Adaptive Proxies: Handling Widely-Shared Data
in Shared-Memory Multiprocessors

Sarah A. M. Talbot Paul H. J. Kelly

Department of Computing, Imperial College of Science, Technology and Medicine,
180 Queen’s Gate, London SW7 2BZ, United Kingdom

Abstract. A performance bottleneck arises in distributed shared-mem-
ory multiprocessors when there are many simultaneous requests for the
same data. One architectural solution is to distribute read requests to
nodes other than the home node: these other nodes act as intermediaries
(i.e. proxies) in obtaining the data, and combine requests for the same
data. Adaptive proxies use proxying during the proxying period, which
varies depending on the level of run-time congestion. Simulation results
show that adaptive proxies give performance improvements for all our
benchmark applications.

1 Introduction

In a cache-coherent non-uniform access (cc-NUMA) shared-memory multipro-
cessor, remote access to each processor’s memory and local cache is managed by
a “node controller”. In large configurations, unfortunate ownership migration or
home allocations can lead to the concentration of requests for data at particu-
lar nodes. This results in the performance being limited by the service rate or
“occupancy” of an individual node controller [3].

In this paper we present an adaptive proxy cache coherency protocol, which
alleviates contention for widely-shared data, and can do so without adversely
affecting any of the applications we have simulated. The adaptive proxy scheme
requires no modification or annotation to the application code. The additional
protocol complexity and hardware requirements are small: proxying could prob-
ably be added to a typical firmware node controller with no hardware change. In
our earlier work on proxies, any data obtained by a node acting as a proxy was
cached in the processor’s second level cache [7]. This was done deliberately to
increase the combining effect, i.e. further read requests for that data can be sat-
isfied at the proxy. However, the drawbacks include increased sharing list length,
cache pollution, and delays to the local processor and node controller processing.
The results in this paper include two new caching options: not caching proxy
data, and using a separate buffer for proxy data (with access latencies the same
as for accessing DRAM).

The rest of the paper is structured as follows: Section 2 introduces adaptive
proxies. Our simulated architecture and experimental design are outlined in Sec-
tion 3. The results of execution-driven simulations for a set of eight benchmark
programs are presented in Section 4. Finally, in Section 5, we summarise our
conclusions and give pointers to further work.

o o oflo o o

o o o o o o Q o
o 0O O O O o 9O o

o
o
o
o
o
o
"Q
o

oo o

(a) Without proxies (b) With two proxy clusters (c) Read next data line
(read data line I) (read data line [+ 1)

Fig. 1. Contention is reduced by routing reads via a proxy

2 Adaptive Proxies

In the proxy scheme, a processor issuing a read request for remote data sends the
request message to another node, which is known to act as a proxy for that data
line, rather than going directly to the data line’s home node [7]. The number of
proxy clusters (NPC) is 2 in the example shown in Fig. 1, i.e. each processing
node has been allocated to one of two sets (this can be done on the basis of net-
work locality). Home node congestion is the run-time trigger for using proxies.
In large-scale systems it is impractical to provide enough buffering at each node
to hold all the incoming messages, and a commonly adopted strategy handles a
read-request that reaches a full buffer by sending a negative acknowledgement
(a NAK) back to the requester. The results for reactive proxies were encourag-
ing [7], but the scheme suffered from incurring the delay (before the NAK arrives
to signal that a proxy read request is needed) each time data is required from a
congested home node.

Adaptive proxies use the arrival of a NAK’d read-request message to trigger
the start of a proxy-period, i.e. a time during which any further read-request
messages destined for the home node are replaced with proxy-read-request
messages. The proxy-period is modified according to the level of NAKs, using
a random walk policy [1]. The probability of a NAK (from a particular home
node) occurring within an upper time limit of the last NAK (from that home)
is high if the last “inter-NAK” period was less than the upper time limit.

The adaptive proxy policy is controlled by the following parameters: current
time Teypr, PPynit is one unit of proxy-period time (set to 1000 cycles), PP aqe
is the maximum proxy-period (set to 50), PP,y is the minimum proxy-period
(set to 1). Each node controller z is extended with two vectors: LB, , gives for
each remote node y the time at which the last (NAK) message was received at
client node z from node y, and PP, ,) maintains the current proxy-period for
reads by this client z to each remote node y. The arrival at client node z of a
NAK from home node y will trigger the adjustment of PP, ,) as follows:

PP,y = min(PPpag, PPy)+ 1) if (Teurr — LB(4,4)) < (PPunit X PPpaz)

max(PPyin, PP, — 1) otherwise

The choice of suitable values for PP, 42, PPnin, and PP,,;; depends on the
architecture, and the values used in this paper were selected after experiments

with a range of values. To decide whether proxying is appropriate, there has to
be an extra check before each read-request is issued by a client z to a home
node y:
if [LB(x7y) > 0] and [(Pp(x7y) X P-Punit) > (Tcurr - LB(am/))]
then send a proxy-read-request,
otherwise send a normal read-request.

