Contents

Preface

1 Introduction

1.1
1.2
1.3
1.4

Functional programming
Loosely-coupled multiprocessors
Neighbour-coupled multiprocessors
Areader’sguide L

2 Functional Programming

2.1
2.2

2.3
2.4

2.5

2.6

The programming language
Equationso
2.2.1 Types and Type Checking
2.2.2 Block structure: where clauses
2.2.3 Thelayoutrule
2.2.4 Reduction
2.2.5 Pattern matching and reduction order
2.2.6 More definitions to think about
2.2.7 Recurrences
2.2.8 Vectors and matrices L
Equational Reasoningo o
Partial functions and partial data structures
2.4.1 Strictness
2.4.2 Recursion
2.4.3 Partial data structures
Induction
2.5.1 Computational induction
2.5.2 Admissible predicates L
2.5.3 Partial structural induction oL
2.5.4 Total structural induction,
2.5.5 Recursion induction Lo
Why Functional Languages?
2.6.1 Referential Transparency
2.6.2 Higher-Order Functions
2.6.3 Polymorphic Type Checking
2.6.4 Declarative Completeness

vii

W N DN = -

2.7 Why Not Functional Languages? 41

2.7.1 Lack of Expressive Power., 41
2.7.2 Lack of Abstractive Power. 42
2.7.3 Performance 42
2.7.4 The update problem Lo 42
2.8 SUMMATY 43
2.9 Pointers into the literatureo 43
Sequential and Parallel Implementation Techniques 49
3.1 An Overview of Compilation 49
3.1.1 Typechecking 50
3.1.2 Simplification 50
3.1.3 Removal of pattern matching 51
3.1.4 Variable abstraction 53
3.1.5 Strictness analysiso 54
3.1.6 Boxing analysis Lo %)
3.1.7 Code generation Lo 56
3.1.8 A simple code generator D7
3.1.9 Garbage collection Lo 65
3.2 Parallel graph reduction oo 65
3.2.1 Processes 65
3.2.2 Partitioning 66
3.2.3 Loosely-coupled parallel graph reduction machines 67
3.2.4 Neighbour-coupled parallel graph reduction machines 68
3.3 Conclusion e 68
3.4 Pointers into the literatureo 68
Specifying and Deriving Parallel Algorithms 75
4.1 Horizontal and vertical parallelism. 75
4.2 Divide-and-conquer parallelism 76
4.2.1 Divide-and-conquer examples 77
4.3 Pipeline parallelism 84
4.3.1 Cyeclic process networks 85
4.4 The Kahn principle 88
4.5 Parameter-dependent process networks L. 91
4.5.1 Example: ray intersection test 92
4.6 Infinite process networks L o 96
4.6.1 Example: generating primes using Eratosthenes’ sieve 96
4.7 Process networks as hardware descriptions 96
4.7.1 Primitives for hardware description 97
4.7.2 Example: Adder 100
4.7.3 Functional hardware description languages 102
4.8 Divide-and-conquer using a process network 104
4.8.1 Operation of the cyclic divide-and-conquer program 105
4.8.2 Derivation of the cyclic divide-and-conquer program 106

i

4.9 Application to ray tracing 111

4.9.1 An introduction to ray-tracing 111
4.9.2 A simple divide-and-conquer ray tracer 112
4.9.3 Transformation to a cyclic stream definition 114
4.9.4 Exploiting pipeline parallelism in the cycle 116
4.9.5 Using pixel-wise parallelism 116
4.10 Conclusions e 118
4.11 Pointers into the literature L. 118
Distributed Parallel Functional Programming 123
5.1 Communication patterns 123
5.1.1 The speed-up of a sequential multiprocessor 124
5.1.2 The ray intersection test example 124
5.1.3 Is this programming? 125
5.2 Declarative descriptions of process networks 126
5.2.1 A process network language L. 127
5.2.2 A shorthand for naming processes 128
5.2.3 Abstracting process networks 128
5.2.4 A second abstraction mechanism 0L L. 130
5.2.5 Simplification rules oL Lo 131
5.2.6 An example of simplification 132
5.2.7 Some examples where simplification fails 136
5.3 Some examples L 137
5.3.1 Example: the square root pipeline 137
5.3.2 Bundling: a partitioning technique 140
5.3.3 Example: local neighbourhood operations 141
5.4 Implementation of static network programs 146
5.4.1 Compiler structure L 147
5.4.2 When does communication occur? 147
5.4.3 Channels: the implementation of communication. 148
5.4.4 Proto-channels, channel creation and channel deletion 149
5.4.5 Representation of stream elements. 149
5.4.6 Multitasking 150
5.4.7 Communications optimisations. 151
5.5 A simple guide to the effect ofarco 151
5.6 Semi-static process networks L 153
5.7 Dynamic process networkso Lo 154
5.8 Related Worko 155
5.8.1 Occam e 155
5.8.2 “Para-Functional” Programming 156
583 Flo . . . o 157
5.8.4 Graph Grammar-based Specification of Interconnection Structures . 157
5.9 Future Research 158
5.10 Pointers into the literature L. 158

iii

6 Epilogue

A Proofs and Derivations

A.1 ListToTree and TreeTolList, simple versions
A.1.1 Removing the inefficiency
A.2 ListToTree and TreeTolist, shuffled versions

A.3 Turning recurrences into cyclic networks

A.4 The ray-tracer pipeline . .

A.5 The sieve of Eratosthenes

A.6 Transforming divide-and-conquer intoacycle.
A.6.1 Introducing an intermediate tree L.
A.6.2 The breadth-first tree—stream interconversion
A.6.3 Verifying the cyclic definition

B Common Definitions

B.1 Symbols
B.2 Types
B.3 Functions

C Programming in a real functional language

C.1 Differences from Miranda .
C.1.1 Examples

C.2 Reasons for the differences
Bibliography

Index

iv

163

165
165
168
171
174
178
182
184
184
186
191

197
197
198
200

219
220
221
222

224

238

List of Figures

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
0.2
5.3

Pipelining and horizontal parallelism 85
A cyclic process network to calculate the Fibonacci numbers 87
A cyclic process network applying the Newton Raphson method 89
A cyclic network with labelled arcs 90
The untransformed parallel ray intersection test 93
The transformed, pipeline-parallel ray intersection test 95
Some steps in the evaluation of the primes sieve 97
A three-bit adder circuit L 104
Sketch of the cyclic pipeline formulation of divide-and-conquer 106
A four-element cyclic graph 126
The expanded process network 132
The process network for example x 152

Dedicated with much love to Clarissa Joyce Stevenson.

vi

Preface

A history of this book

This book describes research work done at Westfield College, King’s College and Imperial
College, all in the University of London. The work was begun in about 1985, and its first
written incarnation was as the author’s Ph.D. thesis of the same title, examined at the
end of 1987. This version is a complete rewrite. It covers the same research material, but
is more introductory in nature. The literature review chapters which make Ph.D. theses
so turgid has been shortened and relegated to “Pointers to the Literature” sections at the
end of each major chapter.

The thesis was written under the guidance of two supervisors, both of whom I can
count as good friends. Hugh Glaser was the ideal supervisor to the beginning research
student, being a continuous source of ideas while always encouraging me to follow my own.
In the diaspora that accompanied the destruction of the Department of Computer Science
at Westfield College, Hugh left to manage the Flagship project at Imperial College, and
Peter Osmon (now Professor of Computer Systems at City University) bravely stepped
in as I started to write up. Peter’s influence is present on almost every page—he has a
special talent to help clarify one’s ideas by demanding a special attention to explanations.
Hugh has since moved on to Southampton University.

Chris Hankin, also originally at Westfield College but now at Imperial College, must
take the credit for much of my more profound understanding of much of the material.
He also played no small part in providing a stimulating environment at Imperial College
where much of the thesis and book were written. Special thanks must go to Chris for
being so understanding when the book got in the way of work I should have been doing
for him.

Acknowledgements and thanks

More than most, this work is the fruit of many collaborations and conversations. Some
quite brief discussions have had a profound influence on the nature and presentation of
material presented herein. Individuals deserving particular recognition include

Paul Anderson (City University)
David Bolton (City University)
Simon Croft (King’s College London)

John Darlington (Imperial College)

vii

Tony Field (Imperial College)

Sean Hayes (Hewlett Packard, Bristol)

David Holburn (Cambridge University)

Sebastian Hunt (Imperial College)

Simon Hughes (Imperial College)

Lee McLoughlin (Imperial College)

Laurence Pearl (Cancer Research Institute, Royal Marsden Hospital)
Mike Reeve (Imperial College)

Malcolm Shute (Middlesex Polytechnic)

Andrew Smith (King’s College London)

Gil Thornhill (Dept. of Civil Engineering, City University)
David Till (King’s College London)

Paul Williams (AI Limited, Watford, UK)

Gil Thornhill showed astonishing tolerance during the less sociable periods of this book’s
creation, and made an excellent “typical reader” against whom to test my explanations.
Sebastian Hunt was very helpful in giving Chapter 2 a theoretical once-over. Paul Williams
contributed a great deal to the details of Chapter 5 in preparation for the work he did for
his master’s dissertation [Wil88]. Tony Field was responsible for checking the structure
and progress of the book, and has made a fine job of proof-reading it. Finally, many thanks
to Donald Knuth, Leslie Lamport, Richard Stallman and the Free Software Foundation
for the use of their their software systems TEX, IATpX and GNU Emacs.

My apologies must go to all those—especially Judy, Rebecca and Wayne and my
family—whom I have neglected in writing this book. T dread the thought that you might
read it and decide whether it’s all been worthwhile!

Funding

The beginnings of this work were funded by an SERC Research Studentship. It was
completed with the help of the COBWEB project, funded by the UK Alvey Programme
(with thanks to Chris Hankin), other Alvey Programme funding (with thanks to John
Darlington), and the Department of Computing, Imperial College.

Jokes

There are no jokes in this book.

viii

Chapter 1

Introduction

The two aims, on the one hand for highly-parallel hardware, and on the other for easy
and speedy creation of high-quality software, are seen by many to be directly antithetic.
J.P. Eckert wrote, when arguing for parallel data transfer and arithmetic in computers of
EDVAC’s generation, that

The arguments for parallel operation are only valid provided one applies them
to the steps which the built in or wired in programming of the machine oper-
ates. Any steps which are controlled by the operator, who sets up the machine,
should be set up only in a serial fashion. It has been shown over and over
again that any departure from this procedure results in a system which is far
too complicated to use [Eck46].

The quest to overturn this wisdom, which had been learned “over and over again” in
1946, has occupied a large portion of the computer science community since then. Why
is parallel programming difficult?

e Performance: The performance of a parallel program is difficult to optimise—
counting the number of instructions is no longer good enough, because some of the
instructions may be executed simultaneously.

e Portability: There are many more ways in which two parallel computers may differ,
and these can mean that quite different algorithms are suitable for different target
architectures.

e Determinacy: The order of events during parallel program execution is almost
always indeterminate. The program’s output is determinate only if it is written
carefully.

All of these problems do arise to some extent when programming sequential computers,
but in the general case of parallel computing they are epidemic.

1.1 Functional programming

The main subject of this book is the interesting and powerful class of functional pro-
gramming languages. The reason for choosing such a language is the ease with which

such programs can be manipulated algebraically, and the bulk of the book is devoted to
introducing and demonstrating this in action.

It is through algebraic manipulation of programs that the problems of parallel pro-
gramming are addressed. We retreat from the hope that a single program will serve for
all the different parallel computers we might wish to use, and instead begin with a single
specifying program. Versions for different target architectures can then be derived by the
application of a toolbox of mathematical transformations to the specification, leading to
versions tuned to the various machine structures available. The transformation pathways
can then be re-used when modifications to the specification are made.

1.2 Loosely-coupled multiprocessors

Parallel programming is much simplified if we can assume that interprocessor commu-
nication is very efficient, as in a shared memory multiprocessor. This book is about
programming a much larger class of computers for which such simplifying assumptions do
not hold. In general, there are two distinct problems in mapping a parallel program onto
a computer: partitioning and mapping. The most important simplifying assumption often
made is to avoid mapping, and assume that performance is independent of where processes
are placed. The class of loosely-coupled multiprocessors is defined to characterise architec-
tures where this assumption is not valid: a loosely-coupled multiprocessor is a collection
of processing elements (PEs), linked by an interconnection network with the property that
communication between “neighbouring” PEs is much more efficient than communication
between non-neighbours. Depending on the interconnection network’s topology, there are
many varieties of such an interconnection network. The important feature is that not all
PEs are local to one another, so that process placement is important to program perfor-
mance.

The importance of this class of architectures is that they are easy and inexpensive to
build on a large scale. It is not, therefore, surprising to find quite a number of loosely-
coupled multiprocessors on the market and in use. Examples include Meiko’s Computing
Surface, Parsys’s Supernode and Intel’s iPSC.

In architectures of this kind the full generality of the software design problems for
parallel computers become apparent. We find that data communication is often a primary
computational resource, and that much of the algorithm design effort is aimed at reducing
a program’s communications demands. Several examples are given of how this can be
done using program transformation. The techniques have application to other parallel
architectures including more closely-coupled machines and SIMD computers.

1.3 Neighbour-coupled multiprocessors

A neighbour-coupled multiprocessor is a more idealised abstract computer architecture,
and is introduced here as an experiment. A neighbour-coupled multiprocessor is a loosely-
coupled multiprocessor, where each PE is very closely coupled to its neighbours, so closely
that the programmer can assume that a PE can read and write its neighbour’s memory
as quickly as its own.

We shall return to this abstract architecture later in the book to examine whether it
allows useful simplifications.

1.4 A reader’s guide

The book consists of the following components:

e Chapter 2. Functional Programming: This chapter introduces functional pro-
gramming from first principles. The programming language is presented by means
of examples. Simple techniques are given for manipulating programs to modify their
structure while retaining the same input/output mapping. These are augmented by
a handful of induction rules for proving generic properties about programs.

The language is based on Miranda' and Haskell (a public-domain language design
for which a specification is in preparation [HWA*88]).

e Chapter 3. Sequential and Parallel Implementation Techniques: The aim
of this chapter to sketch how our functional language might be compiled to run
efficiently on a conventional computer, and to examine how this scheme (graph
reduction) might be extended for a tightly-coupled multiprocessor.

e Chapter 4. Specifying and Deriving Parallel Algorithms: This chapter ex-
amines how parallelism and inter-process communication are manifest in a functional
program script. Horizontal and vertical parallelism are identified and examples are
given in the form of divide-and-conquer and pipeline algorithms respectively. The
main emphasis in this chapter is the development of program transformation tech-
niques. Examples are given of introducing pipeline parallelism, and of transforming
a divide-and-conquer algorithm into a cyclic “process network” program. This is
illustrated by application to a simple ray tracing program.

e Chapter 5. Distributed Parallel Functional Programming: We can write
programs for which a good placement onto a loosely-coupled multiprocessor can be
made. This chapter applies a declarative programming language approach to actually
specifying this placement. It incorporates abstraction mechanisms to give concise
mappings for regular architectures and algorithms. The notation is illustrated with
several examples.

e Appendix A. Proofs and Derivations: This appendix gives proofs and deriva-
tions which would have cluttered the presentation given in chapter 4. Although
quite dense later on, the earlier material in this chapter is quite tutorial in nature
and might be read concurrently with Chapter 4 by those more interested in program
derivation and verification than in parallel programming.

e Appendix B. Common Definitions: This appendix lists widely-used function
definitions for easy reference.

I'Miranda is a trademark of Research Software Ltd.

e Appendix C. Programming in a real functional language: The functional
language used in this book is not quite compatible with any commonly-available
language implementation. This appendix lists the small (and quite innocuous) dif-
ferences from Miranda in order to aid a reader who wishes to experiment.

Each chapter ends with some pointers for the interested reader towards other books,
articles and research papers which might be of interest.

Chapter 2

Functional Programming

This chapter gives a tutorial introduction to functional programming as employed in this
book. It deals with the programming language, functional programming techniques, and
the mathematical transformation and verification of functional programs. Finally, a review
of the success of the functional approach is given.

2.1 The programming language

The functional language used in this book is representative of a class of programming
languages, rather than being any one in particular. We will, however, stick as closely
as possible to the notation used in [BW88]. Their excellent book is recommended to
the reader needing a more detailed and introductory guide to functional programming.
Apart from some minor typographical details, which are summarised in Appendix C, the
language employed is a simple subset of Miranda.

To summarise its main features, the language is:

e Functional: a program comprises an expression, and a set of equations defining
functions, values and types required to give the expression meaning.

e Higher-order: a function can appear anywhere where a value can appear, notably
as a parameter to a function, or as its result.

e Curried: a function expecting two parameters is normally defined so that the pa-
rameters may be provided one-by-one, so that it may be specialised to its first
parameter by simple application.

e Lazy: a function’s parameter is evaluated only when its value is needed for the
program to produce its next item of output (and then it is evaluated only once).

e Typed: a program can never fail at run-time due to a type error. Types are inferred
automatically, at compile-time, and are checked against optional type declarations
when present.

2.2 Equations

A program, called a script, defines types, functions and values by means of equations. New
types can be defined in terms of old ones by type equations. For example,

Date == (Day, Month, Year)

defines a new type, Date whose elements are tuples of length three, comprising elements
of the types Day, Month and Year. An example of an element of the type might be

birthday = (18, 8, 61)

This mechanism is often used just to give a synonym for a built-in type such as the numbers
Num, as in these definitions:indexdefinitions!of type synonyms

Day == Num
Month == Num
Year == Num
Price == Num

(To simplify matters we will not distinguish different kinds of numbers here). Types whose
values may take one of several forms can be defined using a simple notation derived from
the BNF language for defining grammars'. For example:

Class ::= FIRST | SECOND

Ticket ::= PLATFORM |
SINGLE Class Date Price Destination |
RETURN Class Date Price Destination Period

As with a grammar, such types can be recursively defined:indexdefinitions!of data types

ListOfNum ::= NIL | CONS Num ListOfNum

An element of the type ListOfNum is either the empty list, denoted by NIL, or is built from
a number and another element of the ListOfNum type. CONS and NIL serve to distinguish
the two cases, and are called constructors. Throughout this book, constructors will be
written in upper case to distinguish them from other variables.

Data types may have type variables, given names «, 3, v etc., strong polymorphic For
example we can define a list of objects of arbitrary type by writing

List o ::= NIL | CONS « (List «)

The type for a list of numbers can now be referred to simply as List Num. A list of
characters would have the type List Char. We can define the type variable Destination by
writing

TA glossary of symbols is collected in Appendix B.

Destination == List Char

We can define a variable with this type by writing, for example,

home = CONS 'A’ (CONS 't' (CONS 'h’ (CONS ‘e’ (CONS 'n’ (CONS 's')))))

However, because they are so useful, we use a special notation for lists, in which [] denotes
the empty list NIL, and where : is an infix version of CONS. Thus the definition of home
is:

home ="A":"t' : 'h": '¢" : 'n": 's' : []

We can take this further and write the elements of a list inside square brackets. Hence,
home = ['A’, 't’, 'h", "¢/, 'n’, 's']

A list of characters, has, of course, the obvious shorthand:

home = “Athens”

Lists can be defined recursively. For example,

sawtooth =1: 2: 3: 4 : 5 : sawtooth

defines the infinitely-long list

sawtooth = [1,2,3, 4,5 1,2,3, 4,5 1,2,3,4,51,2,...]

Notice how this mirrors the idea of a communications channel, or a wire in a digital system.
The list models a sequence of values in time, and : can be read as “followed by”. Such
lists—often called “streams”—give us the power to express the behaviour of a process as
a function mapping a stream to a stream.

Definitions can be parameterised. For example, the equation

fromn=n: (from (n 4+ 1))

defines from n to be the list of integers starting from n. More generally, functions (like
from) are defined by more than one equation:

exp0Ox=1
exp (n+1) x = x x (exp n x)

In this book we will be careful to write such definitions so that at most one left-hand side
can possibly match any particular expression. For this reason, unless the first parameter
of exp is restricted to the natural numbers (i.e. the integers > 0), a better way to write
the definition above is:

expnx=1, ifn=0
expnx=x x (exp (n—1) x), ifn>0

The Boolean expressions are called guards, which must be satisfied before the correspond-
ing equation can be applied. They must be mutually-exclusive. The keyword otherwise is
a shorthand for the guard which succeeds when all others fail?.

Functions over data types can be defined using pattern-matching on the LHS. For
example, the function map is defined below by two equations, one for the two possible
forms its list parameter may take:

map f[] =[]
map f (x:xs) = (f x) : (map f xs)

map applies its function parameter f elementwise to its list parameter. We can summarise
its behaviour informally by writing

map f [al, a2, ...an] = [fal, fa2, ...f an]
or even,

mapf[...ai...]=[...fai...]

To illustrate map in use, we must supply it with a single-parameter function. We can use
+ as a prefix operator by enclosing it in parentheses, so that

(+)35=3+5

By writing (4+) 3 we denote the function which adds 3 to its parameter (a technique called
partial application, or sometimes currying, after the logician H.B. Curry). Thus,

map ((+) 3) [L, 2, 5, 10, 20, 50, 100] = [4, 5, 8, 13, 23, 53, 103]

and similarly,

map ((x) 3) sawtooth = [3, 6, 9, 12, 15, 3, 6, 9, 12, 15, 3,6, 9, 12, 15, 3, 6 ...]

Constructors can be curried in just the same way as can ordinary functions. For example,
map (CONS ‘f') [“lame”, “lies”, “airy”] = [“flame”, “flies”, “fairy”]

(remembering that “--" is shorthand for a list of characters.)

2A complete programming language would include a shorthand allowing equations to be prioritised, to
allow overlapping equations and non-exclusive guards to be used. See Appendix C, section C.2

2.2.1 Types and Type Checking

We employ a strongly-typed language, that is, type errors cannot occur at run-time.
Type specifications are optional, and we will usually give them. If not provided by the
programmer, a variable’s type is inferred automatically from its definition and use.

A compiler can infer automatically, for example, that sawtooth is a list of numbers.
We can provide its type specification explicitly as follows:

sawtooth :: list Num

For “:” read “has the type”. The list type is expressed in a natural shorthand: [Num]
denotes the type list Num.

It is easy to see that the partial application (+) 3 is a function from numbers to
numbers. We can assert this by writing a type specification:

(+) 3:: Num — Num

Because it is applied to 3, we can infer the type for (4):

(+) :: Num — (Num — Num)

As another example, take the append function (infix version “++7), which joins two lists
together:

append [al, a2, ...an] [bl, b2, ...bn] = [al, a2, ...an, bl, b2, ...bn]
Now
append [al, a2, ...an] [bl, b2, ...bn] :: [a]
therefore the partial application of append to its first parameter only must have the type
append [al, a2, ...an] :: [a] = [¢]
and therefore append itself should have the type specification
append :: [o] = ([a] = [¢])

In general, if f is a function which takes n parameters, with types a, £ ... 1, and returns
a result of type w, its type is:

fra—=0—>y—>-- 29w

For convenience, we assume that — associates to the right, so to understand this type
specification, re-insert the missing brackets:

fras (B (o =))

This notation may seem slightly counter-intuitive, but arises quite naturally from the need
to assign a type to a partial application.

Because the — operator is not associative, brackets are necessary when parameters are
themselves functions. For example, from the definition of map the compiler infers the type
specification

map :: (o = 8) — [a] — [5]

As with the definition of the list type, type variables o and [show where a consistent
substitution with actual types can be made. The function map takes two parameters, a
function (type @ — [3) and a list (type [«]). It returns a list, of type [].

While type specifications are not strictly necessary, and even in strongly-typed lan-
guages can still be optional, they will always be given from here onwards.

2.2.2 Block structure: where clauses

It is often useful to abstract a subexpression to avoid writing it twice. For example:

f:: Num — Num — Num

fax=b+xx (b+xx (b+x x b))
where
b=axa+1

Note that
e A where clause can be associated with the right-hand side of an equation.

e The scope of a where clause (i.e. the extent of the script over which its definitions
are to be applied) is defined to be the right-hand side of the equation to which it is
attached.

e A where clause may comprise several definitions of functions and values, but may
not introduce new types.

2.2.3 The layout rule

We employ a simple rule to avoid ambiguity in where clauses: the right-hand side of an
equation must remain strictly to the right of the equation’s “=" sign—even if it spills over
onto several lines. This rule applies to equations nested inside where clauses as well as
at the top-level. For example:

ticket :: Ticket
ReturnTo :: Destination — Date — Class — Ticket
AwayDay :: Ticket — Ticket

10

ticket = AwayDay (ReturnTo “Buxton” today SECOND)

where

ReturnTo dest date class = RETURN class date ReturnPrice dest period
where
ReturnPrice = (PriceOf dest) x 2
period = 90

AwayDay (RETURN class date price dest period)
= RETURN class date (price x reduction) dest 1
where
reduction = 2/3

It is very rare indeed that deeply-nested where clauses are desirable or necessary.

Ordinary systems of definitions are valid where clauses, and may be recursive. Note
that as well as functions, it is often also useful to define values recursively, an example
being sawtooth as given above.

2.2.4 Reduction

If there is any doubt about the value an expression should have, one can always calculate it.
We apply the equations which make up the script to simplify the expression, successively
replacing an instance of an equation’s LHS by the corresponding RHS. Let us take a simple
example without the list shorthand:

map ((+)3)(1: (2:(5:10:[))))

Now the second of the two equations defining the map function can be applied, since its
left-hand side matches the parameter value supplied. We bind f to ((+) 3), x to 1 and xs
to (2:(5:10:[])), and substitute in the right-hand side to yield

(((+)3)1) = (map ((+) 3) (2: (5:10: [1])))

We call an expression which matches some left-hand side a reducible expression, or redex
for short. The resulting expression contains several redexes, of which the first (marked by
the brace) is an application of the built-in addition operator:

((+)3)1) =4
so we have

4+ (map((+)3)(2: (5:10:[1)))

~ v
'

(by convention, the brace marks the expression nezt to be rewritten). At this point, we
know that the first element of the list is 4. To find the next element, re-apply the equation
defining map:

11

4: (((+)3)2) : (map ((+) 3) (5: 10: [1]))

—_———
That is:

4:5: (map((+)3)(5:10:[]))

-~

Now we know the second element is 5. Repeat to find the third and fourth:

4:5:8

4:5:8: :
—_—

4:5:8

4:5:8

The final reduction made use of the first equation defining map. There are no more redexes:
the expression is in normal form.

Notice that during reduction the equations are not treated symmetrically: an instance
of an RHS is not rewritten to the corresponding LHS. A reduction process which includes
such steps may fail to terminate when it should, although it cannot derive incorrect results.

Reduction forms the basis for most implementations of functional programming lan-
guages, and after extensive optimisation it can be done very efficiently indeed.

2.2.5 Pattern matching and reduction order

At each stage during reduction, several equations may apply to the expression at the same
time. If we are to use reduction to define the meaning of an expression, there are some
important questions to answer. Does it matter in what order the reductions are performed?
How do we make sure the reductions we do contribute to the result, rather than to an
expression which is ultimately discarded? Fortunately, the theory of such systems gives
us some very strong properties. We must, however, obey the mutual exclusion rule for
writing equations: of all the equations defining a variable, at most one may ever apply.
Thus, we cannot write

either x y = x
either xy =y

nor

SpecialCase 818 = TRUE
SpecialCase 242 = TRUE
SpecialCase n = FALSE

With guards the responsibility rests with the programmer to ensure mutual exclusion; in
general, the compiler cannot verify that a definition like

12

f x = TRUE, if gl x
fx = FALSE, if g2 x

is allowable.
Provided mutual exclusion is satisfied, the following properties hold:

e Confluence: No matter what order we apply applicable equations to an expression,
it is always possible to reach the expression’s normal form, if it has one. It is
impossible to reduce an expression to two different normal forms. This property is
sometimes called the Church-Rosser property.

e A general normalisation strategy: If an expression has a normal form, it can be
found by the following strategy:

1. Identify the outermost reducible function application. This consists of a known
function identifier, say f, and zero or more parameters p;, ps ...pn. The pa-
rameters need not be known.

2. Test the application against each of f’s defining equations. Each of the tests
is performed in parallel, evaluating parameters as necessary. At most one will
terminate signaling success. The other tests may terminate signaling failure, or
may fail to terminate. Once a winning test has been identified, the other test
processes can be abandoned. Thanks to the mutual exclusion rule, we know
that their can be only one successful test.

(A reducible function application is a function identifier applied to as many param-
eters as appear in the function’s defining equations).

A good compiler can analyse the patterns concerned and avoid having to race parallel
processes. A sequential scan can be used instead. Most practical functional languages
only allow patterns which can be sequentialised in this way.

2.2.6 More definitions to think about

Before moving on to program transformation, here are some simple definitions to illustrate
the language in use. The definitions of these and other handy “building blocks” are
collected in Appendix B.

List projectors

Because they model a sequence in time, lists are a fundamental concept in functional
programming, especially in this book. Extensive use will be made of these two functions
to decompose them:

13

hd :: [a] = «
th:: [o] = [¢]

hd (x : xs) = x
tl (x : xs) = xs

The functions hd and tl are called the projectors of the list data type, and satisfy the
equation

for all as € [a], as # []:
as = (hd as) : (tl as)

We can prove this (informally) using the equations defining hd and tl by making the
substitution (which makes the assumption that as does evaluate to some known list),

b: bs=as
giving us
b: bs = (hd (b: bs)) : (tl (b: bs))
Using the equations defining hd and tl this follows immediately.

Generalising “+” over lists

It is natural to generalise an operator like + to add corresponding elements of a pair of
lists of numbers. If we have, for example,

(+) :: Num — Num — Num

and two lists of numbers,

as = [al, a2, a3, ...an]
bs = [bl, b2, b3, ...bn]

we would want the result of generalising + to lists to be
map2 (+) as bs = [(+) al b1, (+) a2 b2, (+) a3 b3, ... (+) an bn]

That is,

map2 (+) as bs = [al+bl, a2+b2, a3+b3, ...an-+bn]

This function map?2 is defined by the equations

14

map2 :: (@ = 3 = v) = [o] = [8] = [1]

map2 op (a: as) (b : bs) = (op a b) : (map2 op as bs)
map2 op [][] =[]

It is called map2 because it is a natural extension of map to functions of two parameters.
Our next definition is a generalisation of function application to lists of functions and
lists of parameters:

ply :: [(a = B)] = [o] — [/]

ply [1[1=11
ply (f : fs)(x : xs) = (f x) : (ply fs xs)

A very alert reader might realise that

ply = map2 apply
where
apply fx = fx

We can verify that this is so by substituting
op = apply

in the definition of map2. This yields a definition identical in structure to the explicit
definition of ply, except that map2 apply now appears where ply did.

Insertion

An important family of operations (often called folding or, confusingly, reduction) concern
inserting an operator between adjacent pairs of elements of a list. Suppose op is an infix
operator akin to +. An intuitive definition of such an insertion function might be

insert (op) base [| = base
insert (op) base [al, a2, a3, --- aN] = al op a2 op a3 --- op aN

This is ambiguous in general, since we have not specified the bracketing to be applied in
the RHS—we have left some freedom in the reduction order. This makes no difference if
op is associative:

for all a, b, ¢
aop(bopc)=(aopb)opc

The list joining operator ++ is associative, for example, but subtraction is not. Strictly,
addition of integers is associative only if it is implemented correctly for values of arbitrary
size. If overflow can occur, the order in which a list of numbers is added can affect the
result. Note that all associative functions have the type

15

a— o — o

An associative function must take parameters of the same type as each other and as its
result. Thus, the type of insert is

insert =: (@ - o > a) > a = [a] = «
When the function being inserted is not associative, we must choose an ordering for

the brackets. There are two sensible options: we can associate the operator to the left or
to the right. We define variants of insert for each option. For example,

insertleft (op) base [al, a2, a3, a4, a5, a6)]
= (((((base op al) op a2) op a3) op a4) op ab) op ab

and

insertright (op) base [al, a2, a3, a4, a5, a6)]
= al op (a2 op (a3 op (a4 op (a5 op (ab op base)))))

For non-associative operators, it is more common to use the usual prefix form of function
application, so that

insertleft f base [al, a2, a3, a4, a5, af]
= f (f (f (f (f (f base al) a2) a3) a4) ab) ab6

and

insertright f base [al, a2, a3, a4, a5, a6]
= fal (fa2 (f a3 (f a4 (f a5 (f a6 base)))))

Their definitions are

insertleft :: (« —» 8 — a) > a— [f] = «

insertleft f base [] = base
insertleft f base (a : as) = insertleft f (f base a) as

and
insertright 2 (« = 8 = 8) = 8 —[a] = 8

insertright f base [| = base
insertright f base (a : as) = f a (insertright f base as)

(In insertleft notice how the base parameter is used to accumulate the result so far). Because

the function f need not be associative, the types of its parameters need not be the same.
For insertleft it must be

16

froa—>p0—>a
while for insertright it must be
foa—>p0—>7

In either case, base is needed to form a “seed” value from which to build a result of the
right type.

Here are a handful of examples. With associative operators we can use insert and leave
the choice of insertleft or insertright or whatever free. To sum the elements of a list, write

sum :: [Num] — Num

sum as = insert (+) 0 as = insertleft (+) 0 as = insertright (+) 0 as
To join up all the lists in a list of lists, write

join :: [[o]] = [¢]

join as = insert (++) [] as
To reverse a list, try

reverse :: [a] — [a]

reverse as = insertright postpend [| as
where
postpend a as = as ++ [a]

The intuition behind insertleft’s operation is that the result is formed by repeatedly building
on the base using successive elements of the list, starting from the end. For example,
suppose we want to count the frequency of occurrence of integers between 0 and range in
a list, in order to build a histogram. Define

histogram :: Num — [Num] — [Num]
histogram range data = insertleft IncrementBucket EmptyBuckets data
where
EmptyBuckets = replicate range 0
IncrementBucket buckets n = MapElement ((+) 1) n buckets

EmptyBuckets is a list of range zeroes, constructed using replicate:

17

replicate :: Num — o — [a]

replicate 0 x = [|
replicate (n+1) x = x : (replicate n x)

IncrementBucket buckets n adds one to the n’* element of the list of frequencies buckets. Tt
uses the more general-purpose function MapElement,

MapElement :: (« — a) — Num — [a] — [a]

MapElement f 0 (x : xs) = (f x) : xs
MapElement f (n+1) (x : xs) = x : (MapElement f n xs)

Bird and Wadler give an excellent coverage of the insertion functions, which they call foldl
and foldr, in their textbook [BW88].

2.2.7 Recurrences

We have now seen a couple of ways of capturing common computational structures in our
functional notation, but it is still not obvious how to express simple calculations such as
those computed by loops in an imperative language. There are several ways of doing this,
but here we are going to introduce an “idiom”—a clear and commonly-understood way to
express iteration. The idiom is developed by means of two examples: the calculation of the
Fibonacci numbers, and the application of the Newton-Raphson method to the calculation
of square roots.

Example: the Fibonacci numbers

The n* Fibonacci number is defined by a recurrence relation:

fibo=1
fibl=1
fib n = (fib (n—-1)) + (fib (n—2)), ifn>2

This mathematical definition serves as a computational definition, and when executed gives
the desired result. It does take a very long time when given larger parameters because
each recursive invocation of fib recalculates many values already computed elsewhere. To
construct a more sensible program we need to make sure that these values are saved for
re-use. Let’s build them into a list, fibs, so that the n'” element of fibs contains fib n. The
list is defined by the equations

fibs sub 0 =1
fibssub 1l =1
fibs sub n = (fibs sub (n—1)) + (fibs sub (n—2)), ifn>2

where sub is the list indexing operator,

18

0=a
(n+1) = as sub n

This definition of fibs is not quite a valid definition in our language, because of the use of
sub on the left hand side. One approach might be to extend the language to allow it, but
a simple definition makes this an unnecessary luxury. Define

generate :: (Num — o) — [¢]
generate f = map f (from 0)

(recall that from n computes the list of integers starting from n). Informally,

generate f = [f0,f1,f2, -]

Now, we can define the list of Fibonacci numbers by writing

fibs = generate NextFib

where

NextFib 0 =1

NextFib 1 =1

NextFib n = (fibs sub (n—1)) + (fibs sub (n—2)), ifn>2

All that remains is to pick out the Fibonacci number we wanted in the first place,

fib n = fibs sub n

Notice, of course, that only a limited number of elements of fibs need to be calculated
before fib n is found.

Example: Newton-Raphson approximation

The Fibonacci example corresponds to a for loop in an imperative language, because the
number of iterations (n) is fixed beforehand. The Newton Raphson example corresponds
to a while loop in an imperative language, where the number of iterations is determined
by testing some condition at each iteration.

To calculate the square root of a using the Newton-Raphson method, we solve the
equation

??—a=0

by defining a function f x = x> — a, and its derivative, f' x = 2 x x, and forming the series
defined by

Ty = x/2

f(z) x+a/z

flas) 2

(x/2 is just an initial guess). Translating this into the programming notation, using
generate, gives

Tivy1r = Ty —

19

xs = generate NextEstimate
where
NextEstimate 0 = x/2
NextEstimate (i+1) = ((xs sub i) + a/(xs sub i))/2

The square root is the limit of the series, defined to be the value of x; such that
(75 — 21) /23] <€
for some given value of e. We can find this value by defining a function until,

until :: (Num — Bool) — [Num] — Num

until predicate xs = select (map predicate (from 0)) xs
where
select (FALSE : tests) (x : xs) = select tests xs
select (TRUE : tests) (x : xs) = x

This function finds the first element of xs which satisfies predicate. Now the square root
function as a whole is given by

sqrt a = until converges xs
where
converges 0 = FALSE
converges (i4+1) = abs(((xs sub (i+1)) — (xs sub i))/(xs sub(i+1))) < €
xs = generate NextEstimate
where
NextEstimate 0 = a/2
NextEstimate (i+1) = ((xs sub i) + a/(xs sub i))/2

This expresses the iteration rather neatly, keeping quite close to the original mathematics.
A particularly pleasing feature is that if a more complex solution scheme were employed
which involved references to z; o and z;_3, for example, very little change is required.

There does in fact remain one inefficiency in this idiom: the list indexing operation
sub must step through the list to find the n’* element, and as this is done at each iteration
anew a great deal of unnecessary work is involved. For reasonable uses of sub in such
recurrences, this can be removed by a straightforward program transformation which is
shown in section 4.5.1 and in Appendix A, section A.3. We assume that this is done by
the compiler.

Iteration

When each successive state depends only on the previous state, an especially simple form
of recurrence applies. Define

20

iterate =1 (@ =) = a — [a]
iterate f x = x : (iterate f (f x))

so that

iterate f x = [x, fx, f (f x), f (f (f x)), f (f (f (fx))), ...]

We will see later that it is sometimes useful, particularly when looking for parallelism,
to transform iterate into a circular form:

iterate f x = output
where
output = x : (map f output)

The definition of a variable in terms of itself may seem surprising. Compare it with this
(somewhat convoluted) definition of the factorial function:

fac :: Num — Num
f:: (Num — Num) — Num — Num

fac x = f fac x
where
fgx=1, ifx=0
=x X (g(x—1)), ifx >0

Just as a function can be defined recursively, so can any other value. One can think of

this as an aspect of “equal rights” for all the programming language’s objects.

2.2.8 Vectors and matrices

A vector is similar to a list, but is designed for efficient access and construction. A matrix
is a two-dimensional array with similar properties. Higher-dimensional arrays can be built
from vectors of vectors, matrices of matrices etc.

The size of a vector v is represented by a number n, and its elements are indexed v sub
0...vsub (n—1), just as with lists. A vector can be created by the function MakeVector:

MakeVector :: Num — (Num — «) — <a>
MakeVector bound f = <f 0, f1,f2, ..., f(bound—1)>

The bound of a vector can be found using the function VectorBound:

VectorBound <a> — Num

The size of a matrix m is represented by a pair of numbers, MatrixBounds m = (xBnd,

21

yBnd), and its elements are indexed in a similar way:

< m sub (0,0), m sub (1,0), ... msub (xBnd—1,0),
m sub (0,1), m sub (1,1) m sub (xBnd—1,1),
m sub (0,yBnd—1), m sub (1,yBnd—1), ... m sub (xBnd—1,yBnd—1) >

A matrix is created using the function MakeMatrix:

MakeMatrix :: (Num, Num) — ((Num, Num) — o) - <a>

and is defined so that

MakeMatrix (xBnd,yBnd) f

= < f(0,0), f (1,0), f (xBnd—1,0),
f (0,1), f(1,1), ... f(xBnd—1,1),
f(0.yBnd—1), f(LyBnd—1), ... f(xBnd—1yBnd—1) >

Example: integration by Simpson’s rule
A vector or matrix can be defined using a recurrence in exactly the same way we used a
list earlier. This function integrates f(z) over the range a — b using Simpson’s rule with

a step length h:

integral f a b h = MakeVector ((b—a)/h) NextElement
where
NextElement 0 = 0
NextElement n = (integral sub (n—1))
+ (h/3)x ((f (x=h))
+ 4x(f x)
+ f (x+h)), ifn>1

This definition recomputes f three times at each point, and we can use the same technique
we used with fib to avoid it by introducing a list:

22

integral f a b h = MakeVector ((b—a)/h) NextElement
where
NextElement 0 = 0
NextElement n = (integral sub (n—1)) +
(h/3)x ((fs sub (n—1))
+ 4x(fs sub n)
+ (fs sub (n+1))), ifn>1
fs = generate fn
where
fnn="f(nxh + a)

There is no problem mixing generate’d lists and MakeVector’ed vectors in the same recur-
rence. The difference between them is that the space occupied by a vector is used as long
as any element is referred to, while early parts of a list which are no longer needed can
be reclaimed. Generally, a list is a better choice if all that is required for output is the
final state, but a vector is good for when the entire course of values is to be presented as
output.

Matrices can also be defined by recurrences, in many interesting ways. For example,
in applying the Gauss-Seidel method to the solution of linear simultaneous equations, a
matrix is built whose “South” and “West” boundary is defined independently, but whose
internal elements depend on their South and West neighbours. This comes out very easily:

GaussSeidel f a
= MakeMatrix (Bound, Bound) NextElement
where

NextElement (0,0) = a

NextElement (0,y) = a, ify #0

NextElement (x,0) = a, ifx #0

NextElement (x,y) = f (NewMatrix sub (South (x,y)))

(NewMatrix sub (West (x,y))), ifx>1Ay>1

where f depends on the equations being solved. South and West calculate neighbours’
coordinates from the present coordinate:

South (x,y) = (x,y—1)
West (x,y) = (x—1,y)

This example is interesting because it is very close to the original mathematics, and is
highly parallel. Computation can proceed in a “wavefront”, which marches diagonally
across the matrix. Coding the algorithm in an imperative language is rather awkward
because the matrix must be scanned in the right order to ensure that values are defined
before they are used. Writing an imperative parallel version is harder still. This and other

examples are the subject of an excellent article on declarative scientific programming by
Arvind and Ekanadham [AES8S].

23

Function composition

Functions are obviously important in functional programming—but what can one do with
a function? A fundamental operation on functions is to compose them, to form another
function which applies first one function, and then the other. It should be possible to
deduce precisely what compose must do from its type specification:

compose =1 (B —7) = (a—) > a—y
Its definition is

compose f g =h
where
hx=f(gx)

Though more explanatory, this is precisely equivalent to
compose f g x = f (g x)

w3,

The infix form of compose is written “o”:
(fog)x="f(gx)
Composition is clearly associative:

(fog)oh="fo(goh)

This is easily shown by providing the missing parameter x, and then reducing. The LHS
is

as expected.
The purpose of “0” is to allow us to build functional objects without having to introduce
parameters explicitly. This is taken one step further by the next example.

Combinators and combinator abstraction
w..”

The function “o” passes only one parameter at a time. It is sometimes useful to pass more
than one, and this requires a generalisation of function composition:

24

oo (1= Pr—=7) = (= B) = (o= f) >a—7y

fooglg2=nh
where
hx=f(glx) (g2x)

An interesting early result in the theory of functional programs is that these functions
allow us to express arbitrary functions without referring to variables at all. For example,
the function f defined by

fx = (log x) / ((sqrt x) — (2 x x))
is equivalent to

f=(/) oo log
((—) oo sqrt)

((x) 2)

(we assume for convenience here that “oo” binds more tightly than application). To see
that this is so, let us provide the missing parameter and apply reduction:

fx=((/) oo log
((—) oo sqrt

((-) (sart x)
(2 % %))

= (log x) / ((sart x) — (2 x x))

It is possible to find an algorithm, called a combinator abstraction algorithm, which sys-
tematically transforms any definition to remove variables, introducing operators like ¢
(called combinators) instead. This is frequently useful in program transformation, and, as
we shall see in Chapter 3, it is a common compilation technique.

Classical works use a more fundamental set of combinators, called S K and I:

(oo”

Sabc=ac(bc)
Kab=a
la=a

25

It happens that

Sabc=applyooabc
where
apply f x = fx

Field and Harrison [FH88] and Glaser, Hankin and Till [GHT84] both give good introduc-
tions.

2.3 Equational Reasoning

We have already seen some simple arguments about functions like hd, tl, map2 and ply.
These employed the straightforward approach of using the equalities given in the program
script to rewrite expressions. This equational way of reasoning about functional programs
derives its basis from the reduction mechanism by which the meaning of an expression is
calculated: it is really only controlled, symbolic evaluation of the program.

We examine the technique more closely by means of an example, which we draw from
the rich algebra of equalities between functions like map, map2 and ply. We will prove that

forallope a— g — 7,
as € [a],

bs € [f]:
map2 op as bs = ply (map op as) bs
We begin by defining a new function map2’, a name for the form on the RHS:
map2’ op as bs = ply (map op as) bs

Now instantiate this equation for the cases of the parameters as and bs, that is specialise
the equation for particular forms of parameters. Begin with when both as and bs are
empty:

map2 op [][] = ply (map op [])]

Now apply reduction (sometimes called unfolding when used in program transformation)
to the RHS. Use the definitions of map and ply:

map2 op [][] = ply (map op []) []
=ply[]]]

————

=[]

Next we take the case where both are lists of one or more elements:

26

map2’ op (a : as) (b : bs) = ply (map op (a: as)) (b : bs)
Now we apply some reduction to the RHS, using the equations for map and ply:

map2’ op (a : as) (b : bs) = ply (map op (a: as)) (b : bs)

= Ply ((op a) : (map op as)) (b : bs)/
= (op a b) : (ply (r;ap op as) bs)

~ J/

In the RHS of this equation is an instance of the RHS of the equation we used to define
map2’. We can use that equation to rewrite the equation above to

map2’ op (a: as) (b: bs) = (op a b) : (map2’ op as bs)

This step, called folding, used an equation backwards, from RHS to LHS. As was noted
earlier, computations which use such steps may not always terminate when they should.
Thus, this transformation is not guaranteed to preserve termination properties correctly—
an independent proof is needed, which would normally use the technique of induction,
which is introduced in section 2.5. We do, of course, retain the guarantee that when the
program does terminate it yields the expected answer.

The result of these instantiations and simplifications is a new pair of equations con-
cerning map2":

map2 op [][] =[]
map2’ op (a: as) (b: bs) = (op a b) : (map2’ op as bs)

This definition of map2’ is identical in structure to the definition of map2, and we can
therefore conclude that, indeed,

map2’ = map2
that is,

map?2 op as bs = ply (map op as) bs

Note that we used four kinds of step in this argument: definition (of function map2’),
instantiation (of map2' for empty and non-empty lists parameters), folding and unfold-
ing. Similar steps which will be used later include include abstraction (introduction of a
where clause), laws, meaning the application of ready-proven equalities, and cancellation.
Cancellation is simply the rule that if, for all parameters x,

fx=gx

then we can infer that f = g —in fact this is the definition of equality for functions. We
will often use it in defining functions. For example, one might write

27

sum as = insert (+) 0 as

By cancellation this is equivalent to

sum = insert (+) 0

Together, these rules constitute a very powerful transformation technique and we shall
use it extensively. It was pioneered in Darlington and Burstall [Dar82], where it is called
the fold/unfold system. A great deal of work has been done on providing automated
support to check and manage such derivations. Very powerful automatic techniques exist
which can derive many useful results without human intervention. Furthermore, while the
need to assure the preservation of correct termination behaviour remains in general, it is
possible to show that many forms of derivation are completely valid despite the use of
folding.

Because of the problem of assuring termination correctness, equational reasoning must
be supplemented by induction techniques. In fact, it often turns out to be easier to perform
a complete verification by induction rather than find a forward derivation. The next few
sections develop a very simple basis for using inductive arguments of various kinds.

2.4 Partial functions and partial data structures

Several of the definitions given so far have been recursive: an object is defined in terms
of itself. Whenever this occurs, the possibility exists that the object’s value has not been
properly defined. When one applies reduction to find the value of such an object, we
may never reach the normal form. This section introduces the ideas necessary to frame
questions about the termination of functional programs, which can become quite subtle
when, for example, infinitely-long lists are considered.

