiple of the array element size, then a[N] could liemore than one byte beyond its limit (depending on the size of theelement type). However, this case is a bounds error since there is

Unfortunately we cannot pad parameters passed tofunctions (since this would mean that the parameterlayouts assumed by checked and non{checked code wouldbe incompatible). This results in a small ambiguity. Weresolved this partially in our implementation by aggingfunction parameters and treating them specially. Essen-tially, when looking up pointers to parameters, we treata reference to \a[N]" as a possible pointer to the nextobject in memory. If there is an adjacent parameter,then the pointer will point to the next object.This is an instance where checking is incomplete: apointer to an array passed as a parameter can be in-cremented to point to the later parameters without anerror being reported. Using the pointer to refer to ear-lier parameters or elsewhere will be trapped correctly.In practice this solution was satisfactory, since al-though it is possible to pass actual structures and struc-tures containing arrays as parameters, this is very rare,and even then most cases can be caught. The infre-quency of use, and the fact that we catch many casesanyway, make this potential loophole an extremely mi-nor concern.3.6 Objects originating in unchecked codeWhen an object is allocated in checked code, it is en-tered in the object table. When the resulting pointeris used in checked code, bounds checking works fully.If the pointer is passed to unchecked code, uncheckedaccesses can occur.When a pointer is passed from unchecked to checkedcode, it may originate either from a checked or uncheckedallocation (note that dynamically-allocated objects arealways registered since even unchecked code must callthe checked malloc function).There are two cases:1. The pointer passed fromunchecked to checked codepoints into a checked object.This may be correct, as it may have been derivedfrom a pointer passed to it, or it may be the resultinsu�cient space for a[N-1].4

from a call to the (modi�ed) malloc storage allo-cator. In this case, checking will proceed normally.It may be incorrect: the pointer may be improp-erly derived from some other object. This case isindistinguishable and no error will be reported.2. The pointer passed from unchecked to checked codepoints into an object which does not appear in theobject table because the space was allocated inunchecked code.This is detected when the pointer is used. Al-though it may be helpful to issue a warning mes-sage and to perform basic sanity checks, the pro-gram can proceed without false alarms. This isbecause the key check is whether, in pointer arith-metic, the result refers to the same object as thepointer from which it was derived. If the originalpointer is not registered, the result should not be.Accidental use of unchecked pointers in checkedcode to damage checked objects is thereby pre-vented.3.7 Maintaining the object table: trackingcreation and deletion of objectsAt run{time, we track objects as they are created anddeleted. We maintain an ordered list of objects in mem-ory, and employ a fast method to convert pointers to ob-jects. Several suitable structures are available for thispurpose. We used a splay tree in our implementation[4,3] but other structures such as tries and skiplists mightbe suitable.Static objects (global variables, variables declared asstatic in functions and string constants) persist overthe lifetime of the program. A simple modi�cation tothe compiler and/or the linker can be made to producea list of these objects. As indicated above, it is notnecessary to �nd objects in the unchecked parts of thecode.Dynamically allocated objects | those declared withmalloc and destroyed with free| can be tracked by asimple modi�cation to the C library. Although mallocoften introduces padding anyway, care is needed withobjects allocated dynamically by other means (such asmmap and sbrk).Stack objects present greater di�culties, since theC goto command may mean that they are created anddestroyed at several di�erent places in the code (seeFigure 4).In this code fragment, b is in scope between the innerset of curly brackets. The goto label1; statement hasthe side e�ect of creating b and goto label2; destroysit. In addition, b must be created and destroyed if andwhen control passes the inner curly brackets.