3 Simulated Architecture and Experimental Design

The cc-NUMA design which is simulated for this work has already been described
in [7], so this section concentrates on the changes required to support adaptive
proxies and alternative strategies for caching proxied data. The caches are kept
coherent using an invalidation-based, distributed directory protocol using singly-
linked lists [9]. The benchmark applications are summarised in Table 1. GE
implements a Gaussian Elimination algorithm [2]. CFD is a computational fluid
dynamics application modelling laminar flow [8]. The remaining six applications
were taken from Stanford’s SPLASH-2 suite [10].

The adaptive proxies scheme adjusts the proxying period according to the
level of congestion at individual home nodes. However it has the storage over-
heads of holding the LB(967Z/)’ Pp(x,y)a PP,,it, PP, and PP,,;, values at each
node. There are also the processing overheads of adjusting PP, ,, and checking
before issuing each remote read-request.

Implementing a separate proxy buffer would require a node controller which
is capable of using a small area of the local memory for its own purposes (e.g. [4]),
or which has some dedicated storage within the node controller (similar to [5]).

4 Experimental Results

This section presents the results obtained from execution-driven simulations of
the adaptive proxy strategy using the three proxy data caching policies'. The re-
sults are summarised in Table 2, and are presented in terms of relative speedup,
i.e. the ratio of the execution time for the fastest algorithm running on one pro-
cessor to the execution time on P processors. For proxy caching in the SLC, the
read-requests benefit from being spread around the system during the proxying
period. However the scheme suffers from over-using proxies for the Ocean-Contig
application (cache pollution and too large a value for PP,,;), and so has no
overall balance point for the eight benchmark applications®. The GE application
exhibits some bottleneck problems when N"PC=1&2, where proxy messages are
sent to an already congested node, leading to a rise in overall queueing delay
(although this is compensated for by the gains at other nodes).

The non-caching proxy policy results show that the proxying technique is still
effective even when the opportunities for combining are restricted. The balance
point at N"PC=1 occurs both because the chances of combining are greatest

! A detailed analysis of the simulation results can be found in [6].
2 A balance point is where the partition into N"PC proxy clusters results in improved
performance for all eight benchmark applications.

Table 1. Benchmark applications

|application|problem size||application |problem size |
Barnes 16K particles ||GE 512 x 512 matrix
CFD 64 x 64 grid ||Ocean-Contig 258 x 258 ocean
FFT 64K points Ocean-Non-Contig|258 x 258 ocean
FMM 8K particles ||Water-Nsq 512 molecules

(since there is only one proxy node for a given data line), and because the
Ocean-Contig application is able to benefit from the reduced cache pollution.

With a separate proxy buffer, there are three balance points, at NPC=2,6,&7.
The proxy buffer technique avoids the cache interference patterns seen with SLC
caching for Barnes and Ocean-Non-Contig, while keeping most of the benefits of
combining (unlike the non-caching approach). Ocean-Non-Contig in particular,
which has poor data locality, benefits from the reduction in SLC cache pollution
and the combining of proxy read requests. The results for Ocean-Contig high-
light a subtle side-effect of using proxies. For values of N"PC> 1 the performance
is determined by the effect of the use of proxies on the overall barrier delay. The
changes in barrier delay result from redistributing messages to proxy nodes and
the delays experienced by other messages queueing for service at proxy nodes.

Overall the adaptive proxy scheme gets the best performance with the sep-
arate proxy buffer, obtaining balance points at NPC=2,6&7. A balance point
is more desirable than a value of N"PC which gives the best result for a spe-
cific application because we aim to get reasonable performance for a wide range
of applications without the need to tune applications to suit the system. How-
ever, the no-proxy-caching strategy (when N’PC=1 to maximise combining) is a
reasonable solution where it is not possible to have proxy buffers.

5 Conclusions and Further Work

This paper has proposed adaptive proxies to alleviate the performance problems
arising from read accesses to widely-shared data. The simulation results show
that adaptive proxies (with a separate proxy buffer or with no-cache-proxies)
give stable performance, allow the programmer to write portable applications
which are less “architecture specific”, and save on performance tuning because
the widely-shared data access bottleneck is dealt with automatically. To evaluate
the commercial viability of adaptive proxies it would be necessary to investigate
the performance effects of commercial workloads. Further work is also needed
to assess the impact of different network topologies and processor cluster nodes,
and alternative implementations of the proxy buffer.

Acknowledgements

This work was funded by the U.K. Engineering and Physical Sciences Research
Council through a Research Studentship. We would also like to thank Ashley
Saulsbury and Andrew Bennett for their work on the ALITE simulator.

