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Chapter 1Introdu
tionThe two aims, on the one hand for highly-parallel hardware, and on the other for easyand speedy 
reation of high-quality software, are seen by many to be dire
tly antitheti
.J.P. E
kert wrote, when arguing for parallel data transfer and arithmeti
 in 
omputers ofEDVAC's generation, thatThe arguments for parallel operation are only valid provided one applies themto the steps whi
h the built in or wired in programming of the ma
hine oper-ates. Any steps whi
h are 
ontrolled by the operator, who sets up the ma
hine,should be set up only in a serial fashion. It has been shown over and overagain that any departure from this pro
edure results in a system whi
h is fartoo 
ompli
ated to use [E
k46℄.The quest to overturn this wisdom, whi
h had been learned \over and over again" in1946, has o

upied a large portion of the 
omputer s
ien
e 
ommunity sin
e then. Whyis parallel programming diÆ
ult?� Performan
e: The performan
e of a parallel program is diÆ
ult to optimise|
ounting the number of instru
tions is no longer good enough, be
ause some of theinstru
tions may be exe
uted simultaneously.� Portability: There are many more ways in whi
h two parallel 
omputers may di�er,and these 
an mean that quite di�erent algorithms are suitable for di�erent targetar
hite
tures.� Determina
y: The order of events during parallel program exe
ution is almostalways indeterminate. The program's output is determinate only if it is written
arefully.All of these problems do arise to some extent when programming sequential 
omputers,but in the general 
ase of parallel 
omputing they are epidemi
.1.1 Fun
tional programmingThe main subje
t of this book is the interesting and powerful 
lass of fun
tional pro-gramming languages. The reason for 
hoosing su
h a language is the ease with whi
h1



su
h programs 
an be manipulated algebrai
ally, and the bulk of the book is devoted tointrodu
ing and demonstrating this in a
tion.It is through algebrai
 manipulation of programs that the problems of parallel pro-gramming are addressed. We retreat from the hope that a single program will serve forall the di�erent parallel 
omputers we might wish to use, and instead begin with a singlespe
ifying program. Versions for di�erent target ar
hite
tures 
an then be derived by theappli
ation of a toolbox of mathemati
al transformations to the spe
i�
ation, leading toversions tuned to the various ma
hine stru
tures available. The transformation pathways
an then be re-used when modi�
ations to the spe
i�
ation are made.1.2 Loosely-
oupled multipro
essorsParallel programming is mu
h simpli�ed if we 
an assume that interpro
essor 
ommu-ni
ation is very eÆ
ient, as in a shared memory multipro
essor. This book is aboutprogramming a mu
h larger 
lass of 
omputers for whi
h su
h simplifying assumptions donot hold. In general, there are two distin
t problems in mapping a parallel program ontoa 
omputer: partitioning and mapping. The most important simplifying assumption oftenmade is to avoid mapping, and assume that performan
e is independent of where pro
essesare pla
ed. The 
lass of loosely-
oupled multipro
essors is de�ned to 
hara
terise ar
hite
-tures where this assumption is not valid: a loosely-
oupled multipro
essor is a 
olle
tionof pro
essing elements (PEs), linked by an inter
onne
tion network with the property that
ommuni
ation between \neighbouring" PEs is mu
h more eÆ
ient than 
ommuni
ationbetween non-neighbours. Depending on the inter
onne
tion network's topology, there aremany varieties of su
h an inter
onne
tion network. The important feature is that not allPEs are lo
al to one another, so that pro
ess pla
ement is important to program perfor-man
e.The importan
e of this 
lass of ar
hite
tures is that they are easy and inexpensive tobuild on a large s
ale. It is not, therefore, surprising to �nd quite a number of loosely-
oupled multipro
essors on the market and in use. Examples in
lude Meiko's ComputingSurfa
e, Parsys's Supernode and Intel's iPSC.In ar
hite
tures of this kind the full generality of the software design problems forparallel 
omputers be
ome apparent. We �nd that data 
ommuni
ation is often a primary
omputational resour
e, and that mu
h of the algorithm design e�ort is aimed at redu
inga program's 
ommuni
ations demands. Several examples are given of how this 
an bedone using program transformation. The te
hniques have appli
ation to other parallelar
hite
tures in
luding more 
losely-
oupled ma
hines and SIMD 
omputers.1.3 Neighbour-
oupled multipro
essorsA neighbour-
oupled multipro
essor is a more idealised abstra
t 
omputer ar
hite
ture,and is introdu
ed here as an experiment. A neighbour-
oupled multipro
essor is a loosely-
oupled multipro
essor, where ea
h PE is very 
losely 
oupled to its neighbours, so 
loselythat the programmer 
an assume that a PE 
an read and write its neighbour's memoryas qui
kly as its own. 2