A particularly useful way to address the problem is to introduce a special symbol, L
(called “bottom”), the archetypical non-terminating computation, which can be expressed
in the functional language simply by the equation

1 =1

We consider all non-terminating computations, and all computations with an undefined
result, to be equal to L. This presumption is valid as long as we consider only the result
of the computation (its extensional properties), and not the manner of its execution (its
intensional properties).

Of course we cannot always tell whether a particular expression is equal to L. As an
example, we might try to write a program to find whether my telephone number appears
in the decimal expansion of e:

FindSubList MyPhoneNumber DigitsOfe
where
DigitsOfe = [2, 7,1, 8, 2,8, ...]

28

The role of L is to provide the algebraic language to ask such questions.

2.4.1 Strictness

For example, one interesting question to ask of an N-parameter function f is whether, when
we make the ¢'th parameter |, the result has to be L too. More formally the question is
whether

fX1 D RN | J—Xi-i—l ...XN:J_

for all x;, 7 # 7. If so, f is said to be strict in its i’th parameter: either

o fxy ... X 1% X1 ... Xy = L
always, or

e f must use its 7’th parameter to produce its result.

If f is not strict in its ¢’th parameter, it cannot make use of its 'th parameter in forming
its result.

The practical import of this is that if f is strict in parameter i, then when reducing an
application of f to actual parameters e; to ey,

fe...e; 1€ €41 ...ex

parameter e; can be reduced before the application of f, or in parallel with it, while still
retaining the guarantee that the normal form will be found if it exists.

Powerful techniques exist for strictness analysis based on the technique of abstract
interpretation [HBJ88], and this offers the prospect of highly parallel reduction. See
section 3.1.5 for more details.

2.4.2 Recursion

Another use of L is to lend a mathematical meaning to recursive definitions, and to form
a basis for the induction techniques we will introduce later in the chapter.

It is quite straightforward to give a mathematical semantics to non-recursive definitions,
but a recursive definition has to be unravelled into an infinitely large expression before it
loses its recursive nature. Using |, however, we can approximate to the semantics of a
recursive definition as closely as necessary.

Firstly, let us define our notion of approximation (consider functions over numbers
only): the function f approximates the function g (written f C g) if and only if

for all x
fx=gxVix=_1

(where V denotes logical “or”). For example, if we have the definitions

29

fx=_1 g]_:a hl=a
g3=c h2=5>b
h3=c

Functions g and h yield L except where defined otherwise. Now

fEgCh

since h is consistent with g, but is defined for more parameter values. All functions are
more defined than f, which is undefined for all parameters.
Now suppose we have a recursively-defined function r,

rx=...r...r...

in which r appears one or more times on the RHS. Let us abstract r from the RHS:

r x = body r x
where
body r' x' = ...r ...r ...

13

The function body captures the contents of the “...”, but allows us to manipulate the
recursive call explicitly. The primed symbols r' and x’ are new variables. Define

rox= 1L
and

ri x = body ry x
that is,

ry = body rg

Clearly, ro C ry. The function ry is not much use: it is undefined on all but the simplest
input values. However, we can extend it by iterating again:

ro = body rq
and again,

rs = body ry
Thus,

30

r; = body’
where
body’ x = body (body --- body (L) ---)

~
i times

We can generate a list of all these iterates:
[ro, r1, 1o, r3 -+] = iterate body L
For any given input x there is some integer n such that
fn X =1 X
Notice that the iterations form an increasing chain, called the Kleene chain:

roLrnbrpl---Cr---

The meaning of r itself is just the limit of this chain as ¢ tends to infinity:
r=1lim_, 1;

because then the equation
r, = body r; {

will actually hold. This limit is, therefore, the solution of the equation we used to define
r in the first place.

Technically, ris called the least fixzed point of body, because r is the least-defined function
which is unchanged by the transformation body. For a more formal treatment of this
material the reader is referred to [Sch86].

2.4.3 Partial data structures

A partial list is a finitely-long list which ends with L instead of [|. For example,

e
I\)I\)I\)I_
oooo|_

L
4 1

are partial lists of numbers. When infinite lists were first introduced earlier in this chapter,
attention was drawn to the analogy with a communications channel, on which values are
transmitted periodically—or even sporadically—but indefinitely. A partial list represents
a channel on which a few elements are sent, but then is silent forever. It is impossible
to distinguish a partial list from a longer one simply by computing its value, because one
cannot tell when to give up waiting for the next value to appear.

Just as with functions, there is a useful notion of approximation for partial lists: || C

31

ly if and only if

This is sometimes called the prefix ordering because |; C |, if and only if |; is an initial
prefix of Iy and ends in L (or is actually equal to ly). Under this ordering, it should be
clear that

1 C 1: 1 C 1:2: 1 C 1:2:3: 1
Just as with the recursive function r, we can give a meaning to a recursively-defined list |,

by considering successive iterates starting from 1. This time, let us take a concrete
example:

fibs=1: 1: (map2 (+) fibs (tl fibs))
We abstract out the recursive reference to fibs:

fibs = body fibs
where
body fibs' =1 : 1: (map2 (+) fibs’ (tl fibs"))

Now we can enumerate the first few iterates, and use reduction to find their values:

ﬁbSO =1

fibs; = body fibsp =1 : 1: (map2 (+) fibsy (tl fibsy)) =1:1: L

& J

fibsy, = body fibs; = 1: 1: (map2 (+) fibs; (tl fibs;)) =1:1:2: L

-~

fibs; = body fibsy =1 : 1: (map2 (+) fibsy (tl fibsy)) =1:1:2:3: L

N J

fibsy = body fibs3 =1 : 1: (map2 (+) fibss (tl fibsg)) =1:1:2:3:5: L

-~

fibs; = body fibsy =1 : 1: (map2 (+) fibsy (tl fibsy,)) =1:1:2:3:5:8: L

N\ J

and so on. As before, we can easily generate a list of all these iterates:

[fibsy, fibsy, fibsy, ...] = iterate body L

32

and the limit of this series,

satisfies the original recursive equation used to define fibs.
The value of an element of this series, fibs;, say, denotes the result of an unfinished
computation. Thus we can think of the L which appears in, for example,

fibss =1:1:2:3:5:8: L

as meaning ‘not yet” instead of “never”. This should provide further support for the
analogy between lists and communications channels.

2.5 Induction

In this section the most powerful technique for reasoning about functional programs is
presented. Proof by induction over the natural numbers should be familiar from school
mathematics. We will introduce some slight variations, all ultimately reducible via com-
putational induction (below) to induction over natural numbers.

2.5.1 Computational induction

The most fundamental form of inductive argument about a functional program’s behaviour
is based on the number of iterations in the Kleene chain of approximations to a recursively-
defined value. Suppose we have some recursive definition:

X=...X...X...

Using the ideas from the previous section, we have
x = lim; oo { X0, X1, X2, ...}
and we need to show that some property P holds for x. It is easy to show P x; for all i:
Base case: show that P L.
Inductive step: show that, given P x;, P x;,; holds.

This establishes P x; for all 7, but does not automatically imply that P holds for the limit,
x, which is what actually interests us. Fortunately it is valid for a very large class of
“admissible” predicates.

2.5.2 Admissible predicates

A predicate P is admissible if it is chain complete: P is defined to be chain complete if
when P holds for every element of a Kleene chain it holds for its limit. That is,

33

and

Pxo APxt APxg A -+
implies

P (lim;eo { X0, X1, X2, ... })

We will find that all the program properties we are interested in are admissible, because
the assertion that any two expressions are equal is chain complete. An example of a
non-chain-complete predicate is a test whether a list is partial.

A more mathematical treatment of this material including the characterisation of a
class of admissible predicates is to be found in [MNV73].

2.5.3 Partial structural induction

This is by far the most commonly-used induction method. Just as computational induction
applies when recursion is used in a function or value’s definition, structural induction deals
with recursion in data types, as, for example is found in the definition of lists given earlier:

List o ::= NIL | CONS « (List)
More generally, such definitions define tree-like structures, for example:

Tree o ::= LEAF o | NODE (Tree) (Tree)

Just as with data value recursion, we can unravel this data type definition into its Kleene
chain, starting with the type containing only undefined elements, which we will call {1 }:

Treep o = {L}
Tree; o := LEAF o | NODE (Tree; o) (Treey)
= LEAF o | NODE {L}{L}

Tree; o := LEAF « | NODE (Tree; o) (Tree; «)
= LEAF a | NODE (LEAF o | NODE {L1}{1})
(LEAF o | NODE {1}{1})

This suggests an induction schema for showing that P x for all x € Tree a:
Base case: show that P L.

Inductive step: Given that

34

for all x € Tree; a:
P x

show that

for all x € Tree; 11
P x

Provided P is admissible, this schema proves P for any choice of o in Tree a: it subsumes
the proofs for Tree [Char|, Tree (Tree Num) etc.

We can improve the schema above substantially by observing that the inductive step is
always proved for each case of the data type separately, and that the non-recursive cases
(such as NIL and LEAF «) are more properly moved into the base-case since they do not
require the inductive assertion. The simplified schema for partial structural induction on
Trees is as follows:

Base cases: 1. Show that P L.
2. Show that

for all x € «
P (LEAF x)
Inductive step: Given that P t; and P ty, show that

P (NODE t; t,)

The partial induction schema for lists is

Base cases: 1. Show that P L.
2. Show that P [].

Inductive step: Given that P xs, show that

for all x € a:
P (x: xs)

Notice that just as with computational induction, we require that P be admissible to infer
from such a proof that P holds for an infinitely-large structure.

35

2.5.4 Total structural induction

There are many useful properties which hold for all finite, total (i.e. not partial) elements
of a data type. An example is

for all as, bs € [a], FiniteAndTotal as:

reverse (as ++ bs) = (reverse bs) ++ (reverse as)
where
reverse :: [a] — [a]

reverse [| =[]
reverse (x : xs) = (reverse xs) ++ [X]

Recall that “+4” is the infix form of append, the function which joins lists. We assume
the archetypal non-admissible predicate FiniteAndTotal, which holds for only those finite
lists ending in [|. The property obviously fails for infinite and partial lists:

reverse ([1,2,3, -] ++ bs) = L # (reverse bs) ++ (reverse [1,2,3, ---])

A partial structural induction proof of this property fails in its base case, quite reasonably,
because

reverse (L ++ bs) # (reverse bs) ++ (reverse L)

For such proofs, the total structural induction schema is useful. Here is the version for

[o]:
Base case: Show that P [].

Inductive step: Given that P xs, show that

for all x € a:
P (x: xs)

This establishes P for all finite and total elements of []. For total structural induction,
we drop the L part from the base case, and no longer require that P be admissible.

A particularly common use of total structural induction is over the natural numbers.
These can be defined as a data type:

Nat ::= ZERO | SUCC Nat

For example the natural number 3 would be written

SUCC (SUCC (SUCC ZERO))

However, this data type includes such elements as

36

(SUCC (SUCC (SUCC (SUCC (SUCC (SUCC (SUCC (SUCC(--+)) -+-)) =

and

SUCC (SUCC (SUCC 1))

which might be thought of as “at least 3”. Clearly, for most purposes we mean to deal
with the finite, total natural numbers. Their total induction schema is

Base case: Show P ZERO.
Inductive step: Given P n, show that P (SUCC n).

It is often fruitful to think of the finite and total elements of a data type as a distinct
subtype, and we might use some notation to that effect in type specifications, as in

reverse :: [a]r — [a]:

where the “!” suffix indicates that the function requires a finite, total list to produce a
result, and that the result it produces is finite and total.

In general, it is not strictly necessary to base a total structural induction argument on
a data type. Any structure will suffice, provided a well-founded ordering can be imposed
on it. A well-founded ordering is an ordering relation, say =<, on a set, say A, such that

the set contains no infinitely long decreasing chain of elements

*++ a4 <az <azx <a; < g

The ordering may be a partial one: for some elements a and b, it may be that neither
a =< bor b= aholds. Using it we can state the general version of the structural induction
principle:

To prove that: P x for all x € A where < is a well-founded ordering on A,

Base case: Show that P x for all minimal elements x of A, that is for all x € A such that
there is no x’ < x.

Inductive step: Given that P x' for all x' < x, show that P x.
Note that we can in fact assume P for all values smaller than x; this extends the induction

schemata given so far.

2.5.5 Recursion induction

This final technique is arguably not an induction argument at all. In using the limit of
the Kleene chain to give a meaning to a recursively-defined variable, we argued that if r
is defined by the recursive equation

37

r = body r
where
bodyr' =...r ...r ...

and
[ro, r, r2 -+] = iterate body L

then
r=1lim;_, 1;

is a solution to the recursive definition of r because at the limit,
ri =ri—1

However, we may be able to find a solution by other means. For example, let us define
the function triangle over the natural numbers:

triangle :: Num — Num

triangle n = 1, ifn=1
triangle n = n + (triangle (n—1)), ifn>1

We can use the Kleene chain to find the result of applying triangle to any particular
parameter by unravelling far enough. However, there is a non-recursive solution to these
equations:

triangle2 n = nx(n+1)/2

To verify that this is so, we can see whether the equations defining triangle are indeed
satisfied when we substitute triangle2 for triangle. Is it true that

triangle2 n = 1, ifn=1
triangle2 n = n + (triangle2 (n—1)), ifn>1 7

Unfolding triangle2 throughout gives:

nx(n+1)/2 =1, ifn=1

which is trivially satisfied, and
nx(n+1)/2 =n + ((n—1)x((n—1)+1))/2, ifn>1

We use arithmetic laws to simplify this:

38

nx(n+1)/2 =n + ((n—1)xn)/2
= (2xn + ((n—1)xn))/2
= (2xn + n? — n)/2
= 0+ 17)/2
= nx(n+1)/2

This completes the proof that triangle2 satisfies the equations defining triangle.

This means that when triangle x is defined, triangle2 x must also be defined, and must
give the same result. This is not quite the same as proving that for all x, triangle x =
triangle2 x, because triangle2 x may be defined when triangle x is not. This happens in our
example when x < 1.

To be more precise, what recursion induction verifies is that

for all x € Num
triangle x C triangle2 x

This is just the definition of C on functions:

triangle C triangle2

If triangle had been defined for all of its domain type, we could immediately infer that
triangle2 = triangle. Indeed, if we modify triangle’s type specification to

triangle :: Nat — Nat

so that triangle is a total function, then, over this restricted domain type, triangle2 must
be equal to it.

The recursion induction principle

From this example we derive the following proof schema: given a system of recursive
equations defining f, and a value f" which satisfies these equations, infer that

fCf

Commonly, the proof of actual equality is unnecessary.

Note that a simple form of recursion induction was used earlier (page 27) to assert
that because map2’ and map?2 are defined by equations of the same structure, they are the
same.

2.6 Why Functional Languages?
Having introduced functional programming and given a very brief guide to transformation

and verification within the functional style, we conclude this chapter with a review of the
success and generality of the approach.

39

Functional languages are very often defined by default: they lack assignment. They
are of interest here for positive, rather than for negative reasons. The prohibition of
assignment does not prevent the construction of evolving data structures, but the inter-
dependencies between operations, which arise when changes to data must be propagated
between operations, must be made explicit. It is not proven that prohibiting assignment
always simplifies programming, although the examples where the functional approach fails
lead one to conclude that a neater solution than simply re-introducing assignment is pos-
sible (see [ASS85] pg. 290 for a discussion).

Foregoing explicit assignment removes a major source of programming errors by letting
the machine arrange re-use of memory cells. Assignment is a means of informing the
computer that a value is no longer required, and that the cell holding it is to be re-used
for holding the new value given. In a functional language, the programmer is relieved of
any concern for the lifetime of values, and the timing of destructive overwriting of the cells
containing them. This is an important abstraction from the housekeeping needed with von
Neumann programming. It is also a big step towards avoiding unnecessary concealment
of a program’s parallelism, since programmed memory re-use introduces spurious points
of synchronisation between computations which might otherwise proceed in parallel.

2.6.1 Referential Transparency

The first positive reason for considering functional languages is that functional programs
are easier to reason about than imperative ones. This should have become clear from the
examples in this chapter.

In a functional program, any pair of expressions which are syntactically the same are
semantically the same, scope rules allowing. This property, “referential transparency”, is a
corollary of the prohibition of assignment—without assignment, expression evaluation can
have no side-effects, so different evaluations of the same expression must yield the same
result. Referential transparency means that a program’s script can be treated as a system
of equations, and the equational form of reasoning familiar from algebra is applicable.

2.6.2 Higher-Order Functions

Another benefit of the functional approach is the ease and cleanliness with which higher
order functions can be defined. Generally, no special syntax is needed to define or ma-
nipulate functions whose parameters or values are also functions. Moreover, algebraic
properties such as referential transparency still hold; there is no context sensitivity prob-
lem for higher-order functions, as there is with dynamically-scoped languages such as
(some dialects of) Lisp.

2.6.3 Polymorphic Type Checking

Strong typing in traditional languages destroys the usefulness of higher-order functions by
insisting that a separate definition be written for each different parameter type combina-
tion, even if the function need not know its parameters’ types. For example, the context
of “map” above implies that its type is

40

map :: (line — line) — ([line] — [line])

This type would conflict with many other likely uses of “map”, resulting in a type error
under a strong type discipline like Pascal’s [JWT5].

Polymorphic type checking enables a single, generic function to be written instead. The
generic function is assigned a type expression detailing the minimum structure required
for type consistency:

map :: (v =) = ([o] = [5])

If the usage of the function is then consistent with the function’s type expression, run-time
type errors can be guaranteed never to occur.

An object’s contextually-implied type is consistent with its generic type expression
if the implied type can be obtained from the generic type expression by a consistent
substitution of type variables by sub-expressions of the contextual type.

Polymorphic type inference and checking are not confined to functional languages,
but reflect the importance of higher-order functions to the expressive power of functional
languages.

2.6.4 Declarative Completeness

Viewing a functional program as a system of recursive equations leads to a declarative
reading, where the meaning of the program is taken to be the mathematical solution of
the equation system. Our language has a very valuable completeness property: the reduc-
tion of an expression by rewriting terms according to the program’s equations, using the
general normalisation strategy, is guaranteed to yield a result if a result is mathematically
deduceable. This leads to a view, taken in [HOS85], where a suitable functional language
is regarded as a logic programming language based on equations (in contrast to relations,
as in Prolog). The equational nature, combined with the completeness property, suggests
that functional languages have a fundamental importance.

2.7 Why Not Functional Languages?

There are problems with functional languages. A selection are listed here.

2.7.1 Lack of Expressive Power.

Serious problems have been encountered with extensions of functional languages to express
interactive resource management. Finding language constructs to express the kind of
non-determinism needed is quite easy, and several examples have been implemented and
used successfully, such as the “merge” operator of [AS85] and [Jon84], and the resource
managers of [AB84]. The difficulty is rather with maintaining the language’s desirable
algebraic properties.

In the context of parallel programming, the effect of this restriction is that a functional
program’s result cannot depend on the order or speed of evaluation of its constituent

41

expressions. This is a very attractive safety feature for parallel programming, but does
limit the application to some extent.

2.7.2 Lack of Abstractive Power.

Allowing program objects to have evolving local state can substantially simplify the expres-
sion of certain algorithms—the functional style prohibits an “object-oriented” program-
ming structure. [ASS85] argues that, although assignment can always be avoided (e.g.
using lazy streams), their constraint-propagation circuit simulator, for example, would be
inordinately complicated if no assignment were allowed at all. An obscure program in a
mathematically-simple language is, surely, at least as difficult to reason about as a clear
program in a language with a more complex logic.

An alternative to simply re-introducing assignment is to notice that the language fea-
tures proposed to help with the problem of interactive resource management mentioned
above, such as Abramsky and Sykes’ non-deterministic merge, or Arvind and Brock’s re-
source managers, can also be used to help simplify the expression of shared access to a state
variable. This may be a more structured and uniform approach than allowing assignment,
but the semantic problems remain.

2.7.3 Performance

Until recently, the usefulness of functional languages has been hampered by a lack of
fast implementations on conventional computers. Their use as a basis for research into
programming for high-performance, parallel computers therefore needed some justification.

Functional programs tend to run slowly because the language provides useful services
to the programmer. These generally include

1. Dynamic store allocation.
2. Lazy semantics.
3. Higher-order functions.

It has been shown (see [Jon87], [Aug84], [BGS82]) that these features can often be re-
moved from the compiled code, after careful program analysis. We review such tech-
niques in Chapter 3. When such modern compiler technology is applied, performance on
conventional machines can be very nearly comparable to standard imperative language
implementations.?

2.7.4 The update problem

There remains a systematic performance problem which is harder in general to resolve.
The histogram function given in section 2.2.6 was introduced as an illustration. At its
heart lies the function MapElement f i xs, which was defined so that

3Languages having call-by-value semantics, such as Common Lisp [Ste84], and Hope [BMS80] certainly
have implementations with performance competitive with the standard imperative language compilers (see
[BGS82]). Compilers for lazy languages, such as Lazy ML [Aug84], are not far behind.

42

MapElement f i [xq, X2, ... X;, ... Xg]
=[x, Xo, ... F %5, ... %]

It is not possible to define this function within the language in a way which avoids some
copying of the list. The reason is that references to the unchanged list must retain the
same meaning. We cannot, in general, just replace the changed element in situ. Such an
update might be called “destructive”, since it overwrites a value which is already defined.

What this means is that we cannot simulate a conventional, imperative programming
language (where assignment can be destructive) with the same efficiency. By using a tree
representation, it can be shown that the loss need only be a factor proportional to the
logarithm of the data structure’s size, but the overheads of such schemes compared with
the imperative approach are inevitably large.

Of course, in particular cases a compiler can locate where a destructive implementation
of functions like MapElement can be used. This is rather complicated, and not very pre-
dictable; for example, it depends on evaluation order, which in turn depends on strictness
analysis. The space usage characteristics of functional programs are notoriously difficult
to predetermine.

2.8 Summary

This chapter has given a swift introduction to functional programming in the style used
in the remainder of this book. A particular emphasis has been laid on techniques for
manipulating and verifying functional programs, as a foundation for the more extensive
derivations which follow. One aim of the approach to programming being advocated is
that programmers will make use of simple identities when constructing and maintaining
programs, and for this reason the presentation has not separated the activity of writing
programs from that of reasoning about them.

2.9 Pointers into the literature

Standard texts on functional programming

Bird and Wadler’s textbook [BW88] is the most appropriate source for material which
expands on the content of this chapter at a similar level. Their notation is very similar.
Field and Harrison [FH88] give a much deeper treatment of a wide range of subjects in
the area, and is recommended for the reader wishing to go beyond the introductory level
of this chapter.

Much of the material in Henderson’s book [Hen80] is covered by these later books,
but it is at least worth referring to for its investigations of stream programming and
backtracking. Glaser, Hankin and Till wrote a fundamental textbook [GHT84] covering
everything needed for a basic grounding in the area at the time. Their treatment of
mathematical foundations such as combinators and the A-calculus is particularly worth
referring to. It lacks coverage on topics which have since gained importance, such as type
systems. Another useful, but again somewhat dated, reference is the collection (commonly

43

called the “blue book”) edited by Darlington, Henderson and Turner [DHT82]. This is
interesting because of the breadth of the functional programming research community it
spans.

Abelson and Sussman’s textbook [ASS85] is outstanding in many respects. They are
especially successful in placing the functional paradigm in context, carefully developing a
discussion of whether a pure functional language is sufficiently expressive. Their book gives
a taste for the work of the large Lisp-based community, ostensibly based on a functional
view but extending far outside it. For an introduction closer to the mainstream of Lisp
culture, one might look to Wilensky [Wil84].

Foundations for reasoning about functional programs

The A-calculus, originated by Church [Chu41], was introduced as a notation for functions in
general, and deals with higher-order functions particularly tidily. Its correspondence with
most functional programming languages is close enough for us to think of their syntax as
“sugar” for what is really just programming directly in the A-calculus. Dana Scott founded
a large body of theoretical computer science by constructing a model of the A-calculus,
using only fundamental mathematical notions such as set theory. This enables facts about
the A-calculus to be proven using classical mathematics, and forms the formal basis, called
domain theory, for reasoning about functional programs as mathematical objects. Stra-
chey applied this to the problem of giving mathematical meaning to other programming
languages as a means of formal specification of programming language meaning. This
area, denotational semantics, is well covered by [Sch86] and [Sto77]. The A-calculus itself
is rather thoroughly covered by Barendregt [Bar84]. Stoy gives a particularly accessible
introduction to Scott’s domain theory in [DHT82].

The principles of reasoning about programs using the techniques presented here were
actually developed before that mathematics were formalised, in the first recorded instance
by McCarthy [McC67]. The survey of induction techniques given here was based on a
article by Manna, Ness and Vuillemin [MNV73], where a variety (more than were given
here) are illustrated and verified with respect to computational induction, and ultimately,
therefore, to Scott’s domain theory.

Backus [Bac78] presents a rather different approach based on the combinator language
FP. Whereas in our language higher-order functions can be constructed at will, FP is
restricted to small set of well-understood higher-order combining forms, and the language
is characterised by a quite small set of generally-applicable equivalences which constitute
an “algebra of programs”. Being a combinator language, there are no variables at all, only
functions to pick out and manipulate parameters. This avoids consideration of parameter
values in deciding the applicability of algebraic laws, and leads to a claim that reasoning
occurs at a “function level”. The reader is referred to Field and Harrison [FHS88|.

The presentation in this book avoids the A-calculus, drawing instead from the theory
of term rewriting systems. This allows a simpler explanation of equational reasoning and
pattern matching. It is slightly more general, since it includes some functions (such as the
non-strict or of section 3.1.3) which cannot be written in the A-calculus (although they
are represented in most models of the A-calculus). The reader is referred to Klop [Klo90]
or Huet and Oppen [HO80].

44

Assessing functional programming

It is for the reader to ponder the question of whether functional programming has anything
to offer programming practitioners, and if so what. As already mentioned, this is one
theme of Abelson and Sussman’s book [ASS85]. They identify some serious problems in
expressing certain program structures in the functional style, but they do not deal with
the question of reasoning about programs. Hughes’ article “Why functional programming
matters” [Hug84] finds much expressive power in the functional style, and some of this
presentation has been drawn from it. His emphasis is on using streams and function
composition to separate programs into modules. Note that these conclusions are not
contradictory, but rather indicate that the functional style does matter, but is not a
universal panacea.

Arvind and Ekanadham advocate their language, Id Nouwveau, for scientific program-
ming in [AE88]. They find much to commend a purely functional approach. The vector
and matrix recurrence notation used here is drawn from their “I-structures”, and shares
the interesting advantage seen in the Gauss-Seidel example (see section 2.2.8), that the
matrix’s scan order need not be specified. They do find cause to augment their language
with features which are not purely functional, but are still relatively pure (see section 4.11).
They have not yet found cause to deal especially with the “update problem” outlined in
section 2.7.4.

Determinacy and operating systems

For parallel programming, functional languages have an outstanding advantage: regardless
of the parallelism used in the evaluation, the result will be completely repeatable. It is
not possible, either by accident or by design, to write a functional program whose result
depends on who wins a “race” between two parallel processes.

Although very handy for many applications, there are situations where some kind of
race is just what is wanted. For example, one might have a parallel algorithm in which
any solution will do, but we do not know which “solver” process will find a solution first
(McBurney and Sleep give an example of this, where a global bounding value is non-
deterministically updated to control pruning in a parallel searching algorithm).

More common examples occur in operating systems and when dealing with input and
output devices. It is in the nature of an operating system that its behaviour depends on
the termination order of the processes for which it is responsible.

A substantial amount of work has been done on operating system design in the func-
tional style. Abramsky and Sykes [AS85] and Simon Jones [Jon84] have built operating
systems by introducing a special operator, merge. The stream returned by merge e; e; con-
tains the elements of the streams e; and e, in the order in which they are computed. This
“fair, bottom-avoiding” merge operator is sufficient to encode all the operating systems
applications studied, and is not difficult to implement. Unfortunately, programs using
merge are very difficult to reason about.

45

Input-output and the “plumbing problem”

In a functional language, all the objects upon which an expression’s value might depend
must be manifest in the expression itself. When programming input and output this raises
the “plumbing problem”: every expression, function or module which might perform input
or output must be “plumbed in” to the input and output controllers, at the very top level of
the program. Thus an apparently quite small modification, making a function print some
status information for example, can involve substantial changes at all levels of abstraction.
The only published attempt known by this author to deal with this problem appears in
the FL language design, and is studied by Williams and Wimmers in [WW88].

Extensions to our functional language’s type system

The language presented here uses the Hindley-Milner system [DM82], with no frills. It
lacks overloading, for example of integers and reals, and could be extended relatively easily
to include subtypes and inheritance, giving an immense boost in its power to describe
complicated logical structures clearly and concisely.

A simple example of a subtype structure occurs with records, where a record is a
collection of objects structured into named fields. A subtype of a record is a larger record,
containing all of the first record’s fields, and more. A function f defined to take an object
of type A as a parameter is automatically defined on objects of subtypes of A. We say that
f is inherited by the subtypes of A.

Cardelli and Wegner review of types in programming languages [CW85] is required
reading. Kaes has proposed an attractive approach to introducing overloading to a lan-
guage like ours [Kae88], and this is likely to be incorporated in the Haskell language
design [HWA*88]. Fuh and Mishra [FM88] present the basis for a type scheme which
retains the polymorphism and type inference properties of the Hindley-Milner system, but
incorporates subtypes and inheritance.

Our language has no modules, as would be required for writing large programs. Mod-
ules can be parameterised by types, and can package structures to reflect their mathe-
matical structure. Standard ML [Mil84] is an example, while Cardelli and Wegner, and
Burstall [Bur84a] develop the theory. See also the work of Goguen and the OBJ group
[Gog88]. Goguen argues that higher-order functions are not needed for typical higher-order
programming examples: parameterised modules do the job more simply, and facilitate the
imposition of semantic constraints on parameters (e.g. that the operator be associative for
insert).

Specification languages

The declarative completeness property of functional programs implies that an object can-
not be specified in the language without a giving a program to construct it. It is often
useful to be able to write down the behaviour expected of a program in a formal manner,
before going into the detail needed to implement it. Much of this book is devoted to gener-
ating improved implementations from specifications given as simple implementations, but
non-executable specification techniques are occasionally used informally. See, for example,

46

the breadth-first list-tree interconversion functions in Appendix A, section A.6.2, and the
definition of the vector and matrix operations in Appendix B.

Several languages have been designed specifically for giving formal specifications of
software systems. Examples include Z (a good, short introduction is [Suf82]), VDM
[BJ82], OBJ [GT79] and LARCH [GH86¢]. All these languages have an executable subset
which is functional.

Another approach to extending the power of a functional language to specify is by
augmenting it with the mechanisms of logic languages. Degroot and Lindstrom [DL86]
give a comprehensive survey. An interesting attempt to capture an object-oriented style
in a specification language is described by Goguen and Meseguer [GMS86].

47

48

Chapter 3

Sequential and Parallel
Implementation Techniques

Hopefully Chapter 2 gave the reader a feel for the power and simplicity of the functional
approach to programming. This chapter deals with implementation techniques. The aims
of this chapter are

e To demonstrate that functional programs can be compiled to achieve performance
competitive with other programming paradigms on conventional, sequential comput-
ers.

e To explain how these fast sequential implementation techniques can be extended to
tightly-coupled multiprocessors.

e To develop an understanding of how parallelism arises in the functional program’s
source code.

e To provide a framework for assessing the costs involved in attempting to exploit
parallelism, so that they may be weighed against the possible benefits.

The treatment of implementation technology will not be very profound or detailed: the
intention is to give just enough detail to understand the problems of writing good parallel
functional programs.

The chapter deals with the graph reduction approach to functional language imple-
mentation, and for a deeper description see Peyton Jones’ textbook [Jon87]. There are
other approaches but the influence on the programmer’s view of program behaviour is the
same.

3.1 An Overview of Compilation

Compiling a functional language is not fundamentally different from compilation of conven-
tional languages, but the opportunities for analysis and optimisation are more abundant.
Moreover, the analysis and simplification often have quite tidy justifications with reference
to the language’s underlying theory.

The phases one would expect in a high-quality compiler for our language will include

49

1. Type checking,

2. Simplification,

3. Removal of pattern matching,

4. Variable abstraction—removal of parameterised where clauses.
5. Strictness analysis,

6. Boxing analysis,

7. Code generation

Sophisticated compilers will include other phases, such as storage class analysis to classify
values according to whether register, global, stack or heap (in that order of preference)
storage can be used. The next few sections give some explanation of each phase.

3.1.1 Type checking

This has two purposes: to detect and report programmer’s mistakes as clearly as possi-
ble, and to annotate the program with information needed later. The language used in
this book uses a straightforward polymorphic type scheme, essentially the Hindley-Milner
type system [DM82]. This system allows an object to be assigned the most general type
expression possible, under the condition that its code act identically on all instances of
that type expression. It also has the advantage that type declarations can be inferred if
they are not given, and that the type checking algorithm will fail if a run-time error could
occur due to a type mismatch.

More realistic programming languages require a slightly richer type system than this,
if only to handle coercion of integers to reals properly. As is shown by Fuh and Mishra,
[FM88] and Kaes [Kae88] this need not be a substantial complication.

3.1.2 Simplification

There are many opportunities to apply the algebra of programs, and in particular the prop-
erties of well-known operators, to simplify the program which the programmer originally
wrote. Examples include

Common subexpression elimination: This standard compiler technique is applicable
without restriction in the functional world, because no function can have a side-
effect. Some care does have to be applied to avoid increasing the amount of working
memory a program may require.

Partial evaluation: When all parameters to a function are provided at compile-time
the compiler can simply calculate the value. When some but not all parameters are
provided, massive simplifications can still occur. In particular, common higher-order
functions like map and insertleft can be specialised to their function parameter. This
can improve strictness information, reduce function call overheads and allow better
storage class optimisation.

20

Unfolding simple functions: This is called ‘inlining’ in the standard compiler litera-
ture. It often leads to much more substantial simplifications.

Data type transformations: Library functions like ListToVector and VectorTolList are
known to satisfy handy properties such as

ListToVector (VectorTolList as) = as

Thus, for example, if operations like map and insertleft are defined over vectors by
first translating to lists, this simplification is applicable as soon as the definitions
are unfolded.

This is an area of very active research, and several transformations appearing in this book
are candidates. For example, see the ++ optimisation in Appendix A, section A.1.1.

It may seem unwise to apply so much unfolding to programs. There is a danger that the
space occupied may be too large, but the principle at work is quite reasonable: operators
like insertright, map and so on are shorthand for what in an imperative language would
appear as an explicitly-coded loop. Thus the “macro-expansion” implementation should
be no worse than the imperative case.

3.1.3 Removal of pattern matching

In Chapter 2 section 2.2.5, a strategy was given for selecting which equation to apply to
a redex. As described there, the normalisation strategy is very inefficient: it may involve
many tests being performed more than once, and it incurs the overhead of spawning
and then tidying up a number of parallel testing processes. We simplify the discussion
here by insisting (along with almost all existing compilers and language designs), that
the patterns be restricted in form so that the parallel, “racing” implementation is not
necessary. Instead, a sequential pattern testing implementation can be used.

Normal-order reduction

For programs which use no pattern matching, a trivial sequential strategy is guaranteed
to find the normal form if it exists:

e The normal-order normalisation strategy: The left-most, outermost reducible
expression is reduced at each step.

Without pattern matching, each variable is defined by a single equation of the form

fx; %9 ... xxy = RHS

for N > 0. There is no need for any pattern-testing processes as there is never more than
a single candidate equation. Under the normal reduction order, none of the parameters
are evaluated at all before the function is invoked.

It is helpful (although not formally necessary) to allow just one function to be de-
fined by pattern-matching, a conditional with the role of the if.. .then.. .else construct of
conventional languages:

ol

Bool ::= TRUE | FALSE
cond :: Bool - a — a — «

cond TRUE ab =a
cond FALSE ab=b

Normal order is still a normalisation strategy even with the addition of cond. We can
think of cond as being a built-in primitive.

Compiling pattern-matching

The purpose of the pattern-matching removal phase of the compiler is to translate a
program with patterns into a program without, so that the normal reduction strategy
above can be used instead of the general (parallel) normalisation strategy. To do this, the
sequence of parameter testing must be explicitly coded using the cond operator.

As a very simple example, consider a variation of cond defined by the equations

guard :: @ - a — Bool — «

guard a b TRUE = a
guard a b FALSE = b

This function is just the same as cond except that the condition is the leftmost parameter
instead of the leftmost one. It is easily translated into a pattern-free definition using cond:

guard a b test = cond test a b

Now when an application of guard is applied to some parameters, this equation is used
straight away, before evaluating any parameters. The next redex will be an application of
cond, and this will require test to be evaluated. Thus, although the guard function does
not work properly under the normal reduction order, we can code it in terms of cond to
get the desired effect.

Non-sequential patterns

This compilation technique cannot work in general. Take for example

or :: Bool — Bool — Bool

or FALSE FALSE = FALSE
or TRUE x = TRUE
or x TRUE = TRUE

This is the well-known Boolean ‘or’ function, but unusually it is defined to yield TRUE if
one of its inputs is TRUE, even if the other input is still undefined. Its full truth table is

52

or FALSE FALSE = FALSE
or FALSE TRUE = TRUE
or TRUE FALSE = TRUE
or TRUE TRUE = TRUE
or L TRUE = TRUE
or TRUE L = TRUE

The only correct implementation of this or spawns two parallel processes, one to test the
second defining equation (by evaluating the first parameter), the other to test the third
equation (by evaluating the second parameter).

3.1.4 Variable abstraction

The next phase is a form of combinator abstraction, as described in Chapter 2, section
2.2.8. The difference is that the combinators are not chosen from a fixed set, but are derived
from the input program. The process is often called A-lifting, or, if certain “laziness”
constraints are satisfied, supercombinator abstraction.

The object of M-lifting is to eliminate function definitions from where clauses. The
problem definitions are those which introduce new parameters in the LHS. For example,
g in

fxy = (some expression involving g)
where
g z = (some other expression)

The transformation is very straightforward if the RHS of g’s equation makes no reference
to variables local to f, such as x and y. We just move g out of the where clause, if necessary
renaming g to g' to make sure that no name clash is introduced:

fxy = (some expression involving g)
g z = (some other expression)

If g’s RHS does refer to free variables such as x and/or y, the free variables must be passed
explicitly as parameters to g' every time g’ is called. This gives

fxy = (some expression involving g X y)
g xyz= (some other expression)

Peyton Jones gives the full details, which are quite complicated because of recursive defi-
nitions and the need to ensure that the transformation introduces no recomputation. The
supercombinator abstraction algorithm makes this guarantee for all expressions (called
full laziness, while A-lifting introduces no recomputation of named expressions, but may
recompute some unnamed ones. Most compilers employ A-lifting because it involves less
run-time overhead.

The result of the variable abstraction phase is a set of simple recursion equations, with
simple LHS’s (thanks to the pattern matching removal), and flat RHS’s: a flat RHS either

23

has no where clause, or has a where clause all of whose equations have variables as
LHS’s. For example,

fx = map ((+) 1) xs
where
XS = X 1 XS

is a simple recursion equation because although it has a where clause, the LHS of the
equation defining xs consists only of a variable.

Alternative implementation techniques avoid this step, with the result that an environ-
ment data structure must be carried about at run-time, carrying the values of variables
bound for the scope of a where clause. The A-lifting process simply makes this environ-
ment explicit: it makes sure that each free variable is passed as a parameter to just those
expressions which need it.

3.1.5 Strictness analysis

The definition of strictness was first given in section 2.4.1. In its simplest form it can be
given in terms of a single function application with a single parameter: the function f is
strict in its parameter if

fl=1

Strictness analysis is a compiler algorithm which analyses the syntax of every function
definition and every function application and detects in each case whether the equation
above holds. If this is not easily deduced, perhaps because of run-time dependency or
simply intractability, the analyser assumes that the function is not strict. The analysis
algorithm employs a particularly elegant approach (called abstract interpretation) based
on an abstraction of the language’s standard semantics, in which each value is represented
by an abstraction—either L or “not-L”. An introduction is given in [Jon87], [FH88] and
in Hankin and Abramsky’s introductory chapter in [AH87].

Once deduced, strictness information is manifest as strictness annotations appearing on
strict applications. Thus, if the source program contains the application of two expressions
e; and es:

e &

and the compiler deduces that e; is strict in its parameter, i.e. that
e L =1

then the application is annotated:
er #

For complete strictness information it is also necessary to annotate the strict formal pa-
rameters in function definitions. If f is defined by the equation

54

f X y Z = ¢+
and f is found to be strict in its second parameter, its definition is annotated:
f X y# Z = ¢+

This is necessary if strictness information is to be made available when a function is passed
as a parameter and used in a context in which its identity cannot be known at compile-time
(Peyton Jones covers this well [Jon87]).

Strictness and reduction order

The value of strictness information is in the freedom it confers on the order in which
reductions are applied. With no strictness information, every application must be applied
in normal order, leftmost first: where e; and e, are expressions, then in the application

€1 €9

the evaluation of e must be suspended until e; has been evaluated to a stage where it
needs the value of e;. This approach is often called the call-by-need parameter passing
strategy. By contrast, with strictness information,

e # e

we can evaluate eo much earlier—as soon as we know we need the result of the application
as a whole. This is because we know that e; will eventually use e, (unless it is L of its
own accord!). For example, we can employ call-by-value parameter passing, where ey is
evaluated completely before evaluation of e; begins. This is the choice taken by most older
language designs for efficiency reasons, regardless of strictness.

Alternatively, parallel parameter passing can be used; see section 3.2.

3.1.6 Boxing analysis

The explanation given so far of program execution relies on a tree-structured representation
of the expression being evaluated. The tree has a node wherever an application occurs, with
the function being applied as the left sub-tree, and the parameter expression as the right
sub-tree. The tree is represented by a linked structure in the computer’s memory. When
a parameter expression is passed into a function body, a pointer to the piece of graph
representing the expression is transferred—rather than copying the expression. This is
important not only to reduce copying and reduce space use: it is also necessary so that
once a parameter does get evaluated, it can be overwritten with the value so that it need
not be calculated again. Note that this means that after some rewriting the expression
tree will have nodes with more than one parent; it becomes a general directed graph.

In this mechanism, the parameter is called bozed, and to find its value a pointer must
be followed. This indirection is very expensive compared with passing the parameter
“unboxed”, in a register as might a compiler for a conventional language. Clearly a
parameter can only be passed unboxed if it is passed by value.

95

This problem is slightly awkward because to take full advantage of unboxed parameter
passing, the code generated for a function’s body must be quite different, but the boxed
interface must still be available for call-by-need invocations. In the presence of many
parameters the number of versions needed of each function’s code can be very large, so
a compiler should emit code only for those variants actually used, and should impose a
limit beyond which boxed parameter passing must be used.

Only with boxing analysis is the speed improvement due to strictness analysis realised
(a space improvement almost always occurs with or without boxing: consider an accumu-
lating parameter function like length).

3.1.7 Code generation

After simplification, strictness and boxing analysis, much of a typical program will be
handled well by a conventional code generator. However, in the general case problems arise
which are peculiar to the functional case: at the heart lies the problem that a function
can be applied to a parameter in a context where the compiler cannot tell whether the
resulting application is a redex. This can be resolved by carrying an parameter count with
the function, but this overhead is undesirable, and can be avoided.

Several fast and successful implementations of code generators for lazy, higher-order
functional languages have been in existence for some time, and are described, for example,
by Peyton Jones [Jon87], Augustsson and Johnsson [Aug87, Joh87] and Fairbairn and
Wray [FW8T7]. In order to give the interested reader a concrete understanding of imple-
mentation issues, a simple code generator is described here in some detail. It should be
emphasised that the approach taken is representative of but different from the various
existing compilers, and does not describe a particular completed compiler?.

We begin the explanation with an outline of the scheme, together with some motivation.
We will be more specific in the next section:

e We separate function application from object evaluation. The apply operation takes
a function f and a parameter a, and builds a heap cell (called “an application box”)
containing the code

f1: push a
push f1
jmp f

The label f1 is the address of the heap cell.

e Thus, for example, when a three-parameter curried function is applied to three
parameters a, b and c, three heap cells are occupied:

! The ideas presented in this section owe much to work originally done by Hugh Glaser of Southampton
University

26

f1: push a f2: push b f3: push c
push f1 push 2 push f3
jmp f jmp f1 jmp 2

The value f3 represents a fully-parameterised function application: it is a redex,
although this may not be locally detectable at the point where the final parameter
is provided.

When the result of a function application is passed to a strict basic operator (take
“+” as an example), the evaluate operator is applied to it first. The evaluate operator
takes an application box as input, and returns an unboxed, evaluated object. The
input must be of base (i.e. non-functional) type.

When a function has computed its return result, it must update the application box
so that it represents the evaluated object rather than the corresponding function
application. For example, if f3 is a three-parameter function, the box f3 above is
overwritten with

f3: push x
return

The evaluate operator invokes the code to calculate its input (say f3 for example)
by pushing some current state information, and then branching to f3. Each pa-
rameter and the pointer to each closure, is thereby stacked in turn, and finally the
supercombinator f itself is executed.

When f comes to return its result, it must ensure that a base-type normal form
is ultimately returned. Thus, every supercombinator definition evaluates its result
before returning. This happens naturally when the result returned by f is the output
of a strict basic operator. However, not all functions do this—some just return (some
component of) an input parameter, or an application box.

In general it is possible that f is not a three-parameter function, but is instead a
function of fewer parameters, which returns a function, and this returned function
is then applied to the remaining parameters.

In either case, the compiler can detect that the return result is not of base type.
Instead or returning an unboxed, base-type result, such a function removes the pa-
rameters it has consumed from the top of the stack

The correctness of this scheme relies crucially on the evaluate operator being applied only
to redexes. Thus, we cannot (in general) interpret strictness annotations on function-typed
objects as call-by-value function application.

3.1.8 A simple code generator

For concreteness a simple code generator is sketched here. It does not deal with con-
structors, parameterless definitions or where clauses, and assumes that pattern matching

57

has been transformed away. In the first instance, it is fully lazy and takes no account of
strictness or boxing analysis. The input is a list of equations:

SourceCode == [Equation]
Equation ::= EQUATION function [formalparameter] rhs

where function and formalparameter are identifiers,

function == identifier
formalparameter == identifier

The right hand side can be any expression. Expressions are either base-value constants,
function constants, parameters, applications of primitive (and strict) operators such as
“+”, or applications of user-defined functions (think of the list of Expressions here as being
a pair for the time being):

rhs == Expression

Expression ::= CONST Num |
FUNCTION identifier |
PARAM Num |

ADD Expression Expression |
APPLY [Expression]

It proves useful to separate right-hand sides into two classes, value-type or graph-type:

ValueType :: Expression — Bool
GraphType :: Expression — Bool

ValueType (CONST n) = TRUE
ValueType (FUNCTION f) = FALSE
ValueType (PARAM n) = FALSE
ValueType (ADD el e2) = TRUE
ValueType (APPLY [el, €2]) = FALSE

GraphType exp = not (ValueType exp)

The code generator outputs a list of code blocks, one for each equation in the source code:

CodeGenerator :: SourceCode — [CodeBlock]

A code block is simply an entry point label and the associated instruction sequence:

CodeBlock ::= LABEL identifier [Instruction]

28

The abstract machine

The abstract machine’s instruction set is defined by the data type Instruction:

Instruction ::= PUSHVALUE Num |
PUSHGRAPH identifier |
PUSHPARAM Num |
ADD |
APPLY |
EVAL |
UPDATEVALUE Num |
UPDATEGRAPH identifier |
BOX |
RETJMP Num |
RET
JMP identifier

After optimisation, this representation is used to generate code for the target processor.
This may involve register allocation and other issues which will not concern us here.

The abstract machine maintains a heap and a single stack, into which it has two pointer
registers, the stack pointer and the frame pointer. The frame pointer points to the base
in the stack of the current invocation frame, where the return address is kept, while the
stack pointer points to the top of the stack. Thus, the stack just before a three-parameter
function like f returns a result v will have the form

sp — v (return value)
f1 (first application box)
a (first parameter)
f2 (second application box)
b (second parameter)
f3 (third application box)
¢ (third parameter)
ret (invocation return address, pushed by EVAL)
fp — ofp (pointer to base of previous frame, pushed by EVAL)
(previous frame)

The PUSHVALUE n instruction places the unboxed constant n on the top of the stack. The
PUSHGRAPH instruction takes a pointer to a function or heap cell and puts it on the top
of the stack. PUSHPARAM n picks the n'* parameter out of the stack frame and pushes it
onto the stack.