Table 2. Benchmark relative speedups with a separate proxy buffer (64 processors)

relative proxy % change in execution time (4 is better,
application speedup |[caching — is worse) for NPC = 1 to 8
no proxiesmethod| 1 [2 [3 [4 [5 [6 [7 [8

Barnes 46.3 none +0.4 | +3.7| 0.0 0.0 {40.5|+40.3 [4+0.1 [4-0.2

SLC +0.1|+3.2|40.4 | +0.4 | 40.4 | +0.2 | -0.1 | 4+0.2

buffer 0.0 | +3.3|40.4|40.2|40.2|+40.2 |+0.4 | +0.4

CFD 28.3 none |+12.9|4+13.7|+13.6|+12.7(4+12.9(413.5|412.7(4+12.5

SLC +9.2 |+13.1{+11.3{+11.6{+11.2(410.4|4+10.6{+12.1

buffer | +9.4|49.4|+49.0 [+12.5(410.7(4+10.8|4+10.5(+12.7

FFT 47.3 none |+11.7|4+11.2|+11.3{+11.4{411.3{4+11.1{411.2(410.8

SLC |+11.9|4+11.6|+11.3|+11.4{4+11.2{4+11.5|4+11.0{4+11.0

buffer |+11.9|4+11.9{411.6{4+11.8{4+11.4|4+11.4|411.0|4+10.8

FMM 52.4 none +0.4 | 4+0.4 | 40.5| 4+0.4 | +0.4 | +-0.4 | +0.4 | +-0.4

SLC +0.4|+0.4 | 40.4 | +0.4 | 40.4 | +-0.5 | +0.4 | +-0.4

buffer | +0.4|+0.3|+04|+4+04|+0.5|+04|+0.4|40.4

GE 21.6 none |+430.3|4-30.5|+31.4|4-31.0{431.3|431.3|431.0{431.0

SLC [+30.5|+30.7|+31.4|+31.2|+31.7|+31.6(+31.4[+31.6

buffer |430.7|430.9{431.8{431.3|431.8{431.8|431.5|4+31.7

Ocean-Contig 49.7 none |+3.2|40.5|-1.0 | -2.3 | 0.0 | -2.6 | -0.1 | -1.1

SLC -1.3 | -2.8 | -6.1 | -3.5 | -1.4 | -3.6 | -0.4 | -3.6

buffer | -2.4 | +1.5| -1.5 | -6.8 | -0.2 | +1.9 | 4+0.8 | -0.7

Ocean-Non-Contig 48.2 none |+0.5| -3.6 | +4.4|-11.3 | +3.7 | +4.7 | +7.4 | +3.3

SLC +78|476]| -6.3 | +2.0|+4.1|+4+6.6 | -8.3 | -1.5

buffer | +4.5|+6.5|+5.8 | +2.3| -0.2 | +3.0 | 3.7 | +6.8

Water-Nsq 55.3 none +0.2 | 4+0.2 | +0.2 | 40.2 | 40.2 | +-0.2 [0.1 | 4+-0.2

SLC +0.2 | 4+0.2 | +0.2 [40.2 | 40.2 | +-0.2 [4+0.2 | 4-0.2

buffer | 4+0.2|40.2|+40.2 |40.2 | 40.2 | 4+0.2 | +0.2 | 40.2

References

1.

10.

Craig Anderson and Anna R. Karlin. Two adaptive hybrid cache coherency pro-
tocols. In the 2nd HPCA, San Jose, California, pages 303-313, February 1996.

. Satish Chandra et al. Where is time spent in message-passing and shared-memory

programs? 6th ASPLOS, in SIGPLAN Notices, 29(11):61-73, October 1994.
Chris Holt et al. The effects of latency, occupancy and bandwidth in distributed
shared memory multiprocessors. Technical Report CSL-TR-95-660, Computer Sys-
tems Laboratory, Stanford University, January 1995.

Jeffrey Kuskin. The FLASH Multiprocessor: designing a flexible and scalable sys-
tem. PhD thesis, Computer Systems Laboratory, Stanford University, November
1997. Also available as technical report CSL-TR-97-744.

Maged Michael and Ashwini Nanda. Design and performance of directory caches
for scalable shared memory multiprocessors. In the 5th HPCA, Orlando, pages
142-151, January 1999.

Sarah A. M. Talbot. Shared-Memory Multiprocessors with Stable Performance.
PhD thesis, Department of Computing, Imperial College, London, June 1999.
Available on-line from http://www.doc.ic.ac.uk/ samt/pub.html.

Sarah A. M. Talbot and Paul H. J. Kelly. Reactive proxies: a flexible protocol
extension to reduce ccNUMA node controller contention. In Euro-Par 98, volume
1470 of LNCS, pages 1062-1075. Springer-Verlag, September 1998.

. B. A. Tanyi. Iterative Solution of the Incompressible Navier-Stokes Equations on

a Distributed Memory Parallel Computer. PhD thesis, UMIST, 1993.

. Manu Thapar and Bruce Delagi. Stanford distributed-directory protocol. IEEFE

Computer, 23(6):78-80, June 1990.

Steven Cameron Woo et al. The SPLASH-2 programs: characterization and
methodological considerations. 22nd ISCA, in Computer Architecture News,
23(2):24-36, 1995.