We shall return to this abstra
t ar
hite
ture later in the book to examine whether itallows useful simpli�
ations.1.4 A reader's guideThe book 
onsists of the following 
omponents:� Chapter 2. Fun
tional Programming: This 
hapter introdu
es fun
tional pro-gramming from �rst prin
iples. The programming language is presented by meansof examples. Simple te
hniques are given for manipulating programs to modify theirstru
ture while retaining the same input/output mapping. These are augmented bya handful of indu
tion rules for proving generi
 properties about programs.The language is based on Miranda1 and Haskell (a publi
-domain language designfor whi
h a spe
i�
ation is in preparation [HWA+88℄).� Chapter 3. Sequential and Parallel Implementation Te
hniques: The aimof this 
hapter to sket
h how our fun
tional language might be 
ompiled to runeÆ
iently on a 
onventional 
omputer, and to examine how this s
heme (graphredu
tion) might be extended for a tightly-
oupled multipro
essor.� Chapter 4. Spe
ifying and Deriving Parallel Algorithms: This 
hapter ex-amines how parallelism and inter-pro
ess 
ommuni
ation are manifest in a fun
tionalprogram s
ript. Horizontal and verti
al parallelism are identi�ed and examples aregiven in the form of divide-and-
onquer and pipeline algorithms respe
tively. Themain emphasis in this 
hapter is the development of program transformation te
h-niques. Examples are given of introdu
ing pipeline parallelism, and of transforminga divide-and-
onquer algorithm into a 
y
li
 \pro
ess network" program. This isillustrated by appli
ation to a simple ray tra
ing program.� Chapter 5. Distributed Parallel Fun
tional Programming: We 
an writeprograms for whi
h a good pla
ement onto a loosely-
oupled multipro
essor 
an bemade. This 
hapter applies a de
larative programming language approa
h to a
tuallyspe
ifying this pla
ement. It in
orporates abstra
tion me
hanisms to give 
on
isemappings for regular ar
hite
tures and algorithms. The notation is illustrated withseveral examples.� Appendix A. Proofs and Derivations: This appendix gives proofs and deriva-tions whi
h would have 
luttered the presentation given in 
hapter 4. Althoughquite dense later on, the earlier material in this 
hapter is quite tutorial in natureand might be read 
on
urrently with Chapter 4 by those more interested in programderivation and veri�
ation than in parallel programming.� Appendix B. Common De�nitions: This appendix lists widely-used fun
tionde�nitions for easy referen
e.1Miranda is a trademark of Resear
h Software Ltd.3



� Appendix C. Programming in a real fun
tional language: The fun
tionallanguage used in this book is not quite 
ompatible with any 
ommonly-availablelanguage implementation. This appendix lists the small (and quite inno
uous) dif-feren
es from Miranda in order to aid a reader who wishes to experiment.Ea
h 
hapter ends with some pointers for the interested reader towards other books,arti
les and resear
h papers whi
h might be of interest.
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Chapter 2Fun
tional ProgrammingThis 
hapter gives a tutorial introdu
tion to fun
tional programming as employed in thisbook. It deals with the programming language, fun
tional programming te
hniques, andthe mathemati
al transformation and veri�
ation of fun
tional programs. Finally, a reviewof the su