f ()f int a;if (...) goto label1;f int b;/* ... */label1:/* ... */if (...) goto label2;/* ... */glabel2:/* ... */gFigure 4: Stack objects created and destroyed by goto.In our implementation, we used the C++ construc-tor/destructor mechanismof our compiler (GCC) to tracksuch variables. This is fairly common since many Ccompilers are built to handle C++ too. Details lie be-yond the scope of this paper.Parameters are a special form of stack object. Caremust be taken to ensure that parameters are createdonce on entry to the function, and deleted on exit, evenif the procedure exits with return early on. The C++constructor/destructor mechanism can handle this too.Ordinary stack objects must be padded as describedin section 3.4. Parameters are not padded, so thatchecked and unchecked functions have compatible pa-rameter layouts. ANSI C prevents using the returnvalue of a function as an lvalue immediately. Since allreturn values are therefore copied into a variable in thecalling function, there is no need to take special actionchecking or padding aggregate function results.4 Implementation in an existing compilerWe implemented our bounds checking scheme in theGNU C compiler (GCC). In this section we briey ex-plain how this was done. The resulting program is freelyavailable from a variety of sources[12].4.1 Checking pointer operationsWe altered GCC to replace pointer operations with callsto a library of checking functions. Typically when theprogrammer writes p + i, where p has a pointer typeand i is an integer, the compiler replaces it with:(T *) bounds check ptr plus int(p, i, sizeof(T),FILE , LINE);5

T * is the type of the pointer p, FILE and LINEare macros that expand to the current �le and line num-ber, and are used to locate errors when they occur.operator/operand typespointer [integer] (array reference)pointer -> element (reference to record �eld)pointer + integer (yields pointer)pointer - integer (yields pointer)pointer - pointer (yields integer)pointer < pointer (comparisons)pointer > pointerpointer <= pointerpointer >= pointerpointer == pointerpointer != pointer*pointer (dereference),pointer++ (post-increment)pointer-- (post-decrement)++pointer (pre-increment)--pointer (pre-decrement)Table 3: Operators requiring checkingTable 3 shows the operators where checking code hasto be added. Note that we must check pointer arith-metic as well as pointer use. We also check pointercomparisons and subtractions since the result is validonly if the operands refer to the same aggregate.In order to handle compound operators correctly ande�ciently, we speci�cally detect and replace the follow-ing patterns:� &*pointer is replaced with pointer� &pointer[integer] is replaced with pointer + integer� &pointer -> element is replaced with pointer + o�-setof(element).As described above, certain pointer operations silentlyreturn the special representation ILLEGAL (De�ned as(void *)-2 in our implementation)when they fail. Thisallows programmers to make illegal pointers, and onlyhave them caught later if the programmer attempts todereference them. For instance, in an array declaredint a[10];, attempting to generate a+15 results in anILLEGAL pointer which is caught when used later. Allpointer operations catch ILLEGAL pointers passed andthrow bounds errors.

4.2 Using existing C++mechanisms to trackstack objectsOrdinary stack objects (not function parameters) arepadded by tricking GCC into believing they are one bytelarger than they really are. A patch to the GCC allocafunction catches variable{sized stack objects.In order to de-register stack-allocated objects on blockexit, we used the constructor/destructor mechanismbuiltinto GCC and designed to handle C++ objects, evenwhere they may be created or destroyed by uses of goto.The code shown in Figure 5 contains several stack vari-ables in di�erent scopes. The code is compiled as if theuser had written the version in Figure 6.4.3 Finding statically allocated objects atcompile and link timeWe modi�ed the back-end of GCC slightly to construct atable of statically allocated objects, such as global vari-ables and string constants. Each source �le compiledwith bounds checking enabled will contain such a table,and this is automatically loaded at run-time before theprogram starts running. The design of GCC enabledthis to be done in a straightforward manner.It is desirable to track down objects declared in uncheckedcode too, although not strictly necessary as describedearlier. A simple tool was written that takes a libraryarchive or object �le, and writes out a table of static ob-jects contained therein. This table can then be linkedto the program.Static objects are padded by asking the linker toallocate one extra byte after each object.4.4 Minimal modi�cations to malloc andfreeWe modi�ed the GNU malloc library to register dynam-ically allocated objects as they are created, and dereg-ister them as they are freed. A single extra byte ofpadding is added to each object when it is allocated.The new library is linked automatically and replacesall calls to the previous malloc family of functions.4.5 Modi�cations to C library functionsUnlike many other C compilers, GCC usually works withthe system{installed C library on whatever operatingsystem it runs. In most instances, the source to theselibraries is not freely available, so users will be forced torun them without bounds checking. This implies that acall to a function such as strcpy, passing a bad pointer,6