The APPLY instruction takes a function f and a parameter x from the top of the stack,
and replaces them with a pointer f1 to a heap cell (an application box) containing the
code

29

f1: PUSHGRAPH x
PUSHGRAPH f1
JMP f

The EVAL instruction takes a pointer to an application box from the top of the stack,
pushes the current frame pointer and return address and jumps to the code in the box.
On return, an unboxed base-type object will have been placed on the stack by the function.

The UPDATEVALUE n instruction is used when an n-parameter function has computed
its return value, in the case when the value is unboxed. It takes the value v at the top of
the stack and uses it to overwrite the n’* application box in its invocation chain. To do this
it finds the application box pointer saved adjacent to the n'* parameter, and overwrites it
with the code

fn: PUSH v
RET

The UPDATEGRAPH n instruction is similarly used when an n-parameter function has
computed its return value, but in the case when the value is boxed. It takes the pointer
v (to the boxed result) at the top of the stack and uses it to overwrite the n* application
box in its invocation chain with the code

fn :: JMP v

The BOX instruction takes an unboxed value v from the top of the stack, and puts it in
a box in the heap, just like the cell fn above. It leaves a pointer to the box on the top of
the stack (this instruction will almost always be optimised out in code generators which
take boxing analysis into account).

The RETJMP n instruction is used when a function has computed its return result
and updated the corresponding application box using UPDATEGRAPH. The object being
returned is still a pointer to a box. This may occur either because one of the parameters
is being returned (and so might not yet have been evaluated), or because the result is of
function type. It saves the value on the top of the stack in a temporary register (which is
a pointer to the box being returned), removes the top n parameters from the top of the
stack, and finally jumps to the saved pointer. The code thereby invoked will eventually
compute the unboxed base-type object required, and return.

The RET instruction is used when a function has computed a base-type, unboxed result.
It picks up the return address and old frame pointer from the base of the invocation frame,
resets the stack pointer to the top of the old stack frame, and pushes the returned value.

The JMP instruction simply transfers control to the function or box named.

The translator

The key to understanding the code generator is to distinguish between two modes, graph
mode, where code to build a heap-based graph is generated, and value mode, where code to
calculate actual values is generated. The main optimisation task is to avoid graph mode.
The code generator takes each equation and classifies its RHS as either value type or graph

60

type. It then calls the appropriate graph or value mode code generator:

CodeGenerator :: SourceCode — [CodeBlock]

CodeGenerator equations = map TranslateEquation eqns

TranslateEquation (EQUATION fname params rhs)
= LABEL fname ((Ggen rhs)++[UPDATEGRAPH n, RETJMP n]), if GraphType rhs
where
n = length params
= LABEL fname ((Vgen rhs)++[UPDATEVALUE n, RET]), otherwise
where
n = length params

The graph mode code generator Ggen generates code to build the function application tree
of its result using APPLY and BOX:

Ggen :: Expression — [Instruction]

CONST n) = [PUSHVALUE n, BOX]
FUNCTION f) = [PUSHGRAPH f]
PARAM n) = [PUSHPARAM n]
ADD el e2) = [PUSHFUNCTION “addfunction”]
++(Ggen el)++[APPLY]++(Ggen e2)++[APPLY]
Ggen (APPLY [el, €2]) = (Ggen el)++(Ggen e2)++[APPLY]

Ggen
Ggen
Ggen
Ggen

The function identifier “addfunction” refers to a function which adds its two parameters.
It can be compiled in value mode, but is needed here to suspend evaluation of the addition
and its parameters during graph construction.

The value mode code generator is more straightforward, but must call Ggen to build
functions and lazy parameters:

Vgen :: Expression — [Instruction]

Vgen (CONST n) = [PUSHVALUE n]

Vgen (FUNCTION f) = [PUSHGRAPH f, EVAL]

Vgen (PARAM n) = [PUSHPARAM n, EVAL]

Vgen (ADD el e2) = (Vgen el)++(Vgen e2)++[ADD]

Vgen (APPLY [el, €2]) = (Ggen el)+-+(Ggen e2)++[APPLY]++[EVAL]

A simple example

As an example, consider the function definitions

61

f x = (ident x) + x
ident x = x

This program is represented in the SourceCode data type as

[EQUATION “f" [*x"]
(ADD (APPLY [FUNCTION ‘“ident”, PARAM 1]) (PARAM 1)),
EQUATION “ident” [*X"]
(PARAM 1)
]

Applying the code generator we find that “f” is compiled in value mode (Vgen), while
“ident” is compiled in graph mode using Ggen:

[LABEL “f”

[PUSHFUNCTION “f",
PUSHPARAM 1,
APPLY,

EVAL,
PUSHPARAM 1,
EVAL,

ADD,
UPDATEVALUE 1,
RET |

LABEL “ident”

[PUSHPARAM 1,
UPDATEGRAPH 1,
RETJMP 1]]

Optimisations in the code generator

Much of the performance comes from optimisations making use of information about
particular cases. The most basic make use of information available from the immediate
context, from strictness information and from types. A small selection is given here:

e Unshared applications: When the APPLY instruction is used to build an appli-
cation box, it is possible to detect from the context whether the resulting pointer
might be copied. If not, the box need not be updated when the function is evaluated.
Then the application box need not include code to push the box address, although it
must still put something there to make sure the parameters are stacked in the frame
correctly. We call this instruction PUSHDUMMY. It is unnecessary if a non-updating
variant of the function being applied is used, but this is not likely to be worthwhile.

e Combining EVAL and APPLY: this optimisation is simply the observation that in
a sequence of the form

62

[PUSH f, PUSH x, APPLY, EVAL]

the application box cannot be shared, and will be freed immediately. It therefore
need not be UPDATEVALUEed, and can be replaced by the code

[PUSHSTATUS label, PUSH x, PUSHDUMMY, JMP f, DEFINELABEL label]

where label is an unused identifier, DEFINELABEL label associates label with the
following instruction and PUSHSTATUS label pushes the current frame pointer and
label onto the stack.

This optimisation derives from splitting EVAL into [PUSHSTATUS label, JMP old
top of stack, DEFINELABEL label]. Then it is simply a storage class optimisation to
move the PUSH from the application box into the instruction stream. The APPLY
equation for Vgen becomes

Vgen (APPLY [el, e2]) = [PUSHSTATUS label]
++(Ggen e2)+-+[PUSHDUMMY]
++(Ggen el)++[PUSHDUMMY]
++[JMP (top of stack),
DEFINELABEL label]

Multiple applications: It is very common for a curried function to be applied to
several parameters at once. The application boxes can be compressed into a single
heap cell. Thus, as well as the binary application rules in Ggen and Vgen we have
rules for 2, 3 or more parameters. For example,

Ggen (APPLY [el, €2, e3]) = (Ggen el)+-+(Ggen e2)++[APPLY?2]
where the APPLY2 instruction builds an application box f containing the code

f. PUSHGRAPH (graph of ¢2)
PUSHDUMMY
PUSHGRAPH (graph of e3)
PUSHGRAPH f
JMP (graph of el)

This is simply an optimisation by branch elimination of the code

63

fn—1: PUSHGRAPH (graph of e3)
PUSHGRAPH f

f: JMP (graph of el)
PUSHGRAPH (graph of e2)
PUSHDUMMY
JMP £,

e Strict applications: when a function f is known to be strict, and its value is known
to be of base type, then the value-mode code generator can generate code to apply
EVAL to a parameter before passing it:

Vgen (STRICTAPPLY [el, e2]) = (Ggen el)
++(Ggen e2)++[EVAL]
++[APPLY]++[EVAL]

Things are not quite so simple because now e2 is passed to el unboxed. It would be
easy to arrange a pointer to its box to be passed instead, but more efficient would
be to use the equation

Vgen (STRICTAPPLY [el, €2]) = (Ggen el)
++(Vgen e2)
++[APPLY]++[EVAL]

(as well as the other optimisations listed above). To do this requires a variant of
el to be used which expects its parameter unboxed, and this cannot in general be
managed.

A similar problem arises when trying to avoid having to BOX constants before passing
them as parameters.

e Tail recursion: a tail recursive function is one whose result is an application. As
things stand, the code generated will build a heap-based application box representing
the application being returned, update the corresponding application box, clear the
parameters consumed from the stack, and then jump to the tail-recursive call. This
avoids needlessly consuming stack space, but is inefficient because the update is
unnecessary, and because the parameters could be updated in place rather than
being built in the heap and then copied onto the stack.

It is important to deal with tail recursion well, as this is how loops are manifest. It
is quite complicated, and the reader is referred to the literature review (section 3.4)
for details.

To conclude this rather complicated code generation scheme, we note that we have avoided
any run-time testing of the graph to determine whether functions can be invoked, and we
have avoided tagging objects with their type. The costly aspects of the language are

e non-strict functions, requiring parameters to be passed as graph,

64

e updating application boxes, requiring pointers to boxes to be passed with parameters,
in conjunction with higher-order and polymorphic functions.

Much of the overhead can be reduced by generating multiple variants of each function’s
code, but this is not always acceptable.

3.1.9 Garbage collection

Functional language implementations are very reliant on high-performance garbage col-
lection. Very careful design of run-time data structures is required to allow unused heap
storage space to be detected and collected efficiently. Moreover, garbage must be made
available for collection as soon as possible, requiring some potentially quite expensive ac-
counting as pointers are destroyed. Compile-time optimisation of this garbage accounting
activity is an active research area.

3.2 Parallel graph reduction

In the last section compilation techniques were discussed for execution of a functional
programming language on a single, conventional processing element. However, it was very
common in examples of reduction that several redexes could be reduced in parallel. This is
actually done by the large family of parallel graph reduction machines being constructed,
including ALice [DCF*87] Grip [JCH85], ALFALFA [GH86b], FLAGsHIP [WSWW87] and
others.

In order to understand how parallelism is exploited in these architectures, we examine
how and when potentially-concurrent tasks are created, and how they interact with one
another.

3.2.1 Processes

Under sequential evaluation, there is a single reduction process, which applies a normal-
order reduction strategy modified by strictness annotations to include call-by-value pa-
rameter passing. Under parallel graph reduction, there may be many such processes,
each evaluating a different sub-graph. There are several overheads paid by parallel graph
reduction machines against which the potential speedup must be weighed:

Fork overhead: The cost of creating a new process arises in three ways:

1. Constructing the graph representing the expression. This is the same as the
cost of call-by-need parameter passing. It is to be compared with the lower cost
of call-by-value parameter passing.

2. Placing a new process descriptor in a process pool to await scheduling. The
new process descriptor will contain a reference to the graph of the expression
in question, and when necessary, the identifier of the process which spawns it.
Other processors may take descriptors from this pool, thus migrating the work
across the machine.

65

3. Constructing and entering a new process when the graph reference is scheduled
for execution.

In addition, there may be a cost associated with distributing the graph reference
to another processing element for execution. We can account for all these costs as
an average fork overhead chargeable for every process creation. Note that much of
this cost is incurred whether or not the process is actually distributed to another
processing element.

Synchronisation control: Because of sharing in the graph, a process may attempt to
reduce a node in the graph which is already being reduced by another process. If
allowed to proceed, considerable chaos will result. To prevent this, a marker must
be placed on a node—signifying that “work is in progress below” —to ensure mutual
exclusion whenever a reduction process attempts to reduce a node. The marker can
be removed when the node is rewritten to normal form.

A process which needs the value of a marked node before it can proceed must suspend
itself, after arranging to be re-awoken when the mark is removed.

Join synchronisation: When a reduction process successfully terminates, having re-
duced its expression graph to normal form, it overwrites the root node of the graph
it reduced with the result, and removes its mutual-exclusion marker.

By this time, several other processes may be suspended awaiting this result. The
identifiers of each waiting process will be held in a pending list associated with the
node. The last thing a process does is to awaken these processes by informing the
scheduler that they can be resumed.

Memory access interference: The multiple reduction processors must have fast access
to the shared graph data structure. This requires a complex communications and
arbitration system which incurs a delay on accesses to the graph. In the first in-
stance, when assessing the performance issues for parallel graph reduction machines,
this delay is assumed relatively small. This can be achieved using sophisticated in-
terconnection network technology (surveyed in [WF84]), at a considerable cost. In
section 3.2.3 we will see the influence of a poorer interconnection network.

As well as these additions to the amount of work a parallel graph reduction machine does,
there is a severe increase in the space occupied. We return to this question in section 3.4.

3.2.2 Partitioning

In principle, a new process can be created whenever an already-existing process discovers
a strict application. However, some processes terminate after doing very little useful
work—and this can be dwarfed by the fork and join overheads incurred by the attempt to
employ parallel reduction. When this is the case, it is wiser to generate code for call-by-
value parameter passing. In general, we would require a compiler to prove for each strict
application that a decision to use parallel reduction rather than fast sequential reduction

66

will not incur a substantial cost. This approach has been taken by Hudak and Goldberg
with their “serial combinator” compilation technique [HG85].

Their strategy can be used to guarantee some speed-up due to parallelism—and should
certainly ensure that the attempt to exploit parallelism does not result in a slow-down.
Just how much speed-up depends on how much parallelism is actually present in the
source program after the grain-size analysis. Some highly-parallel programs may contain
no expressions which the compiler can guarantee are worth distributing. Worse yet, some
architectures may have fork-join overheads so high that distributable expressions are very
rare in any program at all.

The problem of ensuring a non-negative speed-up is far easier than arranging for really
good performance. Particular algorithm structures such as divide-and-conquer (see Chap-
ter 4) are well-understood, but in general considerable understanding of the algorithm is
required, in order to select just the right expressions for which to spawn processes. The
target is to maximise the grain size while still providing sufficient parallelism to exploit
the machine’s resources. Of course, this all depends on the program itself having a good
parallel structure. To get the best from such a machine, these issues must become the
concern of the programmer, and the approach of Chapter 5 is applicable.

3.2.3 Loosely-coupled parallel graph reduction machines

Up to now, we have assumed a tightly-coupled underlying architecture, in which access to
a non-local processing element’s memory is not much slower than access to local memory.
If this is not so, the performance issues become much more complicated.

The first aspect of the problem can be considered to be with the notion of “grain-size”.
This was defined for the tightly-coupled case to be the amount of work done by a process
between being created (when the fork overhead is incurred) and terminating (when the join
overhead is incurred). We can simply compare the process’s (minimum or likely) execution
time with the total overhead to decide whether organising a new process is worthwhile.

In a loosely-coupled machine, a non-trivial overhead is incurred every time a process
makes a non-local memory reference. We are therefore forced to think of the grain size
as the amount of work done between non-local memory accesses. This rather complicates
the calculation, and certainly reduces the proportion of strict applications which can be
implemented safely using parallelism.

When an expression is passed from one processing element (say A) to another process-
ing element (say B) for parallel evaluation, its parameters have to be accessed non-locally,
by B from A, and any structure returned will probably be constructed by B, in B’s
memory, and so will be accessed non-locally by A.

Note that once an object has been evaluated to normal form, it can be copied (without
introducing recalculation). Thus, when B accesses a parameter structure, it need only
access each non-local node once. Similarly, when A accesses the result of the parallel
evaluation, it need examine each node of the returned structure at most once (FLAGSHIP
[WSWWS8T7] employs this technique). Thus the overhead due to parameter/result access
incurred by distribution is bounded by the size of the parameter and result structures.

67

Eager evaluation of lists

Recursively-defined data types such as lists and trees can have unbounded size. However,
they are evaluated piecemeal, just enough to expose the outermost constructor (this is
technically called weak head normal form). Thus the overhead incurred by non-local
access to such a structure is limited by the number of parameters taken by the data type’s
constructor. Access to a subtree, or to the tail of a list, would constitute a quite separate
evaluation and the advantage of employing parallelism can be considered separately.

However, lists can be treated differently from other structures because of their sequen-
tial access mode. Remote access latency can be avoided by calculating several elements
ahead, and sending to the consuming processor before they are demanded. This requires
strictness analysis to be applied to ensure that unwanted computations are not spawned.
Burn’s work on evaluation transformers, reported in [Bur87a] forms a basis for this ap-
proach. See also the process network view presented in section 4.3.

3.2.4 Neighbour-coupled parallel graph reduction machines

The neighbour-coupled architecture, introduced in section 1.3, is an interesting intermedi-
ate architecture for parallel graph reduction. Recall that in these architectures, a general,
random, non-local access is relatively slow, just as in a loosely-coupled machine. The dif-
ference is that each processing element has a few neighbours to which it is tightly-coupled.

Now much of the problem with compile-time performance analysis can be simplified
provided that a process is not migrated to a non-neighbour of the processing element which
spawned it. With care, we can ensure that all parameters are available in the spawning
processing element’s local memory (if necessary by judicious copying).

3.3 Conclusion

This chapter has given a very brief overview of the graph reduction implementation tech-
nique for functional programming languages. Substantial optimisations can be applied
and very high sequential performance can be achieved this way. We went on to exam-
ine how parallelism can be applied to speed up graph reduction. A qualitative analysis
of the costs of parallel graph reduction demonstrated that the approach is well-suited
to tightly-coupled parallel computers, but that in a loosely-coupled machine the cost of
remote memory accesses dominates, and that compile-time process distribution becomes
intractable.

3.4 Pointers into the literature

Standard works on compilers

Despite the additional problems of functional languages, the standard texts on compiler
design are indispensable. Examples might include Gries [Gri71], Aho, Sethi and Ullman
[ASU86] and Wulf and his colleagues [WJW*75].

68

Approaches to compiling functional programs

There are compilation problems special to lazy and higher-order languages, and researchers
studying the area have developed a number of different abstract machine designs. Like
ours, these generally form a simple, well-understood instruction set for an imaginary com-
puter, and can be translated into instructions for a real machine. Field and Harrison
[FH88] cover several different approaches well.

Abstract machines can be divided into two categories: environment-based and
combinator-based.

e Combinator-based abstract machines: this chapter has described a combinator-
based approach, where the compiler simplifies the program so that references to non-
local, non-global variables are transformed into parameter references. This avoids
the need for environment links (or displays), simplifies function invocation and is
claimed to reduce contention for the environment between parallel reductions.

The first appearance of this idea is Turner’s combinator reduction machine [Tur79].
Turner translated programs into a fixed set of simple combinators (based on S, K and
I, introduced in section 2.2.8), which form the abstract machine. Although the set
described in the paper is small, optimised implementations use a large combinator set
incorporating many of the language’s library functions. Clarke and his colleagues
at Cambridge University built a prototype sequential architecture (called SKIM)
microcoded to support such combinators as its instruction set [CGMNS80]. Stoye
(in [Sto85]) presents a deeper study, developing the instruction set towards more
conventional machines.

Apparently concurrent work by Hughes [Hug83], Augustsson and Johnsson [Joh84h]
developed algorithms to construct a combinator set especially for each program.
The body of each combinator can then be translated into code for a conventional
computer. This is done via the G-machine abstract machine by Augustsson and
Johnsson’s Lazy ML compiler, and is described in detail in [Aug87] and [Joh87],
where substantial optimisations are presented. This material is given in simplified
form in Peyton Jones textbook [Jon87]. Hughes approach (called supercombina-
tor abstraction) maintains non-recomputation of shared subexpressions which may
be compromised by Augustsson and Johnsson’s simpler A-lifting algorithm. It is
not clear whether the overheads introduced by Hughes’ algorithm are justified, but
Goldberg [Gol87] gives an analysis which determines when the recomputation might
occur. The Ponder compiler, described by Fairbairn [Fai82], uses similar techniques.

The code generator presented in section 3.1.8 is based on ideas from Glaser and
Hayes [GH86a| and Fairbairn and Wray [FW87], with much help from Hugh Glaser,
Sebastian Hunt and Tony Field which is gratefully acknowledged.

e Environment-based abstract machines: These extend and formalise the con-
ventional approach to implementation of block-structured programming languages.
The M-lifting phase is omitted, so that references to non-local, non-global variables
remain. Each function maintains not only its own local environment, but also a
pointer to a linked list of environment records, each holding values of non-local non-
global variables it might refer to. In a higher-order language, this chain may include

69

the local environments of functions which have already returned. They must, there-
fore, be kept in the heap rather than on the stack, as is possible in conventional
block-structured languages.

The first example is the SECD machine, introduced by Landin [Lan64]. A thorough
treatment is given, including a lazy variant and a correctness proof, by Field and
Harrison [FH88]. For generation of high-performance code, they also describe an
optimised variant called FPM. The categorical abstract machine, CAM, can also
be thought of as an optimised SECD-style evaluator. It is interesting in that its
instructions are just combinators, drawn from a fixed set (Categorical Combinatory
Logic). See Field and Harrison and Curien [Cur86], although the latter is quite
theoretically-oriented.

An interesting variation was proposed by Steele in his RABBIT compiler prototype
[Ste78], a more accessible presentation being [Kra88]. These compilers begin with a
transformation phase resulting in a “continuation-passing style” (CPS) formulation
of the program. This makes a function’s return address an explicit parameter (of
function type), called a continuation. When a function returns a value, the CPS
function passes the value as a parameter to the continuation. CPS style programs
can be evaluated by a simplified interpreter which does not retain function return
addresses. The aim of this transformation is shift the data structures needed to
manage control-flow into the domain of values. This makes them available for con-
ventional value-based optimisations. It also makes the treatment of tail recursion
more straightforward.

Compiling pattern matching

Various approaches have been described by Wadler, in Peyton Jones textbook [Jon87],
Field and Harrison [FH88] and Augustsson [Aug87]. More general work on pattern match-
ing has been done by Hoffman, O’Donnell and Strandh [HOS85], among others. Interest
in pattern matching extends to the theorem proving and computer algebra communities;
Klop [K1090] and Huet and Oppen [HO80] cover some of the area.

Strictness analysis

Strictness analysis can be approached using conventional data flow analysis, but has proven
a very successful application of abstract interpretation. This has the advantage of han-
dling inter-functional dependency, recursion, higher-order functions and data structures.
An introduction to abstract interpretation is given by Abramsky and Hankin in their
introduction to [AH87].

Strictness analysis of first-order programs (or first-order parts of higher-order pro-
grams) was first described by Mycroft [Myc81], and this has been implemented with very
positive results in Augustsson and Johnsson’s Lazy ML compiler [Aug87, Joh87]. This was
extended by Burn, Hankin and Abramsky and Peyton Jones to higher-order programs (see
[HBJ88]), although efficiency problems with implementations of this scheme have yet to be
resolved. Backwards analysis, as proposed by Hughes [Hug87], may prove a more practical
alternative.

70

Extensions to discover strictness information about lists have been made by Wadler
[Wad87], Burn [Bur87a] and others. The practical application of strictness analysis on lists
is still a research topic; different approximations seem appropriate for different purposes.
See, for example, Chapter 5 section 5.4.5.

Compile-time simplification

Performing large-scale simplification of programs is still very much an experimental tech-
nique. For a general review of partial evaluation, see page 160. An example of a complete
compiler based on simplification is described by Hudak and Kranz [HK84|. Particular
techniques are described by Wadler [Wad88b, Wad88a].

Store management and garbage collection

The assignment operation “x := x + 1”7 can be interpreted as a hint to the compiler that the
old contents of cell x are no longer required, and the space can be reused to accommodate
the value x + 1. As functional languages have no such construct, other means must be
found to reclaim memory space when it is no longer needed. Some of this can be done at
compile-time, but at present most is the responsibility of the run-time system.

Run-time storage reclamation can roughly be divided into two quite different ap-
proaches: copying and reference counting.

e Copying schemes: The starting point for these algorithms is to separate the work-
ing memory into two parts, the TOSPACE and the FROMSPACE. When garbage
collection occurs, data objects in use are copied from the FROMSPACE to the
TOSPACE. After garbage collection, free space and allocated space form two ad-
jacent contiguous blocks. In its simplest form, TOSPACE and FROMSPACE are
statically allocated and of equal size, so half of the available memory is wasted. After
collection, the roles of the two spaces are reversed.

An important advantage of copying is that the memory is compacted, so improv-
ing the performance of a virtual memory system; this can be further improved by
strategies like using depth-first copying to locate linked objects near to one another.

Although schemes do exist which eliminate the waste of the two-space method, a
more attractive approach is to split the memory into many spaces, only one of which
need be empty at once. This is described by Lieberman and Hewitt [LH83]. The
spaces are ordered by age—the more garbage collections an object survives, the
deeper in the vector of spaces it resides. Thus, most collections need deal only with
the youngest objects. Unfortunately, Lieberman and Hewitt’s scheme assumes that
most pointers point to older objects. In the presence of lazy evaluation, assignment
or logic variables this can often be far from the case, and then a substantial overhead
is incurred. Moon [Moo84] describes a similar but much more complicated scheme,
using substantial hardware support, to resolve these problems with high performance.

Copying garbage collection is not invoked until free space becomes short, and the
larger the physical memory the less often this need occur. The cost of each col-
lection depends only on the amount of space occupied by non-garbage. This leads

71

to a startling conclusion: with enough memory we can make the garbage collection
overhead asymptotically approach zero. When memory is short, on the other hand,
performance can be very poor.

Reference counting schemes: An alternative to copying is simply to keep a
count with each cell of the number of pointers to it. When a pointer is copied
or destroyed, this count is adjusted, and when it reaches zero the cell is marked
reallocable. The main advantage of reference counting is that the rate and response
time of the processing is always constant. Its main problem is that it fails for cyclic
structures. There is no opportunity for compaction, so great care must be taken
to place cells to maximise locality when virtual memory is in use. Finally, the
overhead of reference counting depends on the amount of copying and deletion of
pointers. Nonetheless, a great deal of work has been done in the area, particularly
in parallel systems where copying schemes become rather complicated. For parallel
systems with packet-switched interconnection, a variation on the scheme is necessary
to avoid race conditions [WW87, Bev87]?, where “weights” are carried with the
pointers instead of counts with the cells. Various other variations have been described
by Glaser and his colleagues (e.g. [GT84]).

In principle, garbage collection can be avoided by compile-time scheduling of memory use.
This has proven difficult, although attempts have been made by Mycroft [Myc81] and
Hudak and Bloss [Hud87, HB84] and others. More fruitful to date have been transfor-
mation tactics which eliminate intermediate data structures. This is very common during
derivations given in this book. Wadler [Wad88b] attempts to formulate strategies suitable
for inclusion in optimising compilers.

Space leaks

Because they lack explicit control over space re-use, functional programs have a tendency to
consume large quantities of space as they run. In some cases, this can be quite disastrous,
and quite unnecessary. The problems can arise in several ways:

1.

The program may necessarily demand more space than a more reasonable imple-
mentation would require. This can happen quite accidentally. Take, for example,
this function definition, which contains duplicated common subexpressions:

f xs ys = cond ((sum (map g xs)) > 1)
(cond (h ys)
(cond ((sum (map g xs)) < 10)
b)
c)

(the cond is used to force the three conditions to be evaluated sequentially). If we

2The idea seems also to have been current in dataflow circles at MIT as early as 1979

72

abstract the expression map g xs using a where clause, we reduce the amount of
work done:

f xs ys = cond ((sum gxs) > 1)
(cond (h ys)
(cond ((sum gxs) < 10)
a

b)
c)
d
where
gXs = map g xs

Unfortunately this means that the list gxs must be retained in memory during the
evaluation of h ys. There may not be enough memory remaining for this computation.

. The space occupied may depend on the evaluation order. An example might be a
function mean, specified by the equation

mean as = (sum as)/(length as)

A conventional sequential evaluator would select either the sum or the length calcu-
lation to perform first, leaving the other to do second. Either way means the list as
must be held in memory in its entirety. There does exist a reduction order which
evaluates both expressions in step (a data-driven order, for example). This program
can be rewritten to make the step-by-step calculation explicit, but much of the value

of a functional formulation is lost. This problem is approached in more depth by
Hughes [Hug83].

. The space may be inadvertently retained by the implementation, even though it
cannot be reached. A common way this can happen is when several variables are
held in a function’s activation record. The variables may become garbage before the
activation record does, but many implementations will not free the variables until
the activation record is freed. With reference counting a similar problem occurs if

reference decrement code is migrated across function invocations. This is partially
addressed by Wadler [Wad86].

Parallel Graph Reduction

The principles of parallel graph reduction are reviewed in Chapter 24 of Peyton Jones’
textbook [Jon87]. This conceptual basis was generalised and first implemented in the
prototype ALICE machine, by Darlington, Cripps and their colleagues [DCF*87]. The
ALICE work was the foundation for the FLAGSHIP project [WSWW87], where attempts to
generalise the graph-rewriting model of parallel computation have been crystallised in the
DACTL language design. DACTL [GKS87], and the related language Lean [BvVEG™87al,
extend the term-rewriting basis of functional programming to the more general rewriting

73

of linked graph structures, and have much in common with the ALICE compiler target
language CTL. An important result of this work has been the formal verification that
graph reduction implements functional languages properly (the more general result is given
by Barendregt et al. [BVEGT87h], but an interesting algebraic approach is presented by
van der Broek and van der Hoeven [vdBvdH86]).

Many other research groups have implemented or studied parallel graph reduction, and
a complete list is impossible. Most notable might be the GRIP machine being constructed
by Peyton Jones and his colleagues [PCSH87] and the ALFALFA and BUCKWHEAT imple-
mentations by Goldberg and Hudak [Gol88], whose partitioning [HG85] and work diffusion
[HG84] studies and especially interesting. Other design studies include Bevan, Burn and
Karia’s [BBK87] and Keller and Lin’s REDIFLOW machine [KL84, KSL86].

Other approaches to parallel code generation

There is not room here to cover even a fraction of the general literature concerned with
the problem of taking a program with little or no specific control over parallel execution,
and generating parallel object code from it. A fundamental distinction can be drawn
between run-time scheduled object code and compile-time scheduled object code. With
run-time scheduling the compilation problem is mainly concerned with partitioning the
problem into large-grain processes in order to overcome the overhead of run-time process
management. With compile-time scheduling, a much finer “grain” of processing can be
employed—typically at the level of instructions —because high locality can be arranged
and synchronisation delays can be avoided.

Sarkar [Sar89] and Goldberg [Gol88] describe recent quite successful approaches to the
partitioning problem. Sarkar also approaches the problem of compile-time scheduling of
large-grain processes to gain yet higher performance.

The compile-time scheduling literature goes back much further, because of the early
prevalence of vector pipeline processors (of which the crRAY-1 [Rus78| is the classical
example). An example of this work might be Kuck et al. [KKLW81]. Long instruction word
architectures have led to other interesting fine-grain compile-time scheduling compilers.
See for example Ellis” BULLDOG compiler [ElI82] and Aiken and Nicolau [AN88]. Wolfe
[Wol89] gives a more unifying view, employing vector operations where possible (affecting
innermost loops), but introducing large-grain processes at the outermost level as well.

This kind of compiler is finding some commercial success with recent parallel processor
systems [TMS87].

74

Chapter 4

Specifying and Deriving Parallel
Algorithms

This chapter has two aims:
e to investigate how parallelism can be expressed in the form of a functional program,

e to develop techniques for transforming programs from one formulation into another,
in order to express parallelism in different ways,

e to illustrate some of the techniques with simple examples, culminating in a simple
pipelined ray-tracing program.

Several of the more involved transformations and verifications have been collected sepa-
rately, and appear as Appendix A; they would interfere with the development of the first
aim, to understand how parallelism appears in the code. They are, however, quite impor-
tant to the second aim, of building a toolbox of techniques for changing the parallelism in
a program, and the reader is encouraged to follow the Appendix on the second reading.

4.1 Horizontal and vertical parallelism

We have discussed how the graph-rewriting view of expression evaluation can be used to
exploit parallel hardware. But what can we say about the structure of parallel computa-
tions under this regime?

Goldberg [Gol88] distinguishes two sources of parallelism in parallel graph reduction:

e Horizontal parallelism occurs when two or more of a function’s parameters are
evaluated in parallel.

e Vertical parallelism occurs when a parameter is evaluated in parallel with the func-
tion application to which it is being passed.

A simple example of purely horizontal parallelism is when a strict, built-in operator such
as “+” is applied. In an application like

75

(+) €1 €9

the parameter expressions e; and e, can be evaluated in parallel, but both must finish
before the addition can proceed.

Vertical parallelism can occur whenever a parameter is passed to a strict, user-defined
function. The parameter is evaluated in the time “window” between function application
and use of the parameter by a strict, built-in operator like addition. For example, define

fxy=y+1, ifx=0
fxy="f(x—1)y ifx >0

A good strictness analyser will infer that f is strict in both its parameters (parameter x is
always used; parameter y is used whenever f terminates)!. Now suppose we have defined
g so that

gy = f 10000 y

Now suppose we have an application of g to an expression e;:
g# e

Given two processing elements, it should be clear how one processor can be occupied
counting down from 10000 while the other evaluates e;.

Horizontal and vertical parallelism account for all the parallelism available in a parallel
graph reduction machine. Each leads to a different algorithmic structure. We identify these
as the divide-and-conquer structure, which exploits horizontal parallelism, and pipelining,
which exploits vertical parallelism.

4.2 Divide-and-conquer parallelism

The colonial maxim “Divide-and-conquer” has broad application in computer science. We
can characterise a divide-and-conquer algorithm by a functional program scheme. Solve
solves some problem, described by its parameter problem, using the divide-and-conquer
approach:

Solve :: @ — 3

Solve problem = SimplySolve problem, if Trivial problem
Solve problem = CombineSolutions problem (map Solve SubProblems) otherwise
where

SubProblems = Decompose problem

where SimplySolve, CombineSolutions, Decompose and Trivial depend on the particular
divide-and-conquer algorithm. They have the types

1Of course, a good optimiser would remove the calculations involving x since their results are never
used

76

SimplySolve :: @ — f3
CombineSolutions :: o — [5] —
Decompose :: a — [a]

Trivial :: o — Bool

If the problem to be solved is trivially simple, it is solved directly using SimplySolve. If not,
the problem is broken down into a list of subproblems. These are each solved separately
(using map Solve), and finally CombineSolutions uses the list of solutions to the subproblems
to solve the original problem. Provided CombineSolutions is known to be strict in each
element of its list parameter SubProblems, plentiful horizontal parallelism is available.

4.2.1 Divide-and-conquer examples

We complete the characterisation of divide-and-conquer by giving a function which applies
the divide-and-conquer strategy given definitions of the component functions:

DivideAndConquer :: (o — [3)
= (a =[] = P)
— (a = [a])
— (o — Bool)
—

— B

DivideAndConquer SimplySolve CombineSolutions Decompose Trivial problem
= Solve problem
where
Solve problem = SimplySolve problem, if Trivial problem
Solve problem = CombineSolutions problem
(map Solve SubProblems) otherwise
where
SubProblems = Decompose problem

There follow four examples of how DivideAndConquer can be used in practice: in the

Fibonacci recurrence, in the Quicksort algorithm, as a parallel implementation of insert,
and to reduce overheads in a parallel implementation of map.

The Fibonacci Function

This is naturally defined by the recurrence relation

77

fibn=1, ifn<?2
fib n = fib (n—1) + fib (n—2), otherwise

This is a working functional program (although far better ways of calculating the Fibonacci
numbers exist).

We can see that it has the form of a divide-and-conquer algorithm by writing its
definition in terms of DivideAndConquer:

fib = DivideAndConquer (const 1)

(const sum)
(construct [(subtract 1), (subtract 2)])
(<) 2)

Here const 1 returns 1 whatever its parameter. The function sum adds the elements of a list
of numbers. subtract n decrements its parameter by n. The function construct is analogous
to map, but takes a list of functions and applies each one to the same parameter:

construct :: [=] > a —

construct [| x =[]
construct (f : fs) x = (f x) : (construct fs x)

The Quicksort Algorithm

There are many parallel sorting algorithms, including several divide-and-conquer ones.
This one is particularly straightforward. We define SelectSmaller to select all those elements
of an input list smaller than some “pivot” value:

SelectSmaller :: Num — [Num] — [Num]
SelectSmaller pivot as = filter ((>) pivot) as

SelectBigger is similar:

SelectBigger :: Num — [Num] — [Num]
SelectBigger pivot as = filter ((<) pivot) as

The function filter eliminates elements from a list unless they satisfy the predicate:

78

filter :: (« — Bool) — [a] = [¢]

filter predicate [| =[]
filter predicate (a : as) = a : (filter predicate as), if predicate a
filter predicate (a : as) = (filter predicate as), otherwise

Now the sort function is easily defined:

QuickSort [=]
QuickSort as = (QuickSort SmallerOnes) ++ (Quicksort BiggerOnes)
where
SmallerOnes = SelectSmaller pivot as
BiggerOnes = SelectBigger pivot as
pivot = hd as

The choice of pivot element can have a drastic effect on the algorithm’s performance unless
the input is truly randomly ordered.
This algorithm can be represented using DivideAndConquer as

QuickSort = DivideAndConquer (const []),
(const ListAppend),
PivotAndSplit,

(=)1D
where

ListAppend [as, bs] = as ++ bs
PivotAndSplit as = [SelectSmaller pivot as,
SelectBigger pivot as |
where
pivot = hd as

(ListAppend is just a special case of join = insert (++) []).

The Insert function

In Chapter 2 a function called insert was introduced, which takes an associative function,
which we denoted by the infix operator op, and is defined informally by the equations

insert (op) base [| = base
insert (op) base [al, a2, a3, --- aN] = al op a2 op a3 --- op aN

This is unambiguous provided (op) is associative, when we can place brackets wherever
convenient on the RHS. We will also require that base have the property that for all a,

a op base = a = base op a

A simple example is summation,

79

sum as = insert (+) 0 as

Given these restrictions, we can employ a divide-and-conquer implementation:

insert (op) base as
= DivideAndConquer (const base) (const ListOp) ListSplit
where
ListOp [a, bl =aop b
ListSplit as = [take m as,
drop m as |
where
m = (length as)/2

A useful more general approach to this is to transform the data type being used to represent
as, from a list to a tree. Let us employ the following binary tree data type:

BinaryTree o := EMPTY |
LEAF « |
NODE (BinaryTree) (BinaryTree «)

We need a pair of functions to turn the list into a tree, and vice versa:

ListToTree :: [o] — BinaryTree «
TreeTolList :: BinaryTree @ — [¢]

and we specify that for all finite and total lists as,

TreeTolList (ListToTree as) = as

Probably the most natural definitions for this pair of functions are:

ListToTreel [| = EMPTY
ListToTreel [a] = LEAF a
ListToTreel (a0:al:as) = NODE (ListToTreel (take m (a0:al:as)))
(ListToTreel (drop m (a0:al:as))), if length as > 1
where
m = (length (a0:al:as))/2

(it is necessary to introduce (a0:al:as) to avoid ambiguity).

TreeToListl EMPTY = []

TreeTolListl (LEAF a) = [a]

TreeToListl (NODE subtreel subtree?) = (TreeToListl subtreel)
++ (TreeToListl subtree?)

where

80

take :: Num — [a] — [¢]

take n (a : as) = a : (take (n—1) as), ifn#0
taken|[] =], ifn#0
take 0 as =[]

and

drop :: Num — [a] = [¢]

drop n (a: as) = drop (n—1) as, ifn#0
dropn[]=1] ifn#0
drop 0 as = as

In Appendix A (Theorem 1) a proof is given that these functions do satisfy the specifica-
tion. More importantly, there are very serious inefficiencies in the definitions as given and
in the appendix a much more efficient, though more complicated, definition is derived.

Now we can turn the list into its tree representation, we must arrange to exploit the
divide-and-conquer structure available. We have

insert (op) base as = insert (op) base (TreeToListl (ListToTreel as))

We apply equational reasoning to improve on this. First, let us name our new version,

Treelnsert (op) base as = insert (op) base (TreeTolListl (ListToTreel as))

Treelnsert (op) base as
= insert (op) base

TreeToListl (ListToTreel as)), if length as > 1

= insert (op) base

(
(N s
(
(TreeToListl (NODE (ListToTreel (take m as))

~

Now, instantiate it for the case when as has more than one element, and apply the appro-
priate equation for ListToTreel:

(ListToTreel (drop m as)))), if length as > 1

where
m = (length as)/2

= insert (op) base ((TreeToListl (ListToTreel (take m as)))

++

(TreeToListl (ListToTreel (drop m as)))),

where
m = (length as)/2

81

if length as > 1

At this point we must use a straightforward extension of associativity:

insert (op) base (as+-+bs) = (insert as base) op (insert bs base)

The result is

Treelnsert (op) base as
= (insert (op) base (TreeToListl (ListToTreel (take m as))))
op
(insert (op) base (TreeToListl (ListToTreel (drop m as)))), if length as > 1
where
m = (length as)/2

Finally, applying the original equation defining Treelnsert, in reverse, we get

Treelnsert (op) base as
= (Treelnsert (op) base (take m as))
op
(Treelnsert (op) base (drop m as)), if length as > 1
where
m = (length as)/2

The remaining equations required to define Treelnsert for empty and singleton lists are
easily derived:

Treelnsert (op) base [| = base
Treelnsert (op) base [a] = a

Such a transformation is likely to work well if the time required to apply the function op
is quite substantial. However, the tree-based version clearly does more work and once suf-
ficient parallelism has been generated, execution could revert from the expensive, parallel
tree-based definition of insert to the original list-based one. It is conceivable that such a
decision could be taken at run-time.

This transformation example brings out a rather complicated and interesting problem
for program transformation technology: we introduced simple definitions for ListToTreel
and TreeToListl, and then used them to derive a parallel version of insert. Meanwhile, in
Appendix A, the very inefficient definitions of ListToTreel and TreeToListl are optimised
substantially. The optimisations do not destroy the possibility of a divide-and-conquer
version of insert based on the optimised definitions, but we need to go through the deriva-
tion again. Because the derivation shares the same structure as before, and uses the same
properties, we can hope that a computer could help.

The map function

The function map, defined by the equations

82

map f[] =[]
map f (a: as) = (fa) : (map f as)

has a clear interpretation for parallel programming: spawn a process to evaluate f a; for
each a; of the input list. Provided sufficient strictness information is available, this is
just what happens. It is slightly unsatisfactory because the processes must be spawned
sequentially, once for each time an application of map is rewritten.

Just as with insert, we can apply divide-and-conquer by repeatedly sub-dividing the
input list as to form a tree, at whose leaves we can apply the function f in parallel. In this
case we can use a much simpler and more efficient version of the list-tree representation,
because we are free to choose the order in which elements of the list appear in the tree.
Rather than dividing the list into two halves by cutting it in the middle, we divide it into
odd- and even-indexed sublists:

ListToTree2 :: [o] — BinaryTree «

ListToTree2 [| = EMPTY
ListToTree2 [a] = LEAF a

ListToTree2 (a0:al:as) = NODE (ListToTree2 (EvenOnes (a0:al:as)))
(ListToTree2 (OddOnes (a0:al:as))), if (a0:al:as) # [|

where

EvenOnes [| =[]

EvenOnes [a0] = [a0]

EvenOnes (a0 : al : as) = a0 : (EvenOnes as)

OddOnes [] =]
OddOnes [a0] =[]
OddOnes (a0 : al : as) = al : (OddOnes as)

and

TreeTolList2 :: BinaryTree @ — [¢]

TreeToList2 EMPTY = []
TreeTolList2 (LEAF a) = [a]

TreeToList2 (NODE evensubtree oddsubtree)
= (merge (TreeToList2 evensubtree) (TreeToList2 oddsubtree))
where
merge (a0 : evens) (al : odds) = a0 : al : (merge evens odds)
merge as [| = as

In Appendix A (Theorem 2), total structural induction is used to verify that for all finite

83

and total lists as,

TreeTolList2 (ListToTree2 as) = as

(Notice the striking resemblance between the structure of this computation and the struc-
ture of QuickSort).
Now let us define a map operator for trees:

MapTree :: (aw — [3) — BinaryTree o« — BinaryTree 3

MapTree f EMPTY = EMPTY

MapTree f (LEAF a) = LEAF (f a)

MapTree f (NODE subtreel subtree2) = NODE (MapTree subtreel)
(MapTree f subtree?)

It is very easy to verify using equational reasoning that for all finite and total lists as,

map f as = TreeToList2 (MapTree f (ListToTree2 as))

We can simply substitute this implementation of map when required.

It is, however, far from clear that it will improve matters unless the process creation
or migration overhead is very large. It does more overall work than the simpler definition,
but the work is potentially more parallel and more distributed. If there is already more
than enough parallelism on the machine, it will certainly slow the computation down.

4.3 Pipeline parallelism

When vertical parallelism is used and the parameter concerned is a list, pipeline parallelism
can occur. For example, suppose we have the function definitions

from n = n: (from (n+1))

and

integrate as = 0 : (integrate’ 0 as)
where
integrate’ sum [| =[]
integrate’ sum (a : as) = newsum : (integrate’ newsum as)
where
newsum = a + sum

Provided we have sufficient strictness information, vertical parallelism is available in the
application

84

Figure 4.1: Pipelining and horizontal parallelism

integrate (from 1)

One processor can be responsible for executing from 1, while another is responsible for the
application of integrate to the other’s output.
We can easily extend the pipeline:

map ((x) 10) (integrate (from 1))

Pipelining combines naturally with horizontal parallelism:

map2 (+) (map ((x) 2) (from 1))
(map ((x) 3) (from 1))

This demands a diagram, given in figure 4.1. This resembles the graph representation of
an expression like (2 x x) + (3 x x), but now the nodes represent processes which can
exist for a substantial period of time, operating on successive input values. Such a diagram
is often called a data flow graph, since one could imagine a real, parallel computer built
from units (represented as nodes in the graph) wired together according to the arcs given.
During a computation, data would flow along the arcs and no other communications
would be necessary. This idea has prompted a large variety of computer architectures
based on the data flow idea, including for example, the Manchester data flow machine
[GKWS85], the MIT Tagged-Token data flow architecture [AN87] and many others. It
must be emphasised that these computers are not rewired for each dataflow program, but
rather exploit a dataflow graph program representation at run-time. We call such diagrams
process networks in this book to emphasise that special dataflow hardware need not be
involved, and that, as we shall see in Chapter 5, there may indeed be a static allocation
of processes to processing elements.

4.3.1 Cyclic process networks

The example of Figure 4.1 is acyclic, but there is no reason why a cycle should not be
introduced. Cycles in process networks correspond to iteration, and we can derive a
cyclic process network definition from the recurrence idiom introduced in Chapter 2. Two

85

examples will be demonstrated: the Fibonacci numbers and the Newton-Raphson method.
Recall the definition of the list of Fibonacci numbers:

fibs = generate NextFib

where

NextFib 0 = 1

NextFib 1 =1

NextFib n = (fibs sub (n—1)) + (fibs sub (n—2)), ifn>2

Note that for n > 2,

NextFib n = prevfib + pprevfib, ifn>2
where
prevfib = fibs sub (n—1)
pprevfib = fibs sub (n—2)

That is,

NextFib n = ((+) oo (((sub) fibs) o (subtract 1))
(((sub) fibs) o (subtract 2))) n, ifn>2

Now in the definition of fibs, unfold generate:

fibs = map NextFib (from 0)
= map NextFib (0:1:(from 2))
= (NextFib 0):(NextFib 1):(map NextFib (from 2))

= 1:1:(r;1fap NextFibv(from 2))
———

= 1:1:(map ((+) oo (((sub) fibs) o (subtract 1))
(((sub) fibs) o (subtract 2))) (from 2)

[\ J
'

Here we use the properties that map (f o g) = (map f) o (map g), and map (f oo g h) =
(map2 f) oo (map g)(map h):

fibs = 1:1:((map2 (+)) o

e}

fibs) o (subtract 1

sub) fibs) o ()
) fibs) o (subtract 2))),) (from 2)

o ()

t

(
(
(sub) fib;) subtract 1)))

((sub) fibs)) o (map (subtract 2)))) (from 2)
f

map (subtract 1) (from 2))/)
map (subtragc 2) (from 2))))

-~

J

Clearly map (subtract n) (from m) = from (m—n), and that map ((sub) as) (from 0) = as,
so we have

86

Figure 4.2: A cyclic process network to calculate the Fibonacci numbers

fibs = 1:1:(map2 (+) (map ((sub) fibs) (from 1))

-~

(
(map ((sub) fibs) (from 0))
(
f

= 1:1:(map2 (+) (tl fibs) -
ibs)

This is the complete process network formulation, and was used as an example in section
2.4.3, where its operation is explained. Its process network is given in Figure 4.2.
For the second example let us take for an example the generalised Newton-Raphson

method. We solve for f x = 0 with f' x = d(gmx), and using an initial estimate z:

xs sub 0 = xg
s sub i = (xs sub (i-1)) — (f (xs sub (i-1))
/ f (xssub (i-1))), ifn>1

with the implementation using the recurrence idiom:

solve f f" xq

= until converges xs
where
converges 0 = FALSE
converges i = abs(((xs sub i)

— (xs sub (i—1)))/(xs sub i))<e¢, ifi>1
xs = generate NextEstimate
where
NextEstimate 0 = x,
NextEstimate i = (xs sub (i—1))
— (f(xssub (i-1)) / f' (xs sub (i—1))), ifn>1

The derivation of the process network formulation of this definition is given in Appendix A,

87

section A.3. In simplified form it is:

solve f f' xq
= select (map2 Test (tl xs) xs) (tl xs)
where
xs = Xq : (map Transition xs)
Test prevx thisx = abs((thisx — prevx)/thisx) < e
Transition prevx = prevx — ((f prevx)/(f' prevx))

We can introduce parallelism into this definition by separating the arithmetic operations
into processes. This is done by propagating map into the bodies of the arithmetic expres-
sions. To do this, Map2Test is defined to be the transformed version of map2 Test, and
MapTransition is defined to be the transformed version of Map Transition:

solve f f" xq
= select (Map2Test (tl xs) xs) (tl xs)
where
xs = Xq : (MapTransition xs)
Map2Test thisxs nextxs = map ((>) ¢)
(map abs ((map2 (/) (map2 (—) thisxs prevxs)
thisxs)))
MapTransition prevxs = map2 (—) prevxs (map2 (/) (map f prevxs)
(map f' prevxs))

The graphical representation of this network is given in Figure 4.3. This example clearly
has some potential for parallelism in the evaluation of f x; and ' x;.

When the value at each step (x; here) is a vector or matrix rather than a scalar,
additional parallelism is available by pipelining successive iterations.

4.4 The Kahn principle

The relationship between the diagrams and the programs they are supposed to represent
is made precise by what is sometimes called the Kahn Principle. Gilles Kahn, in a classic
paper [Kah74], showed how, if we are given a functional specification of the behaviour of
each process in a network, we can write down the behaviour of the network as a whole.
First, label every arc of the network with a separate variable name. Then write down an
equation for each variable, defining its value in terms of constants and other variables.

For example, Figure 4.4 shows the Newton-Raphson process network with each arc
labelled with a new variable. Each node is labelled with a functional description of its
behaviour. The Kahn principle says we can determine the behaviour of the network as a
whole by writing down the system of equations relating the variables:

88

Figure 4.3: A cyclic process network applying the Newton Raphson method

89

Figure 4.4: A cyclic network with labelled arcs

90

a = select bs cs

bs = map ((>) €) ds
cs = tles

ds = map abs fs

es = Xp : gS

fs = map2 (/) hs cs
gs = map2 (—) es is
hs = map2 (—) cs es
is = map2 (/) js ks
Jjs = map f es

ks = map f' es

It is not hard to verify that this definition is equivalent to the definition of solve f f" xq
given earlier.

Using this relationship, it is possible to visualise a large and useful class of functional
programs as process networks, and this has been the starting point for several dataflow
programming languages, most notably Lucid [WAS5].

4.5 Parameter-dependent process networks

The process networks we have seen so far have been static: their size and shape has been
independent of the program’s parameters. This need not always be so. In some cases the
process network depends on something simple like the length of some parameter list, as
in the next example, although in general the dependency can in principle be arbitrarily
complicated.

For a simple example, suppose we build a pipeline by composing three functions, map
f1, map fy and map f;:

pipeline [f;, fy, f3] xs = map f; (map fy (map f3 xs))
This can be rewritten using “o”:
pipeline [f;, fy, f3] xs = ((map ;) o (map f3) o (map f3)) xs

When we don’t know how many f;’s there are, we can use the insert function with “o”,
together with the identity function ident x = x:

pipeline [f1, fy, f3] xs = (insert (o) ident [(map f1), (map fs), (map f3)]) xs
so that
pipeline fs xs = (insert (o) ident (map map fs)) xs

This captures a pipeline of processes as long as the list fs.
Now suppose that the functions f; are not chosen arbitrarily, but are instances of a
general function f, specialised by partial, curried, application to successive elements of the

91

liSt, say [31, a2, 33], i.e.
[fl, fg, f3] = map f [al, dg, 33]
or

fs = map f as

Now the pipeline is

pipeline (map fs as) xs = (insert (o) ident (map map (map f as))) xs

This definition is rather hair-raising, what with insert (o) ident and map map (map f) as,
but what these forms actually do is quite down-to-earth. They appear in concrete form in
an example drawn from the ray-tracing algorithm for three-dimensional image rendering.

4.5.1 Example: ray intersection test

We have a list of rays and a list of objects, and we need to find which object each ray
strikes first. To avoid technicalities, let us assume suitable definitions for a data type Ray
to represent a ray, giving its direction and starting point, a data type Object, describing
perhaps a sphere, plane or just a polygonal facet, and a function

TestForlmpact :: Ray — Object — Impact

where Impact is a data type which describes the interaction between the ray and the object.
This may be a miss NOIMPACT, or a hit IMPACT, with details of how far along the ray
the impact occurs (needed to find the ray’s first impact), and other information relating to
the angle of impact, the surface texture, refraction etc. which need not be specified here:

Impact ::= NOIMPACT |
IMPACT Num Impactinformation

Now what we need to find is the first object struck by the ray in the list of all objects of
interest:

Firstimpact :: [Object] — Ray — Impact

Firstimpact objects ray = earliest (map (TestForlmpact ray) objects)
where
earliest impacts = insert earlier NOIMPACT impacts

The function earlier compares two impacts, and returns the one which occured earlier in
the ray’s travel—i.e. the one the ray actually hits. It must take account of NOIMPACT

properly:

92

Figure 4.5: The untransformed parallel ray intersection test

earlier :: Impact — Impact — Impact

earlier NOIMPACT NOIMPACT = NOIMPACT

earlier (IMPACT distancel infol) NOIMPACT = (IMPACT distancel infol)

earlier NOIMPACT (IMPACT distance? info2) = (IMPACT distance2 info2)

earlier (IMPACT distancel infol)
(IMPACT distance? info2) =

earlier (IMPACT distancel infol)
(IMPACT distance2 info2) =

(IMPACT distancel infol), if distancel < distance2
(IMPACT distance2 info2), if distancel > distance2

The complete definition to find the impacts corresponding to a list of rays is now

Findlmpacts :: [Ray] — [Object] — [Impacts]
Findlmpacts rays objects = map (Firstimpact objects) rays

This definition has the potential for very highly-parallel evaluation, arising from horizontal
parallel evaluation of each Firstimpact objects ray; expression. Figure 4.5 shows the pattern
of data dependency in this computation.

Introducing pipeline parallelism

It is possible to make this algorithm more suitable for loosely-coupled parallel processors
by transforming it to increase its locality.

The pipelined implementation consists of a chain of pipeline stages, PipelineStage. Each
looks after its own object. PipelineStage object takes as input and produces as output a
stream of Pipeltems:

93

Pipeltem a 3 ::= PIPEITEM a f3

A object of the type Pipeltem ray impact contains a ray and its earliest impact so far.
The pipeline stage function PipelineStage tests the ray against the stage’s object, and then
compares the resulting impact with impact. Its output is a copy of the input ray, together
with the earlier impact:

PipelineStage :: Object — Pipeltem Ray Impact — Pipeltem Ray Impact

PipelineStage object (PIPEITEM ray impact)
= PIPEITEM ray impact’
where
impact’ = earlier impact Newlmpact
Newlmpact = TestForlmpact ray object

Now it should be clear that we can write the definition of Firstlmpact as

Firstimpact [objectl, object2, ... objectN] ray
= impact
where
PIPEITEM ray impact
= PipelineStage objectl
(PipelineStage object2
-+ - (PipelineStage objectN (ray, NOIMPACT)) ---)

= ((PipelineStage objectl) o
(PipelineStage object2) o
--+ o (PipelineStage objectN)) PIPEITEM ray NOIMPACT

This definition can be tidied somewhat using functions to build the Pipeltem structure at
the input to the pipeline, and to select out the impact at the output:

MakePipeltem ray = PIPEITEM ray NOIMPACT
Takelmpact (PIPEITEM ray impact) = impact

giving us

Firstimpact [objectl, object2, ... objectN] ray
= (Takelmpact o

((PipelineStage objectl) o

(PipelineStage object2) o

--- o (PipelineStage objectN))

o MakePipeltem)

ray

“,

We can remove the notation using insert (o) ident and map:

94

Figure 4.6: The transformed, pipeline-parallel ray intersection test

Firstimpact objects ray

= (Takelmpact o
(insert (o) ident (map PipelineStage objects))
o MakePipeltem)
ray

Finally, recall that

Findlmpacts rays objects = map (Firstimpact objects) rays

~ /

= map ((Takelmpact o
(insert (o) ident
(map PipelineStage objects))
o MakePipeltem)
rays

Now propagate the map into the composition using map (f o g) = (map f) o (map g):

Findlmpacts rays objects = ((map Takelmpact) o
(insert (o) ident
(map map (map PipelineStage objects)))
o (map MakePipeltem))
rays

This transformation is justified more formally in Appendix A, section A.4. The trans-
formed version’s process network is shown in Figure 4.6. The important difference between
the transformed and untransformed algorithms is that in figure 4.5 the graph’s connectivity
is very high, since every intersection test process requires access to the entire objects list.

95

By contrast, in the pipeline version, figure 4.6, the graph’s connectivity is very low. It is a
much more distributed algorithm, more suitable for a distributed memory, loosely-coupled
multiprocessor. We return to this point in the next chapter, section 5.1.2.

4.6 Infinite process networks

We have seen process networks whose size depends on the size of some data structure.
In our functional language data structures need not be finite in size—a list might grow
indefinitely, and the same can happen with a process network, as happens in the next
example.

4.6.1 Example: generating primes using Eratosthenes’ sieve

The infinite list of prime numbers can be computed as follows:

primes = sieve (from 2)
where
sieve (a : as) = a : (sieve (FilterMultiples a as))

where

FilterMultiples p (a:as) = a : (FilterMultiples p as), if not(divides p a)
= FilterMultiples p as, if divides p a

This neat (although hardly clear) example? computes the list of all the prime numbers,
using Eratosthenes’ famous sieve algorithm. An explanation and derivation of this formu-
lation of the algorithm is given in Appendix A, section A.5.

Its process network is given in Figure 4.7. At each invocation of sieve, a new instance
of FilterMultiples is generated. Thus the process network has the form of a chain, which is
constantly being extended as more primes are found.

The primes sieve is not a good parallel algorithm, because most of the work is done
by a small number of the FilterMultiples processes. In fact infinite process networks don’t
seem very useful for parallel programming in general. As well as this balance problem,
the processes must be mapped to processors at run time. The example is given mainly to
demonstrate the potential existence of such programs.

4.7 Process networks as hardware descriptions

When a process network is finite in size, it is very natural to interpret it as a description
of a physical, parallel, computer. A restricted form of our functional language can be used
as a hardware description language, and we could use it to specify the design of VLSI
devices, as in the example given here.

2Attributed to P. Quarendon by Henderson and Morris [HM76].

96

Figure 4.7: Some steps in the evaluation of the primes sieve

4.7.1 Primitives for hardware description

In specifying a digital electronic circuit, the fundamental data type is the (approximate)
voltage on a wire at a particular time. We consider here just three possibilities: a settled
high or low logic level, or some temporary intermediate value “XX”:

Sample := HI | LO | XX

We will model the behaviour of a wire by the sequence of voltage samples taken at regular
intervals indefinitely:

Signal == [Sample]

We will bundle wires using the tuple “(---)” notation, and form indexed aggregates (to
represent numbers, for example), using vectors:

bus == <Signal>

The approach is to use the functional notation to connect simple combinational circuits
in a restricted set of ways.

Specifying combinational logic using truth tables

To do this we need a primitive for implementing circuits specified using just truth tables:

97

SignalCase :: [Signal] — ([Sample],[Sample]) — [Signal]

SignalCase inputsignal cases

= (transpose o
o (map (SelectMatch cases))
o transpose) inputsignal

where

SelectMatch :: ([Sample],[Sample]) — [Sample] — [Sample]

SelectMatch ((lhs, rhs) : cases) samples = rhs, if Ihs = samples
SelectMatch ((lhs, rhs) : cases) samples = SelectMatch cases samples, otherwise

and

transpose :: [[a]] — [[¢]]

transpose rows = [], if rows = []
transpose rows = (map hd rows) : (transpose (map tl rows)) otherwise

Transposition is specified by the requirement that for all n and m,

(rows sub n) sub m = (cols sub m) sub n
where
cols = transpose rows

It is used here to transform an finite list of signals into an infinitely-long list of samples.
For example, a 3-element list of signals is transformed into a stream of three-element lists
of samples:

transpose [[a;, az, ...] = [[a1, b1, c1],
[by, bs, ...] [a2, by, ¢,
[c1, car -] [a3, bs, c3],

In this form map SelectMatch can be used to apply the transformation specified by the
truth table, to produce a stream of lists of samples as output. This is turned back into a
list of signals by applying transpose again.

Using SignalCase it is easy to define the building blocks for more complicated circuits.
For example, the “or” operation is defined by

98

IdealOr :: (Signal, Signal) — Signal

IdealOr a b = hd (SignalCase [a,b]

[[[LO, LO], [LO]],
[[LO, HI], [HI]],
[[HI, LOJ, [HI]],
[[HI, HI], [HI]],
[[XX, HI], [XX]],
[[HI, XX], [XX]],
[[XX, LO], [XX]]
[[LO, XX], [XX]]])

Many combinational circuits are undefined if any input is undefined, so it might prove
helpful to build this into SignalCase. It is left out here for clarity.

Modeling propagation delay

Notice the use of “don’t know” values in the truth table, so that the gate propagates
undefined results properly (this could be done automatically by SignalCase. Undefined
results come into the world when the machine is switched on, and filter through the
circuit at a rate determined by propagation delays. Thus, a more realistic or-gate would
be

Or (a, b) = Delay 7 (IdealOr (a, b))

where 7 is the number of samples-worth of delay incurred. This is implemented by simply
prepending 7 undefined samples to the gate’s output:

Delay t signal = (UndefinedFor 7) ++ signal
where
UndefinedFor 7 = replicate 7 XX

Thus, the or-gate’s first 7 outputs are undefined even if its input is defined. Thereafter,
changes to the input are delayed 7 time units in the output. This is not the only physically
sensible model of delay.

Latches and registers

A register is the primitive storage element in a digital circuit. The behaviour of a simple
register is specified by the equations

Register :: Sample — Signal — Signal — Signal

99

Register initialstate (si : input)

(XX : strobe) = initialstate : (Register initialstate input strobe)
Register initialstate (si : input)

(LO : strobe) = initialstate : (Register initialstate input strobe)
Register initialstate (si : input)

(HI : strobe) = initialstate : (Register si input strobe)

The register maintains and outputs an internal state, which retains the last value of the
input when the strobe is HI. Tt is not hard to verify (using the alternative definitions of
iterate) that this recursive definition is equivalent to

Register initialstate input strobe
= output
where
output = initialstate : FeedbackFunction [output, input, strobe]

where

FeedbackFunction [op, ip, st] = hd (SignalCase [op, ip, st]

[[[HI, HI, HI], [HI]],
[[LO, HI, HI], [HI]],
[[HI, LO, HI], [LO]],
[[LO, LO, HI], [LO]],
[[HI, HI, LOJ, [HI]],
[[HI, LO, LOJ, [H1]],
[[LO, LO, LO], [LO]],
[[LO, HI, LOJ, [LO]I])

This definition of Register specifies a combinational circuit and a wiring diagram, and so
doubles as both a behavioural and a structural description of a circuit. The feedback, in
the form of a recursive stream definition, is a necessary feature of any history-sensitive
circuit description.

4.7.2 Example: Adder

A binary adder circuit would normally be provided to the VLSI designer as a carefully
hand-crafted library “cell”. However, we can specify it quite naturally. Following the
standard digital circuit design textbooks, we start by building a bit-wise adder, from two
“half-adders”:

HalfAdder :: (Signal, Signal) — (Signal, Signal)

100

HalfAdder (a, b) = SignalCase [Delay 7 a, Delay 7 b]
[[[LO, LO], (LO, LO)],
[[LO, HI], (HI, LO)],
[[HI, LO], (HI, LO)],
[[HI, HI], (HI, HD)],
[[XX, HIJ, (XX, XX)],
[[XX, LO], (XX, XX)].
[[HI, XX], (XX, XX)].
[[LO, XX], (XX, XX)]]

Now we can put together a full adder taking two numbers and a carry from the preceding
digit, and producing this digit pair’s sum, and a carry for the next digit:

FullAdder :: (Signal, Signal, Signal) — (Signal, Signal)
FullAdder (a, b, Carryln) = (sum2, CarryOut)
where
(sum2, Carry2) = HalfAdder (suml, Carryln)

CarryOut = Or (Carryl, Carry2)
(suml, Carryl) = HalfAdder (a, b)

For convenience we will define projectors to pick out the sum and the carry:

SumOf (sum, carry) = sum
CarryOf (sum, carry) = carry

We construct the complete, multi-digit adder by writing down the standard addition
algorithm as a vector recurrence:

BitwiseAdder :: Num — (Signal, bus, bus) — (bus, Signal)

BitwiseAdder BusSize (Carryln, aBus, bBus)
= (ResultBus, CarryOut)

where

101

ResultBus = MakeVector BusSize Sums
where
Sums n = SumOf (AdderOutputs sub n)

CarryOut = CarryBus sub BusSize

AdderOutputs = MakeVector BusSize FullAdders
where
FullAdders n = FullAdder ((aBus sub n),
(bBus sub n),
(CarryBus sub n))
CarryBus = MakeVector (BusSize+1) Carries
where
Carries 0 = Carryln

Carries (n+1) = CarryOf (AdderOutputs sub n)

(where BusSize is the length (VectorBound) of aBus and bBus. This algorithm is entirely
sequential and so rather slow, although it can be implemented with very little hardware.
More realistic adders use a “look-ahead” carry scheme which breaks the chain of depen-
dency between successive digits. This is left as an exercise for the interested reader.

4.7.3 Functional hardware description languages

The ease with which digital hardware can be specified in the functional notation has led
to several commercial silicon design systems based on the functional approach, notably
ErLa [MPT85]. It has even been claimed (by Johnson [Joh84a]) that the way a system
is described functionally coincides precisely with the abstraction imposed by the digital
view of circuit design.

Notice the distinction between functions which correspond to active circuitry (ulti-
mately using the SignalCase construct), and functions which arrange wiring only—such as
MakeVector, SumOf, sub etc. It was clear from the way we used the notation that these
“wiring” functions are scaffolding which is not supposed to be present in the resulting
circuit. We can remove the scaffolding using reduction, as soon as we know the size of the
input buses. For example, a 3-bit adder circuit is specified by

BitwiseAdder 3 (Carryln, <a0, al, a2>, <b0, bl, b2>)
= (ResultBus, CarryOut)

where

102

ResultBus = MakeVector 3 Sums
where
Sums n = SumOf (AdderOutputs sub n)

J

'

CarryOut = CarryBus sub 2

AdderOutputs = MakeVector 3 FullAdders
where
FullAdders n = FullAdder ((<a0, al, a2> sub n),
(<b0, b1, b2> sub n),
(CarryBus sub n))

-~

/

CarryBus = MakeVector 3 Carries
where
Carries 0 = Carryln
Carries (n+1) = CarryOf (AdderOutputs sub n)

This reduces to

BitwiseAdder 3 (Carryln, <a0, al, a2>, <b0, bl, b2>)
= (ResultBus, CarryOut)

where

ResultBus = <SumOf(FullAdder (a0, b0, CarryBus sub 0)),
SumOf (FullAdder (al, bl, CarryBus sub 1)),
SumOf (FullAdder (a2, b2, CarryBus sub 2)) >

CarryOut = CarryBus sub 2

AdderOutputs = <FullAdder (a0, b0, CarryBus sub 0),
FullAdder (al, b1, CarryBus sub 1),
FullAdder (a2, b2, CarryBus sub 2) >

CarryBus = <Carryln,
CarryOf (FullAdder (a, b0, CarryBus sub 0)),
1

CarryOf (FullAdder (al, b1, CarryBus sub 1)) >
This circuit this describes is illustrated in figure 4.8.

This use of symbolic evaluation in order to produce a static process network from
an abstract description was seen in the ray-tracer pipeline example. In the hardware
description context, it is useful to be able to distinguish “static” components from the
“dynamic” parts of the program which serve only to capture the wiring in an abstract
way. In some functional hardware description languages (e.g. Johnson’s DAISY language

103

Figure 4.8: A three-bit adder circuit

[Joh84a], the language is syntactically separated to make the distinction especially clear.

4.8 Divide-and-conquer using a process network

This chapter began by distinguishing two different forms in which parallelism can appear
in functional programs, being in essence “divide-and-conquer” and the pipeline/parallel
process network. To complete this chapter’s brief overview of transformation techniques,
we present a transformation which can turn the divide phase of a recursive divide-and-
conquer parallel program into a cyclic process network. For motivation, it will be used in
a very simple ray-tracer, where the process network formulation allows a highly parallel
pipeline algorithm. The transformation is quite complex and detailed, and is not vital
to the remainder of the book, so the reader is invited to skip to the end of this chapter,
pausing only to look at the introductory material here and in the next subsection.

The untransformed version

Recall the generic divide-and-conquer formulation (we simplify it by representing the triv-
ial case by a decomposition with no subproblems):

DivideAndConquer :: (o = [f] = 8) = (e = [a]) > a —

104

DivideAndConquer CombineSolutions Decompose problem
= Solve problem
where
Solve problem = CombineSolutions problem (map Solve SubProblems)
where
SubProblems = Decompose problem

The transformed version

The final, transformed version has the form

DivideAndConquer CombineSolutions Decompose problem
= EvaluateTree (StreamToMTree (StreamOfSubProblemTree [probleml]))

where

StreamOfSubProblemTree problems
= output
where
(output, feedback)
= SplitStream
DividePhase (problems++feedback)

DividePhase NewAndRecycledProblems
= insert (++) []
(map LayerOf NewAndRecycledProblems)

LayerOf problem
= (OUTPUTTAG (MTREETOKEN problem CombineSolutions NoOfSubproblems))
: (map FEEDBACKTAG Subproblems)
where
Subproblems = Decompose problem
NoOfSubproblems = length Subproblems

The process network of the cyclic pipeline is given in Figure 4.9. This definition makes
use of several functions whose definitions have will be given shortly. They are collected in
Appendix A, section A.6, where a proof of correctness of the transformation is given.

4.8.1 Operation of the cyclic divide-and-conquer program

To understand figure 4.9, it is necessary to think of the tree of subproblem decomposition
as an explicit data structure. We have a “divide” phase where the tree is constructed, and

105

Figure 4.9: Sketch of the cyclic pipeline formulation of divide-and-conquer

a “conquer” phase, where solutions to subproblems are propagated up the tree from its
leaves, until a solution to the root problem can be found.

The cyclic part of the transformed program appears in the divide phase. The tree
is constructed generation by generation in a breadth-first manner. This means problem
decomposition can be performed on all the elements of a generation at once.

The first generation is the input problem by itself. When the divide phase is applied
to this, one node of the decomposition tree is built and a number of subproblems are
generated. The node is tagged using OUTPUTTAG and is passed through SplitStream
to output where it is collected (StreamToMTree) to form the decomposition tree. The
subproblems are tagged using FEEDBACKTAG, and are passed by SplitStream to feedback.
They are finally fed back to succeed input in the input stream to DividePhase.

The process comes to an end when subproblems can be decomposed no further. When
a whole generation of subproblem-less subproblems is reached, the complete decomposition
tree can be completed, and the conquer phase can begin.

4.8.2 Derivation of the cyclic divide-and-conquer program

The derivation consists of the following steps:
e Separating the two phases, divide and conquer, linked by the decomposition tree,
e Transforming the tree into a stream, scanned in breadth-first order—and back again,

e Integrating the tree construction process with transformation of the tree into a
breadth-first scan,

e Introduction of a cyclic stream version of the integrated tree construction and scan
process.

Separating divide from conquer with a decomposition tree

The intermediate tree has the type

106

MultiTree o 3 ::= MNODE « (o — [a] — () Num [MultiTree « 3]

Although there is only one kind of element in this type, it is tagged with the constructor
MNODE for clarity.
Each node of a MultiTree,

MNODE Problem CombiningFunction NoOfSubproblems Subproblems

consists of a list of subtrees Subproblems, a number NoOfSubproblems giving the number
of subtrees in the list, CombiningFunction, a function to take solutions of the subtrees’
problems, and produce a solution of the problem the node itself represents, and Problem,
the original problem to be solved. At the leaves, the list of subtrees is empty. Using
MultiTree, we have the new functions

BuildTree :: o« — MultiTree o 3
EvaluateTree :: (MultiTree o) — 3

which make the intermediate tree explicit when put together:

DivideAndConquer CombineSolutions Decompose problem
= EvaluateTree (BuildTree problem)

where

BuildTree problem = MNODE problem
CombineSolutions
NoOfSubproblems
(map BuildTree Subproblems)
where

Subproblems = Decompose problem
NoOfSubproblems = length SubProblems

where

EvaluateTree (MNODE problem CombineSolutions n subtrees)
= CombineSolutions problem (map EvaluateTree subtrees)

This is proven in Appendix A section A.6.1, but note that it holds only if CombineSolutions
is strict in all the sub-solutions.

Separating the phases by a stream

The next stage of the derivation is to flatten the intermediate tree structure into a stream
(i.e. a lazily-produced list). To do this a special tree-stream data type transformation is
used. It is necessary to scan the tree breadth first in order to bring out its parallelism. We
use a list of special tokens,

107

MultiTreeToken o 3 ::= MTREETOKEN « (v — [o] —) Num

(the number carries the number of subtrees for this node, and is necessary to enable the
tree to be reconstructed from the stream). To perform the transformation we need two
functions,

MTreeToStream :: MultiTree o 8 — MultiTreeToken o
StreamToMTree :: MultiTreeToken oo f — MultiTree o 3

For all (finitely-branching) MultiTrees mtree we require that

StreamToMTree (MTreeToStream mtree) = mtree

(The functions StreamToMTree and MTreeToStream are defined in Appendix A section
A.6.2, where they are derived. Now we can rewrite the two-phase divide-and-conquer
formulation as

DivideAndConquer CombineSolutions Decompose problem

= EvaluateTree (StreamToMTree (MTreeToStream (BuildTree problem)))
where
BuildTree problem = - - -

Simplifying tree construction

In the next step of the transformation, we have the composition

MTreeToStream (BuildTree problem)
where
BuildTree problem = MNODE problem
CombineSolutions
NoOfSubproblems
(map BuildTree Subproblems)
where
Subproblems = Decompose problem
NoOfSubproblems = length SubProblems

where

108

MTreeToStream tree = ListOf TreesToStream [tree] []
ListOf TreesToStream [| [] =[]
ListOf TreesToStream [| children = ListOfTreesToStream children []

ListOf TreesToStream ((MNODE p op n newchildren) : siblings) oldchildren
— (MTREETOKEN p op n)
. (ListOf TreesToStream siblings (oldchildren++newchildren))

We can use reduction to define a new function BuildStream which constructs the stream
directly, so that the tree need not be built at all here. We proceed by writing down a
specification for BuildStream, and then reducing:

BuildStream problem = MTreeToStream (BuildTree problem)
— ListOfTreesToStream [BuildTree problem] []

Clearly it is ListOfTreesToStream which does all the work, so define

BuildStream problem = BuildStreamsOfTrees [problem] []
where
BuildStreamsOfTrees problems subproblems
= ListOf TreesToStream (map BuildTree problems) subproblems

This gives us a specification for BuildStreamsOfTrees. The equations defining BuildStream-
sOfTrees directly are derived from those defining ListOf TreesToStream by instantiation and
then reduction:

BuildStreamsOfTrees [| [| =[]
BuildStreamsOfTrees | | subproblems = BuildStreamsOfTrees subproblems | |

BuildStreamsOfTrees (problem : siblingproblems) oldsubproblems
= (MTREETOKEN problem CombineSolutions NoOfSubproblems)
. (BuildStreamsOfTrees siblingproblems
(oldsubproblems-++-Subproblems))
where
Subproblems = Decompose problem
NoOfSubproblems = length Subproblems

Building the cycle

The next step is the only “eureka” step in the derivation, so-called because it is pulled out
a hat and then verified rather than derived. It is not completely unexpected as we have

109

already seen several recursive definitions transformed into a similar form. One of the first
examples was iterate, given in Chapter 2, section 2.2.7. The claim, proven in Appendix A,
section A.6.3 (Theorem 5), is that an equivalent definition for BuildStreamsOfTrees is

BuildStreamsOfTrees [| [= []

BuildStreamsOfTrees problems subproblems
= output
where
(output, feedback)
= SplitStream
((map FEEDBACKTAG subproblems) ++
(join (map LayerOf (problems++feedback))))

LayerOf problem
= (OUTPUTTAG (MTREETOKEN problem CombineSolutions NoOfSubproblems))
: (map FEEDBACKTAG Subproblems)
where
Subproblems = Decompose problem
NoOfSubproblems = length Subproblems

The undefined functions and data types are defined in a moment. Before explaining this,
let’s simplify things by presenting BuildStream itself in this form:

BuildStreamOfTrees problem
= output
where
(output, feedback)
= SplitStream
(join (map LayerOf (problem : feedback)))

LayerOf problem
= (OUTPUTTAG (MTREETOKEN problem CombineSolutions NoOfSubproblems))
: (map FEEDBACKTAG Subproblems)
where
Subproblems = Decompose problem
NoOfSubproblems = length Subproblems

The function LayerOf takes a problem and produces a list containing the problem’s node
(tagged with OUTPUTTAG), followed by all the problem’s subproblems (tagged with
FEEDBACKTAG). The function SplitStream picks out the objects in the list and dispatches
those marked for output as the function’s result, but routes the subproblems, tagged
FEEDBACKTAG, back to be decomposed again by LayerOf.

The definitions are as follows: the data type for the tagged list is

110

TaggedStreamltem o« § ::= OUTPUTTAG (MultiTreeToken o)
| FEEDBACKTAG «

The selection function SplitStream is defined as

SplitStream :: [TaggedStreamltem a] — ([MultiTreeToken «a 3],)
SplitStream [| = ([], [])

SplitStream ((OUTPUTTAG token) : rest)
= (token : restl, rest2)
where
(restl, rest2) = SplitStream rest

SplitStream ((FEEDBACKTAG subproblem) : rest)
= (rest1, subproblem : rest2)
where
(restl, rest2) = SplitStream rest

The function join flattens a list of lists into a list:
join =z [[a]] = [¢]

join xss = insert (++) [] xss

4.9 Application to ray tracing

To finish the chapter, we apply this transformation to a simple recursive ray-tracing pro-
gram. By transforming the divide-and-conquer formulation into a cyclic definition, large-
scale pipeline parallelism in the ray-intersection test is uncovered.

4.9.1 An introduction to ray-tracing

A variety of high-quality computer graphics applications require the generation, from a
computer model of a three-dimensional space, of a view which includes shadows, and also
models refraction and reflection from shiny and non-shiny surfaces. This is in addition
to the more standard requirements for hidden surface removal, perspective, depth-cueing,
etc.

The only generally-applicable way of generating such images is by modeling the paths
and intensity of rays of light as they are reflected, refracted etc. in the simulated region.
The crucial observation behind ray-tracing is that only rays which pass through a pixel,
and are incident on the viewer’s eye (stereo vision is generally ignored), need be considered,
and that these rays can be followed backwards to their source. The classic reference on
ray-tracing is Whitted [Whi80).

111

Tracing rays backwards ensures that only rays of interest are considered. Forward ray
tracing is infeasible because, when a curved wavefront is approximately represented by
many rays, the unavoidable quantisation can be arbitrarily amplified by unfortunately-
placed curved reflecting surfaces.

The system being considered consists of the viewer’s eye, the mesh imposed by the
pixel pattern of the display device, and a simulated region behind the display device. Our
task is to render the surface of the display device with just the colours, brightnesses and
hues of the light passing through it from the simulated region to the viewer’s eye. For the
sake of simplicity we shall refer to the appearance of a pixel as its colour.

The set of objects in the simulated region will be called the object database. Each object
has a characteristic surface: given an incoming ray, this determines where the contributory
rays come from, and how their intensities are combined to produce the outgoing ray.

In essence, the ray tracing algorithm is as follows:

1. For every pixel, compute the ray starting from the viewpoint, which passes through
it.

2. For each of these rays, find the first object in the object database which the ray
strikes.

3. When a ray strikes a surface, compute the ray’s colour. If the surface is a light source
in its own right (or is completely dark), this is trivial. If not, calculate which rays
contribute to this ray’s intensity, and ray-trace them in turn. The intensities of the
subrays can then be combined to give the resulting ray’s intensity, using a formula
modeling the surface’s characteristics.

Thus, for each original ray, a tree of sub-rays is constructed during a recursive, divide-
and-conquer computation of each pixel’s colour and intensity properties.

It must be emphasised before going on to the details that this example is for illustration
only:

e For practical use, a far more subtle initial approach is always justified. This ver-
sion tests every ray against every object; a smarter algorithm would partition the
environment, so that one intersection test against a large “envelope” object (called
a bounding volume) would determine whether tests on objects inside the envelope
could possibly succeed.

e This approach applies parallelism to the “divide” phase of the algorithm, during
which intersection tests are performed. It leaves the “conquer” phase, during which
pixel intensities are actually calculated given their contributory ray trees, to be
performed entirely sequentially. For simple models of surfaces’ optical properties,
the divide phase does dominate [Whi80], but not by a large factor.

4.9.2 A simple divide-and-conquer ray tracer

To begin with, we must generate the list of all the rays passing from the viewer’s eye
through each pixel of the display device, into the simulated region. Without going into

112

detail, we assume we have a function which does this, given details of the display mesh
and the position of the viewer’s eye:

GeneratelnitialRays :: mesh — point — [Ray]

There is no need to define the types mesh, point or Ray here. Now the fundamental question
is, given a ray and the object database, what colour should we paint the corresponding
pixel? Let us introduce a function to answer this, which we will refine shortly:

FindRayColour :: ObjectDatabase — Ray — PixelColour

We have no need to refine the type PixelColour, but we do assume that the object database
is represented by a list of objects:

ObjectDatabase == [Object]

At the first level of abstraction, the ray tracer as a whole is defined by

RayTracer :: ObjectDatabase — point — [PixelColour]

RayTracer objects viewpoint = map (FindRayColour objects)
(GeneratelnitialRays objects viewpoint)

The pixel colours are output in the order they were generated by GeneratelnitialRays.
The ray-tracing is done by the recursive function FindRayColour:

FindRayColour objects ray = SurfaceModelFunction ColoursOfSubrays
where
ColoursOfSubrays = map (FindRayColour objects) Subrays
Subrays = GetSubrays Impactinfo
SurfaceModelFunction = GetSurfaceModel Impactinfo
Impactinfo = Firstimpact objects ray

This employs the function Firstimpact, which was introduced back in section 4.5.1:

Firstimpact :: ObjectDatabase — Ray — Impact

where the data type Impact was defined as

Impact ::= NOIMPACT |
IMPACT Num Impactinformation

Without elaborating fully the type Impactinformation, we assume that the contributory
rays can be found by

113

GetSubrays :: Impactinformation — [Ray]

and that the function which combines the colours of these contributory rays according to
the appropriate surface model can be found by

GetSurfaceModel :: Impactinformation — ([PixelColour] — PixelColour)

The original ray is also available:

GetRay :: Impactinformation — Ray

When a ray strikes an opaque, non-reflective surface, GetSubrays will return an empty
list of contributory rays, while GetSurfaceModel will return a constant function giving the
colour of the surface.

Expressing the ray-tracer using DivideAndConquer

The first step in the transformation will be to convert the divide-and-conquer formulation
of FindRayColour into a cyclic stream definition, using the result of section 4.8. To use
that result, we must first express FindRayColour in terms of the generic DivideAndConquer
form:

FindRayColour objects ray
= DivideAndConquer CombineSolutions Decompose ray
where
Decompose ray = Subrays (Firstimpact objects ray)
CombineSolutions ray subraycolours = (GetSurfaceModel (Firstimpact objects ray))
subraycolours

It should be noted here that this is a highly parallel algorithm: when the many pixels on
a typical screen are taken into account there will be work for several million PEs. The
aim of the transformation is to organise the avilable parallelism to take advantage of a
loosely-coupled multiprocessor.

4.9.3 Transformation to a cyclic stream definition

Once we have the ray tracer expressed using DivideAndConquer, we can now apply the
cyclic stream transformation, giving:

114

FindRayColour objects ray
= EvaluateTree (StreamToMTree (StreamOfContributoryRayTrees [ray]))
where
StreamOfContributoryRayTrees rays
= output
where
(output, feedback)
= SplitStream (DividePhase (rays ++ feedback))

DividePhase NewAndRecycledRays
= (insert (++) []
(map LayerOf NewAndRecycledRays))

LayerOf ray
= (OUTPUTTAG (MTREETOKEN ray CombineSubrayColours NoOfSubRays))
: (map FEEDBACKTAG subrays)
where
CombineSubrayColours = GetSurfaceModel impactinfo
subrays = Subrays impactinfo
impactinfo = Firstimpact objects ray
NoOfSubRays = length subrays

We can tidy this up a little by separating out the intersection test:

FindRayColour objects ray
= EvaluateTree (StreamToMTree (StreamOfContributoryRayTrees [ray]))
where
StreamOfContributoryRayTrees rays
= output
where
(output, feedback)
= SplitStream (DividePhase (Findlmpacts (rays ++ feedback)))

115

where
DividePhase NewAndRecycledRaysImpacts
= (insert (++) []
(map LayerOf’ NewAndRecycledRaysImpacts))

LayerOf" impactinfo
= (OUTPUTTAG (MTREETOKEN ray CombineSubrayColours NoOfSubRays))
: (map FEEDBACKTAG subrays)
where
CombineSubrayColours = GetSurfaceModel impactinfo
subrays = Subrays impactinfo
ray = GetRay impactinfo
NoOfSubRays = length subrays

where

Findlmpacts rays objects = map (Firstimpact objects) rays

4.9.4 Exploiting pipeline parallelism in the cycle

The next step is to employ our pipelined formulation of Findlmpacts,

Findlmpacts rays objects = ((map Takelmpact) o
(insert (o) ident
(map map (map PipelineStage objects)))
o (map MakePipeltem))
rays

This exploits parallelism successfully provided sufficient rays are present in the feedback
cycle (figure 4.9) to keep the pipeline components busy.

4.9.5 Using pixel-wise parallelism

At present we can exploit pipeline parallelism to speed the application of the intersection
test to each successive generation of a single pixel’s contributory-ray tree. The pipeline
will often be idle at the top and the bottom of trees, and (as is often the case) when
most of the trees are quite small. Fortunately we can use the pipeline to work on parts of
different pixels’ contributory-ray trees at the same time.

First, notice that although we have concentrated so far on FindRayColour, the function
we really need to evaluate is

RayTracer objects viewpoint = map (FindRayColour objects)
(GeneratelnitialRays objects viewpoint)

Now recall (in fact from Appendix A, section A.6.2) that StreamToMTree was defined in

116

terms of a StreamToListOfM T Trees:

StreamToMTree stream = StreamToListOfMTrees 1 stream

StreamToListOfMTrees n stream picks up a list of n trees from stream. In deriving Stream-
ToMTree we proved that

StreamToListOfMTrees (length trees) (ListOfMTreesToStream trees) = trees

Thus, we can very naturally show that

map (Firstimpact objects) rays
= (StreamToListOfMTrees (length initialrays)
(StreamOfContributoryRayTrees initialrays))

This gives us the final, cyclic, pipelined ray tracer implementation:

Ray Tracer objects viewpoint
= map EvaluateTree
(StreamToListOfMTrees (length initialrays)
(StreamOfContributoryRayTrees initialrays))
where
StreamOfContributoryRayTrees rays
= output
where
(output, feedback)
= (SplitStream
o join
o (map LayerOf')
o (map Takelmpact)
o (insert (o) ident
(map map (map PipelineStage objects)))
o (map MakePipeltem))
(rays ++ feedback)

where

117

LayerOf" impactinfo
= (OUTPUTTAG (MTREETOKEN ray CombineSubrayColours NoOfSubRays))
: (map FEEDBACKTAG subrays)
where
CombineSubrayColours = GetSurfaceModel impactinfo
subrays = Subrays impactinfo
ray = GetRay impactinfo
NoOfSubRays = length subrays

4.10 Conclusions

This formulation of the ray tracer completes the chapter’s illustrative investigation of
techniques for transforming programs to bring out parallelism in easily-exploited ways.
We return to the example in the next chapter.

The main objective of developing some general methods has only been partially ach-
ieved. Some useful techniques have been presented, but not in their most general form,
nor so that they might be automated directly. There is plenty of room for further work.

In particular, the transformation from divide-and-conquer into a cyclic stream formu-
lation can be improved. The approach can be extended to include the “conquer” phase,
and can be generalised to apply when CombineSolutions is not strict in all the subproblems.
This is interesting because a recursive expression evaluator is of this form, and would lead
to a structure much like a cyclic-pipeline data flow architecture such as the Manchester
Data Flow Machine [GKW85].

To make the approach practical, a considerable level of support is necessary. The work
shown was developed using pencil and paper, and so mistakes inevitably creep in. Building
software to help is a considerable challenge: systems to check derivations and proofs have
existed for some considerable time (notable are LCF [GMW79] and its derivatives), but
building proofs with such systems is a slow and painstaking task—much slower than pencil
and paper. What has not yet been achieved convincingly is computer-aided program
transformation and verification which is actually quicker and easier than doing it by hand.
A great deal of work is in progress.

4.11 Pointers into the literature

Parallelism in graph reduction

Despite the large amount of research and development work on implementing parallel
graph reduction machines, there is very little published material describing how programs
might be designed to exploit these designs’ capabilities. Goldberg’s thesis [Gol88] is the
most comprehensive to date, although other studies are under preparation. Goldberg’s
results are interesting in particular because of the light they throw on the importance of
shared memory hardware.

118

Divide and conquer

Divide-and-conquer has a very long history in algorithm design, and its extension to
parallel algorithm design comes very naturally. Thus, much of the standard algorithm
design literature serves as a good introduction (see for example Aho, Hopcroft and Ull-
man [AHUS83|). Horowitz and Zorat survey general parallel divide-and-conquer algorithms
[HZ83], while Stout gives a survey of divide-and-conquer image processing algorithms
[Sto87]. Rayward-Smith and Clark develop a theory for scheduling divide-and-conquer al-
gorithms [RSC88|. Hartel and Vree present an interesting approach to the efficient imple-
mentation of a class of divide-and-conquer programs on relatively loosely-coupled parallel
graph reduction machines [HV87]. Vree applied program transformation to improve the
grain size of a divide-and-conquer implementation of a simulation of tidal motion in the

North Sea [Vre87].

Dataflow and pipeline parallelism

Pipelining as a technique in the architecture of conventional computers is the subject of a
review article by Ramamoorthy and Li [RL77], and a book by Kogge [Kog81].

Our interpretation of functional programs as specifications of networks of processes
is shared by dataflow proponents. Dataflow languages like VAL [McG82], Id [NPAS6],
Lucid [WA85] and SiSAL [MSA™85] are essentially forms of pure functional languages,
normally restricted at least to first-order procedures (i.e. no function values), and com-
monly augmented by “syntactic sugar” for recurrences and other forms convenient for
scientific computation.

This sugaring can often be thought of as restricting an imperative language so that
no variable or structure element may be assigned to more than once. This leads to a
slight increase in expressive power, exploited in Id Nouveau [AESS], where, for example,
an array can be passed to two functions which then interact by assigning to array elements.
This capability, shared with committed-choice logic languages like PARLOG [Gre87] and
STRAND@QSTRAND [AT 88], goes beyond what can naturally be expressed in the purely-
functional language used in this book.

The dataflow concept has prompted several hardware design projects, aimed at using
a dataflow graph representation of a program’s consituent instructions at run-time, so
that parallelism can be exploited instruction by instruction on a large scale. This differs
from conventional look-ahead processors [Kel77] where data dependencies are analysed
at run-time in a look-ahead buffer of limited size. A by-product of organising the fully
asynchronous instruction scheduling this requires is that PE’s can be made very tolerant
of large and variable memory access latency [AI86], but the overheads are non-trivial
(although for a contrary view see [ACES8]). Criticisms of the approach are summarised
by Gajski and his colleagues [GPKKS82]. Classical early work in the area includes the
Manchester Data Flow Machine project, reviewed in [GKW85], and more thoroughly in
part T of [CDJ84]. More recent work includes Arvind’s “Monsoon” project, reported in
[AN87] and [Pap89].

Elsewhere, considerable progress has been made compiling dataflow languages for con-
ventional shared-memory multiprocessors such as the Cray-XMP [Lee88]. This has arisen
from success with the partitioning problem, as reported by Sarkar [Sar89].

119

Hardware description and derivation

Johnson [Joh84a] argues that the abstraction made in circuit design when moving from
an analogue to a digital model of device behaviour precisely matches the functional view.
There is some practical support for the view, not least the success of commercial products
like ELLA [MPT85]. In the context of systolic designs, it has led to a great deal of successful
work in deriving efficient VLSI implementations of parallel algorithms. Such work, notably
by Quinton [Qui84], Chen [Che84] and Moldovan [Mol83], has developed a considerable
understanding of scheduling computations onto fixed arrays of synchronous PE’s.

There are some weaknesses with the functional approach. Certainly when one needs
to work below or outside the abstraction of synchronous digital circuits, more general
techniques are needed. Quite an effective treatment of this is the higher-order logic (HOL)
approach of Hanna and Daeche [HD85] and Fourman [FPZ88]. At a higher level, Sheeran
identifies a failure to capture ideas like handshaking, where, for example, an input to a
circuit includes an acknowledgement output. Sheeran proposes RUBY, an experimental
relational language [She88], to deal with the problem.

The existence of hardware description and specification languages poses the quite con-
tentious question of whether programming is a good model for digital systems design, or
at least VLSI circuit design. One theme of this book is that parallel programming is differ-
ent and more complicated than sequential programming. This certainly extends to digital
circuit design, which can be yet more complicated when packaging, power distribution and
technology mixing are taken into account. Even in the much simplified arena of a single
VLSI chip, the use of compilation techniques in favour of more interactive design tools is
difficult to justify when the cost of a device rises exponentially with the chip’s size.

The Kahn principle

Kahn observed [Kah74] that the meaning of certain simple systems of interacting pro-
cesses can be given using the standard fixed-point methods of denotational semantics. For
a introduction to the denotational approach to giving a mathematical semantics to a pro-
gram, see Schmidt [Sch86]. The restriction Kahn imposed was that the behaviour of the
component, processes be characterisable by functions mapping the history (i.e. stream) of
input values to the history of output values. Keller [Kel74] details this simplification in a
wider context, but it was not until Faustini’s thesis [Fau82] that Kahn’s “principle” was
formally proven in a general context.

Ray tracing

Although it goes back at least to 1968 [App68], the technique was first presented in detail
by Turner Whitted in 1980 [Whi80]. It is now commonly dealt with in introductory
computer graphics textbooks. The range of smart ray-tracing algorithms is enormous,
but they essentially depend on the notion of a “bounding volume”, a simple artificial
solid introduced to envelop a real object with a more complex form, so that most rays
can bypass the intersection test with the complex shapes. This and other techniques are
surveyed in [WHGS84]. Kajiya [Kaj83] gives an interesting twist to the bounding volume

120

approach when applied to scenes generated at random in a “fractal” fashion: the scene
itself together with bounding volumes is generated only when a ray might strike it.

Automatic transformation techniques

The emphasis in this chapter has been on developing manual techniques for exploring
program transformations. A large body of work has been done towards understanding the
algebra of programs enough to give algorithms for manipulating programs into specified
forms. A simple example (explored by Wadler [Wad88a]) might be the technique of propa-
gating “+-+" into functions returning lists to avoid copying, as employed in section A.1.1.
A more complicated one might be the elimination of sub from recurrences, as given in
section A.3. For more examples, see Field and Harrison’s textbook [FH8S].

Computer-aided program transformation and verification environments

Program verifications cannot be expected to be checked by well-qualified reviewers in the
same way that mathematical verifications appearing in the scientific literature are. They
are generally too boring! A formal approach carries no more weight than vigorous assertion
unless the steps are checked, and so computer support is a necessity, not a luxury. Proof
checkers exist, LCF being a prime example [GMW79]. Unfortunately using such a system
can be very hard work indeed because of the amount of detail required.

One approach to alleviating the tedium of checked verification is to employ a mechanical
theorem prover. The classic work in this area is by Boyer and Moore [BM79], whilst Gordon
gives an introduction [Gor88] and Chang and Lee give a more general treatment [CL73].

An interesting alternative, which applies more neatly to program derivation, is to
capture proof techniques or derivation strategies as programs in a meta-language (in the
case of LCF this was ML—which took on a life of its own [Mil83]). These “tacticals” are
built by combining fundamental inference rules of the program logic. Milner [Mil85] gives
a good introduction. A particular success of the ML /LCF approach of Gordon, Milner and
Wadsworth is the use of a polymorphic type system to ensure that only formally-derived
statements achieve the status of theorems. Darlington pioneered the application of this
proof development work to program derivation with [Dar81], using the functional language
Hopre [BMS80] as both the meta-language and the object language.