int sum (int n, int *a)f int i, s = 0;for (i = 0; i < n; ++i)s += a[i];return s;g Figure 5: Vector sum example with stack objects.int sum (int n, int *a)f /* bounds push function enters a function context. A* matching call to bounds pop function will* delete parameters.*/bounds push function ("sum");bounds add parameter object (&n, sizeof (int), ...);bounds add parameter object (&a, sizeof (int*), ...);/* Extra scope created around the function. GCC will* call bounds pop function when leaving this* scope.*/f /* Declare stack objects, and use GCC's destructor* mechanism to ensure bounds delete stack object is* called for each variable however we leave scope* (even if we leave with goto).*/int i;bounds add stack object (&i, sizeof (int), ...);int s = 0;bounds add stack object (&s, sizeof (int), ...);for (i = 0; i < n; ++i)s += *(int*)bounds check array reference (a, i,sizeof (int), ...);bounds delete stack object (&s);bounds delete stack object (&i);gend:bounds pop function ("sum"); /* Delete a, n. */return s;gFigure 6: Vector sum example with stack object man-agement using the C++ constructor/destructor mech-anism.

will not result in a bounds error, but in a segmentationfault, or in random damage to memory.To detect such errors, we replaced many C libraryfunctions, with e�cient bounds{checked versions. Callsto the ANSI str* and mem* functions are checked inthis way. The implementations of memcpy and strcpyalso check for illegal copying of overlapping memory seg-ments.4.6 Splay trees to look up pointers quicklyIn order to reduce the overhead of converting pointersto objects on the occasions when that is necessary, westore the object list as a splay tree[4, 3]. Splay treesare binary trees where frequently used nodes migratetowards the top of the tree. In tests it was found thatthe look{up function was iterated on average 2.11 timesper call on a typical large program. We unrolled the �rsttwo iterations of the loop to optimise these cases.5 Performance and optimisationsFor the bounds checking scheme outlined above to beuseful, careful consideration must be given to optimis-ing the code produced. In particular, it is possible toreduce the number of accesses to the splay tree thatare required quite considerably. In the next few para-graphs we describe some simple optimisations we haveimplemented, some further optimisations which shouldbe straightforward to add, and we briey discuss theproblematic cases which remain.5.1 Eliminating calls to register unused vari-ablesIf the programmer never takes the address of a stackvariable, then no pointer can ever be generated thatrefers to that variable, and so it is unnecessary evento consider that variable for bounds checking purposes.This is extremely e�ective, as addressable local vari-ables are rare in typical programs.5.2 Eliminating look{ups in loops over ar-raysFor further signi�cant gains in performance, we sug-gest a simple scheme for optimising loops over arraysusing code motion. Consider the fragment of code inFigure 7 after bounds checking code has been added ina simple-minded way. In Figure 8 we have made thepointer-to-object conversion explicit by inlining part ofthe procedure call.7

int a[10], i;for (i = 0; i < 10; ++i)/* This is the code substitution for `a[i] = i;' */*(int*)bounds check array reference(a, i, sizeof(int), ...) = i;Figure 7: Code after simple-minded substitution of achecking function.int a[10], i;for (i = 0; i < 10; ++i)f object *obj = bounds �nd object (a);if (obj && obj->base <= &a[i]&& &a[i] < obj->extent)a[i] = i;else/* throw a bounds error and exit */gFigure 8: Code after partially inlining the checkingfunction.Clearly the call to do the pointer-to-object conver-sion (bounds find object) should be moved outsidethe loop in the code motion phase of the optimiser.An e�cient compiler would then be able to removethe bounds checking tests (obj->base <= &a[i] and&a[i] < obj->extent) entirely and replace them withtwo tests outside the loop.This may be done if there is a way to specify thatthe call is a constant function (ie. has the same returnvalue when called multiple times) provided that objectsare not added or deleted in between calls. GCC does notprovide a way to encapsulate this subtlety, and so ourimplementation does not yet make this optimisation.Loops which iterate through arrays using pointers(instead of incrementing an array subscript as above)are more di�cult: bounds find object will be ap-plied to the pointer, which is not loop invariant. Herea more specialised optimisation for induction variablesshould help.5.3 Di�culties optimising loops over linkedstructuresLoops over linked lists, tree structures and the like pro-vide a greater challenge. We were not able to devise ane�cient method of optimising loops that traverse linkeddata structures, although the splay tree we used to im-plement the object table will tend to cache frequentlyused objects like the elements in the list near the top.

6 EvaluationWe have used the modi�ed compiler to recompile a widevariety of applications software. In this section we re-view our experience with reference to some substan-tial and freely-available C programs. We comment onthe problems we encountered, the e�ectiveness of thescheme in �nding errors, and the performance of the re-sulting code with bounds checking enabled for the entireprogram (excluding libraries).We compiled the scripting and GUI language Tcl/Tk[9]in its entirety (around 120,000 lines of code). We made11 changes to the source code (see table 4).no. of instancesContravening ANSI standard bypointing to negative array o�sets. 2Fixing pointer nasties, such asadding o�sets to NULL pointers. 3Using pointers that refer to objectsfreed in a realloc. 2Changes to support goto restric-tion caused by using C++ con-structor and destructor mecha-nism. 4Table 4: Changes made to the source of Tcl/Tk.The resulting interpreter ran all the Tk demos cor-rectly, although noticably more slowly than withoutchecking. The interactive scripts were still quite usableand responsive, but the authors would not recommendusing bounds checking in production code until the fur-ther optimisations suggested above have been made.We also compiledGhostscript, a freeware PostScriptTMinterpreter. We needed to �x the non{ANSI imple-mentation of stacks that Ghostscript uses (it initial-izes pointers to the {1 element of each stack), but thechanges involved were relatively minor, and the pro-gram ran without error. Again, there was a noticableslowdown when drawing complex graphical images, butthe program was by no means unusable.GCC itself compiles with the bounds checking patches.Unfortunately, GCC makes extensive use of obstacks,which are large singly{allocated areas of memory thatmay contain many variable{sized objects. Since thebounds checking library treats these areas of memoryas single objects, simple bounds errors between the el-ementary objects contained inside are not detected. Inhindsight, we should have modi�ed GCC's obstack li-8

brary very slightly to interact correctly with the boundschecking library (by allocating and deleting the simpleobjects explicitly).MicroEMACS, a simple text editor that has beenported and used widely, actually has bounds errors whichthis program picked up immediately.Although it is possible to construct programs thatperform very badly indeed when bounds checking isadded | such as programs that solely iterate over longlinked lists, doing almost no work at each node | realprograms are for the most part quite usable. Never-theless, a good implementation of this technique mustconsider optimisation issues very carefully. It is un-likely that we could ever achieve the 10{15% perfor-mance loss that would be acceptable if programs areto be distributed with bounds checks compiled in. Inpractice, most programs showed a 5{6 times slowdown,which is comparable to other commercial bounds check-ing packages.Fischer and Patil [10, 11] provide interesting evi-dence for the practical importance of checking pointersare used to refer only to the intended referent, comparedwith the checking provided by tools such as Purify.7 Further workWe plan to investigate optimisation techniques further,and when we have done so we will present benchmarkperformance comparisons. While we hope to achievefairly good performance using conventional data owanalysis as described earlier, there is also scope for inter-procedural optimisation, and ultimately it may be pos-sible to validate non-trivial examples at compile-time,using, for example, partial evaluation [2].The range query lookup on which checking is basedis critical to performance, and there is scope for exper-imental work to tune our splay tree approach and tostudy alternatives.There remain some loopholes in our checker. Themost serious in practice is that it is possible to manu-facture erroneous pointers using unions, casts and uni-tialised data. At considerable performance cost, wecould maintain a shadow of the accessible store, indi-cating whether it has been initialised and whether it isa pointer. There is scope for optimisation, and doing sowould be a substantial project.8 Summary and conclusionsWe have shown how bounds checking can be providedin a convenient form, with recompilation con�ned tothe �les where problems are suspected. The executiontime penalty for code compiled with bounds checking