Darlington’s group have gone on to base a complete programming environment on
formal program transformation [De88]. Their aim is to capture software specification,
derivation and change control by using HOPE' to document software modifications as
executable meta-programs.

Reviews of related work are given by Pepper [Pep83] and Feather [Fea86].

121

122

Chapter 5

Distributed Parallel Functional
Programming

This chapter examines the problem of controlling the distribution of a parallel program
across a loosely-coupled multiprocessor, and develops an extension to the programming
language to resolve it.

The main points are

In general functional programs demand some additional control if the parallelism
which is present is to be exploited efficiently.

This control over spatial program distribution, although not impervious to compiler
technology, can legitimately be thought of as part of the programming task.

The process network diagram used to illustrate parallelism structure is an appropri-
ate level of abstraction for program design and analysis.

The process network associated with a program is not uniquely determined by the
program’s form. In fact, the choice of which process network to use to distribute a
program can depend on run-time data values.

A declarative program annotation is presented which associates a program with its
process network. The notation has two natural abstraction mechanisms, and has
application in more tightly-coupled multiprocessors.

5.1 Communication patterns

A communication occurs every time a value is stored in or read from a memory location.
The communication occurs between a memory device and a PE. The memory may be very
close to the PE — perhaps on the same chip. It may be in some other PE’s local memory, or
in some special memory organ shared between many PE’s by means of a high-performance
interconnection network. At the far extreme, access to non-local memory may be provided
by explicitly-programmed message passing over a communications network.

123

As well as optimising the use of processing power, we must treat the target architec-
ture’s communications capabilities as a critical resource. In a loosely-coupled multipro-
cessor the number of immediately-accessible PE’s or memories for each process is strictly
limited. Thus, a ring-shaped process network is far easier to accommodate than a star net-
work, or even a mesh or (hyper)cube. The communications demands of a parallel algorithm
must be taken into account in evaluating its suitability for such machines. The importance
of communication to parallel program performance is often hidden in small-scale parallel
computers, but when really large scale parallelism is to be exploited it is inescapable. In
devices fabricated using photolithography, e.g. VLSI, it is already paramount.

5.1.1 The speed-up of a sequential multiprocessor

One way to demonstrate the importance of communications is to consider a computation
which could be made faster by replicating PE’s without involving any parallelism at all.

Let us imagine a single processor computer, linked to a single, large, memory device.
Its performance is, to a large extent, governed by the cycle time of the memory device.
The speed of a memory device depends on its capacity, since its operation depends on
signal propagation across the memory matrix. In the worst case, this propagation delay
is quadratic in the memory matrix’s width, but with careful design it can be reduced to a
logarithmic factor (see Mead and Conway [MC80], section 8.5.2.3).

For some computation, it might be possible to determine in advance that the memory
will be accessed region-by-region, in a sequential fashion. Thus, if we could break the
memory device up into many sub-memories, each covering exactly one region, we could
hope to incur only the access time of a small memory device at each memory access, rather
than the access time of the entire memory. With a single PE, this would save no time,
because the signals would still need to travel to and from the correct sub-memory, but if
we make many duplicates of the PE and scatter them among the submemories, we could
arrange for the program to move to the appropriate PE before accessing each region.

Just this effect is exploited with transputers, where there is a special advantage to
keeping each process’s memory requirements small so that the on-chip RAM is sufficient.
Of course, if we can use the results from more than one region’s calculation at a time, we
can exploit parallelism too, giving a double bonus.

5.1.2 The ray intersection test example

One of the example program transformations used in the previous chapter (section 4.5.1)
is an illustration of this. We had a computation initially given as

Findlmpacts rays objects
= map (Firstimpact objects) rays
where
Firstimpact objects ray = earliest (map (TestForlmpact ray) objects)
where
earliest impacts = insert earlier NOIMPACT impacts

Commonly, both the number of rays and the number of objects are very large. Tt is

124

clear, therefore, that this program has no shortage of parallelism: we can use horizontal
parallelism to spawn a process to compute every element of the result list in parallel.
Notice, though, that every one of these processes,

Firstimpact objects ray;

will need extensive access to the list objects — in fact every process will be continuously ac-
cessing all of objects. Only in an architecture with a very powerful interconnection scheme
can this level of shared memory traffic be supported. Most successful implementations
copy the database instead, and with a moderate number of objects copying works well.

The transformed version of the program took the form of a pipeline, each component
of which was responsible for a single element of the objects list:

Findlmpacts?2 rays objects = ((map Takelmpact) o
(insert (o) ident
(map map (map PipelineStage objects)))
o (map MakePipeltem))
rays

where the pipeline stage is defined by

PipelineStage object (PIPEITEM ray impact)
= PIPEITEM ray impact’
where
impact’ = earlier impact Newlmpact
Newlmpact = TestForlmpact ray object

The body of the pipeline is a chain of processes evaluating

map PipelineStage object pipeitems

The pipeline stage’s only communications are with the next and previous stages in the
chain. The number of objects handled by each stage can be increased if necessary, al-
lowing complete control over how much local memory is used, and over the communi-
cation/computation ratio. This implementation does, indeed, seem to win the “double
bonus” promised above!

5.1.3 Is this programming?

This leads us to a rather awkward question: are the two formulations of the ray inter-
section test given above different parallel algorithms? In sequential programming terms,
we must answer “no”, for they do represent exactly the same computation. Nonetheless
the difference is substantial: the pipelined form elucidates an organisation of the problem
which seems practically important.

Because the problem of distributing a parallel computation in space is so complicated,
it is reasonable to consider taking the view that it is the programmer’s responsibility. If

125

Figure 5.1: A four-element cyclic graph

we take this view, then we must hope to offer some support in the programming language
to make the task easy. We can still hope for theoretical advances to eliminate such details
from programmers’ daily work; the notation presented might then be an intermediate form
in the compilation process.

5.2 Declarative descriptions of process networks

We have discovered that the unadorned text of a program does not constrain its parallel
evaluation enough for us to claim that the script serves to describe a parallel algorithm.

Instead of refining programs into descriptions of parallel algorithms using annotations
to control operational aspects of evaluation, it seems preferable to apply declarative pro-
gramming to the problem. A process network (like any graph) can be described by its
nodes and its arcs. If we name the nodes in the program a, b, c etc. we can represent the
network’s arcs using a list of assertions. For example, the four element cyclic graph shown
in figure 5.1 can be written

(arcab) A (arc b c) A (arc c d) A (arc d a)

Here, a, b, c and d are labels identifying expressions in the program, and A denotes logical
“and”. By asserting arc a b, the programmer is informing the compiler that expressions
a and b ought to be computed in parallel, and that the processes evaluating them are
expected to interact. Just how they interact is not explained by the process network:
one must refer to the definitions of the labelled expressions. In particular, the arcs in
the process network described do not carry arrows indicating any particular direction of
information flow. We will see examples (see section 5.3.3) where an arc stands for a
bidirectional flow.
Let us look a little more closely at a simpler example, a three element chain:

(arca b) A (arc b c) A (arc c d)

with the associated definitions

126

a=map ((+)2)b
b =map ((x)3) c
¢ = map sqrt d

d =from1

The network assertion arc ¢ d demands that the expressions named ¢ and d each be an
independent process, to be allocated to a processor of its own (at least notionally). It
further requires the compiler to arrange things so that the processor executing c is linked
directly to the processor executing d, because they are expected to communicate during
the computation.

Looking at the body of d we find that there are no free variables: the expression is
quite self-contained, apart from the code it executes. Its only necessary communication is
to deliver its result stream.

The body of ¢ has one free variable (apart from the code it executes), d. Fortunately,
we already know that d is placed on a neighbouring processor, so its value is easily available
to the processor which must evaluate c. Indeed it is because of this dependency that the
arc assertion was made. The compiler can check that all of a program’s data dependencies
are reflected by arcs in the network, although the programmer may choose to ignore such
warnings if the expected level of traffic on the arc concerned is thought to be very small.

Looking at b the pattern should become clear. It is the entire expression which is named
and mentioned in the declarative process network description. Thus, b is the complete
function application map ((x) 3) c. This might seem somewhat confusing since in our
process network diagram this node would be labelled just map ((x) 3), being the function
the node applies to its input. We use a shorthand to resolve it, introduced shortly.

5.2.1 A process network language

This technique for associating a program script with a process network diagram forms the
basis for an interesting extension to our functional programming language. We add a new
keyword, moreover, to introduce a “moreover clause” containing a declarative description
of the structure of the intended process network, using as labels any names currently in
scope. The resulting language is called “Caliban” for somewhat obscure reasons, after
the character from Shakespeare’s The Tempest. Caliban, bereft of his once-great magical
power, is much maligned in modern interpretations of the play.
Thus the example above might be written in Caliban as

a

where

a=map ((+)2)b

b= map ((x) 3) c

c = map sqrt d

d = from 1

moreover

(arc ab) A (arc b c) A (arc c d)

127

5.2.2 A shorthand for naming processes

This description is a little complicated, because every time we want to distinguish a process
we must use where to give a name to the application. We introduce a shorthand, Of (read
“make process f”’), to denote a name for the application in which f appears. The function
f must appear exactly once in the source program (or a compile-time error should be
reported). We can use it to re-express our pipeline as

f (g (hd))
where

f =map ((+) 2)
g = map ((x) 3)

h = map sqrt
d = from 1
moreover

(arc Of Og) A (arc Og Oh) A (arc Oh d)

Of course it would be equivalent to use parameterised definitions of f, g and h, such as
fxs = map ((+) 2) xs

The difference between f and Of is that f is the name of a process to compute the function
so named, while Of is the name of a process which applies it. Because our host language
allows functions as values, either of these can constitute a sensible process body.

We can be a little informal and use composition rather than application provided the
application can be uncovered by the use of reduction at compile-time. Doing this allows
us to write

(fogoh)d
where

f = map ((+) 2)
g = map ((x) 3)

h = map sqrt
d = from1
moreover

(arc Of Og) A (arc Og Th) A (Th d)

5.2.3 Abstracting process networks

It is frustrating to have to write out the details of highly-structured process networks like
our chain example. It would be much tidier to have some means of defining once-and-for-
all what a process chain looks like. This turns out to be very easy, because we have all the
mechanisms we require in the host language. In order to specify a chain network given a
list of functions, [f;, fa, f3, ... f,_1, f,], we need to build an assertion

128

(arc Of; Ofy) A (arc Ofy Of3) A ... A (arc Of,_; Of,)

This is easy. We define a function, which we will call a “network forming operator”:

chain :: (Bool — Bool — Bool) — [(« —)] — Bool

chain relation [f] = TRUE
chain relation (f; : fy : fs) = (relation f; f3) A (chain relation f, fs)

Now suppose we write

(fogoh)d
moreover
chain arc [Of, Og, Oh, d]

We can apply reduction to expand this annotation:

(fogoh)d
moreover
(arc Of dg) A (chain arc [dg, Oh, d])

~ /
-~

(fogoh)d
moreover
(arc Of Og) A (arc Og Oh) A (chain arc [Oh, d])

-~

(fogoh)d

moreover

(arc Of Og) A (arc Og Oh) A (arc Oh d) A (chain arc [d])
[

(fogoh)d

moreover

(arc Of Og) A (arc Og Th) A (arc Oh d) A TRUE

Because the annotation has the form of a conjunction of Boolean assertions, TRUE repre-
sents the empty annotation, and so can be removed.

Other network-forming operators

A chain is not the only useful pattern of communication to capture. Different applications
may require more specialised structures, but we can complete an initial toolkit with the
functions ladder and fan defined as follows:

129

ladder :: (Bool — Bool — Bool) — [—] — [y —] — Bool

ladder relation [] [] = TRUE
ladder relation (a : as) (b : bs) = (relation a b) A (ladder relation as bs)

Thus, ladder arc as bs takes two lists of processes and builds an assertion that they be
linked pairwise by the relation. It might more neatly be expressed as

ladder relation as bs = all (map2 relation as bs)
where
all = insert (A) TRUE

This makes clear the relationship between ladder and map2.
The fan operator takes a process and a list of processes and builds an assertion that
every process in the list is linked to the first process:

fan :: (Bool — Bool — Bool) =+ o — [—] — Bool
fan relation a bs = all (map (relation a) bs)

We will assume vector variants of the network forming operators, defined like

VectorLadder relation av bv = ladder relation (VectorToList av) (VectorToList bv)

5.2.4 A second abstraction mechanism

A function like chain allows patterns of arcs to be abstracted, and treated as a single link of
a higher-level kind. A dual to this arc abstraction mechanism is node abstraction, a means
of packaging up collections of nodes as a single, higher-level form. Let us continue with
the process chain example we have been using so far, which is, in fact, used as a pipeline.
We could try to capture the notion of a pipeline as a single higher-order combining form:

pipeline :: [- o] 5 a = «

pipeline fs x = (insert (o) ident fs) x
moreover
(chain arc (map (O) fs))
A (arc O(last fs) x)
A (arc O(hd fs) interface)

pipeline takes a list of functions, each of which specifies a component process of the pipeline.
The moreover annotation asserts that the components are each separate processes linked
into a chain, while the body part fills in the details of the communications, applying each
function to the result of the next in the pipeline. Note that map (O) fs must be reduced
so that O is applied to each element of fs before being interpreted as a reference to the

130

processes.
The keyword interface is a shorthand for the name of the function’s result — the defi-
nition above is equivalent to

pipeline fs x = result
where
result = (insert (o) ident fs) x
moreover
(chain arc (map (O) fs))
A (arc O(last fs) x)
A (arc O(hd fs) result

The purpose of making this link to result is to connect the output of the process network
of this function correctly into the process network of the calling program. In this example,
the pipeline has a single output arc, so interface is the name of a single node.

5.2.5 Simplification rules

We have now seen all the components of the Caliban language. Examples of applications
will be given shortly, but first a simple program will be analysed. The fundamental
notation is based on naming and the moreover clause, but this is augmented by the O
operator, the interface pseudonym, the use of network forming operators like chain, and the
appearance of moreover clauses in auxiliary function definitions like pipeline as well as at
the outermost level of a program. We understand the meaning of complex constructions
by applying simplification rules and reduction. The rules can be summarised as

e;{a} where a = f x moreover e,{a}
LHS = a where a = ¢; moreover e,{a}
es{ep} moreover ec A ep

e;{f x}' moreover e,{0f}
LHS = e; moreover e, {interface}
es{ep moreover ec} moreover e

Where
e ais a currently unused name in each case,
e ¢ {ey} stands for an expression e; containing an instance of e,.
° el{eg}1 stands for an expression e; containing exactly one instance of es.
e all the names referred to by ec are defined in e4 correctly.

A program is compiled by applying these rules, together with reduction as required, until
the program has just one moreover clause consisting only of a conjunction of arc assertions
about named processes. This may involve evaluating a substantial portion of the program,
and there is a risk that the compiler will fail to terminate.

The last restriction means that parameters and names defined in nested where clauses
must be lifted to the outermost lexical level. This may not be possible. It might, therefore,
prove impossible to float all moreover clauses to the outermost level. For example, this
occurs if a recursive function depending on a run-time variable is annotated so that the

131

Figure 5.2: The expanded process network

nesting of moreover clauses cannot be unravelled at compile-time. Such programs specify
dynamic process networks, which evolve at run-time. These are not dealt with by this
simplification scheme. Some examples are given in section 5.2.7.

5.2.6 An example of simplification

A simple example of the use of these rules — which would normally be applied by the
compiler — is given below. This program specifies the process network given in figure 5.2:

f x y = combine (left x)
(right y)
where
combine xs ys = map2 op XS ys
left = pipeline [f;, g1, hq]
right = pipeline [fy, g2, hs]
moreover
(fan OOcombine [Oleft, Oright])
A (arc OOcombine interface)

There are three points to watch out for here:

e When a two-parameter curried function like combine is applied to both parameters,
two O operators are needed to refer to the complete application.

e The presence of the arc assertion between two processes does not reflect the direction
of data transfer.

e At this level, Oleft and Oright appear to be single processes. Since they are instances
of pipeline, they actually unfold into pipelines of three processes each. The output
of each pipeline is its “interface”, to which it delivers its output, and to which
processes consuming its output are linked.

The input of each pipeline is connected by the assertion that each pipeline is linked
to its parameter x.

132

We begin by expanding the interface and O shorthands:

fxy
= result

where

result = boxboxcombine
boxboxcombine = combine boxleft
boxright
boxleft = pipeline [f;, g1, hi] x
boxright = pipeline [fs, g2, ho] y
combine xs ys = map2 op Xs ys

moreover

(fan boxboxcombine [boxleft, boxright])
A (arc boxboxcombine result)

Since boxboxcombine = result, arc boxboxcombine result = TRUE. This is evidence of some
redundancy in the notation: the interface link was not strictly necessary here, but was
included to make all the arcs manifest in the moreover clause. The next step is to unfold
the references to pipeline. We take the first one, and remove the use of “o”, O, interface
and chain arc straight away:

fxy
= result

where

result = boxboxcombine
boxboxcombine = combine boxleft
boxright

133

boxleft = result2
where
result2 = boxf;
boxf; = f; boxg;
boxg; = g boxh;
bOXh1 = h1 X
moreover
(chain arc [boxf;, boxg;, boxh,])
A (arc boxh; x)
A (arc boxf; result2)

boxright = pipeline [fs, g2, ho] y
combine xs ys = map2 op xs ys

moreover

(fan boxboxcombine [boxleft, boxright])
A (arc boxboxcombine result)

Notice the need to introduce result2 to avoid a clash with result. The next step is to try
to float the nested moreover clause out to join the outer one. To do this we must make
sure that all the names it refers to are defined in the outer scope:

fxy
= result
where
result = boxboxcombine
boxboxcombine = combine boxleft
boxright

boxleft = result2
moreover
(chain arc [boxf;, boxg;, boxh;])
A (arc boxh; x)
A (arc boxf; result2)

result2 = boxf;

boxf; = f; boxg;

boxg; = g boxh;

bOXh1 = h1 X

boxright = pipeline [f3, g2, ho] y
combine xs ys = map2 op xs ys

134

moreover

(fan boxboxcombine [boxleft, boxright])
A (arc boxboxcombine result)

Merging moreover clauses gives

fxy
= result
where
result = boxboxcombine
boxboxcombine = combine boxleft
boxright

boxleft = result2

result2 = boxf;

bOXfl = fl bOXgl

boxg; = g boxh;

boxh; = h; x

boxright = pipeline [fs, g2, ho] y
combine xs ys = map2 op xs ys

moreover

(chain arc [boxf;, boxg;, boxh;])

A (arc boxh; x)

A (arc boxf; result2)

A (fan boxboxcombine [boxleft, boxright])
A (arc boxboxcombine result)

We complete the simplification by doing the same with the other instance of pipeline, and
unfolding the uses of chain and fan:

fxy
= result
where
result = boxboxcombine
boxboxcombine = combine boxleft
boxright

135

boxleft = result2

result2 = boxf;

boxf; = f; boxg;

boxg, = g boxh;

bOXh1 = h1 X

boxright = result3

boxfy = fy boxg,

boxg, = gy boxh,

boxhy = hy y

combine xs ys = map2 op xs ys

moreover

(arc boxf; boxgi) A (arc boxg; boxh;)
(arc boxh; x)

arc boxf; result2)

arc boxf, boxgs) A (arc boxgy boxh,)
arc boxhy x)

arc boxfy result3)

fan boxboxcombine [boxleft, boxright])

A
A
A
A
A
A
A (arc boxboxcombine result)

(
(
(
(
(
(

This definition now uses only Caliban’s fundamental mechanisms. We might call this
“normal form” Caliban.

5.2.7 Some examples where simplification fails

Simplification may not always succeed in finding a “normal form” Caliban formulation of
the input program. This happens with programs whose process network evolves during
program execution, as with the primes sieve program (section 4.6.1):

primes = sieve (from 2)
where
sieve (a : as) = a : (sieve (filter a as))
moreover
arc Osieve Ofilter

It also happens if insufficient information is available to determine the process network,
as in a program like

fxs = map g xs
moreover
fan Og (map (O) xs)

where xs is a program input, and yet determines the size of the network.

136

Finally, a rather pathological possibility is that the computation necessary to find the
process network fails to terminate, even though the program terminates correctly. This
can happen if the output of the process network is not needed at run time, as might occur
in this example:

f a = if (satisfactory a)
a

(map g x5)
where
xs=1:xs
moreover
fan Og (map (O) xs)

5.3 Some examples

Having introduced the bones of the Caliban language, we need some examples to see how
it works out in practice.

5.3.1 Example: the square root pipeline

This example is derived from an Occam tutorial. It is very simple, being a systolic algo-
rithm of the most basic kind. The problem is to take a list of numbers, and compute the
list of their corresponding square roots. The solution is a pipeline algorithm, with one
stage for each iteration of the Newton-Raphson approximation technique.

Begin with the standard Newton-Raphson algorithm, from section 4.3.1:

solve f f' xq
= until converges xs
where
converges 0 = FALSE
converges i = abs(((xs sub i) - (xs sub (i-1)))/(xs sub i))<e¢, ifi>1
xs = generate NextEstimate
where

NextEstimate 0 = xg
NextEstimate i = (xs sub (i-1))
- (f(xssub (i-1)) / ' (xssub (i-1))), ifn>1
To find a square root, we solve for f x = 0, where

fx=x%-a

so f' x = 2xx. A fair guess to start with is xg = a/2, so we have

137

sqrt a
= until converges xs
where
converges 0 = FALSE
converges i = abs(((xs sub i) - (xs sub (i-1)))/(xs sub i))<e¢, ifi>1
xs = generate NextEstimate
where
NextEstimate 0 = a
NextEstimate i = ((xs sub (i-1)) + a/(xs sub (i-1)))/2, if i > 1

Testing for convergence at each step is quite expensive; it turns out to be easier (and much
better for a pipelined implementation) to iterate a fixed number of times before finishing:

sqrt a
= until finished xs
where
finished i = TRUE, if i = Numlterates
finished i = FALSE, otherwise
xs = generate NextEstimate
where
NextEstimate 0 = a/2
NextEstimate i = ((xs sub (i-1)) + a/(xs sub (i-1)))/2

Applying our standard technique for optimising recurrences (Appendix A, section A.3),
this becomes

sqrt a = xs sub Numlterates
where
xs = (a/2) : (map Transition xs)
Transition prevx = (prevx + a/prevx)/2

If we fix Numlterates at some given value, say four, and apply reduction this can be written

sqrt a = (Transition o Transition o Transition o Transition) (a/2)
where
Transition prevx = (prevx + a/prevx)/2

If we apply fact 2 (Appendix A, section A.4) here we can make the free variable a in
Transition a parameter of Transition, and propagate it through using a pair:

sqrt a = fst ((Transition’ o Transition’ o Transition’ o Transition’)

(a/2, a))
where
Transition’ (prevx, a) = ((prevx + a/prevx)/2, a)

We actually need to apply this to a stream of incoming values. By distributing map over

138

“o” we get

map sqrt as = ((map fst)
o (map Transition’)
o (map Transition’)
o (map Transition’)
o (map Transition’)
o (map MakePair))
as
where
Transition’ (prevx, a)

= ((prevx + a/prevx)/2, a)
MakePair a = (a/2, a)

Adding the network annotation

This is the final, parallel form of the square root pipeline. We have now to use Caliban
to distribute it in the obvious pipeline fashion. We can do this in a number of ways: we
could use the pipeline operator given earlier:

map sqrt as = pipeline [map fst,
map Transition’,
map Transition’,
map Transition’,
map Transition’,
map MakePair]
as

Alternatively, we could use chain:

map sqrt as = (insert (o) ident processes) as

where

processes = [map fst,
map Transition’,
map Transition’,
map Transition’,
map Transition’,
map MakePair]

moreover

(chain arc (map (O) processes))

A (arc O(last processes) as)

(As an aside, notice that the elements of the list processes are not all of the same type,

and so fail to satisfy the type scheme even although no run-time type error can occur.
The problem disappears after simplification so is not pursued here).

139

5.3.2 Bundling: a partitioning technique

One of the main functions of the annotation is to control process partitioning. Bundling
is a way of doing so which does not disturb existing code. Suppose we wish to place some
of the components of the composition above in the same PE. We could modify the code
body to get the effect:

map sqrt as = (insert (o) ident processes) as

where

processes = [(map fst) o (map Transition’),
(map Transition’) o (map Transition’),
(map Transition') o (map MakePair)]

moreover

(chain arc (map (O) processes))

A (arc O(last processes) as)

In making a change to the distribution of the program, we had to change the body of the
code. The idea of bundling is to build a data structure containing the component parts of
each process, and talk about that instead. Any data structure will do, but for clarity we
will tag data structures built for bundling purposes with the constructor BUNDLE:

Bundle o0 ::= BUNDLE «

We can now write the partitioned pipeline as follows:

map sqrt as = (insert (o) ident processes) as

where

processes = [map fst,
map Transition’,
map Transition’,
map Transition’,
map Transition’,
map MakePair]

[back, t1, t2, t3, t4, front] = map (O) processes
partitions = [BUNDLE (back, t1),
BUNDLE (&2, t3),
BUNDLE (t4, front)]
moreover
chain arc partitions

Here, we named the components of processes back, t1, t2 ...front (by defining them using

pattern matching). Once they have names it is easy to use BUNDLE to bundle them up.
It would have been tidier, though perhaps not quite so clear, to write

140

partitions = map2 Make2Bundle oddones evenones
where
Make2Bundle a b = BUNDLE (a, b)
oddones = OddOnes (map () processes)
evenones = EvenOnes (map (O) processes)

where OddOnes and EvenOnes select the odd- and even-indexed elements of the list. The
next example gives a more convincing demonstration of bundling at work.

5.3.3 Example: local neighbourhood operations

A two-dimensional local neighbourhood operation takes a matrix and maps each element
to a function of its immediate neighbours, producing a new matrix. Local neighbourhood
operations are widely used in image processing and in computational physics.

In our vector notation we might define a generic function for applying local neighbour-
hood operations:

ApplyLNO :: ([o] = a) = <> — <a>
ApplyLNO op matrix
= MakeMatrix LocalOperation

where

LocalOperation (i,j) = matrix sub (i,j), if OnBoundary matrix (i,j)
LocalOperation (i,j)

where

OnBoundary matrix (i,j) = (i=0) Vv (j=0) V (i=iBound-1) V (j=jBound-1)
where
(iBound,jBound) = MatrixBound matrix

The parameter op determines what function of the four neighbours is applied. A typical
one might be a low-pass filter:

LowPass matrix = ApplyLNO average matrix

where

average [west, south, east, north, home] = (west+south+-east+north-++home) /5

Very commonly we will apply a local neighbourhood operation repeatedly, producing a

141

sequence of iterates:

iterate (ApplyLNO LowPass) InitialMatrix
= [InitialMatrix,
ApplyLNO LowPass InitialMatrix,
ApplyLNO LowPass (ApplyLNO InitialMatrix),
ApplyLNO LowPass (ApplyLNO LowPass (ApplyLNO InitialMatrix)),

Constructing a network-forming operator for a mesh

Although not the only option, for the sake of an example we will distribute this program
over a mesh of PE’s. To do so, we need a network forming operator which takes a matrix
and asserts that each element is computed by a separate PE, and that each PE interacts
with the element’s four nearest neighbours. This turns out quite surprisingly easy:

mesh :: <a> — Bool

mesh matrix = MatrixAll (ApplyLNO LinkNeighbours matrix)
where
LinkNeighbours [west, south, east, north, home]
= fan arc home [west, south, east, north]

where MatrixAll matrix is TRUE just when every element of matrix is TRUE. Just as fan
corresponds to map and ladder corresponds to map2, so there is a natural relationship
between mesh and ApplyLNO.

Adding the network annotation

We are now ready to express the distribution of the local-neighbourhood operation com-
putation over a mesh of PEs:

LowPass matrix = output

where
output = ApplyLNO average matrix
moreover

mesh output

In fact we can write this more briefly using the interface shorthand:

LowPass matrix = ApplyLNO average matrix
moreover
mesh interface

This makes clear that the elements of the array are generated in a distributed fashion.

142

If the result were passed to another mesh-distributed function, the two process networks
could be combined to minimise data movement.

Distributing an iterated local neighbourhood operation

If we wanted to iterate this computation, maintaining the expression-to-PE mapping from
iteration to iteration, we could try writing

IteratedFilter initialmatrix = iterate LowPass initialmatrix

where LowPass is the distributed version given above. This doesn’t work because the
simplification scheme cannot shift the moreover clause to the outer level, because the
matrix parameter is different for each successive iteration. It actually specifies that a fresh
network be used for each iteration. Instead we must build a structure to bundle the values
we want each PE to compute — that is, corresponding elements of successive matrices.

This comes out quite easily by permuting indices. What we need is a single matrix,
each of whose elements is a stream of elements from successive iterations. Let us define
a function StreamOfMatricesToMatrixOfStreams to make this transformation: we demand
that

(ms sub k) sub (i,j) = ((StreamOfMatricesToMatrixOfStreams ms) sub (i,j))
sub k

op

This is achieved by the definition

StreamOfMatrices ToMatrixOfStreams ms
= MakeMatrix (MatrixBounds (hd ms)) EachStream
where
EachStream (i,j) = generate Elements
where
Elements k = (ms sub k) sub (i,j)

(We assume that all the matrices in the stream have the same bounds as the first, hd ms).
We are now ready to give the distributed implementation of IteratedFilter:

IteratedFilter initialmatrix = iterate LowPass initialmatrix
where
LowPass matrix = ApplyLNO average matrix
moreover
mesh (MatrixMap BUNDLE
(StreamOfMatricesToMatrixOfStreams interface))

Here MatrixMap is the natural extension of map to matrices. It is used to introduce the

BUNDLE tags, which appear simply to indicate to the reader which data structures are
used for bundling purposes.

143

Partitioning the local-neighbourhood operation

Hardware specially designed for such algorithms may be able to implement this distribution
efficiently, but for more general-purpose architectures there is a “grain size” problem: each
PE does a great deal of communication for each item of useful computation performed.
At each step, each PE receives data from four neighbours, does five arithmetic operations,
and then distributes the result to four neighbours.

For efficient execution on more typical hardware, we can break the matrix up, making
each PE responsible for a sub-matrix rather than a single element. This strategy reduces
the ratio of communication to computation in direct proportion to the ratio between the
perimeter and the area of the submatrices. Let us define a partitioning function Partition
n m, which builds an nxn matrix of adjacent equal-size submatrices of m. We require n
to divide both of m’s bounds exactly. The property required is that:

mat sub (i,j) = ((Partition n mat) sub (majori,majorj))
sub (minori,minorj)

where

majori = i div n
majorj = j div n
minori = i mod n

minorj = j mod n

(where div denotes integer division, and mod denotes the remainder). This specification
is satisfied by

Partition n matrix
= MakeMatrix (n,n) EachSubMatrix
where
EachSubMatrix (majori,majorj)
= MakeMatrix (minoriBound,minorjBound) Elements
where
Elements (minori,minorj) = matrix sub (imap majori minori, jmap majorj minorj)
imap majori minori = (majorixminoriBound) + minori
jmap majorj minorj = (majorjxminorjBound) + minorj
(iBound,jBound) = MatrixBounds matrix
minoriBound = iBound div n
minorjBound = jBound div n

Given this partitioning function, the distributed, partitioned, iterated filter program can
be written as

144

IteratedFilter initialmatrix = iterate LowPass initialmatrix
where
LowPass matrix = ApplyLNO average matrix
moreover
mesh (MatrixMap BUNDLE
(partition MeshDimension
(StreamOfMatricesToMatrixOfStreams interface)))

This specifies that the computation be distributed over a MeshDimension x MeshDimension
four-connected mesh of PEs. Notice that the body of IteratedFilter remains unchanged.
Transformation into stream-processing form

There are some implementation problems with this formulation, because each component
process accesses a sequence of global matrices. A compiler must check the matrix indices
to verify that each process accesses only its neighbours. We can simplify matters a great
deal by modifying the program so that all the indexing occurs at compile-time. We will
claim, but not prove, that

1. We have an inverse for StreamOfMatricesToMatrixOfStreams so that

MatrixOfStreamsToStreamOfMatrices (StreamOfMatricesToMatrixOfStreams as) = as

2. That we can propagate map inside ApplyLNO:

map (ApplyLNO f) as = MatrixOfStreamsToStreamOfMatrices
(ApplyLNO ((map f) o transpose)
(StreamOfMatricesToMatrixOfStreams as))

(where transpose (defined on page 98) interchanges rows and columns in a list-of-
lists).

Now recall that

iterate f x = output
where
output = x : (map f output)

so that
IteratedFilter initialmatrix
= output
where

output = initialmatrix : (map LowPass output)

so that

145

IteratedFilter initialmatrix
= output
where
output = initialmatrix
. (MatrixOfStreamsToStreamOfMatrices
(ApplyLNO ((map f) o transpose)
(StreamOfMatricesToMatrixOfStreams output)))

This can be simplified by using the property that

StreamOfMatrices ToMatrixOfStreams (initialmatrix : xs)
= MatrixMap2 (:) initialmatrix (StreamOfMatrices ToMatrixOfStreams xs)

(where MatrixMap2 is the natural extension of map2 to matrices). This lets us write

IteratedFilter initialmatrix
= MatrixOfStreamsToStreamOfMatrices output
where
output = MatrixMap2 (:) initialmatrix
(ApplyLNO ((map f) o transpose)
output)

Now when we add the moreover clause,

moreover
mesh (MatrixMap BUNDLE
(partition n output))

we can unfold the program so that all communication paths are manifest at compile-
time, and carry streams. We have built a mesh of processes, each interacting in both
directions with their four nearest neighbours. The arcs’s of the process network correspond
to multiple bidirectional communication channels — as was promised.

5.4 Implementation of static network programs

Provided sufficient parameters are supplied, and the computation required to build the pro-
cess network terminates, a program which employs the shorthand and abstraction mecha-
nisms available can be simplified to “normal form”, in which there is just one moreover
clause qualifying the entire program, consisting of a simple conjunction of arc assertions
applied to expression names.

In this section we explain how normal form programs can be compiled to efficient object
code for a loosely-coupled multiprocessor. The work described here is still in progress: no
implementation of Caliban exists yet.

146

5.4.1 Compiler structure

e Process separation: The expression each process is to compute is separated into
a distinct process construct. All the definitions on which this expression depends
are also included in each process construct, with the exception of any definition
mentioned in the moreover clause.

References to names referred to in the moreover clause are replaced by calls to
special communications code, detailed in a moment.

e Process compilation: Each process construct is compiled using conventional
compilation technology (as described in Chapter 3).

e Mapping and configuration: The logical network specified by the moreover
clause is analysed to find how best to embed it in the available multiprocessor net-
work. For reconfigurable networks this involves generating a table of interconnection
switch settings. For non-configurable networks it involves finding a graph embed-
ding which maintains locality as well as possible. For dynamic-routing networks it
involves choosing a layout which will minimize network congestion, and allocating
network addresses.

The mapping phase may fail, if the logical network makes demands on the physical
network which cannot be met — for example requiring too many local neighbours.

The output consists of the network configuration code, which depends on the network
design, together with a binding of process names to PE identifiers.

e Link-editting and load module construction: Finally, each process is linked
with libraries and the run-time system as required. The linker produces a file ready
for loading on the multiprocessor, making sure that the right code is copied across
the network to the right PE as required.

The most complicated part of the implementation lies in the run-time system, necessary to
handle inter-processor communication correctly. Rather than go into the compiler phases
in great detail, we will concentrate on when communication occurs, and what has to be
done when it does.

5.4.2 When does communication occur?

Communication may occur when a process (as separated in the first phase of the compiler)
refers to a name which is itself identified as a (different) process. The compiler should
check that this happens just when an arc assertion links the two processes. If a process
refers to a name which is not identified in the moreover clause as a different process,
then the expression to which the name refers is incorporated in the process.

If such a name is referred to by more than one process, then its defining expression is
duplicated in the body of each one. This is very natural when the expression is already
in normal form, as most function definitions are — so code is copied to those PE’s which
might refer to it. If the expression is not in normal form, it is often still sensible to copy
it, but if the recomputation involved is substantial some warning to the programmer is

147

probably justified. Local recomputation is quite commonly preferred over having a single
global copy of an object.

5.4.3 Channels: the implementation of communication

We will present an implementation scheme which handles all possible cases; much of this
might be simplified by an optimizing compiler. For the time being we will consider only
channels corresponding to stream communications. We can generalise later.

Let us call the link between two processes a channel. Channels may be created at
run-time — in fact we will assume that all channels are. Moreover, there may be several
channels linking two PE’s, for reasons which should become clear later. Each channel is
implemented by a pair of drivers, the sender and the receiver, responsible for managing the
link. The channel carries successive elements of the stream. How the elements themselves
are represented is discussed later.

The receiver

The receiver tries to maintain a full buffer of received values, so that the receiving process
need never be delayed waiting for the sender to respond. We can think of the receiver
sending the sender a bag of tokens, each allowing the sender to write one value to the
receiver’s buffer. Every time the receiving process consumes a value from its buffer, it
sends the corresponding token back to the sender. A value is delivered by the receiver to
the receiving process by copying into the heap of the receiving process. This is necessary
to make sure that the buffer space is freed for subsequent use.

The sender

The sender end of a channel corresponds quite closely to the notion of a process, since
it is the sender which generates demand for values. The distinction is that our process
is identified with the expression to be evaluated. There may be several references to the
expression, so there may be several channels linking to it. Thus, there may be several
senders each holding a reference to the expression.

When the expression constructs a stream, it may happen that after some computation
the different senders refer to different parts of the stream. This situation may persist
because a sender may be blocked awaiting a token from its corresponding receiver. In this
event, a blocked sender may hold a pointer to an early part of the stream while another
sender demands many more elements. In this event the intermediate list elements must
be stored (in the heap, as usual) indefinitely. This is all managed quite naturally by
a garbage collector provided every sender process, and all to which it refers, is treated
as non-garbage. We are committed to ensuring that sender processes are independently
destroyed when they are no longer needed.

If a single PE runs out of heap space, the entire computation may deadlock. Thus,
some emergency arrangement for claiming space from neighbouring PEs may be justified
if the architecture can support remote memory access at all efficiently.

148

Observe that after computation has begun, two senders pointing to the same expression
can evolve so that they point to different places in the stream being computed. Thus they
do correspond to our original notion of a process.

5.4.4 Proto-channels, channel creation and channel deletion

Although the process network remains static, the channels linking a pair of PEs can be
created at run-time. For simplicity we will assume that they are all created at run-time,
although an optimising compiler will perform some channel creation at compile-time in
order to uncover other optimisation opportunities.

A channel is created when a process makes a reference to an expression which has
been placed on another PE. To achieve this, each such reference in the original program
is replaced by a special object, a proto-channel. A proto-channel can be implemented as a
box (see section 3.1.7), containing a pointer to code in the run-time system together with
a representation of the name of the expression referred to.

When a proto-channel is evaluated, the run-time system sets up a channel to the
appropriate PE (presumed nearby). A sender process is created on the other PE, and
a receiver object is created on the current PE. The initiating process is blocked until a
response from the sender arrives. When the first CONS cell of the stream is transmitted
by the sender to the receiver, the initiating process is re-awakened, and the original box
representing the remote value is replaced by a CONS cell containing the value received
(the hd of the cell) together with a reference to the receiver (as the tl of the cell. This
reference to the receiver is another special object, a channel reference, also represented as
a box.

When the tl of the CONS cell is needed, the receiver is interrogated. If it has a value
already in its buffer, this is built into a new CONS cell and returned, and a token is sent
back to the sender to signify that the buffer space is available. If the value is not available
the process is suspended until it is received.

Channel deletion and garbage collection

Channels are collected during the normal process of garbage collection local to each PE.
An object is not garbage if and only if it is referred to by some existent sender. A channel
is deleted when its receiver becomes garbage. A conventional single-processor garbage
collection scheme can be used. The only addition which might be required is some means
to trigger garbage collection on other PE’s in the hope of freeing space locally.

5.4.5 Representation of stream elements

Thus far we have considered streams as just chains of CONS cells. We have ignored the hd
components, the actual values being carried. In the absence of any strictness information,
these values must be passed unevaluated, as pointers (in fact proto-channels) to suspended
function applications (i.e. boxes) located on the sending PE. In the case of tuples, we can
carry pointers to suspensions of each tuple element.

149

When the receiving function needs the head of a CONS cell it has received, it will find
a proto-channel, a sender will be spawned on the sending PE and the value will be sent
over a new channel.

This is unfortunate for two reasons:

1. It incurs a large overhead compared with the sequential implementation.

2. If the proto-channel is passed on unevaluated to a third PE, a non-local communi-
cation channel could be needed when the object is finally evaluated.

The first problem is unfortunate, but the second is intolerable. We must insist that no
proto-channel is ever sent over a channel to a PE which is not a neighbour of its home. It
must either be evaluated and used by the receiving process, or it must be discarded.

A partial solution, at least, is to be found in recent work on strictness analysis of
list programs, for example by Burn [Bur87a] and Wadler [Wad87]. Alternatively, the
programmer could be required to introduce assertions about strictness in order to constrain
the evaluation order.

Non-stream communications

We must be able to use a channel to pick any object from another PE — not just a
stream, but also scalars, tuples, trees, vectors, matrices and so on. We have concentrated
on streams because they form the natural incarnation of a communication link in the
functional programming language. The reason is that there is just one order in which to
examine the CONS cells which form a list. With trees, vectors and matrices there are many
orders in which to traverse the data structure. We are forced to take a very conservative
approach.

In the case of a vector or matrix, the simplest solution is to send a vector or matrix of
proto-channels. This leaves the elements unevaluated until the receiver needs them. If the
elements are streams, pipeline parallelism can be exploited by computing elements eagerly
as usual. If the elements are scalars, the parallelism available may be very limited.

For a tree, we send a constructor, e.g. NODE, with proto-channels as its parameters.

Unfortunately, this conservative approach allows no producer-consumer, pipeline par-
allelism unless streams are involved at some point. This does seem the only predictable
and controllable choice. Although a more eager scheme is desirable in many cases, it can
often have a very bad effect, concentrating PE power away from the tasks most urgently
at hand.

5.4.6 Multitasking

It should now be clear that each PE must be multiplexed between the various sender
processes placed upon it. A slight complication here is that the processes must share the
PE fairly: none can be allowed to monopolize the PE indefinitely. Thus, processes must
be time-sliced. The different processes will often share common sub-expressions, so some
synchronisation control must be imposed to prevent evaluation being attempted by several
processes of the same expression simultaneously.

150

It could be quite straightforward to employ tightly-coupled multiprocessors as PEs in
our loosely-coupled network, as the synchronisation necessary for time-sliced multitasking
is sufficient to synchronise multiple truly-parallel processes.

5.4.7 Communications optimisations

What has been described applies to the general case. In particular examples many op-
timisations can be applied. We have already seen how strictness analysis can avoid the
need for passing proto-channels over channels by evaluating objects before sending them.

If a stream has only one channel consuming it, the sender’s code can be compiled inside
the expression, so that instead of building a CONS cell, the value is sent directly along the
channel. This is the starting point for a series of powerful optimisations. To begin with,
one can extend the applicability by observing that if the channel has several consumers
who can all receive their values in lock-step, then they can share the output of a single
sender process. If the sender is the only process on its PE, and the consumers are alone on
their PEs too, then it may be possible to optimise out the channel synchronisation. The
neighbouring PEs simply swap values on agreed clock ticks. This is elaborated by Bailey,
Cuny and MacLeod in [BCM87].

In “neighbour-coupled” machines, where access to a neighbour’s local memory is almost
as efficient as to a PE’s own, much copying can be avoided. A channel need carry only
a pointer to the object being transferred. A copy must still be made if the object is
forwarded to a third PE.

An optimisation for the general case might be to check that an object has not already
been copied to this PE before following a proto-channel to another to get it. This can
be done using a hash table, as used for the same purpose in the FLAGSHIP parallel graph
reduction machine [WSWW8T7].

Finally, one might hope that hardware or microcode support for the communication and
scheduling operations might be provided. The overheads of discovering a proto-channel,
setting up the link, spawning the sender and waiting for a value are a serious threat to
the feasibility of the scheme when non-stream objects are communicated.

5.5 A simple guide to the effect of arc

To finish the discussion of implementation strategies, we give a description of the effect of
the arc assertion. Suppose we have a program fragment summarized by

X = output
where
output = f a
a=gb
moreover
(arc output a)
A...b...

151

Figure 5.3: The process network for example x

e Placement of output: The result, output, will be delivered to a PE at or next to
the PE where it is required. Thus, if the output is to be displayed on a graphics
device, it will be placed on or adjacent to a PE with access to the graphics hardware.

e Placement for input: If input is required, it will be manifest as a free variable
named in the moreover clause, such as b in the example. The process network
will be placed so that its communication with the producer of b is neighbour-to-
neighbour.

e Partitioning of components: The expression output is placed on a PE of its
own, together with all the expressions to which it refers — except a, which is placed
elsewhere. For example, if f is a function, the code for f is copied to output’s PE.
Similarly, a is placed on a different PE, of its own, together with a copy of g.

e Placement of components: The PE carrying output is chosen so that it enjoys
neighbour-to-neighbour communications with the PE carrying a.

e Evaluation parallelism: The PEs carrying output and a interact because the
expression output refers to a. If a is a scalar or a list, its evaluation will proceed in
parallel with output.

If a is vector, matrix or tree, evaluation of a will not begin until output demands it.
At that point, output will be blocked, waiting for a’s value. This precludes pipeline
parallelism, but horizontal parallelism may yet keep the PE’s usefully employed.

However, vertical parallelism can still occur if a returns a structure containing
streams, which are examined by output.

Finally, note that output may not be able to proceed in parallel with a if a depends on x.
If a is a stream, and successive elements depend on one another due to such a recursive
stream definition, then the pipeline parallelism available may be restricted by the span of
this dependency. We return to this point in section 5.10.

The process network is illustrated in figure 5.3.

152

5.6 Semi-static process networks

A Caliban program may specify a process network which is not entirely determined at
compile-time. In the simplest case, as with the size of the matrix in the ApplyLNO example,
the network might depend on just one parameter. We could delay compilation until this
parameter is known, and then generate a specialised version to apply to the remaining
parameters.

Another example might be the ray tracer, where the length of the ray intersection
test pipeline depends on the number of objects in the object database. In fact, of course,
the length of the pipeline is limited by the number of PEs available. We could write a
definition of the distributed ray tracer like this:

RayTracer objects viewpoint
= map EvaluateTree
(StreamToListOfMTrees (length initialrays)
(StreamOfContributoryRayTrees initialrays))
where
StreamOfContributoryRayTrees rays
= output
where
(output, feedback)
= (Split
o join
o (map LayerOf’)
o (map Takelmpact)
o IntersectionPipelineComponents
o (map MakePipeltem))
(rays ++ feedback)
where

IntersectionPipelineComponents
= (insert (o) ident
(map map (map PipelineStage objects)))

partitions = map BUNDLE
(PartitionList (NumFreePEs-1)
(map (O) IntersectionPipelineComponents)
moreover
(chain partitions)
A (arc output (hd partitions))
A (arc (last partitions) output)

where NumFreePEs is the number of available PE’s. We reserve one PE for output, re-

sponsible for the join, map LayerOf’ and map Takelmpact processes. The “++” and map
MakePipeltem operations are automatically collected in the last component of Intersection-

153

PipelineComponents. The function PartitionList n xs gathers the list xs into a list of n lists:

PartitionList n xs
= PartitionListWithSize bitsize xs
where
bitsize = ceiling ((length xs) / n)
PartitionListWithSize bitsize
= (take bitsize xs)
. (PartitionList n (drop bitsize xs))

where ceiling x yields the smallest integer larger that the real number x. The constructor
BUNDLE is mapped over partitions to indicate that the list is for bundling purposes only.

This program is partitioned automatically to make use of just the resources available.
A slightly more subtle version might first ensure that the object database is big enough
to justify distribution over NumFreePEs-1 with a worthwhile grain size.

Kedem and Ellis give an interesting example [KE84] of a program for parallel ray-
casting whose process network depends on the structure of the object database in a much
more complicated way. The database takes the form of an expression in the algebra of
Constructive Solid Geometry (CSG). The expression’s shape varies from problem to prob-
lem and is typically quite a severely unbalanced tree. They employ an efficient embedding
algorithm to map this tree into their architecture’s mesh of PEs at the beginning of each
computation.

It might be quite reasonable for a computation to go through a series of phases, each
requiring a different process network. The communications would be reconfigured after
each phase, giving the effect of an evolving network. This has not yet been captured in
the Caliban network description language.

5.7 Dynamic process networks

It is quite possible to write down Caliban programs whose process network is not deter-
mined until all parameters are present. An example might occur in computational fluid
dynamics, where the grid is refined between iterations to cover regions of turbulence more
finely. The computation would start with a small mesh of PEs, but as areas of interest
are detected, and the grid is refined, more PEs could be called in to cover regions showing
poor convergence. Some PEs might finish their tasks early. They could make themselves
available to be reused at another point of the grid.
We have an algorithm of the form

154

solve f a
= generate EachMatrix
where
EachMatrix 0 = a
EachMatrix (i+1)
= MakeMatrix Bounds EachElement
where
EachElement
= solution
where
PointSolution = . ..
solution = PointSolution, if PointError < ¢
solution = solve f submatrix, otherwise
submatrix = ...

Much has been simplified here. The important point is that solve is occasionally called
recursively on a smaller mesh submatrix (using a refined grid). Depending on the solution
scheme (i.e. how PointSolution is defined), several possible process networks might be used.
Let us suppose a mesh is used: we might write the moreover clause

moreover
mesh interface

We find that the process network can develop into a mesh-shaped tree of meshes. This
interesting area is not covered by the explanation given here of how Caliban programs
might be implemented , but could prove fruitful on a class of more tightly-coupled machines
where locality is still important.

5.8 Related Work

Caliban builds on a fast sequential implementation of a functional programming language,
as presented by [Jon87]. It should be contrasted with dynamic-schedule approaches to
parallel implementation of functional languages, for example as proposed in chapter 24 of
Peyton Jones’ textbook [Jon87] (parallel graph reduction), and in [AN87] (dataflow).

5.8.1 Occam

Caliban’s aims are similar to those of Occam [PM87]. It differs in three principle respects:

1. Functional base language. Caliban inherits the expressive power of a full, lazy,
higher-order functional language, along with its highly dynamic store use.

Caliban retains the functional base language’s very simple and attractive transfor-
mation properties. Like all functional languages, Caliban pays for its theoretical
simplicity with its innate determinacy: a process cannot make decisions based on
the order of completion of subtasks. This limits the applicability of the language.

155

2. Abstract Networks. Caliban does not demand that the programmer’s process
network be explicitly mapped to physical channels. That responsibility is devolved
to the compiler — more precisely, to the post-compilation mapping phase. There
would appear to be no reason, in principle, why an Occam implementation should
not do the same.

3. Dynamic networks. Caliban facilitates the description of process networks whose
size, and possibly form, cannot be determined until at least some parameters are
present. This can be used to describe run-time dynamic networks, or, perhaps more
interestingly, to express a family of process networks for different choices of particular
parameters. A good example of such a program is given in [KE84].

Occam does not allow dynamic networks, although simple parameters such as a
processor array’s size can be given as a manifest constant. This restriction was
imposed, however, solely to simplify implementation: [May87] shows how a variant
of Occam with recursion could describe a tree of processes.

To summarise, Caliban fulfils a very similar role to Occam, and promises similar per-
formance, but offers an improvement in expressive power, and a basis for more powerful
program transformation and verification techniques. Caliban is substantially more reliant
than Occam on advanced compiler technology.

5.8.2 “Para-Functional” Programming

This is an extension to the lazy functional programming language “ALFL” proposed by
Paul Hudak in [Hud86b], called “PARALFL”. An expression “e” can be annotated by a

[{gl]

second expression, “p”, whose value indicates the PE on which “e” is to be executed:

e $on p

To simplify use of this mechanism, the value of the reserved identifier “$self” is defined
to be the index of the PE upon which the expression concerned is executed. This can be
used in “e” as well as in “p”, thus subverting referential transparency. PE’s are indexed
by integers. Related ideas appear in [KL82] (by Keller and Lindstrom) and [Bur84b] and
[Bur87b| (by Burton).

Hudak’s approach has the merit of simple implementation. The notion of a program’s
“process network” — which lies at the root of the Caliban approach — seems to be well
hidden in the text of a para-functional program. Caliban offers some abstraction here, by
leaving responsibility for mapping of a logical process network to actual processors with
an automatic post-compilation phase.

Caliban also makes some attempt to ensure that all process interactions appear ex-
plicitly in the program script. PARALFL has no such aspiration, with the result that un-
expected interdependencies between processes mapped to distant processors could mean
very disappointing performance.

156

5.8.3 Flo

This parallel functional programming language was developed by Floating Point Systems
Inc. and is described in [You85]. Flo is based on Backus’ FP [Bac78], augmented with
streams and a reverse function composition operator “—”. It is aimed at providing a
high-level language for building autonomous parallel applications programs running on
their proprietary scientific co-processors. These are micro-programmed vector processors
offering a variety of built-in high level functions, such as the Fast Fourier Transform and
matrix multiplication. Flo is responsible for partitioning large problems between multiple
PE’s.

Flo includes various operators for partitioning arrays, distributing them over pools of
PE’s, and collecting the results. A very simple example which they give is the function
“fun” (whose type specification has been omitted):

DEFINE fun = f — [OnAny(D1) — g, OnAny(D2) — h]
This is functionally equivalent to our definition

funx=(gy hy)
where

y =1fx
The “OnAny” operator results in a change of “context”: the input stream to “g” is
copied to a PE selected from D1 (a set of PE identifiers), where “g” is applied. Run-time
mechanisms select PE’s as available.

Flo is interesting in being motivated by practical concerns raised by trying to run
scientific applications very fast on fairly conventional hardware. The limited control over
process placement probably derives from the use of a bus as the communications medium:
each PE is effectively equidistant from all the others. This is made more feasible by the
use of PE’s with substantial fundamental operations, making large granularity easy to
achieve.

5.8.4 Graph Grammar-based Specification of Interconnection
Structures

This work, reported in [BC87], aims to simplify the description of process network families
in an interactive parallel program development environment. A graph family arises when a
parallel algorithm is designed to be portable between similar architectures of differing sizes
— for example, after testing on a small program development configuration. It is necessary
to give a formal description of how the graph generalises for larger configurations.

Details of the approach are rather complex, and merit more thorough study. The
formalism employed, a restriction of aggregate-rewriting graph grammars to allow only
three kinds of rewrite, would appear to be at least as powerful as Caliban. The use of
graph grammars explicitly offers the prospect of a sound theory for embedding program-
generated graphs in physical communications networks.

157

Bailey and Cuny may gain some additional expressive power over Caliban by completely
separating the way the graph is constructed from the program’s recursive structure.

5.9 Future Research

Much of this chapter has been devoted to preliminary investigation of areas deserving
more extensive study. Here, some of the more interesting areas are summarised:

Compilers

The development of a pilot implementation of Caliban is the most pressing next step. A
transputer network is a very attractive target architecture.

Dynamic networks may stretch the communications capabilities of present-day trans-
puters. Caliban’s dynamic networks can make use of software-configurable networks with
relatively long switching times, which may fit well with novel technologies, based, for
example, on optics.

Programming Environments

Caliban’s design is based on the hypothesis that process networks are a useful way for a
programmer to think about parallel algorithms. They demand graphical presentation. A
Caliban programming environment could illustrate a program’s process network, perhaps
showing traffic levels on arcs and load levels on bubbles, derived from simulation statistics.
Program transformation and analysis tools could be included, including strictness analysis,
cycle-starvation analysis, “granularity” analysis (identifying processes which may have a
high communication-to-computation ratio) etc.

Semantics

Giving a mathematical explanation of what Caliban’s annotations mean is an interesting
area. Hudak has given an “execution tree” semantics for PARALFL [Hud86a], and Williams
[Wil88] has extended and refined this for a Caliban-like language. Caliban seems to de-
mand a richer domain of semantic values, to include arbitrary, possibly cyclic, graphs.
The graph grammar approach taken by Bailey and Cuny may prove of use.

As mentioned earlier, of most value would be a semantics which assigns a process
network family to a function, corresponding to the networks which might result for different
parameter choices.

5.10 Pointers into the literature

Communication in parallel algorithms

Vitanyi [Vit86], Feldman and Shapiro [FS88] and others have investigated the constraints
imposed by the physical universe on communication in parallel computations (although

158

Deutsch [Deu85] suggests the real world admits more possibilities than presently ex-
ploited). The importance of such arguments when computer manufacture can employ
all three dimensions for wiring can be disputed, although heat dissipation places a limit
on three dimensional packing density.

However, the situation is much clearer in two dimensions, and VLSI complexity theory
addresses the problem of accounting for communication in algorithm design and analy-
sis with considerable success. A good introductory work is Ullman’s textbook [UlI184].
Although there are many different VLSI complexity measures, they all take the area of
the wiring into account as well as the number of “active” data operations performed.
Some theories also account for the signal propagation delay in the wiring, whose length is
determined by the layout and size of the circuit.

It is clear that good VLSI algorithms make good algorithms for loosely-coupled multi-
processors — in fact one might think of a loosely- or neighbour-coupled multiprocessor as a
“universal” VLSI machine, being programmable to implement any algorithm with similar
behaviour but at a substantial interpretation overhead. One might expect that this over-
head would mask some of the importance of communications connectivity. The question
of the existence and nature of a universal parallel computer is the subject of continuing
work by Valiant, see for example [Val81].

The nature of parallel programming

Much has been made of the “von Neumann bottleneck”, a term coined by Backus [Bac78|.
Backus argues that programming in an imperative style imposes the presence of a single
word-at-a-time memory access path on the design of programs — reducing programming
to the scheduling of traffic to and from memory. That conventional high-performance
von Neumann machines need have no such bottleneck is not as important as the damage
done by the von Neumann model of computation to program design. Sutherland and Mead
[SM77] extend this argument in a substantial way: they argue that sequential computation
has artificially dominated the study and teaching of computer science from its beginning.
The technological accident responsible for this, that switching has been more expensive
and slower than wiring, they argue, is no longer valid — and yet its heritage is still with
us.

An example Sutherland and Mead use concerns the parallel interchange sort algorithm,
where a PE is responsible for every element, and neighbours swap if their elements are
out of order. This algorithm is expensive in sequential terms, because to sort n elements
it requires O(n?) (order n*: proportional to n? when n becomes large) comparisons as
opposed to Quicksort (see section 4.2.1) which needs only O(nlog,n) comparisons in the
average case. However, Quicksort involves global communications at every step, while the
interchange sort involves neighbours only. We can expect the interchange sort to give by
far the better performance for a large range of cases, although when sorting a very large
data set Quicksort must win.

Of course there are far better parallel sorting algorithms; see Ullman [Ull84] and the
classic work by Thompson ([TK77] and [Tho81]).

159

Partial evaluation

The simplification process by which a normal-form Caliban program is derived from one
using the abstraction mechanisms is a kind of partial evaluation. Partial evaluation is the
application of a program to some but not all of its parameters, so that simplifications can be
made to save time when subsequent parameters are provided. It was pioneered by Ershov
[Ers82], who called it “mixed computation”. Jones’ group at Copenhagen have made great
progress in understanding the structure of a partial evaluator, and the simplifications and
analyses possible. Most exciting has been their construction of a self-applicable partial
evaluator, MIX, and its application to compiler generation: MIX takes a program, and its
first parameter, and generates a new, simplified program such that

(MIXpa)b=pab

They apply MIX to an interpreter Int for another programming language, [. Int takes a
program in [, p;, and its input:

Int p; input

It yields the output resulting from running the program p; on input. Now we can get a
compiled implementation of p; by evaluating

MIX Int p;

Thus, the partial application MIX Int plays the part of a compiler. In fact the specialised
compiler is generated by

MIX MIX Int

Repeating the process, we can observe that the partial application MIX MIX plays the part
of a compiler generator — when given an interpreter it produces a compiler. Thus, we can
generate the compiler generator by writing

MIX MIX MIX

The idea is attributed to Futamura [Fut71].

More practically directed applications include ray-tracing, which has been investigated
by Mogenson [Mog87]. Mogenson takes a simple ray-tracer (more realistic than the im-
plementations given here), and partially-evaluates it with details of the scene but not
the viewpoint. The residual program can then be applied to different viewpoints, and a
considerable saving is observed.

Starvation and Deadlock

Recall the function to compute the list of Fibonacci numbers:

160

fibs =1: 1: (map2 (+) fibs (tl fibs))

This recurrence is too trivial for real parallelism, but suppose we could decompose map?2
(+) into a pipeline,

xs=1:1: (mapf (map g (map2 h xs (tl xs))))

Now there might seem to be pipeline parallelism available. However, closer inspection
reveals that each element xs sub n depends on the immediately preceding element of the
stream, xs sub (n-1). There can be only a single locus of computation in the cycle.

We can increase the amount of parallelism available by increasing the data dependency
gap. For example, the (different!) program

ys=1:1:1: (mapf (map g (map2 h ys (tl ys))))

has two loci of computation. The amount of parallelism could depend on a run-time
variable, as in

f initialvalues = xs
where
xs = initialvalues ++ (map f (map g (map2 h xs (tl xs))))

This actually happens in the cyclic-pipeline implementation of the ray tracer, given in
section 4.9.

This program will deadlock: if length initialvalues < 1 there are zero loci of computation.
It is important to realise that deadlock in a functional language is quite independent of
any parallel activity, and reflects nothing more than a particular form of undefinedness.
Semantically, deadlock is indistinguishable from non-termination, L. Thus, the program
transformations in this book can be used to transform a deadlocking program into one
which is simply undefined: from

fibishs = 1 : (map2 (+) fibishs (tl fibishs))
it is not hard to derive the recurrence

fibishs sub 0 =1
fibishs sub (n+1) = (fibishs sub n) + (fibishs sub (n-1))

which is clearly ill-founded. Thus, deadlock is a semantic property of a program, unaffected
by how the program is distributed, or use of parallel evaluation.

A simple test exists to predict when deadlock will occur, called the cycle sum test. A
number is calculated for each cycle in the data flow graph, giving the data dependency
between successive elements. The cycle sum test was introduced and justified by W.W.
Wadge [Wad81] in the context of the dataflow language Lucid. Wadge verifies it by
direct reference to the denotational semantics of the language: there is no need for any
operational reasoning.

161

162

Chapter 6
Epilogue

Much of this book has been concerned with details. Tt is the role of the concluding chapter
to regain a broader perspective on what has been achieved, and where the research is going.
Let us begin by returning to to Eckert’s advice quoted in the introduction, that

Any steps which are controlled by the operator, who sets up the machine,
should be set up only in a serial fashion.

Things have changed a great deal since the time when Eckert was writing. Obviously the
capabilities of the hardware have improved, but the hardware’s structure has not really
addressed the parallel programming problem. Much more significant to the argument have
been the advances in software technology: Eckert was writing before the first compiler
was written, so did not take into account the possibility that the compiler as well as the
hardware could exploit parallelism without the programmer being involved. The functional
approach to parallel programming takes this idea to its limit, by removing the step-by-step
imperative perception of program execution completely. The line is drawn at programs
whose behaviour is non-deterministic—which is where the trouble Eckert refers to really
starts. The happy coincidence which forms the basis of this book is that this class of
languages is also very easy to manipulate mathematically.

There are alternative approaches. One of the most common is simply to ignore Eck-
ert’s problem, and employ a great deal of care and discipline in writing explicitly-parallel
multiprocessor programs. This approach may be rescued by the advent of simple math-
ematical systems of reasoning about parallel programs in the general, non-deterministic
case. Research aimed at providing such a system is very much still in progress. Another
area of recent success has been the development of parallelising compilers for imperative
languages.

Meanwhile, the problem of ensuring the correctness of computer programs has become
more and more acute. This is especially interesting in application areas like natural and
medical science, where technology has made the computer a ubiquitous tool, and often
means that a computer program is not just a test of a scientific model-—but is the only
tested model in existence. The problem is understanding such models, testing them, and
presenting them in the literature. However, formality must be tempered by the need to
build and use computer programs quickly, and to run them very fast. This demands
a high level of computer support and very well-designed and well-explained tools and
documentation.

163

This book is a manifesto for a programme of research aimed at making derivation
and transformation of computer programs an accessible and effective tool to enable the
non-specialist to produce more reliable computer programs more quickly.

164

Appendix A

Proofs and Derivations

In the body of the book it has been useful to state several laws relating expressions in the
functional notation. Rather than interrupt the narrative flow, their proofs appear in this
appendix.

A.1 ListToTree and TreeTolist, simple versions

This is an example of a common requirement during a program transformation by data
type transformation—that we can get the original representation back. It was used to
produce a divide-and-conquer implementation of map. We have some auxiliary functions:

take n (a:as) = a : (take (n—1) as), ifn#0
taken[] =], ifn#0
take 0 as =[]

and
drop n (a:as) = drop (n—1) as, ifn#0
dropn[]=1] ifn#0

drop 0 as = as

A list is converted into its binary tree representation by the function ListToTreel:

ListToTreel [| = EMPTY
ListToTreel [a] = LEAF a
ListToTreel (a0:al:as) = NODE (ListToTreel (take m (a0:al:as)))
(ListToTreel (drop m (a0:al:as)))
where
m = (length (a0:al:as))/2

To convert it back to a list again, we have

165

TreeToListl EMPTY = []

TreeTolListl (LEAF a) = [a]

TreeToListl (NODE subtreel subtree2) = (TreeToListl subtreel)
++ (TreeToListl subtree2)

We have, for all n and as,

(take n as) ++ (drop n as) = as

This can be shown using total structural induction on n. The proof is omitted in case the
reader should attempt it as an exercise. Theorem 1 is our main concern:

Theorem 1 We require that for all finite, total lists as,

TreeTolListl(ListToTreel as) = as

The proof uses total structural induction, but unfortunately the standard ordering on
lists doesn’t do the job. Instead we employ a “bisection” ordering, with basis [a] and

as ++ bs = as

and

as ++ bs > bs

for any as, bs # []. The case of empty as must be shown separately, but is trivially
satisfied.

Proof:

By total structural induction on the bisection ordering.

Empty case: TreeTolListl(ListToTreel []) = TreeToListl EMPTY
=[]

as required.

Base case: TreeTolistl(ListToTreel [a]) = TreeToListl (LEAF a)
= [a]

as required.

Inductive Step: Assuming that for all finite and total as and bs,
TreeTolListl(ListToTreel as) = as

and

166

TreeTolListl(ListToTreel bs) = bs
we must show that
TreeToList1(ListToTreel (as ++ bs)) = (as ++ bs)

Apply reduction to the LHS:

LHS = TreeToListl (ListToTreel (as ++ bs))

= TreeToListl (NODE (LisFI'oTreel (take m (as ++ bs)))
(ListToTreel (drop m (as ++ bs))))

where
m = (length (as++bs)) / 2

We can define

cs = take m (as ++ bs)
and

ds = drop m (as ++ bs)
So we have

LHS = TreeToListl (NODE (ListToTreel cs)
(ListToTreel ds)

~ /

where -
m = (length (as++bs)) / 2
= (TreeToListl (ListToTreel as))

[\ J

4+ (TreeToListl (ListToTreel bs))

[\ J

Our inductive assumptions hold for any choice of as and bs, so this is

LHS = cs ++ ds = (take m (as ++ bs)) ++ (drop m (as ++ bs))

~ J
'

Using the property of take, drop and “+4” claimed earlier, this is just
LHS = (as++bs)

as required.

167

A.1.1 Removing the inefficiency

ListToTreel and TreeToListl are inefficient for several reasons:
e the length of the parameter list is calculated at each recursion.
e both take and drop scan the input list at each recursion.
e the append operator “+4” scans and reconstructs its left parameter.

We can use program transformation to remove each of these inefficiencies.

Removing the length recalculation

First let us define a version of ListToTreel which calculates the length of its input list.
The intention is that

ListToTreel’ as n = ListToTreel as
where
n = length as

Define:

ListToTreel' [] 0 = EMPTY
ListToTreel’ [a] 1 = [a]
ListToTreel’ (a0:al:as) n = NODE (ListToTreel’ (take m (a0:al:as)) m)
(ListToTreel’ (drop m (a0:al:as)) m)
where
m=n/2

Now we redefine ListToTreel to use this modified version:

ListToTreel as = ListToTreel’ as (length as)

It is easy to verify the equivalence using recursion induction.

Removing the re-scanning in take and drop

Let us define

split n as = (take n as, drop n as)

Now we can re-express ListToTreel’ to use it:

168

ListToTreel’ [] 0 = EMPTY

ListToTreel’ [a] 1 = [a]

ListToTreel’ (a0:al:as) n = NODE (ListToTreel’ front m) (ListToTreel" back m)
where
(front, back) = split m (a0:al:as)
m=n/2

We can derive a more efficient version of split. Instantiate its definition for a non-empty
parameter list:

split n (a:as) = (a: (take (n—1) as), drop (n—1) as), ifn#0
But we can rewrite this as another instance of split:

split n (a:as) = (a: front, back), ifn#0
where
(front, back) = split (n—1) as

All that remains is to derive the equation for the other cases. For the empty list case:

splitn[] = (taken [], drop n[]), ifn#0
=10 ifn # 0
When n = 0,

split 0 as = (take n as , drop n as)

= ([1], as)

-~

Avoiding reconstruction in “+4+”

The final transformation avoids the use of “4++7, which is inefficient because it must
always make a copy of its left parameter. Instead we use the list constructed by the left
parameter, but modify the left parameter expression so that the right parameter is placed
on the end instead of []. The property we exploit is

(fx) ++ (gy) =f x(gy)
where
f'x as = (f x) ++ as

The optimisation comes by applying equational reasoning to the definition of f' above, so
that the “4++7 is not needed. This optimisation is straightforward enough to be considered
for inclusion as an automatic process in optimising compilers (the interested reader might
compare it with the use of difference lists in Prolog, as introduced by Clark and Tarnlund

169

[CT77]. In our case, we define

TreeTolListl’ tree rest = (TreeToListl tree) ++ rest

Note that

TreeTolListl tree = TreeTolListl' tree []

Instantiate the definition of TreeToListl’ for the empty tree:

TreeToListl’ EMPTY rest
= (TreeToListl EMPTY) ++ rest

=[]++ rest
N —
= rest

Now instantiate it for the LEAF case:

TreeTolListl’ (LEAF a) rest
= (TreeToListl (LEAF a)) ++ rest

N\ J

= [a] ++ rest
= a: rest

(note that this is where the “++” disappears). The NODE case is the most complicated:

TreeToListl’ (NODE subtreel subtree2) rest
= (TreeToListl (NODE subtreel subtree2)) ++ rest

~ J

= (TreeTolListl subtreel) ++ (TreeToListl subtree2) ++ rest

-~

At this point we can use the definition of TreeToListl’, backwards:

TreeToListl’ (NODE subtreel subtree2) rest
= (TreeToListl subtreel) ++ (TreeToListl’ subtree2 rest)

-~

And now do the same to the whole RHS, getting rid of “4++” altogether:

TreeToListl’ (NODE subtreel subtree2) rest
= (TreeToListl’ subtreel (TreeToListl" subtree? rest))

(This optimisation of “+4” can be incorporated as a compiler optimisation, and Wadler
has characterised where it can be applied [Wad88a]. It is a form of linearisation; see Field
and Harrison [FH88]).

This completes our optimisation process. Collecting the results, we have ListToTreel:

ListToTreel as = ListToTreel’ as (length n)

170

ListToTreel’ [] 0 = EMPTY
ListToTreel’ [a] 1 = [a]
ListToTreel’ (a0:al:as) n = NODE (ListToTreel’ front m) (ListToTreel’ back m)

where
(front, back) = split m (a0:al:as)
m=n/2
where
split 0 as = ([], as)
split 0 [T=([1. [1]), if n #0
split n (a:as) = (a: front, back), ifn#0

where
(front, back) = split (n—1) as

and TreeTolListl:

TreeTolListl tree = TreeTolListl' tree []
TreeTolListl’ EMPTY rest = rest
TreeToListl’ (LEAF a) rest = a : rest

TreeToListl’ (NODE subtreel subtree2) rest = (TreeToListl' subtreel
(TreeToListl' subtree? rest))

A.2 ListToTree and TreeTolList, shuffled versions

In this section we show the correctness of an alternative approach to the problem of
representing a list as a binary tree. In this version each node has all the even-indexed
elements of the list it represents to its left, and all the odd-indexed ones to its right. We
make use of some auxiliary functions, whose role here is analogous to the roles of take,
drop and “++" in the straightforward versions given in the previous section:

EvenOnes [| =[]
EvenOnes [a0] = [a0]
EvenOnes (a0:al:as) = a0:(EvenOnes as)

OddOnes [| =[]
OddOnes [a0] =[]
OddOnes (a0:al:as) = al:(OddOnes as)

171

merge (a0:evens) (al:odds) = a0:al:(merge evens odds)
merge as [| = as

The functions we are interested in are:

ListToTree2 [| = EMPTY

ListToTree2 [a] = LEAF a

ListToTree2 (a0:al:as) = NODE (ListToTree2 (EvenOnes (a0:al:as)))
(ListToTree2 (OddOnes (a0:al:as)))

and

TreeToList2 EMPTY = []
TreeTolList2 (LEAF a) = [a]
TreeToList2 (NODE evensubtree oddsubtree)
= (merge (TreeToList2 evensubtree) (TreeToList2 oddsubtree))

That they satisfy the specification as required is the subject of the next theorem:
Theorem 2 For all finite and total lists as,

TreeTolList2 (ListToTree2 as) = as

The natural approach for the proof is total structural induction. The base case as = [|
is trivial. The obvious inductive step is to show the property for a:as assuming it for as.
This fails, and the reason is not hard to find. The algorithm looks two elements ahead
into the input list (via EvenOnes and OddOnes). A better inductive step is to assume the
property for as and al:as, and try to show it for a0:al:as. This is valid provided we make
sure all possible values for as are covered—a special proof must be given for as = [a].

It is surely no coincidence to find that the definition of ListToTree2 does indeed deal
with the [a] case specially!

Proof
By total structural induction on the length of the list as.

Base cases: Trivial for both as = [] and as = [a].

Inductive step: Assuming that for all finite and total lists as,
TreeTolList2 (ListToTree2 as) = as

and

TreeTolList2 (ListToTree2 (al:as)) = al:as

we must show that

172

TreeToList2 (ListToTree2 (a0:al:as)) = a0:al:as

~ /
-~

Apply reduction to the LHS:

LHS = TreeToList2 (NODE (ListToTree2
ListToTree2

ListToTree2 aO:(Even6nes as)))
ListToTree2 (al:(OddOnes as)

)
TreeToList2 (ListTc;:FreeQ (a0:(EvenOnes as))))
TreeToList2 (ListToTr;Q (al:(OddOnes as))))

-~

EvenOnes (a0:al:as)))

J

'

OddOnes (a0:al:as))))

J

= TreeToList2 (NODE

~_~ e — ((—~

~

= merge

(—~ (—

The underbraced expressions here are instances of our second inductive assumption,
giving
LHS = merge (a0:(EvenOnes as)) (al:(OddOnes as))

= a0:al:(merge (EvenOngs as) (OddOnes as))

[\ J

By Lemma 1, this is simply a0:al:as as required.

The alert reader will realise that Lemma 1 has not yet been exhibited. However, it does
seem to be crucial to the algorithm’s operation. We’ve succeeded in reducing our original
problem so that all remains is this lemma—an activity much like stepwise refinement of
programs. Fortunately, the lemma is easily proved:

Lemma 1 For all finite and total lists as,

merge (EvenOnes as) (OddOnes as) = as

Proof

By total structural induction on the length of as.

Base cases: Trivial for both as = [] and as = [a].

Inductive step: Assuming that for all finite and total lists as,

merge (EvenOnes as) (OddOnes as) = as
and
merge (EvenOnes (al:as)) (OddOnes (al:as)) = al:as

we must show that

173

merge (EvenOnes (a0:al:as)) (OddOnes (a0:al:as)) = a0:al:as

~ /
~" ~"

Apply reduction to the LHS:

LHS = merge (a0:(EvenOnes as)) (al:(OddOnes as))
= a0:al:(merge (EvenOnzs as) (OddOnes as))

~ /
-~

Our first inductive assumption applies here, to give a0:al:as as required.

We did not need the second inductive assumption here. This is somewhat disturbing—
often a sign of some error. But curiously, in the proof of Theorem 2, we didn’t use
the first inductive assumption: between the two proofs we did eventually discharge both
assumptions.

A.3 Turning recurrences into cyclic networks

In introducing the functional language employed in this book, an idiom was employed for
recurrences—what in an imperative language would simply be written as a loop. Although
very clear and concise, this idiom has an inefficiency because of the use of the sub operator
to select values from previous iterations. In this section we transform such a recurrence
into a cyclic process network formulation. This removes the use of the sub operator, and
also elucidates some potential parallelism. We work with the Newton Raphson example.

We solve for fr =0 with f'x = d(zxx), and using an initial estimate xg:

xs sub 0 = xq
xs sub i = (xs sub (i—1)) — (f (xs sub (i—1)) / f" (xs sub (i—1))), ifn>1

with the implementation using the recurrence idiom:

solve f f" xq
= until converges xs
where
converges 0 = FALSE
converges i = abs(((xs sub i) — (xs sub (i—1)))/(xs subi)) <¢, ifi>1
xs = generate NextEstimate
where
NextEstimate 0 = x,
NextEstimate i = (xs sub (i—1))
— (f(xssub (i-1)) / f' (xs sub (i-1))), ifn>1

We now transform this into a cyclic process network. Unfold generate in the definition of
XS:

174

xs = map NextEstimate (from 0)
—_————
= map NextEstimate (0:(from 1))

-~

= (NextEstimate 0) : (map NextEstimate (from 1))

N\ J

=X : (maI) NextEstimate (from 1))

Now we must decompose (the > 1 case of) NextEstimate into the transition function and
the indexing function:

NextEstimate i = (xs sub (i—1)) — (f (xs sub (i—1)) / f' (xs sub (i—1))), ifn>1
= prevx — ((f prevx)/(f" prevx))
where
prevx = xs sub (i—1)
= (Transition o (Index xs)) i

where
Transition prevx = prevx — ((f prevx)/(f" prevx))
Index xs i = xs sub (i—1)

We can decompose this a little further (recall that xs sub i = ((sub) xs) i):

NextEstimate i = (Transition o ((sub) xs) o (subtract 1)) i
where
subtract nm =m — n

So now we have

xs = xo : (map (Transition o ((sub) xs) o (subtract 1)) (from 1))

~ /
-~

It is easy to verify (using partial structural induction on the list’s length) that map (f o g)
= (map f) o (map g), so that this is

-~

((map Transition) o (map ((sub) xs))) (map (subtract 1) (from 1)))

Xs = X : \(((map Transition) o (map ((sub) xs)) o (map (subtract 1))) (from 1))1
=xp: (

~ /
-~

Clearly map (subtract 1) (from 1) = from 0, giving

/

Xs = X : \(((map Transition) o (map ((sub) xs))) (from 0))
= %o : (map Transition (map ((sub) xs) (from 0)))

~ /
-~

By the definition of sub, map ((sub) xs) (from 0) = xs, so this is

xs = Xg : (map Transition xs)

This is a definition of a process network to generate a stream of successive estimates. To

175

complete the task we must convert the until converges part into a process network too. We
employ a similar approach; first decompose converges:

converges i = abs((thisx — prevx)/thisx) < e
where
thisx = xs sub i
prevx = xs sub (i—1)
= Test (xs sub i) (xs sub (i—1))
where
Test thisx nextx = abs((thisx — prevx)/thisx) < e
= (Test oo ((sub) xs) (((sub) xs) o (subtract 1))) i
where
Test thisx nextx = abs((thisx — prevx)/thisx) < e
Recall from Chapter 2 that (f oo g h) x = f (g x)(h x). Now take the application of until
and unfold it:

until converges xs = select (map converges (from 0)) xs

J

= select (map converges (from 1)) (tl xs)
map (Test oo ((sub) xs)
(((sub) xs) o (subtract 1))) (from 1))

~ /

(tl xs) -

(

= select (FALSE : (map converges (from 1))) xs
(
(ma

= select

Using the property that map (f oo g h) = (map2 f) oo (map g)(map h), we have

until converges xs = select ((map2 Test) oo (map ((sub) xs))
(map (((sub) xs) o (subtract 1)))

(from 1)) e

(tl xs)
= select ((map2 Test gmap ((sub) xs) (from 1)2

(map ((sub) xs) (map (subtract 1) (from 1)))))
(tl xs)

Now we again use the property map ((sub) xs) (from 0) = xs to get

until converges xs = select (map2 Test (tl xs)
(map ((sub) xs) (map (subtract 1) (from 1))))

/

-~

(t xs)

= select (map2 Test (tl xs) (map ((sub) xs) (from 0)))
(t) -

= select (map2 Test (tl xs) xs) (tl xs)

176

This completes the transformation to process network form. Putting it all together we
have

solve f f" xq
= select (map2 Test (tl xs) xs) (tl xs)
where
xs = xp : (map Transition xs)
Test thisx nextx = abs((thisx — prevx)/thisx) < e
Transition prevx = prevx — ((f prevx)/(f" prevx))

We can introduce parallelism into this definition by separating the arithmetic operations
into processes:

solve f f" xq
= select (Map2Test (tl xs) xs) (tl xs)
where
xs = xp : (MapTransition xs)
Map2Test thisxs nextxs = map abs ((map2 (/) (map2 (—) thisxs prevxs) thisxs))
MapTransition prevxs = map2 (—) prevx (map2 (/) (map f prevx)(map f' prevx))

The graphical representation of this network is given in Figure 4.3, back in Chapter 4,
section 4.3.1, where the transformation is employed to express a parallel implementation
of the recurrence.

The transformation can be applied automatically, by a compiler, provided that at each
step the references backwards to previous iterations are at a fixed offset. The technique
can be summarised as follows:

1. Find the state transition function in terms of indexing into the list of iterates. In
our examples these were NextEstimate and NextFib.

2. Take the definition of the list of iterates (written in terms of generate), and unfold
generate. Apply reduction to generate the initial state or states for which values are
given directly by the transition function.

3. Decompose the remaining, recursive, case of the state transition function into the
body itself, and the functions used to collect the values from previous iterations. In
our examples these were

NextEstimate = Transition o ((sub) xs) o (subtract 1)
and

NextFib = ((+) oo (((sub) fibs) o (subtract 1))
(((sub) fibs) o (subtract 2))) n

177

4. Distribute the map introduced by generate into this composition, to produce, for
example,

xs = map NextEstimate (from 1)
= ((map Transition) o (map ((sub) xs)) o (map (subtract 1))) (from 1)
5. Unfold the composition, giving for example,

xs = map Transition (map ((sub) xs) (map (subtract 1) (from 1)))

6. Apply the equation map (subtract n) (from m) = from (m—n), producing, for example,

xs = map Transition (map ((sub) xs) (from 0))

7. Apply the equations map ((sub) xs) (from 0) = xs, map ((sub) xs) (from 1) = tl xs,
etc. to get, for example,

xs = map Transition xs

The transformation-based programming environment implemented by John Darlington
and his colleagues at Imperial College [De88] is designed specifically to allow transforma-
tions like this to be developed, encoded and reused.

A.4 The ray-tracer pipeline

In this example, a sequential search process is distributed over a pipeline. We have an
unspecified function

TestForlmpact :: Ray — Object — Impact
where Impact is a data type which describes the interaction between a ray and an object.

We must find the earliest impact made by a ray, so we are also given a selection function
earlier:

earlier :: Impact — Impact — Impact

The original formulation was

178

Findlmpacts rays objects
= map (Firstimpact objects) rays
where
Firstimpact objects ray = earliest (map (TestForlmpact ray) objects)
where
earliest impacts = insert earlier NOIMPACT impacts

The claim is that this is equivalent to a pipelined formulation:

Findlmpacts?2 rays objects = ((map Takelmpact) o
(insert (o) ident
(map map (map PipelineStage objects)))
o (map MakePipeltem))
rays

where the pipeline stage is defined by

PipelineStage object (PIPEITEM ray impact)
= PIPEITEM ray impact’
where
impact’ = earlier impact Newlmpact
Newlmpact = TestForlmpact ray object

and the stages are linked by lists of Pipeltem’s:
Pipeltem o g ::= PIPEITEM «a

with construction and projection functions:

MakePipeltem ray = PIPEITEM ray NOIMPACT
Takelmpact (PIPEITEM ray impact) = impact

Theorem 3 We claim that for all finite and total lists rays and objects,

Findlmpacts rays objects = Findlmpacts2 rays objects

Before giving the proof we give some identities we will use. Proofs are left as exercises
for the reader:

Fact 1 Combining insertright and map:

insertright op x (map g xs) = insertright h x xs
where
hab=op(ga)b

179

Fact 2 Abstracting a free variable from the operator parameter of insertright:

insertright (f a) x bs = fst (insertright f' (x, a) bs)
where
f'b(x,a) =(fabx, a)

For our purposes this fact is better expressed in terms of our data types:

insertright (f ray) NOIMPACT objects
= Takelmpact (insertright f' (MakePipeltem ray) objects)

where
f' object (PIPEITEM ray impact) = PIPEITEM (f ray object impact) ray

(since PIPEITEM ray impact is essentially equivalent to (ray, impact) but with a mnemonic
tag to aid readability').

Fact 3 FEzxpressing insertright using a chain of compositions:

insertright op x xs = (insert (o) ident (map op xs)) x

Fact 4 Propagating map into a chain of compositions:

map (insert (o) ident fs) = insert (o) ident (map map fs)

Proof:

By reduction and use of the above facts.

Take the LHS:
Findlmpacts rays objects = map (Firstimpact objects) rays
Let us consider to Firstimpact alone:

Firstimpact objects ray
= insert earlier NOIMPACT (map (TestForlmpact ray) objects)

J

Using Fact 1 gives

IThere is a subtle difference; see section C.2.

180

Firstimpact objects ray
= insertright TestAndCompare NOIMPACT objects
where
TestAndCompare object impact = earlier (TestForlmpact ray object) impact

Abstract ray from TestAndCompare as a parameter:

Firstimpact objects ray
= insertright (TestAndCompare’ ray) NOIMPACT objects
where
TestAndCompare’ ray object impact = earlier (TestForlmpact ray object) impact

This is where Fact 2 comes into play, introducing the Pipeltem data type: giving

Firstimpact objects ray
= Takelmpact (insertright TestAndCompare” (MakePipeltem ray) objects)
where
TestAndCompare” object (PIPEITEM ray impact)
= PIPEITEM (TestAndCompare' ray object impact) ray
= PIPEITEM (earlier (TestForlmpact ray object) impact) ray

Fact 3 introduces the chain of compositions:

Firstimpact objects ray
= Takelmpact ((insert (o) ident (map TestAndCompare” objects))
(MakePipeltem ray))
where
TestAndCompare” object (PIPEITEM ray impact)
= PIPEITEM (earlier (TestForlmpact ray object) impact) ray

= (Takelmpact o

(insert (o) ident

(map TestAndCompare” objects))

o MakePipeltem)

ray
where
TestAndCompare” object (PIPEITEM ray impact)
= PIPEITEM (earlier (TestForlmpact ray object) impact) ray

Putting this back into its context in the LHS, we can propagate the map into the
composition (using Fact 4):

181

Findlmpacts rays objects
= map (Firstimpact objects) rays

N\ J

= map (Takelmpact o
(insert (o) ident
(map TestAndCompare” objects))
o MakePipeltem)
rays

= ((map Takelmpact) o

(insert (o) ident

(map map (map TestAndCompare” objects)))

o (map Makeltem))

rays
where
TestAndCompare” object (PIPEITEM ray impact)
= PIPEITEM (earlier (TestForlmpact ray object) impact) ray

This is trivially equal to the RHS.

A.5 The sieve of Eratosthenes

This derivation is particularly fascinating. We have a filtering function, which takes a
number p (which will be prime), and a list of numbers as, and produces the list of elements
of as which are not divisible by p:

FilterMultiples p (a:as) = a : (FilterMultiples p as), if not(divides p a)
= FilterMultiples p as, if divides p a

This has the effect of “crossing out” every multiple of p from the list of numbers as.
Eratosthenes’ approach was to repeat this for every prime, in increasing order. Clearly
the resulting list would consist only of prime numbers—but how do we find the primes
in the first place? Happily, after doing all the crossings out up to a prime p, the next
uncrossed-out number must also be prime: no factor of p is greater than p, and all smaller
factors have already been eliminated.

This leads us to an iterative formulation. We start with the list of natural numbers
(excluding 1 for convenience). At each iteration, we filter the remaining numbers with the
latest prime:

182

sieves = generate NextSieve
where
NextSieve 0 = from 2
NextSieve (n+1) = FilterMultiples newprime (sieves sub n)
where
newprime = hd (sieves sub n)

At each step, the first element in the list is guaranteed prime, and is used in the next step
for crossing out. From this iteration, the list of primes itself is easily found:

primes = generate FindPrime
where
FindPrime n = hd (sieves sub n)

We just collect the first element of the list at each iteration. It is not hard, using the
techniques developed for removing sub from recurrences, to simplify this definition to just

primes = map hd (iterate g (from 2))
where
g (a:as) = FilterMultiples a as

Recall one of the alternative definitions of iterate:

iterate f x = x : (iterate f (f x))

(So that iterate f x = [x, f x, f(f x)...]). Now define a function sieve so that

primes = sieve (from 2)
where
sieve as = map hd (iterate g as)

Instantiate sieve for non-empty as, and then unfold the definition of iterate

sieve (a:as) = map hd \(iterate g (a:as))}
= map hd ((a:as):(iterate g (g (a:as))))
= a: (map hd (iterate g (g (a:as))))

- Emeve (g (a:asf)r) J
: (sl

—_———
sieve (FilterMultiples a as))

This gives the definition as required:

primes = sieve (from 2)
where
sieve (a:as) = a : (sieve (FilterMultiples a as))

183

A.6 Transforming divide-and-conquer into a cycle

The next clutch of proofs support the derivation of a cyclic formulation of the divide-
and-conquer algorithm form. The derivation itself appears in Chapter 4 section 4.8. The
starting point is the higher-order function to capture the divide-and-conquer form:

DivideAndConquer :: (o = [f] = 8) = (e = [a]) > o —

DivideAndConquer CombineSolutions Decompose problem
= Solve problem
where
Solve problem = CombineSolutions problem (map Solve SubProblems)
where
SubProblems = Decompose problem

A.6.1 Introducing an intermediate tree

We introduce an intermediate data structure to represent how the problem is broken down
into subproblems:

MultiTree @ 8 ::= MNODE « (o — [a] — 3) Num [MultiTree o 3]

We define

DivideAndConquer’ CombineSolutions Decompose problem
= EvaluateTree (BuildTree problem)
where
BuildTree problem = MNODE problem
CombineSolutions
NoOfSubproblems
(map BuildTree Subproblems)
where
Subproblems = Decompose problem
NoOfSubproblems = length SubProblems

where

EvaluateTree (MNODE problem CombineSolutions n subtrees)
= CombineSolutions problem (map EvaluateTree subtrees)

Theorem 4 DivideAndConquer’ = DivideAndConquer

Proof

By equational reasoning:

184

First, introduce an auxiliary function Solve':

DivideAndConquer’ CombineSolutions Decompose problem
= Solve’ problem

where

Solve' problem = (EvaluateTree o BuildTree) problem

BuildTree problem = MNODE problem
CombineSolutions
NoOfSubproblems
(map BuildTree Subproblems)
where
Subproblems = Decompose problem
NoOfSubproblems = length SubProblems

Then apply reduction:

Solve’ problem

= EvaluateTree (MNODE problem
CombineSolutions
NoOfSubproblems
(map BuildTree Subproblems))

~ /

where
Subproblems = Decompose problem
NoOfSubproblems = length SubProblems

-~

= CombineSolutions problem (map EvaluateTree (map BuildTree Subproblems))

-~

where
Subproblems = Decompose problem
NoOfSubproblems = length SubProblems

= CombineSolutions problem (map (EvaluateTree o BuildTree) Subproblems)

[\ J

where
Subproblems = Decompose problem
NoOfSubproblems = length SubProblems

At this point a fold step applies, giving

185

Solve' problem

= CombineSolutions problem (map Solve” Subproblems)
where
Subproblems = Decompose problem
NoOfSubproblems = length SubProblems

This has precisely the form of the original definition of DivideAndConquer.

A.6.2 The breadth-first tree—stream interconversion

In this section we derive a pair of breadth-first tree—stream interconversion functions. The
tree is transformed into a list of tokens, each carrying details of a node:

MultiTreeToken o 3 ::= MTREETOKEN « (v — [@] —) Num

The functions we must derive have the type specifications

MTreeToStream :: MultiTree o 5 — [MultiTreeToken « 3]

and

StreamToMTree :: [MultiTreeToken o 5] — Multitree o 3

It turns out to be easier to derive a slightly more general pair of functions,

ListOfMTreesToStream :: [MultiTree o 5] — [MultiTreeToken « 3]
StreamToListOfMTrees :: Num — [MultiTreeToken o 5] — [Multitree « 3]

so that

MTreeToStream tree = ListOfMTreesToStream [tree]

and

StreamToMTree stream = StreamToListOfMTrees 1 stream

The first parameter to StreamToListOfMTrees must be the number of trees we must extract
from the incoming stream—in this case just one.

The specification

The specification comes in two parts. Firstly, we obviously require that the type specifi-
cations be satisfied, and that we can get the trees back again:

StreamToListOfMTrees (length trees) (ListOfMTreesToStream trees) = trees

However, we also demand that the list representation be generated in “breadth-first” order,
and this needs specifying. The idea is that the tree is made up of successive generations,

186

so that each node of each generation is the same distance from the root. We can formalise
this by writing down some functions for separating off the first generation of a list of trees
from the subsequent ones:

RootsOf :: [MultiTree o 5] — [MultiTreeToken « 3]

RootsOf [] =[]
RootsOf ((MNODE p op n subtrees) : trees) = (MTREETOKEN p op n)
. (RootsOf trees)

RootsOf trees produces a list of tokens, each representing the root node of the corresponding
tree in trees. Notice that we expect n to be the number of children of this node—i.e. length
subtrees.

RootsOf’s counterpart is SubtreesOf, which picks out each node’s children:

SubtreesOf :: [MultiTree o 5] — [MultiTree « 5]

SubtreesOf [| =[]
SubtreesOf ((MNODE p op n subtrees) : trees) = subtrees ++ (SubtreesOf trees)

These two functions allow us to decompose trees into generations. All that remains is to
find a way to put them back together again:

JoinLayers :: [MultiTreeToken o 5] — [Multitree o] — [Multitree o 3]

JoinLayers [[] =[]
JoinLayers ((MTREETOKEN p op n) : 11) 2 = (MNODE p op n (take n 12))
. (JoinLayers 11 (drop n 12))

It is not hard to verify (using partial structural induction) that these functions operate as
intended: for all lists of trees, trees,

trees = JoinLayers (RootsOf trees) (SubtreesOf trees)

These functions establish a well-founded ordering based on generations. Now to the speci-
fication that the list be generated in breadth-first order. What we mean is that the output
list should consist of each complete generation, one-at-a-time, from the roots:

ListOfMTreesToStream trees = (RootsOf trees) ++
(RootsOf (SubtreesOf trees)) ++
(RootsOf (SubtreesOf (SubtreesOf trees))) ++ - - -

This is simply captured recursively:

187

ListOfMTreesToStream [| = []

ListOfMTreesToStream trees = (RootsOf trees) ++
(ListOfMTreesToStream (SubtreesOf trees))

This is an adequate implementation for ListOfMTreesToStream.