enabled is substantial, but in many cases this can bealleviated by optimisation, and this is the most press-ing direction for further enhancements. The techniquehas been applied to a wide variety of C programs withgenerally good results.Acknowledgements Wewould like to acknowledgethe helpful comments of our anonymous referees.References[1] American National Standard for Information Sys-tems. Programming language C. Technical ReportANSI X3.159-1989, ANSI Inc., New York, USA,1990.[2] L.O. Andersen. Program Analysis and Specializa-tion for the C Programming Language. PhD thesis,DIKU, University of Copenhagen, Denmark, 1994.DIKU Research Report 94/19.[3] D.Clark. Splay trees. Dr. Dobb's Journal, page56�, December 1992.[4] D.D.Sleator and R.E.Tarjan. Self-adjusting binarysearch trees. Journal of the ACM, 32:652{686,1985.[5] D.W.Flater, Y.Yesha, and E.K.Park. Extensionsto the C programming language for enhanced faultdetection. Software { Practice and Experience,23(6):617{628, June 1993.[6] R. Hastings and B. Joyce. Purify: fast detectionof memory leaks and access errors. In Proceedingsof the Winter USENIX Conference, pages 125{136,1992.[7] J.L.Ste�en. Adding run{time checking to theportable C compiler. Software { Practice and Ex-perience, 22(4):305{316, 1992.[8] M.V.Zelkowitz, P.R. McMullin, K.R.Merkel, andH.J.Larsen. Error checking with pointer variables.In Proceedings of the 1976 ACM National Confer-ence. ACM, New York, USA, 1976.[9] John Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.[10] Harish Patil and Charles Fischer. Low-cost, con-current checking of pointer and array accesses inC programs. In 2nd International Workshop onAutomated and Algorithmic Debugging (AADE-BUG'95), St Malo, France, May 1995.9

[11] Harish Patil and Charles Fischer. Low-cost, con-current checking of pointer and array accesses in Cprograms. Software Practice and Experience, 1996.[12] R.W.M.Jones. Bounds checking patches for theGNU C compiler. Available via the world-wide web from http://www-dse.doc.ic.ac.uk/-�rj3/bounds-checking.html and via anonymousftp fromftp://dse.doc.ic.ac.uk/pub/misc/bcc.[13] S.C.Kendall. Bcc: run{time checking for C pro-grams. In USENIX Toronto 1983 Summer Con-ference Proceedings. USENIX Association, El. Cer-rito, California, USA, 1983.[14] S.Kaufer, R.Lopez, and S.Pratap. Saber{C: aninterpreter{based programming environment forthe C language. In USENIX San Francisco 1988Summer Conference Proceedings. USENIX Associ-ation, El. Cerrito, California, USA, 1988.

10

Appendix: ExamplesThis appendix presents a number of small examples which illustrate the technique's power and limitations.Basic example illustrating simple bounds checking#include <stdio.h>void main() fchar A[10]=f'1','2','3','4','5','6','7','8','9'g;char B[10]=f'a','b','c','d','e','f','g','h','i'g;char *p = A;while(1)putchar(*p++);gOutput from the bounds-checking run-time system:ShowItWorks.c:10:Bounds error: attempt to reference memory overrunning the end of an object.ShowItWorks.c:10: Pointer value: 0xe��ae2ShowItWorks.c:10: Object `A':ShowItWorks.c:10: Address in memory: 0xe��ad8 .. 0xe��ae1ShowItWorks.c:10: Size: 10 bytesShowItWorks.c:10: Element size: 1 bytesShowItWorks.c:10: Number of elements: 10ShowItWorks.c:10: Created at: ShowItWorks.c, line 6ShowItWorks.c:10: Storage class: stack123456789Simple example showing A[N] is a valid pointer/* A pointer is allowed to refer to the byte after the object from which it* is derived. The array is padded by one byte, if necessary, so that this* is distinguishable from an illegal operation.*/#include <stdio.h>main()f int a[10], *p;/* Initialize array `a' to 0. */for (p = &a[0]; p < &a[10]; p++)*p = 0;/* Now `p' points to &a[10], which is a valid address, but if we* try to use it, we'll get an error.*/ 11