It will also be fruitful to note how to separate the generations when they are represented
in the stream form. For this, we must know the number n of nodes in the first generation.
Then we have simply that

FirstGeneration n tokens = take n tokens
SubsequentGenerations n tokens = drop n tokens

To find n we specify that

SizeOfNextGeneration (RootsOf trees) = length (SubtreesOf trees)

We have to use an implementation which doesn’t need the tree form. If tokens = RootsOf
trees then

SizeOfNextGeneration tokens = sum (map NumberOfChildren tokens)
where
NumberOfChildren (MTREETOKEN p op n) =n

Before proceeding, take note of two equalities which are easily verified by reduction (again,
n = length (RootsOf trees)):

FirstGeneration n (ListOfMTreesToStream trees) = RootsOf trees

and

SubsequentGenerations n (ListOfMTreesToStream trees)

ListOfMTreesToStream (SubtreesOf trees)

Deriving StreamToListOfMTrees

While the translation from trees to lists was easily derived from its specification, syn-
thesising an executable definition for StreamToListOfMTrees is rather more difficult. Its
specification is just

188

StreamToListOfMTrees n stream = trees
——
where

stream = ListOfMTreesToStream trees
n = length trees

Let us instantiate StreamToListOfMTrees for two cases: when the list of trees (and therefore
stream) is empty, and when it consists of one or more generations. For streams = [|, it is
clear that n must also be zero, and we construct the empty list of trees:

StreamToListOfMTrees 0 [] = []

For the non-empty case we know that we can decompose stream so that

stream = (FirstGeneration n stream) ++ (SubsequentGenerations n stream)

We observed earlier that

FirstGeneration n (ListOfMTreesToStream trees) = RootsOf trees

and

SubsequentGenerations n (ListOfMTreesToStream trees)

ListOfM TreesToStream (SubtreesOf trees)

We have

StreamToListOfMTrees n stream
= JoinLayers (RootsOf trees) (SubtreesOf trees)

N J

= JoinLayers genl (SubtreesOf trees)

-~

where
genl = FirstGeneration n stream

= JoinLayers genl subtrees
where
genl = FirstGeneration n stream
subtrees = StreamToListOfMTrees m (ListOfMTreesToStream (SubtreesOf trees))

-~

m = length (SubtreesOf trees)

(by hypothesis)

189

= JoinLayers genl subtrees
where
genl = FirstGeneration n stream
subtrees = StreamToListOfMTrees m (SubsequentGenerations n
(ListOfMTreesToStream trees))

-~

m = length (SubtreesOf trees)

= JoinLayers genl subtrees
where
genl = FirstGeneration n stream
subtrees = StreamToListOfMTrees m (SubsequentGenerations n stream)
m = length (SubtreesOf trees)

'

= JoinLayers genl subtrees
where
genl = FirstGeneration n stream
subtrees = StreamToListOfMTrees m (SubsequentGenerations n stream)
m = SizeOfNextGeneration (RootsOf trees)

[\ J
'

= JoinLayers genl subtrees
where
genl = FirstGeneration n stream
subtrees = StreamToListOfMTrees m (SubsequentGenerations n stream)
m = SizeOfNextGeneration genl

This completes the derivation, since StreamToListOfMTrees n stream no longer refers to
trees. The definitions are collected below for clarity:

ListOfMTreesToStream :: [MultiTree o 5] — [MultiTreeToken « 3]

ListOfMTreesToStream trees = (RootsOf trees) ++
(ListOfMTreesToStream (SubtreesOf trees))

and

190

StreamToListOfMTrees :: [MultiTreeToken o 5] — [Multitree « 3]
StreamToListOfMTrees 0 [| =[]

StreamToListOfMTrees n stream
= JoinLayers genl subtrees, n#0
where
genl = FirstGeneration n stream
subtrees = StreamToListOfMTrees m (SubsequentGenerations n stream)
m = SizeOfNextGeneration genl

The definition of StreamToListOfMTrees can be made more efficient using the optimisa-
tions of section A.1.1. In particular, the first generation, its length, and the subsequent
generations can all be computed in a single pass.

A.6.3 Verifying the cyclic definition

By applying reduction (see section 4.8.2) to combine BuildTree with ListOfM TreesToStream,
we reached the following recursive definition for BuildStreamsOfTrees, a function which
decomposes a list of rays directly into the stream representation of their subray trees:

BuildStreamsOfTrees [| [| =[]
BuildStreamsOfTrees | | subproblems = BuildStreamsOfTrees subproblems | |

BuildStreamsOfTrees (problem:siblingproblems) oldsubproblems
= (MTREETOKEN problem CombineSolutions NoOfSubproblems)
. (BuildStreamsOfTrees siblingproblems
(oldsubproblems-++-Subproblems))
where
Subproblems = Decompose problem
NoOfSubproblems = length Subproblems

In section 4.8.2 we claim that this is equivalent to a definition which is not recursive
as such, but uses a cyclic stream definition:

BuildStreamsOfTrees' [][] =[]

191

BuildStreamsOfTrees’ problems subproblems
= output
where
(output, feedback)
= SplitStream
((map FEEDBACKTAG subproblems) ++
(join (map LayerOf (problems++feedback))))

LayerOf problem
= (OUTPUTTAG (MTREETOKEN problem CombineSolutions NoOfSubproblems))
: (map FEEDBACKTAG Subproblems)
where
Subproblems = Decompose problem
NoOfSubproblems = length Subproblems

where SplitStream separates a stream of tagged objects into two streams of untagged ones:

SplitStream :: [TaggedStreamltem « 3] — ([MultiTreeToken o f],)

SplitStream [] = ([]. [])

SplitStream ((OUTPUTTAG token) : rest)
= (token : restl, rest2)
where
(restl, rest2) = SplitStream rest

SplitStream ((FEEDBACKTAG subproblem) : rest)
= (restl, subproblem : rest2)
where
(restl, rest2) = SplitStream rest
and join flattens a list of lists into a list:

join :: [[o]] = [¢]

join xss = insert (++) [] xss

Theorem 5 BuildStreamsOfTrees = BuildStreamsOfTrees’

192

Proof

By recursion induction. We must show that BuildStreamsOfTrees' satisfies each of the
three equations defining BuildStreamsOfTrees. This verifies that BuildStreamsOfTrees C
BuildStreamsOfTrees' (see section 2.5.5). We omit a proof of the equality itself, because
we know that BuildStreamsOfTrees is defined for all parameter values of interest.

First Equation: We must show that
BuildStreamsOfTrees' [[] =[]

This follows trivially from the first equation defining BuildStreamsOfTrees’.

Second Equation: We must show that

BuildStreamsOfTrees’ [| subproblems = BuildStreamsOfTrees’ subproblems []

If we unfold the RHS we get

RHS = output
where
(output, feedback)
= SplitStream
((map FEEDBACKTAG []) ++
(join (map LayerOf (subproblems++feedback))))

The LHS unfolds to

LHS = output
where
(output, feedback)
= SplitStream
((map FEEDBACKTAG subproblems) ++
(join (map LayerOf (feedback))))

The elements of the list subproblems are tagged so they are emitted in the right-hand
feedback stream:

LHS = output
where
(output, feedback) = (output, subproblems++feedback’)
(output, feedback’)
= SplitStream
((map FEEDBACKTAG []) ++
(join (map LayerOf (feedback))))

Simplifying to get rid of feedback' we get

193

LHS = output
where
(output, feedback)
= SplitStream
((map FEEDBACKTAG []) ++
(join (map LayerOf (subproblems++feedback))))

But this is precisely the same as the RHS.

Third Equation: We must show that

BuildStreamsOfTrees’ (problem:siblingproblems) oldsubproblems
= (MTREETOKEN problem CombineSolutions NoOfSubproblems)
. (BuildStreamsOfTrees’ siblingproblems
(oldsubproblems—++Subproblems))
where
Subproblems = Decompose problem
NoOfSubproblems = length Subproblems

We apply reduction to the LHS:

LHS = BuildStreamsOfTrees’ (problem:siblingproblems) oldsubproblems

= output
where
(output, feedback)
= SplitStream
((map FEEDBACKTAG oldsubproblems) ++
(join (map LayerOf ((problem:siblingproblems)++feedback))))

N J

= output
where
(output, feedback)
= SplitStream
((map FEEDBACKTAG oldsubproblems) ++
(join ((LayerOf problem)

~ J

. (map L;yerOf (siblingproblems+-+feedback)))))

Unfolding LayerOf gives

194

LHS = output
where
(output, feedback)
= SplitStream
((map FEEDBACKTAG oldsubproblems) +-+
(join ((OUTPUTTAG (MTREETOKEN problem
CombineSolutions
NoOfSubproblems))
: (map FEEDBACKTAG Subproblems))
. (map LayerOf (siblingproblems++feedback))))

-~

where
Subproblems = Decompose problem
NoOfSubproblems = length Subproblems

Reducing the application of join gives

LHS = output
where
(output, feedback)
= SplitStream
((map FEEDBACKTAG oldsubproblems) ++
[OUTPUTTAG (MTREETOKEN problem
CombineSolutions
NoOfSubproblems)] ++
(map FEEDBACKTAG Subproblems) ++
(map LayerOf (siblingproblems++feedback)))
where
Subproblems = Decompose problem
NoOfSubproblems = length Subproblems

We can now float the MTREETOKEN structure out to the output:

LHS = (MTREETOKEN problem CombineSolutions NoOfSubproblems)

. output’

where

(output’, feedback)

= SplitStream
((map FEEDBACKTAG oldsubproblems) ++
(map FEEDBACKTAG Subproblems) ++
(map LayerOf (siblingproblems+-feedback)))

where

Subproblems = Decompose problem

NoOfSubproblems = length Subproblems

We know that map FEEDBACKTAG is distributive over “++", giving

195

LHS = (MTREETOKEN problem CombineSolutions NoOfSubproblems)

. output’

where

(output’, feedback)

= SplitStream
((map FEEDBACKTAG oldsubproblems++Subproblems) ++
(map LayerOf (siblingproblems++feedback)))

where

Subproblems = Decompose problem

NoOfSubproblems = length Subproblems

Now notice that

output’ = BuildStreamsOfTrees’ siblingproblems
(oldsubproblems—++-Subproblems)

so we have

LHS = (MTREETOKEN problem CombineSolutions NoOfSubproblems)
. BuildStreamsOfTrees’ siblingproblems
(oldsubproblems++Subproblems)
where
Subproblems = Decompose problem
NoOfSubproblems = length Subproblems

This is identical to the RHS.

196

Appendix B

Common Definitions

This appendix collects definitions of commonly used symbols and functions. Intermediary
definitions in program derivations are not generally included.

B.1 Symbols

Equality of types, used for defining synonyms for types. For example name ==
[Char].

Algebraic data type declaration. Used to construct a new data type from tagged
alternatives (separated by — and recursion. The tags are known as constructors.

Type specification/assertion. For example, f :: 7 assert the f is a member of the type
7. It is generally used to give a partial specification of the object to aid the reader’s
understanding and to aid compiler checking.

%
a — (3 is the type of a function which takes one parameter of type «, and returns a
result of type 5. @ — (8 —) is the type of a two-parameter function. The brackets
here can be omitted.

An underbrace is used in this book to mark an expression which is shortly to be

rewritten.

V
Logical or.

VAN

Logical and.

197

-
The infix form of the append function, defined below.

[

Shorthand forms of the CONS and NIL constructors of the List data type.

The expression “abc” is shorthand for the list of characters 'a’ : 'b": 'c’ : [].

(]
The infix form of the function compose. f o g denotes a function which applies g to
its parameter, and then applies f to the result.

(e]e)
The infix form of the function compose2. f oo g h is a two parameter function which
applies g to its first parameter, h to its second parameter, and applies f to the two
results.

L
Read “bottom”, L denotes a computation which does not terminate. When looking
at snapshots of a computation, L can be thought of as standing for a value which
has not yet been computed.

C
Read “approximates”. Informally x C y if further computation might refine x until
it is equal to y.

=y -
These symbols are used in this book for an ordering relation (analogous to < and >)
which is “well founded” —that is there exists no infinite chain of decreasing values.

#
An application a b can be marked a # b is its result must be undefined if b is
undefined—in which case it is called a “strict” application. A function definition f
a b c=ecan be marked f a by c = e if all applications of f to its second parameter
are strict.

Ol
The expression Of denotes the expression in which fis applied. This must be uniquely
determined. When written (O), reduction must be applied until O is applied to a
value.

B.2 Types

BinaryTree:

198

BinaryTree o := EMPTY |
LEAF o |
NODE (BinaryTree o) (BinaryTree «)

Bool:

Bool ::= TRUE | FALSE

Bundle:

Bundle « ::= BUNDLE «

BUNDLE is used only as a visible signal to the reader that the parameter data
structure is being used for bundling.

Char:
This type contains all the characters, and might be defined by the equation

Charz="a' | 'b' |'c ...’ |'A"|'B ... |0 |'T...'0 ...

It would normally include the characters of the ASCII code, and be ordered in the
same way.

Impact:

Impact ::= NOIMPACT |
IMPACT Num Impactinformation

List:

List a ::= NIL | CONS « (List «)

MultiTree:

MultiTree o 8 ::= MNODE « (o — [a] — 3) Num [MultiTree o 3]

In this kind of tree, each node carries a function as well as a list of subtrees. The
number should be equal to the number of subtrees.

199

MultiTreeToken:

MultiTreeToken o 3 ::= MTREETOKEN « (ov — [@] — 3) Num

This type is used in the breadth-first stream representation of the MultiTree type.
Pipeltem:

Pipeltem o 3 ::= PIPEITEM « 3

This is simply a tagged pair type, used instead of just (a, [3) for ease of readability.
It is need when pipelining and insert operation.

Sample:
Sample ::= HI | LO | XX

This is an approximation to the signal level on a wire, used in specifying digital
circuits.

Signal:

Signal == [Sample]

TaggedStreamltem:

TaggedStreamltem o § ::= OUTPUTTAG (MultiTreeToken «)
| FEEDBACKTAG «

This type is like a “union” type: it includes two different typed objects, requiring

that they be tagged to indicate which. It is used in the cyclic formulation of the
divide phase of DivideAndConquer.

B.3 Functions

append (++):
append :: [a] — [a] — [a]

append (a: as) bs = a : (append as bs)
append [] bs = bs

The application append as bs is normally written as+-+bs.

200

ApplyLNO:

ApplyLNO :: ([a] = a) = <> — <>

ApplyLNO op matrix
= MakeMatrix LocalOperation
where
LocalOperation (i,j)
= matrix sub (i,j), if OnBoundary matrix (i,j)
LocalOperation (i,j)

arc:
arc :: a — o — Bool
This relation is used to build assertions about process distribution. The assertion
arc a b requires the compiler to place the processes which compute expressions a and
b on separate processors, but to arrange for them to be able to communicate with
one another efficiently. Note that arc a b is equivalent to the assertion arc b a.
DivideAndConquer:

DivideAndConquer :: (o —)
= (= [f] = P)
— (a = [a])
— (o — Bool)
—

— [

201

DivideAndConquer SimplySolve CombineSolutions Decompose Trivial problem
= Solve problem
where
Solve problem = SimplySolve problem, if Trivial problem
Solve problem = CombineSolutions problem
(map Solve SubProblems) otherwise
where
SubProblems = Decompose problem

abs:

abs :: Num — Num

abs x = x, ifx>0

abs x = —x, otherwise
all:

all :: [Bool] — Bool

all = insert (A) TRUE
chain:

chain :: (Bool — Bool — Bool) — [(a« —)] — Bool

chain relation [f] = TRUE
chain relation (f; : f, : fs) = (relation f; f;) A (chain relation f; fs)

compose (0):

compose :: (B =) = (a—) > a—y

compose fg=fog=nh
where
hx=f(gx)

compose2 (0o):

202

compose2 = (B = Bo =) = (= B1) = (a = B2) = a — v
compose2 f gl g2 =fooglg2=nh

where
hx=f (gl x) (g2 x)

cond:

cond :: Bool - a - a — «
cond TRUE ab =a
cond FALSEab=b

construct:

construct :: [=] > a —
construct [| x =[]

construct (f : fs) x = (f x) : (construct fs x)

const:

const . @ - «
const Xx = x

divides:

divides :: Num — Num — Bool

divides p a is TRUE is p divides a exactly, False otherwise.
drop:

drop :: Num — [a] — [¢]

drop n (a : as) = drop (n—1) as, ifn#0

dropn|[]=1]] ifn#0
drop 0 as = as

203

earlier:

earlier :: Impact — Impact — Impact

earlier NOIMPACT NOIMPACT = NOIMPACT

earlier (IMPACT distl infol) NOIMPACT = (IMPACT dist1 infol)

earlier NOIMPACT (IMPACT dist2 info2) = (IMPACT dist2 info2)

earlier (IMPACT distl infol)
IMPACT dist2 info2

() = (IMPACT distl infol), if distl < dist2
earlier (IMPACT dist1 infol)
() =

IMPACT dist2 info2 (IMPACT dist2 info2), if distl > dist2

EvaluateTree:

EvaluateTree :: (MultiTree o) —

EvaluateTree (MNODE problem CombineSolutions n subtrees)
= CombineSolutions problem (map EvaluateTree subtrees)

EvenOnes:

EvenOnes :: [a] — [q]

EvenOnes [| =[]
EvenOnes [a0] = [a0]
EvenOnes (a0 : al : as) = a0 : (EvenOnes as)

fan:

fan :: (Bool — Bool — Bool) -+ a — [— 7] — Bool

fan relation a bs = all (map (relation a) bs)

filter:

204

filter :: («w — Bool) — [a] — [a]
filter predicate [| =[]

filter predicate (a : as) = a : (filter predicate as), if predicate a
filter predicate (a : as) = (filter predicate as), otherwise

Findlmpacts:

FindImpacts :: [Ray] — [Object] — [Impacts]
Findlmpacts rays objects = map (Firstimpact objects) rays

Firstimpact:

Firstimpact :: [Object] — Ray — Impact
Firstimpact objects ray = earliest (map (TestForlmpact ray) objects)

where
earliest impacts = insert earlier NOIMPACT impacts

from:

from :: Num — [Num]
fromn=n: (from (n + 1))

fst:
fst 2 (o, B) = «
fst (a, b) = a
generate:
generate :: (Num — a) — [¢]
generate f = map f (from 0)
hd:

205

hd :: [a] = «
hd (x : xs) = x

ident:

ident 1 @ —a
ident x = x

insert:
insert :: (@ > o —>a) > a—[a] >«

insert (op) base [| = base
insert (op) base [al, a2, a3, ---aN] = al op a2 opa3---opaN

The function parameter is written (op) here because it is convenient to use it in infix
form on the RHS. This function is applicable only when (op) is associative.

insertleft:

insertleft :: (@ — 8 = o) > a— [f] = «

insertleft f base [| = base
insertleft f base (a : as) = insertleft f (f base a) as

insertright:

insertright :: (« > 8 = 8) > 8 —=[a] = B

insertright f base [| = base
insertright f base (a : as) = f a (insertright f base as)

iterate:

iterate :: (o = a) = a — [q]
iterate f x = x : (iterate f (f x))

A useful alternative definition of iterate is

206

iterate f x = output
where
output = x : (map f output)
join:
join :: [[@]] = [¢]

join as = insert (++) [] as

ladder:

ladder :: (Bool — Bool — Bool) — [« —] — [y — J] — Bool

ladder relation [] [| = TRUE
ladder relation (a : as) (b : bs) = (relation a b) A (ladder relation as bs)

length:

length :: [a] — Num

length [] =0
length (a : as) = 1 + (length as)

A more efficient definition (when strictness analysis annotations are interpreted as
call-by-value parameter passing) is

length as = length’ 0 as
where
length’ n[] =n
length’ n (a:as) = length’ (n+1) as

ListToTreel:

ListToTreel :: [o] — BinaryTree o

207

ListToTreel [| = EMPTY
ListToTreel [a] = LEAF a
ListToTreel (a0:al:as) = NODE (ListToTreel (take m (a0:al:as)))
(ListToTreel (drop m (a0:al:as)))
where
m = (length (a0:al:as))/2

ListToTree2:

ListToTree2 :: [o] — BinaryTree o

ListToTree2 [| = EMPTY
ListToTree2 [a] = LEAF a

ListToTree2 (a0:al:as) = NODE (ListToTree2 (EvenOnes (a0:al:as)))
(ListToTree2 (OddOnes (a0:al:as)))

where

EvenOnes [| =[]

EvenOnes [a0] = [a0]

EvenOnes (a0 : al : as) = a0 : (EvenOnes as)
OddOnes [| =[]

OddOnes [a0] =[]
OddOnes (a0 : al : as) = al : (OddOnes as)

ListToVector:

ListToVector :: [a] — <a>

This is specified (but not implemented) by the requirement that for all 0 < i <
(length as)—1,

(ListToVector as) sub i = as sub i

MakelList:

208

MakeList :: Num — (Num — o) — [¢]

MakeList length f = VectorToList (MakeVector length f)

MakeMatrix:

MakeMatrix :: (Num, Num) — ((Num, Num) — o) - <a>

This is specified (but not implemented) by the requirement that for all 0 < i <
xBound and 0 < j < yBound,

(MakeMatrix (xBound,yBound) f) sub (i.j) = f (i,j)

MakePipeltem:

MakePipeltem :: Ray — Pipeltem Ray Impact
MakePipeltem ray = PIPEITEM ray NOIMPACT

MakeVector:

MakeVector :: Num — (Num — o) — <a>

This is specified (but not implemented) by the requirement that for all 0 < i <
bound,

(MakeVector bound f) sub i = fi

map:
map :: (@ — 8) = [a] = B
map f[] =]
map f (x:xs) = (f x) : (map f xs)
map2:

209

map2 :: (o = —) = [a] =[] = []
map2 op (a: as) (b : bs) = (op a b) : (map2 op as bs)
map2 op [][] =[]

MatrixAll:

MatrixAll :: <Bool>> — Bool

This is specified by the requirement that for all 0 < i < xBound and 0 < j < yBound,
m sub (i,j) = TRUE

where (xBound,yBound) = MatrixBounds m.

MatrixBounds:

MatrixBounds :: <a>> — (Num,Num)

This is specified by the requirement that

MatrixBounds (MakeMatrix (xBound,yBound) f) = (xBound,yBound)

MatrixMap:

MatrixMap :: (o =) = <> = K>
We require that

MatrixMap f (MakeMatrix (xBnd,yBnd) g)
= MakeMatrix (xBnd,yBnd) (f o g)

MatrixMap2:

MatrixMap2 :: (a0 = = 7)) = <a>> = L0> Lyv>
We require that

MatrixMap2 f (MakeMatrix (xBnd,yBnd) g)
(MakeMatrix (xBnd,yBnd) h) = MakeMatrix (xBnd,yBnd) (f oo g h)

210

mesh:

mesh :: <a>> — Bool
mesh matrix = MatrixAll (ApplyLNO LinkNeighbours matrix)
where

LinkNeighbours [west, south, east, north, home]
= fan arc home [west, south, east, north]

MTreeToStream:

MTreeToStream :: MultiTree o 5 — [MultiTreeToken « 3]
MTreeToStream tree = ListOfMTrees ToStream [tree]

where

ListOfMTreesToStream :: [MultiTree oo 5] — [MultiTreeToken «]

ListOfMTreesToStream trees = (RootsOf trees) ++
(ListOfMTreesToStream (SubtreesOf trees))

not:

not :: Bool — Bool

not TRUE = FALSE

not FALSE = TRUE
OddOnes:

OddOnes :: [a] — [a]

OddOnes [] =]

OddOnes [a0] =[]

OddOnes (a0 : al : as) = al : (OddOnes as)
OnBoundary:

211

OnBoundary :: <a>> — (Num,Num) — Bool

OnBoundary matrix (i,j) = (i=0) Vv (j=0) V (i=iBound—1) V (j=jBound—1)
where
(iBound,jBound) = MatrixBound matrix

pair:

pair = a — 3 — (a,)

pair ab = (a, b)
pipeline:

pipeline :: [— o] = [a] — [a]

pipeline fs xs = (insert (o) ident (map map fs)) xs
ply:

ply :: [(a« = B)] = [o] — [/]

ply [T[1=11

ply (f: fs)(x : xs) = (f x) : (ply fs xs)
replicate:

replicate :: Num — o — [a]

replicate 0 x = [|

replicate (n+1) x = x : (replicate n x)
reverse:

reverse :: [a] — [a]

reverse [| =[]
reverse (x : xs) = (reverse xs) ++ [X]

212

select:

select :: [Bool] — [a] — «

select (FALSE : tests) (x : xs) = select tests xs
select (TRUE : tests) (x : xs) = x

snd:

snd :: (o, B) —
snd (a, b) =b

split:

split :: Num — [a] — ([a].[a])

split 0 as = ([], as)

split O []=([1. [1]), ifn#0
split n (a:as) = (a: front, back), ifn#0
where

(front, back) = split (n—1) as

SplitStream:

SplitStream :: [TaggedStreamltem « 3] — ([MultiTreeToken « 5], «)

SplitStream [1= ([]. [])

SplitStream ((OUTPUTTAG token) : rest)
= (token : restl, rest2)
where
(restl, rest2) = SplitStream rest

SplitStream ((FEEDBACKTAG subproblem) : rest)
= (restl, subproblem : rest2)
where
(restl, rest2) = SplitStream rest

213

StreamOfMatricesToMatrixOfStreams:

StreamOfMatrices ToMatrixOfStreams :: [<a>] — <[a]>

StreamOfMatricesToMatrixOfStreams ms
= MakeMatrix (MatrixBounds (hd ms)) EachStream

where
EachStream (i j) = generate Elements
where
Elements k = (ms sub k) sub (i,))
StreamToMTree:

StreamToMTree :: [MultiTreeToken o 5] — Multitree o /3
StreamToMTree stream = StreamToListOfMTrees 1 stream
where
StreamToListOfMTrees :: [MultiTreeToken « 5] — [Multitree « 3]
StreamToListOfMTrees 0 [| =[]
StreamToListOfMTrees n stream
= JoinLayers genl subtrees, n#0
where
genl = FirstGeneration n stream

subtrees = StreamToListOfMTrees m (SubsequentGenerations n stream)
m = SizeOfNextGeneration genl

This subscripting operator is used for lists, vectors and matrices. For lists its defini-
tion is

(sub) :: [a] = Num — «

(a:a)_bO
s) sub (n+) as sub n

214

sum:

sum :: [Num] — Num

sum as = insert (+) 0 as = insertleft (+) 0 as = insertright (+) 0 as

take:

take :: Num — [a] — [q]

take n (a : as) = a: (take (n—1) as), ifn#0
taken[] =] ifn#0
take 0 as = []

Takelmpact:

Takelmpact :: Pipeltem Ray Impact — Impact
Takelmpact (PIPEITEM ray impact) = impact

TestForlmpact:

TestForlmpact :: Ray — Object — Impact

This function’s definition is not given here to avoid unnecessary detail. It checks
whether Ray intersects with Object. If not it returns NOIMPACT. If so, it returns an
Impact data object containing details of how far along the ray the impact occurred,
where the rays (if any) contributing to this ray’s colour come from, and details of
the surface characteristics in the form of a function which combines the colours of
the contributory rays to yield the colour of the original ray.

tl:
tl:: [a] — [o]
tl (x : xs) = xs
transpose:

215

transpose :: [[o]] = [[@]]

transpose rows = [|, if rows = []
transpose rows = (map hd rows) : (transpose (map tl rows)) otherwise

The important use for this function is in transforming an infinite stream of (finite
length) lists into a (finite length) list of infinite streams—and back again.

TreeTolistl:

TreeTolListl :: BinaryTree a — [¢]

TreeTolListl EMPTY =[]

TreeTolListl (LEAF a) = [a]

TreeTolListl (NODE subtreel subtree2) = (TreeToListl subtreel)
++ (TreeToListl subtree2)

TreeTolist2:

TreeTolList2 :: BinaryTree a@ — [¢]

TreeTolList2 EMPTY =[]
TreeTolList2 (LEAF a) = [4]

TreeToList2 (NODE evensubtree oddsubtree)
= (merge (TreeToList2 evensubtree) (TreeToList2 oddsubtree))
where
merge (a0 : evens) (al : odds) = a0 : al : (merge evens odds)
merge as [| = as

until:

until :: (Num — Bool) — [Num] — Num
until predicate xs = select (map predicate (from 0)) xs
where

select (FALSE : tests) (x : xs) = select tests xs
select (TRUE : tests) (x : xs) = x

VectorBound:

216

VectorBound :: <a> — Num

We specify that

VectorBound (MakeVector bound f) = bound

VectorTolList:

VectorTolList :: <a> — [a]

This is specified by the requirements that

(VectorToList (MakeVector bound f)) sub i = (MakeVector bound f) sub i

and

length (VectorTolList (MakeVector bound f)) = bound

217

218

Appendix C

Programming in a real functional
language

The programming language used in this book is not precisely the same as any commonly-
available programming language. In fact only a small part of a real programming language
is used, so the translation process required is really very small. It differs only superficially
from several more accessible languages:

Miranda' [Tur86]. A Miranda interpreter and program development environment is
commercially available from its originator, D.A. Turner.

Orwell (available at Oxford University)

Lazy ML [Aug84]

Haskell [HWA*88]. This language proposal will hopefully result in a widely accessible
public-domain implementation, but none exists at the time of writing.

The language SASL (also originated by Turner) may be suitable for experimentation. For
our purposes its resembles Miranda but lacks a type system. A third, similar, language
implementation distributed by Turner’s group, KRC, is not suitable because it lacks the
where construct.

The LispKit system, which is described in Henderson’s textbook [Hen80], and SUGAR,
described by Glaser, Hankin and Till [GHT84] might also be suitable for experimentation,
but lack pattern-matching as well as a type system.

Strict languages

The language used here is lazy: a parameter expression is evaluated only if and when
the application in which it appears needs its value to return a result. An implementation
must employ normal-order reduction (see page 51), unless strictness analysis indicates that
applicative order will be safe.

In a strict (that is, call-by-value) language, a parameter is always evaluated before it is
passed to the function body. Implementations of such languages are much more common.

Miranda is a trademark of Research Software Ltd.

219

Unfortunately translating a program written in a lazy language into a program which will
work under a strict interpretation is quite complicated, and not recommended. Details
are given in [GHT84].

C.1 Differences from Miranda

The main purpose of this appendix is to give enough information for the programs in
this book to be tried out under the Miranda system. Users of other implementations
must glean what they can. Reasons for the differences are summarised at the end of the
appendix.

Lexical convention for constructors

All constructors (e.g. NIL, CONS, LEAF, NODE, etc.) appeared in upper case, while all
other identifiers were of mixed case. In Miranda, any identifier starting with a capital is
defined to be a constructor, and all other names must begin in lower case.

Type variables

Type variables were referred to as a, 3, 7 etc. In Miranda they are written *, **, **x etc.

Pattern matching and guards

Miranda’s syntax includes ours as a special case, but does not demand that all equations
defining an object be mutually exclusive. Miranda’s semantics differs: patterns are tested
sequentially from the top of the page downwards. This means that functions like the non-
strict or of page 52 will not work as expected. The components of a particular equation’s
pattern are also tested sequentially, in an unspecified order.

Vectors and matrices
Miranda has no vectors or matrices. Lists and lists of lists can be used instead, provided
efficiency is not a serious concern.

Built-in operators

Present-day keyboards have tied Miranda to forms like “<=” where “<” appears in this
book, “x¥” for “x”, “=>" for “—=” “&” for “A” and so on. Function composition, f o g, is
written “f . g” in Miranda. There is no counterpart to “oo”.

The subscripting operator sub is used for lists, vectors and matrices. In Miranda, its

only counterpart is the infix “!” operator for indexing lists.

The list type and its shorthand

The [a, b, ...], “” and []| notations were introduced as shorthand for a list data type
defined by

220

List & ::= NIL | CONS « (List «)

In Miranda they are different (but isomorphic) types.

C.1.1 Examples

Binary trees: as in this book:

BinaryTree o ::= EMPTY |
LEAF « |
NODE (BinaryTree) (BinaryTree «)

In Miranda:

binary_tree * ::= Empty |
Leaf * |
Node (binary_tree *) (binary_tree *)

Square root: as in this book:

sgrt :: Num — num

sqrt a = until converges xs
where
converges 0 = FALSE

converges (i4+1) = abs(((xs sub (i+1)) — (xs sub i))/(xs sub(i+1))) < €

xs = generate NextEstimate
where
NextEstimate 0 = a/2
NextEstimate (i+1) = ((xs sub i) + a/(xs sub i))/2

until :: (Num — Bool) — [Num] — Num

until predicate xs = select (map predicate (from 0)) xs
where
select (FALSE:tests) (x:xs) = select tests xs
select (TRUE:tests) (x:xs) = x

In Miranda:

sqrt :: num -> num

sqrt a = until converges xs
where
converges 0 = False
converges (i+1) = abs(((xs ! (i+1))

221

- (xs ! 1))/(xs ! (i+1))) <= epsilon
xs = generate NextEstimate
where
NextEstimate 0 = a/2
NextEstimate (i+1) = ((xs ! i) + a/(xs ! 1))/2

until :: (num -> bool) -> [num] -> num

until predicate xs = select (map predicate (from 0)) xs
where
select (False:tests) (x:xs) = select tests xs
select (True:tests) (x:xs) =

C.2 Reasons for the differences

The lexical differences, such as the uses of “—” instead of “->”, and the admission of
capitals in ordinary identifiers, were simply to improve readability, at the suggestion of
the reviewers.

The only significant change is in the rules concerning overlapping patterns and guards.
When reasoning about programs, it is important to be able to treat equations indepen-
dently of one another, so they must not overlap. However, in a practical programming
language design different criteria apply:

e Guards: in a programming language, it is important that a compiler be able to verify
that a program is well formed. To check whether guards overlap is not computable
in general. By contrast, in a language used for specifying and verifying programs,
the onus is on the human.

e Patterns: patterns differ from guards because a compiler can perform a full analysis
of overlapping and missing cases. The sequential order of testing patterns used by
Miranda simplifies and shortens programs: one can write

EachElement
EachElement
EachElement
EachElement

0,0) = edge
i,0) = edge
0,j) = edge
i.j) = f (asub (ij-1)) (a sub (i—L1j))

whereas we had to introduce guards to disambiguate the four equations.

A simple resolution of this could be to introduce a syntactic construct for definition by
sequential pattern/guard matching.

Miranda and most other languages with pattern matching have avoided having to use
a parallel pattern testing mechanism like our general normalisation strategy because it
is difficult to implement without a large run-time overhead. This leads to rather more
awkward rules for program syntax and semantics than ours. By contrast, committed
choice logic languages like PARLOG exploit parallelism in guard evaluation as a positive
feature.

222

Tagged tuples

One subtlety touched on only slightly in the text is the use of constructors to tag data types
which are really only aggregates of their components. The main example (see page 180)
was

Pipeltem o « ::= PIPEITEM a «

The constructor PIPEITEM was introduced solely so provide a visual cue to what is going
on. It does not serve to distinguish different alternative cases. We assumed that we could
have used the pair type

Pipeltem o oo == (o, «)

instead. In Miranda they are nearly but not precisely equivalent. Suppose we define

f (PIPEITEM a b) = TRUE
In Miranda, f L = 1. By contrast, if we write
g (a, b) = TRUE

then f 1. = TRUE. In Miranda, the rule is that the parameter must be evaluated enough to
uncover the constructors appearing on the LHS before the equation can be applied. Some
other languages, notably Haskell, treat data types with just one alternative as a special
case. Such a constructor is called “irrefutable”, and a precise equivalence with pairs holds.

223

224

Bibliography

[AB84]

[ACESS]

[AESS]

[AGM]

[AHS7]

[AHUS3]

[AI 88]

[AI86]

[ANS7]

[ANSS]

[App68]

[ASS5]

Arvind and J.D. Brock. Resource managers in parallel programming. Journal
of Parallel and Distributed Computing, 1:5-21, 1984.

Arvind, David E. Culler, and Kattamuri Ekanadham. The price of asyn-
chronous parallelism: An analysis of dataflow architectures. 1988. In [JR89).

Arvind and Kattamuri Ekanadham. Future scientific programming on paral-
lel machines. In Supercomputing: 1st International Conference Proceedings,
Athens, Greece, June 1987, pages 639—686. Springer Verlag, June 1988.

Samson Abramsky, Dov Gabbay, and Tom Maibaum. Handbook of Logic in
Computer Science. Oxford University Press. Forthcoming.

S. Abramsky and C.L. Hankin, editors. Abstract Interpretation of Declarative
Languages. Ellis Horwood, 1987.

A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Algorithms.
Addison-Wesley, 1983.

AT Limited. STRAND-88 language definition. Technical report, AT Limited,
Greycaine Rd. Watford, Herts, UK, 1988.

Arvind and R.A. Tanucci. Two fundamental issues in multiprocessing. Memo
226-5, MIT Computation Structures Group, July 1986. Reprinted in [Tha87,
pages 140-164.].

Arvind and R.S. Nikhil. Executing a program in the MIT tagged dataflow
architecture. 1987. In [dBNT87a, pages 1-29].

Alexander Aiken and Alexandru Nicolau. Perfect pipelining: A new loop
parallelisation technique. 1988. In [Gan88, pages 221-235].

Arthur Appel. Some techniques for shading machine renderings of solids. In
AFIPS 1968 Joint Computer Conference, volume 32, pages 37-45, 1968.

S. Abramsky and R. Sykes. SECD-M: a virtual machine for applicative
multiprogramming. In Functional Programming and Computer Architecture.
Springer Verlag, 1985. LNCS 201.

225

[ASS85]

[ASUS6]

[Aug84]

[Aug87]

[Bac78]

[Bar84]

[BBKS7]

[BC8T]

[BCMST]

[Bevs7]

(BGS82]

[BJ82]

[BM79]
[BMSS0]

[Boo80]

H. Abelson, G.J. Sussman, and J. Sussman. Structure and Interpretation of
Computer Programs. MIT Press, 1985.

A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques
and Tools. Addison Wesley, 1986.

L. Augustsson. A compiler for Lazy ML. In Conference Record of the 1984
ACM Symposium on Lisp and Functional Programming, 1984.

Lennart Augustsson. Compiling Lazy Functional Languages, Part II. PhD
thesis, Department of Computer Sciences, Chalmers University of Technol-
ogy, Goteborg, Sweden, 1987.

J. Backus. Can programming be liberated from the von Neumann style? a
functional style and its algebra of programs. Communications of the ACM,
21(8), August 1978.

H.P. Barendregt. The Lambda Calculus — Its Syntax and its Semantics.
Number 3 in Studies in Logic. North Holland, second edition, 1984.

D.I. Bevan, G.L. Burn, and R.J. Karia. Overview of a parallel reduction
machine project. 1987. In [dBNT87b, pages 394-411].

D.A. Bailey and J.E. Cuny. An approach to programming process inter-
connection structures: Aggregate rewriting graph grammars. 1987. In
[dBNT87a, pages 112-123].

Duane A. Bailey, Janice E. Cuny, and Bruce B. MacLeod. Reducing com-
munication overhead: a parallel code optimisation. Journal of Parallel and
Distributed Computing, 4:505-520, 1987.

D.I. Bevan. Distributed garbage collection using reference counting. 1987.
In [dBNT87a, pages 176-187].

R.A. Brooks, R.P. Gabriel, and G.L. Steele. An optimising compiler for
lexically-scoped Lisp. SIGPLAN Notices, 17(6), June 1982.

Dines Bjorner and Cliff B. Jones. Formal Specification and Software Devel-
opment. Prentice Hall, 1982.

R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press, 1979.

R.M. Burstall, D.B. MacQueen, and D.T. Sannella. Hope: An experimental
applicative language. In Proceedings of the 1980 Lisp Conference, Stanford,
California, pages 136-143, August 1980. Also Univ. of Edinburgh Dept. of
Computer Science report CSR-62-80.

R. Book. Formal Language Theory: Perspectives and Open Problems. Aca-
demic Press, 1980.

226

[Bur84a|

[Bur84b]

[Bur87a]

[Bur87b]

[BYEG+87a]

[BYEG+87b]

[BW8S]

[CDJ84]

[CGMNSO]

[Che84]

[Chu41]
[CL73]

[CT77]

[Cur86]

[CW85]

R.M. Burstall. Programming with modules and typed functional program-
ming. In Proceedings of the International Conference on Fifth Generation
Computer Systems 1984, pages 103-112. ICOT, Japan, 1984.

F.W. Burton. Annotations to control parallelism and reduction order in
the distributed evaluation of functional programs. ACM Transactions on
Programming Languages and Systems, 6(2):159-174, April 1984.

G.L. Burn. Evaluation transformers — a model for the parallel evaluation of
functional languages (extended abstract). 1987. In [Kah87].

F.W. Burton. Functional programming for concurrent and distributed com-
puting. The Computer Journal, 30(5):437-450, 1987.

H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway,
M.J. Plasmeijer, and M.R. Sleep. Towards an intermediate language for
graph rewriting. 1987. In [dBNT87b, pages 159-174].

H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway,
M.J. Plasmeijer, and M.R. Sleep. Term graph rewriting. 1987. In [dBNT87b,
pages 141-158].

R. Bird and P. Wadler. Introduction to Functional Programming. Prentice
Hall, 1988.

F.B. Chambers, D.A. Duce, and G.P. Jones, editors. Distributed Computing.
Academic Press, 1984.

T.J.W. Clarke, P.J.S. Gladstone, C.D. MacLean, and A.C. Norman. SKIM
— the s, k, i reduction machine. In Proceedings of the 1980 ACM Lisp
Conference, pages 128-135, August 1980.

Marina C. Chen. A parallel language and its compilation to multiprocessor
machines or VLSI. In Conference Record of the 11th Annual ACM Sympo-
stum on the Principles of Programming Languages. ACM, June 1984.

A. Church. The Calculi of A-conversion. Princeton University Press, 1941.

C. Chang and R.C. Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, 1973.

K.L. Clark and S.A. Tarnlund. A first order theory of data and programs.
In B. Gilchrist, editor, Information Processing 77: Proceedings of the IFIP
Congress 77, pages 939-944. Elsevier/North-Holland, 1977.

P.-L.. Curien. Categorical Combinators, Sequential Algorithms and Func-
tional Programming. Pitman/Wiley, 1986.

L. Cardelli and P. Wegner. On understanding types, data abstraction and
polymorphism. Computing Surveys, 17(4), December 1985.

227

[Dar81]

[Dar82]

[dBNTS7a]

[dBNTS7b]

[DCF+87]

[De8S]

[Deu85]

[DHTS2]

[DL86]

[DMS82]

[Eck46]

[E1182]

[Ers82]

[Fai82]

[Fau82]

J. Darlington. The structured description of algorithm derivations. In
de Bakker and van Vliet, editors, Algorithmic Languages, pages 221-250.
North-Holland Publishing Company, 1981.

J. Darlington. Program transformation. 1982. In [DHTS82].

J.W. de Bakker, A.J. Nijman, and P.C. Treleaven, editors. PARLE, Parallel
Architectures and Languages Furope, volume II. Springer Verlag, June 1987.
LNCS 259.

J.W. de Bakker, A.J. Nijman, and P.C. Treleaven, editors. PARLE, Parallel
Architectures and Languages Furope, volume 1. Springer Verlag, June 1987.
LNCS 258.

John Darlington, Martin Cripps, Tony Field, Peter G. Harrison, and Mike J.
Reeve. The design and implementation of ALICE: a parallel graph reduction
machine. 1987. In [Tha87].

John Darlington and et al. An introduction to the FLAGSHIP programming
environment. 1988. In [JR89].

D. Deutsch. Quantum theory, the Church-Turing principle and the universal
quantum computer. Proceedings of the Royal Society of London, A(100):97—
117, 1985.

J. Darlington, P. Henderson, and D.A. Turner. Functional Programming and
its Applications. Cambridge University Press, 1982.

D. DeGroot and G. Lindstrom, editors. Logic Programming, Functions, Re-
lations and Equations. Prentice-Hall, 1986.

L. Damas and R. Milner. Principal type schemes for functional programs. In
Proceedings of the Ninth Annual Symposium on Principles of Programming
Languages. ACM SIGPLAN, 1982.

J.P. Eckert, Jr. A parallel channel computing machine. 1946. Lecture 45 in
[GAB*43].

J.R. Ellis. BULLDOG: a Compiler for VLIW Architectures. MIT Press, 1982.

A.P. Ershov. Mixed computation: Potential applications and problems for
study. Theoretical Computer Science, 18:41-67, 1982.

J. Fairbairn. The Design and Implementation of a Simple Untyped Language
based on the A-calculus. PhD thesis, University of Cambridge, 1982.

A.A. Faustini. The Equivalence of an Operational and a Denotational Se-
mantics for Pure Dataflow. PhD thesis, Department of Computer Science,
University of Warwick, April 1982.

228

[Fea86]

[FHSS]
[FK86]

[FMS8S]

[FPZ8S)]

[FS88]

[Fut71]

[FW87]

[GAB*48]

[GAB*85]

[Gan88]

[GHS86a]

[GHS6b)]

M.S. Feather. A survey and classification of some program transformation
approaches and techniques. IFiP TC-2 Working Conference on Program
Specification and Transformation (preprint), Bad Tolz, F.R.G., April 1986.

A.J. Field and P. Harrison. Functional Programming. Addison Wesley, 1988.

J.H. Fasel and R.M. Keller, editors. Graph Reduction: Proceedings of a
Workshop, Santa Fe, New Mexico, USA. Springer Verlag, 1986. LNCS 279.

You-Chin Fuh and Prateek Mishra. Type inference with subtypes. 1988. In
[Gan88|.

M.P. Fourman, W.J. Palmer, and R.M. Zimmer. Core tools for the next
generation of electronics CAD. In UK IT 88 Conference Publication, pages
428-430, Department of Trade and Industry, Kingsgate House, 66—74 Victo-
ria St. London, 1988. Information Engineering Directorate.

Y. Feldman and E. Shapiro. Spatial machines: Towards a more realistic ap-
proach to parallel computation. Technical report, Department of Computer
Science, Weizmann Institute for Science, Rehovat 76100, Israel, 1988.

Y. Futamura. Partial evaluation of computation process — an approach to a
compiler-compiler. Systems, Computers, Controls, 2(5):45-50, 1971.

Jon Fairbairn and Stuart Wray. Tim: A simple, lazy abstract machine to
execute supercombinators. 1987. In [Kah87).

H.H. Goldstine, H.A. Aitken, A.W. Burks, J.P. Eckert, Jr., J.B. Mauchly,
and J. von Neumann. Theory and techniques for design of electronic digital
computers, lectures given at the moore school of engineering, university of
philadelphia, 8th july — 31 august 1946. Reports 48-7 to 48-10, Moore School
of Electrical Engineering, University of Pennsylvania, June 1948. Reprinted
as [GAB'85].

H.H. Goldstine, H.A. Aitken, A.W. Burks, J.P. Eckert, Jr., J.B. Mauchly,
and J. von Neumann. The Moore School Lectures, volume 9 of Charles
Babbage Institute Reprint Series for the History of Computing. MIT Press
and Tomash Publishers, 1985.

H. Ganzinger, editor. ESOP ’88: the second FEuropean Symposium on Pro-
gramming. Springer Verlag, 1988. LNCS 300.

Hugh Glaser and Sean Hayes. Another implementation technique for ap-
plicative languages. In Proceedings of ESOP ’86: the Furopean Symposium
on Programming, Saarbrucken, pages 70-81. Springer Verlag, 1986. LNCS
213.

B. Goldberg and P. Hudak. Alfalfa: Distributed graph reduction on a hy-
percube multiprocessor. Preprint, Yale University Department of Computer
Science, November 1986.

229

[GHS86¢]

[GHTS4]

[GKS87]

[GKWS5]

[GMS3]

[GMS6]

[GMW79)

[Gog88|

[Gol87]

[Gol88]

[Gor88]

[GPKKS?]

[Gre87]

(Gri71]
[GT79]

J.V. Guttag and J.J. Horning. Report on the LARCH shared language. Sci-
ence of Computer Programming, 6:103—134, 1986.

H. Glaser, C.L. Hankin, and D. Till. Principles of Functional Programming.
Prentice Hall, 1984.

J.R.W. Glauert, J.R. Kennaway, and M.R. Sleep. DACTL: a computational
model and compiler target language based on graph reduction. Report SYS-
C87-03, School of Information Systems, University of East Anglia, 1987.

J.R. Gurd, C.C. Kirkham, and I. Watson. The Manchester prototype
dataflow computer. Communications of the ACM, 28(1), January 1985.

Narain Gehani and Andrew McGettrick, editors. Software Specification Tech-
niques. Addison Wesley, 1985.

Joseph Goguen and José Meseguer. Unifying functional, object-oriented and
relational programming with logical semantics. In Bruce Shriver and Peter
Wegner, editors, Research Directions in Object-oriented Programming, pages
295-363. MIT Press, 1986.

M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF. Springer Verlag,
1979. LNCS 78.

Joseph Goguen. Higher-order functions considered unnecessary for higher-
order programming. Report SRI-CSL-88-1, SRI International, Menlo Park,
CA 94025, USA, January 1988.

Benjamin Goldberg. Detecting sharing of partial applications in functional
programs. 1987. In [Kah87].

Benjamin F. Goldberg. Multiprocessor Ezrecution of Functional Programs.
Research report, Yale University Department of Computer Science, April
1988.

Michael J.C. Gordon. Programming Language Theory and its Implementa-
tion. Prentice Hall, 1988.

D.D. Gajski, D.A. Padua, D.J. Kuck, and R.H. Kuhn. A second opinion on
data flow machines and languages. IEEE Computer, pages 58-69, February
1982. Reprinted in [Tha87, pages 165-176].

S. Gregory. Parallel Logic Programming in Parlog. Addison-Wesley, 1987.
D. Gries. Compiler Construction for Digital Computers. Wiley, 1971.

Joseph Goguen and Joseph Tardo. An introduction to OBJ: a language for
writing and testing software specifications. In Marvin Zelkowitz, editor, Spec-
ification of Reliable Software, pages 170-189. IEEE Press, 1979. Reprinted
in [GMS85].

230

[GT84]

[HB84]

[HBJSS]

[HDS5]

[Hen80]

[HG84]

[HG85]

[HK84]

[HM?76]

[HOS0]

[HOSS5]

[Hud86a]

[Hud86b)]

Hugh W. Glaser and Phil Thompson. Lazy garbage collection. Software
Practice and Experience, 17(1):1-4, 1984.