��p = 1; / OK => sets a[9] to 1 */*++p = 1; /* Bounds error => tries to set a[10] to 1 */gOutput from the bounds-checking run-time system:OneBeyondArrayBounds.c:20:Bounds error: attempt to reference memory overrunning the end of an object.OneBeyondArrayBounds.c:20: Pointer value: 0xe��ae0OneBeyondArrayBounds.c:20: Object `a':OneBeyondArrayBounds.c:20: Address in memory: 0xe��ab8 .. 0xe��adfOneBeyondArrayBounds.c:20: Size: 40 bytesOneBeyondArrayBounds.c:20: Element size: 4 bytesOneBeyondArrayBounds.c:20: Number of elements: 10OneBeyondArrayBounds.c:20: Created at: OneBeyondArrayBounds.c, line 10OneBeyondArrayBounds.c:20: Storage class: stackChecking of out-of-range automatics#include <stdio.h>char *G;void f() fchar A[10]=f'1','2','3','4','5','6','7','8','9'g;G = A+3;gvoid main() ff();putchar(*G);gIn this example, the global variable G is used to capture a pointer into a stack-allocated array. The pointer is invalidafter the function f has returned. Output from the bounds-checking run-time system:OutOfRangeAutomatics.c:16:Bounds warning: unchecked stack object used at address 0xb��6ef.*/Arrays within structures are not checkedstruct fint obj1 [10];int obj2 [10];g s; 12

main() fint i;for (i = 0; i < 20; ++i)s.obj1[i] = i; /* no bounds error; reference is within allocation object */gThis example illustrates a limitation on bounds checking as we have de�ned it. The variable s consists of a singlestorage object, and the bounds checking does not verify that its use is consistent with the type declaration. To do sowould considerably add to the system's complexity, but, more importantly, would lead to false reports in situationswhere casts are used quite legitimately.Arrays within arrays are not checked/* Abuse of subarrays of a multidimensional array cannot be checked.*/int i;double a[10][10];main() ffor (i = 0; i < 20; ++i)a[0][i] = i; /* No bounds error; reference is within allocation object */gAs in the previous example, the array a consists of a single object, and bounds errors are reported only when areference outside the whole array is derived.Pointer to unchecked object passed to checked code/* In �le `unchecked.c' ...*/int *unchecked fn (void)f static int a[10];return a;g/* In �le `checked.c' ...*/extern int *unchecked fn (void);int main ()f int *a = unchecked fn (), i;for (i = 0; i < 20; ++i)a[i] = i; /* No bounds error. */g 13

When the variable a is used, it is found to have no corresponding object table entry. Although a warning can beissued here, it is not necessarily an error since the pointer may have been imported from an unchecked module (Notethat this problem can be overcome by adding the object to the object tree by hand, usingbounds note constructed object (...);).Correct inter-operation with non-trivial system calls/* Example to show interworking with system calls etc (under SunOS 4.1).** Allocate a 3-page region, set VM protection to disallow access, install a handler to* catch the resulting faults, re-enable access and continue. Loop runs over end of region.*/#include <stdio.h>#include <signal.h>#include <sys/mman.h>char *region;int pagesize;void SEGVHandler(sig, code, scp, addr)int sig, code; struct sigcontext *scp; char *addr;f /* Reinstate the page in question */char *pagebase = (char *)((int)addr / pagesize * pagesize);mprotect(pagebase, pagesize, PROT READ j PROT WRITE);/* Now we should return and restart the faulting instruction */gvoid main() fchar *p;signal(SIGSEGV, SEGVHandler);pagesize = getpagesize();region = valloc(pagesize*3);mprotect(region, pagesize*3, PROT NONE);for (p = region; p<=®ion[pagesize*3]; p+=pagesize)*p = 'p';gOutput from the bounds-checking run-time system:Signals.c:27:Bounds error: attempt to reference memory overrunning the end of an object.Signals.c:27: Pointer value: 0x23000Signals.c:27: Object `(unnamed)':Signals.c:27: Address in memory: 0x20000 .. 0x22�fSignals.c:27: Size: 12288 bytesSignals.c:27: Element size: 1 bytesSignals.c:27: Number of elements: 12288Signals.c:27: Storage class: heapThis example is intended to demonstrate that bounds checking can be used even in quite sophisticated contextswith subtle inter-operation with the operating system. Although the actions of the system calls themselves are notchecked (of course they could be), the fault address addr passed to the signal handler is checkable with no specialarrangement. 14