Paul Hudak and Adrienne Bloss. The aggregate update problem in functional
programming systems. In Proceedings of the 12th Annual Symposium on
Principles of Programming Languages. ACM SIGPLAN, 1984.

Chris Hankin, Geoff Burn, and Simon Peyton Jones. A safe approach to
parallel combinator reduction. Theoretical Computer Science, 56(1):17-36,
January 1988.

F.K. Hanna and N. Daeche. Specification and verification using higher-
order logic. In C.J. Koomen and T. Moto-oka, editors, Computer Hardware
Description Languages and their Applications. Elsevier Science Publishers
B.V. (North Holland), 1985.

P. Henderson. Functional Programming, Application and Implementation.
Prentice Hall, 1980.

P. Hudak and B. Goldberg. Experiments in diffused combinator reduction.
In Conference Record of the 1984 ACM Symposium on Lisp and Functional
Programming, August 1984.

P. Hudak and B. Goldberg. Distributed execution of functional programs us-
ing serial combinators. IEEE Transactions on Computers, C-34(10), October
1985.

Paul Hudak and David Kranz. A combinator-based compiler for a functional
language. In Proceedings of the 11th Annual Symposium on Principles of
Programming Languages, pages 122-132. ACM SIGACT/SIGPLAN, 1984.

Peter Henderson and James H. Morris. A lazy evaluator. Technical Report
Series, number 85, Computing Laboratory, University of Newcastle upon
Tyne, UK, 1976.

G. Huet and D.C. Oppen. Equations and rewrite rules. Technical Report
CSL-111, SRI International, Menlo Park, California, USA, January 1980.
Also in [Boo80].

C.M. Hoffman, M.J. O’Donnell, and R.I. Strandh. Implementation of
an interpreter for abstract equations. Software Practice and Fxperience,
15(12):1185-1204, December 1985.

P. Hudak. The denotational semantics of a para-functional programming
language. Report YALEU/DCS/TR-484, Yale University Department of
Computer Science, July 1986.

P. Hudak. Para-functional programming. IEFE Computer, pages 60-70,
August 1986.

231

[Hud87]

[Hug83|

[Hug84]

[Hug87]

[HV87]

[HWA+88]

[HZ83]

[JCHS5)]

[Joh84a]

[Joh84b]

[Joh87]

[Jon84]

P. Hudak. A semantic model of reference counting and its abstraction. 1987.
In [AHS8T].

J. Hughes. The design and implementation of programming languages. Tech-
nical Monograph PRG-40, Oxford University Programming Research Group,
July 1983.

J. Hughes. Why functional programming matters. Report 16, Program-
ming Methodology Group, University of Goteborg and Chalmers Institute
of Technology, Sweden, November 1984.

John Hughes. Backwards analysis of functional programs. Departmental
Research Report CSC/87/R3, Department of Computer Science, University
of Glasgow, March 1987.

Pieter H. Hartel and Willem G. Vree. Parallel graph reduction for divide-and-
conquer applications. Preprint, Computing Science Department, University
of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, February
1987.

P. Hudak, P. Wadler, Arvind, B. Boutel, J. Fairbairn, J. Fasel, J. Hughes,
T. Johnsson, D. Kieburtz, J. Launchbury, S. Peyton Jones, R. Nikhil,
M. Reeve, D. Wise, and J. Young. Report on the functional programming
language Haskell. Draft proposed standard circulated by IFIP WG.2.8., De-
cember 1988.

E. Horowitz and A. Zorat. Divide and conquer for parallel processing. IEEE
Transactions on Computers, C-32(6):582-585, 1983.

S.L. Peyton Jones, C. Clack, and N. Harris. GRIP — a parallel graph reduc-
tion machine. Internal Note 1665, Dept. of Computer Science, University
College London, February 1985.

S.D. Johnson. Synthesis of Digital Designs from Recursion FEquations. Dis-
tinguished Dissertation Series. MIT Press, 1984.

Thomas Johnsson. Efficient compilation of lazy evaluation. In Proceedings of
the ACM SIGPLAN °84 Symposium on Compiler Construction, June 1984.
Published as ACM SIGPLAN Notices Vol. 19 no. 6.

Thomas Johnsson. Compiling Lazy Functional Languages. PhD thesis,
Department of Computer Sciences, Chalmers University of Technology,
Goteborg, Sweden, 1987.

S.B. Jones. A range of operating systems written in a purely functional style.
Report TR.16, University of Stirling, Dept. of Computer Science, September
1984.

232

[Jon87]

[TR89]

[TW75]

[Kae88|

[Kah74]

[Kah87]

[Kaj83]

[KES4]

[Kel74]

[Kel77]
[KKLWS1]

[KKR*86]

KL82]

[KL84]

[K1090]

S.L. Peyton Jones. The Implementation of Functional Programming Lan-
guages. Prentice-Hall, 1987.

C.R. Jesshope and K.D. Reinartz, editors. CONPAR 88. Cambridge Uni-
versity Press, 1989. (to appear).

K. Jensen and N. Wirth. Pascal User Manual and Report. Springer Verlag,
second edition, 1975.

Stefan Kaes. Parametric overloading in polymorphic programming lan-
guages. 1988. In [Gan88].

G. Kahn. The semantics of a simple language for parallel programming. In
Information Processing 74. North-Holland, 1974.

Gilles Kahn, editor. Functional Programming Languages and Computer Ar-
chitecture, Portland, Oregon. Springer Verlag, 1987. LNCS 274.

J.T. Kajiya. New techniques for ray tracing procedurally-defined objects.
ACM Transactions on Graphics, 2(3), July 1983.

G. Kedem and J.L. Ellis. The raycasting machine. In Proceedings of the
IEEE International Conference on Computer Design: VLSI in Computers
(ICCD ’84), pages 533-538, October 1984.

R.M. Keller. A fundamental theorem of asynchronous parallel computation.
In T. y. Feng, editor, Parallel Processing, Proceedings of the Sagamore Com-
puter Conference. Springer Verlag, August 1974. LNCS 24.

R.M. Keller. Look-ahead processors. Computing Surveys, 9(1), March 1977.

D.J. Kuck, R.H. Kuhn, B. Leasure, and M. Wolfe. The structure of an
advanced vectorizer for pipelined processors. In Proceedings of the 8th ACM
Symposium on Principles of Programming Languages, pages 207-218. ACM,
January 1981.

D.A. Kranz, R. Kelsey, J.A. Rees, P. Hudak, J. Philbin, and N.I. Adams.
ORBIT: an optimizing compiler for scheme. In Proceedings of the ACM
SIGPLAN 86 Symposium on Compiler Construction, pages 219-233. ACM,
June 1986. See also [Kra88].

R.M. Keller and G. Lindstrom. Approaching distributed database implemen-
tations through functional programming concepts. Technical Report UUCS
82-013, Department of Computer Science, University of Utah, June 1982.

R.M. Keller and F.C.H. Lin. Simulated performance of a reduction-based
multiprocessor. IEEE Computer, 17(7), July 1984.

J.W. Klop. Term rewriting systems. 1990. In [AGM].

233

[Kog81]

[Kragg)]

[KSLS6]

(KSS81]

[Lan64]

[Lee88|

[LHS83]

[May87]

IMCS0]

[McC67]

McG82]

[Mil83]

[Mil84]

[Mil85]

[IMNV73]

[Mog87]

P.M. Kogge. The Architecture of Pipelined Computers. McGraw-Hill, 1981.

David A. Kranz. ORBIT: An Optimizing Compiler for Scheme. Research
report, Department of Computer Science, Yale University, February 1988.
See also [KKR*86].

Robert M. Keller, Jon W. Slater, and Kevin T. Likes. Overview of Rediflow
IT development. 1986. In [FK86, pages 203-214].

H.-T. Kung, R. Sproull, and G. Steele, editors. VLSI Systems and Compu-
tations. Computer Science Press, Rockville, Md, 1981.

P.J. Landin. The mechanical evaluation of expressions. Computer Journal,
6(4):308-320, 1964.

Ching-Cheng Lee. Experience of implementing applicative parallelism on
CRAY-XMP. 1988. In [JR89].

H. Lieberman and C. Hewitt. A real-time garbage collector based on the
lifetime of objects. Communications of the ACM, 26(6):419-429, 1983.

D. May. Communicating processes and occam. Technical Note 20, Inmos
Ltd., 1000 Aztec West, Almondsbury, Bristol BS12 4SQ, UK, 1987.

C. Mead and L. Conway. Introduction to VLSI Systems. Addison Wesley
Publishing Company, 1980.

J. McCarthy. A basis for a mathematical theory of computation. In P. Braf-
fort and D. Hirschberg, editors, Computer Programming and Formal Sys-
tems. North-Holland, 1967.

J.R. McGraw. The VAL language: Description and analysis. ACM Trans-
actions on Programming Languages and Systems, 4(1):44-82, 1982.

R. Milner. A proposal for standard ML. Internal Report CSR-157-83, Dept.
of Computer Science, University of Edinburgh, 1983.

R. Milner. Using algebra for concurrency. 1984. In [CD.J84].

R. Milner. The use of machines to assist in rigorous proof. In C.A.R. Hoare
and J.C. Shepherdson, editors, Mathematical Logic and Programming Lan-
guages. Prentice-Hall International, 1985. Also Philosophical Transactions
of the Royal Society, Series A, Vol. 312 (1984).

Z. Manna, S. Ness, and J. Vuillemin. Inductive methods for proving proper-
ties of programs. Communications of the ACM, 16(8), August 1973.

Torben Mogenson. The application of partial evaluation to ray-tracing.
Preprint, Institute of Datalogy, University of Copenhagen, Univer-
sitetsparken 1, DK-2100 Kgbenhavn), Denmark, 1987.

234

[Mol83]

[Moo84]

[MPT85]

[MSA*+85]

[Myc81]

[NPASG]

[Pap89]

[PCSHST]

[Pep83]

[PM87]

[Quis4]

[RL77]

[RSCSS]

D.I. Moldovan. On the design of algorithms for VLSI systolic arrays. Pro-
ceedings of the IEEE, 71(1):113-120, January 1983.

David A. Moon. Garbage collection in a large Lisp system. In Conference
Record of the 198/ Symposium on Lisp and Functional Programming, pages
235-246. ACM, 1984.

J.D. Morison, N.E. Peeling, and T.L. Thorp. The design rationale for ELLA,
a hardware design and description language. In C.J. Koomen and T. Moto-

oka, editors, Computer Hardware Description Languages and their Applica-
tions. Elsevier Science Publishers B.V. (North Holland), 1985.

J.R. McGraw, S.K. Skedzielewski, S. Allan, R. Oldehoeft, J. Glauert,
C. Kirkham, B. Noyce, and R. Thomas. SISAL: Streams and iteration in
a single assignment language: reference manual. Manual M-146, Rev.1,
Lawrence Livermore National Laboratory, Livermore, CA, March 1985.

A. Mycroft. Abstract Interpretation and Optimising Transformations for
Applicative Programs. PhD thesis, University of Edinburgh, 1981.

Rishiyur S. Nikhil, Keshav Pingali, and Arvind. Id nouveau. CSG Memo
265, MIT Laboratory for Computer Science, Cambridge, MA 02139, July
1986.

Gregory M. Papadopoulos. Implementation of a General Purpose Dataflow
Multiprocessor. PhD thesis, Dept. of Electrical Engineering and Computer
Science, Massachussetts Institute of Technology, 77, Massachussetts Ave,
Cambridge MA 02139, June 1989. (expected).

S.L. Peyton Jones, C. Clack, J. Salkild, and M. Hardie. GRIP: a high
performance architecture for parallel graph reduction. 1987. In [Kah87].

P. Pepper, editor. Program Transformation and Programming Environments,
volume 8 of NATO ASI Series F (Computer and System Sciences). Springer
Verlag, 1983.

Dick Pountain and David May. A Tutorial Introduction to Occam Program-
ming. BSP Professional Books, Ornsley Mead, Oxford OX2 0EL, UK, 1987.

P. Quinton. Automatic synthesis of systolic arrays from uniform recurrent
equations. In Proceedings of the 11th International Symposium on Computer
Architecture, June 1984.

C.V. Ramamoorthy and H.F. Li. Pipeline architecture. Computing Surveys,
9(1), March 1977.

V.J. Rayward-Smith and A.J. Clark. Scheduling divide-and-conquer task
systems on identical parallel machines. 1988. In [JR89].

235

[Rus78]

[Sar89]

[Sch86]

[She88]

[SM77]

[SteT8|

[Ste84]

[Sto77]

[Sto85]

[Sto87]

[Suf82]

[Tha87]

[Tho81]

[TK77]

[TMS87]

[Tur79]

R.M. Russell. The cray-1 computer system. Communications of the ACM,
21(1), January 1978.

Vivek Sarkar. Partitioning and Scheduling Parallel Programs for FExecution
on Multiprocessors. Pitman/MIT Press, 1989.

D.A. Schmidt. Denotational Semantics, A Methodology for Language Devel-
opment. Allyn and Bacon, inc., 1986.

Mary Sheeran. Retiming and slowdown in RUBY. In G. Milne, editor, Pro-
ceedings of the IFIP WG10.2 International Workshop on Design for Be-
havioural Verification. North Holland, 1988.

[.LE. Sutherland and C.A. Mead. Microelectronics and computer science.
Scientific American, 236(9):210-228, September 1977.

Guy L. Steele Jr. RABBIT: a compiler for scheme. Al Laboratory Technical
Report 474, Artificial Intelligence Laboratory, Massachussetts Institute of
Technology, May 1978.

G. L. Steele. Common Lisp. Digital Press, Burlington, Massachusetts, 1984.

J.E. Stoy. Denotational Semantics: the Scott-Strachey Approach to Program-
ming Language Theory. MIT Press, 1977.

William Stoye. The Implementation of Functional Languages using Custom
Hardware. PhD thesis, University of Cambridge, December 1985. Published
as Computer Laboratory Technical Report Number 81.

Quentin F. Stout. Supporting divide-and-conquer algorithms for image pro-
cessing. Journal of Parallel and Distributed Computing, 4:95-115, 1987.

Bernard Sufrin. Formal specification of a display-oriented text editor. Science
of Computer Programming, 1:157-202, 1982.

S.S. Thakkar, editor. Selected Reprints on Dataflow and Reduction Archi-
tectures. IEEE Computer Society Press, 1987.

C.D. Thompson. The VLSI complexity of sorting. 1981. In [KSS81, pages
108-118].

C.D. Thompson and H.T. Kung. Sorting on a mesh-connected computer.
Communications of the ACM, 29(4):263-271, 1977.

Jack A. Test, Mat Myszewski, and Richard C. Swift. The Alliant FX/Series:
A language driven architecture for parallel processing of dusty deck Fortran.
1987. In [dBNT87h, pages 345-356].

David A. Turner. A new implementation technique for applicative languages.
Software - Practice And Ezperience, 9(1):31-49, 1979.

236

[Tur86]

[U1184]

[Val81]

[vdBvdHS86]

[Vit86]

[Vre87]

[WAS5]

[Wad81]

[Wad86]

[Wad87]
[Wad88a]

[Wad88h]

[WF84]

[WHGSA]

[Whi80]

D.A. Turner. An overview of Miranda. ACM SIGPLAN Notices, 21(12),
December 1986.

J.D. Ullman. Computational Aspects of VLSI. Computer Science Press,
1984.

L.G. Valiant. Universality considerations in VLSI circuits. IEEE Transac-
tions on Computers, C-30(2):135-140, 1981.

P.M. van den Broek and G.F. van der Hoeven. Combinatorgraph reduc-
tion and the Church-Rosser theorem. Preprint INF-86-15, Department of
Informatics, Twente University, The Netherlands, 1986.

Paul M.B. Vitanyi. Nonsequential computation and laws of nature. In VLST
Algorithms and Architecture, Loutraki, Greece. Springer Verlag, July 1986.
LNCS 227.

Willem G. Vree. The grain size of parallel computations in a functional
program. Preprint, Computer Science Department of the Dutch Water
Board Authority, Nijverheidsstraat 1, Post Box 5809, 2280 Rijswijk ZH,
The Netherlands, 1987.

W.W. Wadge and E.A. Ashcroft. Lucid, the Dataflow Programming Lan-
guage. Academic Press, 1985.

W.W. Wadge. An extensional treatment of dataflow deadlock. Theoretical
Computer Science, 13:3—15, 1981.

P. Wadler. Plumbers and dustmen: Fixing a space leak with a garbage
collector. Article distributed on the Functional Programming Mailing List
(moderated by J. Glauert, University of East Anglia)., April 1986.

P. Wadler. Strictness on non-flat domains. 1987. In [AH8T7].

P. Wadler. The concatenate vanishes. Article distributed on the Functional
Programming Mailing List (moderated by J. Glauert, University of East
Anglia)., January 1988.

Philip Wadler. Deforestation: Transforming programs to eliminate trees.
1988. In [Gan88, pages 344-358|.

C.-l. Wu and T.-y. Feng, editors. Tutorial: Interconnection Networks for
Parallel and Distributed Processing. IEEE Computer Society Press, 1984.

H. Weghorst, G. Hooper, and D.P. Greenberg. Improved computational
methods for ray tracing. ACM Transactions on Graphics, 3(1), January
1984.

T. Whitted. An improved illumination model for shaded display. Commu-
nications of the ACM, 23(6), June 1980.

237

[Wil84]
[Wil8sg]

[WIW+75]

[Wol89]

[WSWWS7]

[WW87]

WWss]

[You85]

R. Wilensky. LISPcraft. W.W. Norton, 1984.

Paul T.G. Williams. An approach to the design of a parallel functional lan-
guage. Master’s thesis, Department of Computing, Imperial College, London,
1988.

W. Wulf, R.K. Johnson, C.B. Weinstock, S.O. Hobbs, and C.M. Geschke.
The Design of an Optimizing Compiler. Elsevier, New York, 1975.

Michael Wolfe. Optimising Supercompilers for Supercomputers. Pitman/MIT
Press, 1989.

[an Watson, John Sarjeant, Paul Watson, and Viv Woods. Flagship compu-
tational models and machine architecture. ICL Technical Journal, 5(3):555—
574, May 1987.

Paul Watson and Ian Watson. An efficient garbage collection scheme for
parallel computer architectures. 1987. In [{BNT87a, pages 432-443].

J.H. Williams and E.L. Wimmers. Sacrificing simplicity for convenience:
Where do you draw the line? In Proceedings of the Fifteenth Annual Sym-
posium on Principles of Programming Languages, San Diego, USA. ACM
SIGPLAN, 1988.

M.F. Young. A functional language and modular architecture for scientific
computing. In Functional Programming Languages and Computer Architec-
ture, Nancy, France. Springer Verlag, September 1985. LNCS 201.

238

Index

«, (B etc. (type variables), 6, 220 Aho, Sethi and Ullman, 68
o (compose), 24, 202 Aiken, 74
oo (compose?), 24, 202 ALFALFA, 65, 74
L (“bottom”), 28, 29, 54 ALFL, 156
1, as “not yet”, 33 algebraic data types, 6
<, = (orderings), 37 algorithm design
—, to form function type, 9 communication in, 159
C (“approximates”), 29 ALICE, 65, 73
C (“approximates”), 39 all, 202

for functions, 39 Alvey Programme, viii

for lists, 32 annotation, 126
—_—— 11, 197 declarative, 123
{1}, 34 Appel, 120
O (“make process”), 128 append (++), 9, 200
++ (append), 9, 200 optimisation, 51
T propagating into functions, 121, 169
[1, 7 appendices, 3

application areas, 163
Abelson, Sussman and Sussman, 40, 42, application box, 56, 59
44, 45 compressed, 63

Abramsky, 41, 45, 54, 70 overwriting the, 57, 60
abs, 202 APPLY, 59
abstract computer architecture, 2 apply, 15
abstract interpretation, 29, 54, 70 apply operation, 56
abstract machine, 59, 69 APPLY?2, 63
abstraction ApplyLNO, 141, 201

combinator, 53 “approximates” (C), 29, 39
abstraction mechanisms, 123 arc, 126, 201

arc, 128 meaning of, 151

node, 130 arrays, see vectors, matrices
abstraction rule, 27 Arvind, 23, 45, 85, 119, 155
accumulating parameter, 56 Arvind and Brock, 41
activation record Ashcroft, 119

and space leaks, 73 assignment, 42
adder circuit, 100 and memory re-use, 40, 71
addition, bitwise, 101 lack of, 40
admissible predicates, 33 associativity, 79
Aho, 119 extension, 81

239

asynchronous
instruction scheduling, 119
Augustsson, 42, 56, 69, 70

Backus, 44, 157, 159
backwards analysis, 70
Bailey, 151, 157
balance problem, 96
Barendregt, 44, 73, 74
base case, 33, 166
behaviour of a process, 7
Bevan, 72, 74
bidirectional data flow, 126, 146
binary tree, 80
BinaryTree, 80
Bird and Wadler, 5, 43
on foldl and foldr, 18
“bisection” ordering, 166
BitwiseAdder, 101
Bjorner, 47
block structure, 10
in conventional languages, 69
blocking, 148
Bloss, 72
BNF (Backus-Naur Form), 6
Bool, 51
bottleneck, von Neumann, 159
“bottom” (L), 28, 29, 54
bounding volume, 112, 120
BOX, 60, 64
box
application, 56
proto-channel, 149
boxed interface, 56
boxed values, 55
boxing analysis, 55
to avoid BOX, 60
Boyer and Moore, 121
branch elimination, 63
breadth first, 107
breadth-first, 106
breadth-first tree-stream translation, 186
Brooks, 42
BUCKWHEAT, 74
building blocks, 13

240

BuildStreamsOfTrees, 109, 191
BuildTree, 107
BurLpog, 74
Bundle, 140
bundling, 140
elements of successive iterations, 143
Burn, 68, 70, 71, 150
Burstall, 42, 46, 121
Burton, 156
bus, 157
bus, 97

Caliban, 127
and Occam, 155
compiler structure, 147
examples, 137
garbage collection in, 148, 149
implementation, 146
normal form, 136, 146
semantics, 158
simplification of, 131
call-by-need, 55
call-by-value, 55, 57
in parallel graph reduction, 66
languages, 219
speed of, 42
CAM abstract machine, 70
cancellation rule, 27
Cardelli, 46
CarryOf, 101
Categorical Combinatory Logic, 70
chain, 129, 202
chain complete, predicates, 33
chain of compositions, 180
chain process network, 130
Chambers, 119
Chang and Lee, 121
channels, 148
and processes, 148
carrying non-streams, 150
carrying pointers, 149
creation and deletion, 149

proto, 149
Char, 6
Chen, M.C., 120

Church, 44
Church-Rosser property, see confluence
Church-Turing principle, 228
Clack, 65
Clarke, 69
code generation, 56
code generator, 57, 60
optimisations, 62
CodeBlock, 58
CodeGenerator, 58
combinational logic, 97
combinator abstraction, 53
combinator-based abstract machines, 69
combinators
S,K.I, 69
super, see supercombinators
CombineSolutions, 76
committed-choice non-determinism, 119,
222
common subexpression elimination, 50
common subexpressions, 72
communication
-to-computation ratio, 144, 158
channel, 7, 31, 33
in algorithm design, 159
optimisations, 151
patterns, 123
compaction, during garbage collection, 71
compile-time scheduling, 74
compiler
first, 163
parallelising, 163
compiler-generator, 160
compilers, 49
completeness, see declarative
complexity theory
for VLSI, 159
compose (o), 24, 202
compose2 (0o), 24, 202
computer graphics, 111
Computing Surface, 2
cond, 51, 52, 72, 203
confluence, 13
congestion, 147
connectivity, 95

conquer phase, 106, 112
CONS, 6
const, 203
constraint-propagation circuit simulator,
42
construct, 78, 203
Constructors, 6
curried, 8
constructors
and weak head normal form, 68
irrefutable, 223
lexical convention for, 220
contention, for environment, 69
continuation-passing style, 70
copying garbage collectors, 71
copying policies, 67, 151
correctness, 163
CRAY-XMP, 119
“crossing out” primes, 182
CTL, ALICE, 74

Culler, 119
Cuny, 151, 157
Curien, 70
Curry, H.B., 8
Currying, 8

currying, 5, 56, 63
cycle sum test, 161
cyclic data structures, 72

DACTL, 73
Daeche, 120
DAi1sy, 103
Damas, 46, 50
Darlington, 44, 73, 121, 178
on fold/unfold, 28
Darlington, Henderson and Turner, 44
data dependencies, 40
analysed at run-time, 119
chain of, 102
of process networks, 91
unexpected, 156
data dependency
and starvation, 161
and arc, 127
span of, in cycle, 152

data flow analysis, 70
data structures
evolving, 40, 42
data type transformation, 80, 107, 165
data type transformations, 51
data types, 6, 220
data-driven, 73
dataflow, 72, 119, 155
compilation for shared memory, 119
computer architecture, 85, 119
graph, 85
in contrast to process networks, 85
Manchester, 118
programming languages, 91, 119
deadlock, 160, 161
declarative annotation, 123, 126
declarative completeness, 41, 46
Decompose, 76
DEFINELABEL label, 63
definition rule, 27
definitions
by pattern matching, 8
in where clauses, 10
of variables, 7
parameterised, of functions, 7
pattern matching in, 12
recursive, see recursive definitions
DeGroot, 47
Delay, 99
denotational semantics, 120
destructive overwriting, 40
determinism, 1, 41, 45, 155, 163, 222
Deutsch, 159
difference lists, 169
diffusion of work, 74
digital view of circuit design, 102, 120
displays, 69
distribution of processes, 123
divide phase, 104, 112
divide-and-conquer, 67, 76, 119
divide phase, 104
ray tracer, 111
using process network, 104, 184
DivideAndConquer, 77, 104, 184, 201
divides, 203

242

“don’t know” values, 99
“double bonus”, 125

drop, 81, 165, 203

dynamic process networks, 154

eager evaluation of lists, 68
earlier, 92, 204
Eckert, 1, 163
EDVAC, 1
Ekanadham, 23, 119
ELLa, 102, 120
Ellis, 74
“envelope” object, 112
environment, 54
environment links, 69
environment-based abstract machines, 69
“equal rights”, 21
equality for functions, 27
Equation, 58
equations, 6

type, 6
Eratosthenes’ sieve, 96, 182
Ershov, 160
“eureka” step, 109
EVAL, 60
evaluate operator, 57
EvaluateTree, 107, 184, 204
evaluation transformers, 68
EvenOnes, 83, 171, 204
exercises, 166, 179
explicitly-parallel programs, 163
Expression, 58
expression

reducible, 11
extensional properties, 28
eye, viewer’s, 111

Facts, 179

Fairbairn, 56, 69
FALSE, 51

fan, 130, 204
Faustini, 120

Feather, 121
feedback, 100
FeedbackFunction, 100
FEEDBACKTAG, 110

Feldman, 158
fib, 18, 77
Fibonacci numbers, 18, 77, 86, 160
fibs, 86
Kleene chain of, 32
Field and Harrison, 43, 44, 54, 69, 70, 121
filter
low-pass, 141
filter, 78, 204
FilterMultiples, 96, 182
Findlmpacts, 93, 124, 178, 205
FindRayColour, 113
fine-grain, 74
finite and total, 37
FiniteAndTotal, 36
first-order, languages, 119
FirstGeneration, 188
Firstimpact, 92, 113, 205
fixed point, 31
FL, 46
FraagsHIP, 65, 67, 73, 151
Flo, 157
Floating Point Systems, 157
flow control, 148
fold rule, 27
fold /unfold transformation system, 28
followed by, 7
fork overhead, 65
Fourman, 120
FP, 157
FPM abstract machine, 70
fractal, 121
frame pointer, 59
from, 7, 84, 205
fst, 205
Fuh, 46, 50
FullAdder, 101
functional languages, 40
problems with, 41
functional programming, 1, 5, 163
and digital circuit design, 102, 120
functions
collected definitions, 200
functions, non-strict, 64
Futamura, 160

243

G-machine, 56, 69
Gajski, 119
garbage collection, 65, 71
compile-time, 72
copying, 71
hardware support for, 71
in Caliban, 148, 149
low cost of, 72
Gauss-Seidel method, 23, 45
GaussSeidel, 23
generate, 19, 205
in Eratosthenes’ sieve, 182
GeneratelnitialRays, 113
generation by generation, 106
GetRay, 114
GetSubrays, 113
GetSurfaceModel, 114
Ggen, 61
Glaser, vii, 56, 69, 72
Glaser, Hankin and Till, 43
on combinators, 26
Glauert, 73
Goguen, 46, 47
Goldberg, 65, 67, 69, 74, 75, 118
Gordon, 118, 121
grain size, 67, 144
fine, 74
in loosely-coupled multiprocessors, 67
run-time analysis, 158
with compile-time scheduling, 74
graph grammars, 157
graph mode code generator, 60
graph reduction
boxing analysis to speed up, 55
graph representation of an expression, 85
graph-rewriting, 73
graph-type expression, 58
graphical presentation, 158
GraphType, 58
Gregory, 119
grid, see mesh
Gries, 68
GRIP, 65, 74
guard, 52
guards, 8

overlapping, 222
Gurd, 85, 118, 119
Guttag, 47

HalfAdder, 100
handshaking, 120
Hankin, vii, 54, 70
Hankin, Burn and Peyton Jones, 29
Hanna, 120
hardware description, 96
hardware support
for combinator reduction, 69
for garbage collection, 71
Harrison and Field
on combinators, 26
Hartel, 119
Haskell, 3, 219
Hayes, 69
hd, 13, 205
heap, 59
of receiving process, 148
Henderson, 43, 96
Hewitt, 71
higher-order functions, 5, 40
and polymorphic types, 41
considered unnecessary, 46
encapsulating process network, 130
environment management with, 69
strictness analysis of, 70
unfolding during compilation, 50
higher-order logic, 120
Hindley-Milner type system, 46, 50
histogram, 17
histogram problem, 42
history, stream representation of, 120
history-sensitive, 100
Hoffman, 41, 70
HOL, 120
Hore, 121
horizontal parallelism, 75
combined with pipeline, 85
in divide-and-conquer, 77
Horowitz, 119

Hudak, 3, 46, 65, 67, 71, 72, 74, 156, 158

Huet and Oppen, 44, 70

Hughes, 45, 69, 70, 73

[-structures, 45
Tanucci, 119
Id, 119
Id Nouveau, 119
IdealOr, 98
ident, 206
idiom, for iteration, 18
if. . .then. . .else, 51
image processing, 119
Impact, 92, 113
imperative languages, 163
Imperial College, London, vii
implementation
of Caliban, 146
implementation techniques, 49
induction, 28
computational, 33
partial structural, 34
proof by, 33
recursion, 37, 193
total structural, 36, 166
inductive step, 33, 166
infinite lists, 7, 28, 31, 36
of primes, 96
of samples, 98
proving properties of, 35
infinite process networks, 96
inheritance, 46
inlining, 51
input/output, 46
non-determinism with, 45
insert, 15, 206
and o, 180
divide-and-conquer version, 79
insertleft, 16, 206
insertright, 16, 206
facts about, 179
instantiation rule, 27
Instruction, 59
instruction set, 59
integral, 22
integrate, 84
intensional properties, 28

inter-process communication, 3
inter-processor communication, 147
interchanging rows and columns, 145
interconnection network, 2, 66, 123
bus, 157
interconnection networks
reconfigurable, 147
interface, 131
interface, boxed, 56
interprocessor communication, 2
intersection test, ray, 92, 111, 112, 116,
120, 124, 125, 153
invocation, 57
invocation chain, 60
invocation frame, 59
iPSC, 2
irrefutable, pattern, 223
iterate, 20, 145, 206
alternative definitions, 100, 183
cyclic definition, 21
in Eratosthenes’ sieve, 183

Jensen and Wirth, 41
JMP, 60

Johnson, 102, 104, 120
Johnsson, 56, 70

join, 17, 111, 192, 207
JoinLayers, 187

Jones, C.B., 47

Jones, N.D.; 160
Jones, S.B., 41, 45

Kaes, 46, 50

Kahn Principle, 88, 120

Kahn principle
verification of, 120

Kajiya, 120

Kedem, 154, 156

Keller, 74, 119, 120, 156

King’s College, London, vii

Kleene chain, 31, 33, 37

Klop, 44, 70

Kogge, 119

Kranz, 70, 71

KRC, 219

Kuck, 74

245

Kung, 159

ladder, 129, 207
A-calculus, 43, 44
and parallel or, 44
versus term-rewriting, 44
A-lifting, 53, 69
Landin, 70
LARCH, 47
latency
avoiding by eager evaluation, 68
latency, memory access, 119
laws, 27
layout rule, 10
laziness, full, 53
lazy, 5
Lazy ML, 69, 219
LCF, 118, 121
Lean, 73
Lee, 119
leftmost-outermost reduction, 51
Lemma 1, 173
length, 207
Lieberman, 71
lifetime of values, 40
limit, of Kleene chain, 31, 33, 37
Lindstrom, 47
linearisation, 170
LispKit, 219
List, 6, 220
list of lists, 145
ListOfMTreesToStream, 186, 190
ListOf TreesToStream, 108
lists
[] and “” in Miranda, 220
finite and total, 36
infinite, 7
of characters, 7
recursive definition, 7
special notation, 7
ListToTree, 80
ListToTree, shuffled version, 171
ListToTreel, 80, 165, 207
ListToTree2, 83, 172, 208
ListToVector, 51, 208

locus of computation, 161
logic programming, 47, 222
long instruction word architectures, 74
look-ahead processors, 119
loop, 18, 51, 64
loosely-coupled multiprocessors, 2, 67, 93,
96, 114, 123
and parallel graph reduction, 67
low-pass filter, 141
Lucip, 91, 119, 161

macro expansion, 51

MakeList, 208

MakeMatrix, 22, 209

MakePipeltem, 94, 179, 209

MakeVector, 21, 209

Manchester Data Flow Machine, 118, 119

Manna, Ness and Vuillemin, 34, 44

map, 8, 209
divide-and-conquer version, 82
propagating inside ApplyLNO, 145
propagating into arithmetic, 88
propagating into compositions, 178,

180, 181

map2, 14, 26, 85, 209

MapElement, 18
and update problem, 42

mapping and configuration, 147

mapping, of processes, 2

MapTree, 84

matrices, 21, 45

MatrixAll, 210

MatrixBounds, 21, 210

MatrixMap, 210

MatrixMap2, 146, 210

May, 155, 156

McCarthy, 44

McGraw, 119

Mead and Conway, 124

mean, 73

memory access interference, 66

merge, 171

mesh, 142, 144, 211

mesh refinement, 154

message passing, 123

246

meta-programs, 121
microcode, 69, 157
support for Caliban, 151
migration, 65
Milner, 46, 50, 121
Miranda, 5, 219
translation into, 220
Mishra, 46, 50
MIX, 160
mixed computation, 160
ML, 121
Lazy, 69, 219
standard, 46
MNODE, 106
modules, parameterised, 46
Mogenson, 160
Moldovan, 120
Monsoon, 119
Moon, 71
moreover clause, 127
Morison, 102, 120
MTREETOKEN, 107
MTreeToStream, 108, 211
derivation of, 186
multiple applications, 63
multiprocessor
sequential, 124
multitasking, in Caliban, 150
MultiTree, 106, 184
MultiTreeToken, 107, 186
mutual exclusion
of graph updates, 66
mutual exclusive equations, 12

mutually-exclusive guards, 8
Myecroft, 70, 72

Nat, 36

natural numbers, 36

neighbour-coupled multiprocessor, 2, 68,

151, 159

network-forming operators, 129

Newton Raphson method
removing sub, 174

Newton-Raphson method, 87
distributed, 137

example, 19
Nikhil, 85, 119, 155
NIL, 6
NOIMPACT, 92
non-determinism, 41, 42, 45, 163
non-deterministic merge, 42
non-local memory reference, 67
non-strict functions, 64
normal form, 12, 13, 28, 29, 51, 57
Caliban, 136, 146
weak head, 68
normal-order reduction, 51, 52
and strictness analysis, 55
normalisation strategy
general, 13, 41
inefficiency of general, 51

normal-order, leftmost-outermost, 51

not, 211
"not yet” instead of never, 33
Num, 6
numbers
natural, 36

OBJ, 46
object database, 112
object-oriented programming, 42
object-oriented specification, 47
Occam, 155
odd- and even-indexed sublists, 83
OddOnes, 83, 171, 211
offside rule, 10
OnBoundary, 141, 211
operating systems, 45
optimisation, 62, 76

by transformation, 168

of communications, 151
Or, 99
or, non-strict, 220
or, non-strict, parallel, 44
or, parallel, 52
ordering, 37

“bisection”, 166

by generations, 187

prefix, 32
Orwell, 219

247

Osmon, vii
otherwise, 8
OUTPUTTAG, 110
overhead, 67
fork, 65
join, 66
of non-local memory reference, 67
overheads, 66
overheads, of data flow, 119
overlapping equations, 8
overlapping patterns, 7, 12
overloading, 46
overwriting parameters in place, 64
overwriting, the application box, 57, 65
with a boxed value, 60
with a value, 60

pair, 212
Papadopoulos, 119
para-functional programming, 156
PARALFL, 156, 158
parallel
or, 44, 52
parallel graph reduction, 65, 73, 76, 118,
155
on loosely-coupled multiprocessors, 67
verification of, 74
parallel graph reduction machines, 65
parallel programming
difficulty of, 1, 120, 125, 159, 163
distribution part of, 123
parallel reduction, 55
parallelising compilers, 163
parallelism
divide-and-conquer, 76
horizontal, 75
pipeline, 76, 84, 119
vertical, 75
parameter count, 56
parameterised definitions, 7
PArRLOG, 119, 222
partial application, 8
partial data structures, 31, 36
partial evaluation, 50, 71, 160
applied to ray tracing, 160

self application, MIX, 160
Partition, 144
partitioning, 66, 119
arrays, 144, 157
automatic, 154
in Flo, 157
local neighbourhood operation, 144
pipeline, 140
partitioning, of processes, 2
PartitionList, 154
pattern matching, 12, 220
and irrefutable constructors, 223
compiling, 70
overlapping, 222
removal, 52
sequential, 222
pattern-matching, 8
pencil and paper, 118
pending list, 66
Pepper, 121
performance, 42
comparative, 49
permuting indices, 143
Peyton Jones, 42, 49, 54-56, 65, 69, 70,
73, 155
photolithography, 124
physical universe, limitations of, 158
Pingali, 119
Pipeltem, 93, 179
pipeline
variable length, 153
pipeline, 91, 130, 212
pipeline parallelism, 84
in ray tracer, 111
without streams, 150
PipelineStage, 94, 116, 125, 179
pipelining, 76, 119
successive iterations, 88
placement, of processes, 2
plumbing problem, 46
ply, 15, 26, 212
polymorphic type checking, 40
polymorphic type system, 46, 50
Ponder, 69
portability, 1

248

predicate
non-admissible, 36
predicates
admissible, 33
chain complete, 33
prefix operator, using + as a, 8
prefix ordering, 32
prime numbers, 96, 182
primes, 96
derivation of, 183
infinite process network, 136
prioritised equations, 8
problem decomposition tree, 106
process, 7
process network
chain, 130
cyclic, 104
in PARALFL, 156
reconfiguration, 154
static, 103
process networks, 85, 123
declarative descriptions, 126
dynamic, 154
dynamic, example, 156
infinite, 96
semi-static, 153
process placement
run time, 96
static, 85
process pool, 65
process separation, 147
processes, 65
and channels, 148
programming environment, 121
transformation-based, 178
programming environments, 158
projectors, 101
propagation delay, 99, 124
proto-channels, 149
pruning, 45
PUSHDUMMY, 62
PUSHGRAPH, 59
PUSHPARAM, 59
PUSHSTATUS label, 63
PUSHVALUE, 59

quantum computation, 159
quantum theory, 228
Quarendon, 96
Quarendon, P., 96
QuickSort, 84

QuickSort, 79

Quicksort, 78, 159
Quinton, 120

RABBIT, 70
race conditions, in garbage accounting, 72
racing, 13, 41, 45
not normally implemented, 51
Ramamoorthy, 119
ray casting, 154
ray intersection test, 92, 111, 112, 116,
120, 124, 125, 153
pipelined, 178
ray tracer
semi-static process network, 153
ray tracing, 120
and partial evaluation, 160
smart algorithms for, 120
ray-tracing, 111
rays
contributory, 112
RayTracer, 113, 116, 153
Rayward-Smith, 119
recalculation, 67
receiver, 148
reconfigurable networks, 147
reconfiguration, 154
records, with inheritance, 46
recurrences, 18
sub can be removed, 20, 85, 174
iterate captures simple, 20
and I-structures, 45
idiom, 85
in bitwise addition, 101
in Gauss-Seidel method, 23, 45
in Newton-Raphson, 87
mixing list and vector, 23
syntactic sugar, 119
vector and matrix, 22, 23
recursion induction, 193

249

recursive definitions
as feedback in hardware, 100
chain of iterations, 31
in where clauses, 11
of lists, 7
of non-function values, 21
of types, 6
semantics, 28, 29
redex, 11, 51, 57
locating the next, 56, 57
REDIFLOW, T4
reducible expression, 11
reducible function application, 13
reduction, 11
data-driven, 73
normal-order, 51
reference counting, 71, 72
race conditions, 72
referential transparency, 40, 156
refraction and reflection, 111
refutable, pattern, 223
Register, 99
register, 99
register allocation, 59
replicate, 17, 212
research papers, 4
resource management, 42
RET, 60
RETJMP, 60
returning
a boxed object, 60
an unboxed object, 60
reverse, 17, 212
total structural induction for, 36
reverting to sequential code, 82
ring-shaped process network, 124
RootsOf, 187
RuBy, 120
run time process placement, 96

Russell, 74

S,K,I combinators, 69
Sample, 97

Sarkar, 74, 119
SASL, 219

sawtooth, 7
scaffolding, 102
scheduler, 66
scheduling
compile-time, 74
divide-and-conquer, 119
in systolic arrays, 120
run-time vs. compile-time, 74
Schmidt, 31, 44, 120
scientific models, testing of, 163
scope, 10, 40, 54, 127, 134
script, 6, 10, 11, 26, 40, 126, 127, 156
SECD abstract machine, 70
select, 213
SelectBigger, 78
SelectMatch, 98
SelectSmaller, 78
self-applicable partial evaluator, 160
semantic constraints on parameters, 46
semantic property
deadlock as, 161
semantics, 29, 54, 120
of Caliban, 158
sender, 148
sequential multiprocessor, 124
SERC, viii
serial combinators, 67
Shapiro, 158
shared memory, 118
traffic, 125
shared-memory, 119
Sheeran, 120
shuffled tree-list translation, 171
side-effects, 40, 50
sieve, 96, 183
sieve of Eratosthenes, 96, 182
sieves, 182

Signal, 97
SignalCase, 97
SIMD, 2, 144

simplification, 50, 71
SimplySolve, 76
Simpson’s rule, 22
single assignment, 119
SISAL, 119

250

SizeOfNextGeneration, 188
SKIM, 69
slow-down, 67
snd, 213
sort
parallel, 159
parallel interchange, 159
Quick, 78, 159
SourceCode, 58
South, 23
space leaks, 72
space occupied after unfolding, 51
space usage
with parallel grap reduction, 66
spatial program distribution, 123
specification
of tree-stream translation, 186
specification languages, 46
speed-up of a sequential multiprocessor,

124
split, 168, 213
SplitStream, 111, 192, 213
sqrt, 20
distributed, 137
stack, 59, 70

stack space, 64
Standard ML, 46
star network, 124
starvation, 160
state transition function, 177
static networks
implementation, 146
static process network, 103
Steele, 42, 70
stepwise refinement, of proofs, 173
storage class analysis, 50
storage class optimisation, 63
Stout, 119
Stoy, 44
Stoye, 69
stream, 7
stream-processing form, 145
StreamOfMatrices ToMatrixOfStreams, 143,
214
StreamToListOfMTrees, 117, 186, 190

StreamToMTree, 108, 117, 214
derivation of, 186
strict
languages, 219
strict applications, compiling, 64
strict basic operator, 57, 75
STRICTAPPLY, 64
strictness, 29
strictness analysis, 29, 54, 70, 76
and boxing analysis, 56
and optimisation, 62
and space usage, 43

improved by partial evaluation, 50

of higher-order programs, 70
on lists, 71, 150
strictness annotations, 54
and parallel reduction, 65
interpretation, 57
on formal parameters, 54
strictness assertions, 150
strictness information, 84
strong typing, 9
structural induction, 166
sub, 220
sub, 18, 214
sub-rays
tree of, 112
SubsequentGenerations, 188
SubtreesOf, 187
subtypes, 37, 46
SUCC, 36
Sufrin, 47
SUGAR, 219
sugar, syntactic, 119
sum, 17, 79, 215
SumOf, 101
supercombinator, 57
supercombinator abstraction, 69
supercombinator asbtraction, 53
Supernode, 2
surface model, 112, 114
surface-to-volume effect, 144
Sutherland and Mead, 159
symbolic evaluation, 103
symbols, glossary of, 197

251

synchronisation

control, 66, 150

delays, 74

join, 66

optimising out channel, 151

spurious, 40

with time-slicing, 151
synchronous

digital circuits, 120

processor arrays, 120
synonym, type, 6
systolic, 120

tacticals, 121
tag, 180
tagged data, unnecessary, 64
Tagged Token Dataflow, 119
Tagged-Token Dataflow, 85
TaggedStreamltem, 110
tagging, with constructor, 110
tail recursion, 64, 70
take, 80, 165, 215
Takelmpact, 94, 179, 215
telephone number, 28
term rewriting, 73
termination correctness, 27, 28
Test, J.A., 74
TestForlmpact, 92, 178, 215
theorem prover, 121
Theorem 5, 192
Theorem 4, 184
Theorem 3, 179
Theorem 2, 172
Theorem 1, 166
thesis, Ph.D., vii
Thompson, 159
tightly-coupled machines, 49, 67, 68
as PEs in loosely-coupled, 151
process networks for, 123, 155
time-slicing
in Caliban, 150
tl, 13, 215
tokens
for flow control, 148

topology, of interconnection network, 2

total structural induction, 166
transformation, 2, 39, 164
automated support, 28, 118, 121
automation of, 177
change propagation, 82
data type, 80, 107, 165
transpose, 98, 215
transputers, 124, 158
Tree
Kleene chain of, 34
tree
binary, 165, 171
intermediate, in divide and conquer,
184
of meshes, quad-, 155
of sub-rays, 112
problem decomposition, 106
Treelnsert, 81
TreeTolList, 80
TreeTolList, shuffled version, 171
TreeTolListl, 80, 165, 216
TreeTolist2, 83, 172, 216
triangle, 38
Trivial, 76
TRUE, 51
truth tables, 97
tuples, 6
tuples, tagged, 223
Turner, 69
type
(algebraic) data, 6
checking, inference, 50
equations, 6
of curried functions, 10
specification, 50
specifications, 9
strong polymorphic, 5
variables, 6
type expression, 41
type system
polymorphic, Hindley-Milner, 46, 50
richer, 46, 50
type systems
polymorphic, 40
strong, 40

252

type variables, 41, 220

types
collected definitions, 198

Ullman, 159
unboxed base-type object, 60
unboxed values, 55
unfold rule, 27
unfolding

space occupied after, 51
universal parallel computer, 159
universal VLSI machine, 159
unshared applications, 62
until, 20, 216
update problem, 42
UPDATEGRAPH, 60
UPDATEVALUE, 60
updating, see overwriting
upper case, for constructors, 6, 220

VAL, 119
Valiant, 159
value mode code generator, 60
value-type expression, 58
ValueType, 58
van den Broek and van der Hoeven, 74
variables

non-local, non-global, 69
variants, 64, 65
variants of functions, for boxlessness, 56
VDM, 47
vector pipeline processors, 74
VectorBound, 21, 216
VectorlLadder, 130
vectors, 21, 45
vectors and matrices, 220
VectorTolist, 51, 217
verification, 39
vertical parallelism, 75, 84
Vgen, 61
virtual memory, 71, 72
Vitanyi, 158
VLSI, 96, 120, 124

complexity theory, 159
VLST algorithms, 159
von Neumann model, 159

von Neumann programming, 40
Vree, 119

Wadge, 91, 119, 161
Wadler, 71-73, 121, 150
Watson, 65, 67, 72, 73, 151
wavefront, in Gauss-Seidel computation,
23
weak head normal form, 68
Weghorst, 120
Wegner, 46
weights, in reference counting, 72
well-founded ordering, 37
by generations, 187
West, 23
Westfield College, London, vii
where clauses, 10, 53
effect on space use, 73
removal of, 50
Whitted, 111, 112, 120
Wilensky, 44
Williams, viii, 46, 158
window, for parallel evaluation, 76
“wiring” functions, 102
Wolfe, 74
Wray, 56, 69
Wu and Feng, 66
Wulf, 68

Young, 157

7Z (specification language), 47
ZERO, 36

253