ess of the fun
tional approa
h is given.2.1 The programming languageThe fun
tional language used in this book is representative of a 
lass of programminglanguages, rather than being any one in parti
ular. We will, however, sti
k as 
loselyas possible to the notation used in [BW88℄. Their ex
ellent book is re
ommended tothe reader needing a more detailed and introdu
tory guide to fun
tional programming.Apart from some minor typographi
al details, whi
h are summarised in Appendix C, thelanguage employed is a simple subset of Miranda.To summarise its main features, the language is:� Fun
tional: a program 
omprises an expression, and a set of equations de�ningfun
tions, values and types required to give the expression meaning.� Higher-order: a fun
tion 
an appear anywhere where a value 
an appear, notablyas a parameter to a fun
tion, or as its result.� Curried: a fun
tion expe
ting two parameters is normally de�ned so that the pa-rameters may be provided one-by-one, so that it may be spe
ialised to its �rstparameter by simple appli
ation.� Lazy: a fun
tion's parameter is evaluated only when its value is needed for theprogram to produ
e its next item of output (and then it is evaluated only on
e).� Typed: a program 
an never fail at run-time due to a type error. Types are inferredautomati
ally, at 
ompile-time, and are 
he
ked against optional type de
larationswhen present.
5



2.2 EquationsA program, 
alled a s
ript, de�nes types, fun
tions and values by means of equations. Newtypes 
an be de�ned in terms of old ones by type equations. For example,Date == (Day, Month, Year)de�nes a new type, Date whose elements are tuples of length three, 
omprising elementsof the types Day, Month and Year. An example of an element of the type might bebirthday = (18, 8, 61)This me
hanism is often used just to give a synonym for a built-in type su
h as the numbersNum, as in these de�nitions:indexde�nitions!of type synonymsDay == NumMonth == NumYear == NumPri
e == Num(To simplify matters we will not distinguish di�erent kinds of numbers here). Types whosevalues may take one of several forms 
an be de�ned using a simple notation derived fromthe BNF language for de�ning grammars1. For example:Class ::= FIRST j SECONDTi
ket ::= PLATFORM jSINGLE Class Date Pri
e Destination jRETURN Class Date Pri
e Destination PeriodAs with a grammar, su
h types 
an be re
ursively de�ned:indexde�nitions!of data typesListOfNum ::= NIL j CONS Num ListOfNumAn element of the type ListOfNum is either the empty list, denoted by NIL, or is built froma number and another element of the ListOfNum type. CONS and NIL serve to distinguishthe two 
ases, and are 
alled 
onstru
tors. Throughout this book, 
onstru
tors will bewritten in upper 
ase to distinguish them from other variables.Data types may have type variables, given names �, �, 
 et
., strong polymorphi
 Forexample we 
an de�ne a list of obje
ts of arbitrary type by writingList � ::= NIL j CONS � (List �)The type for a list of numbers 
an now be referred to simply as List Num. A list of
hara
ters would have the type List Char. We 
an de�ne the type variable Destination bywriting1A glossary of symbols is 
olle
ted in Appendix B.6



Destination == List CharWe 
an de�ne a variable with this type by writing, for example,home = CONS 'A' (CONS 't' (CONS 'h' (CONS 'e' (CONS 'n' (CONS 's')))))However, be
ause they are so useful, we use a spe
ial notation for lists, in whi
h [ ℄ denotesthe empty list NIL, and where : is an in�x version of CONS. Thus the de�nition of homeis: home = 'A' : 't' : 'h' : 'e' : 'n' : 's' : [ ℄We 
an take this further and write the elements of a list inside square bra
kets. Hen
e,home = ['A', 't', 'h', 'e', 'n', 's'℄A list of 
hara
ters, has, of 
ourse, the obvious shorthand:home = \Athens"Lists 
an be de�ned re
ursively. For example,sawtooth = 1 : 2 : 3 : 4 : 5 : sawtoothde�nes the in�nitely-long listsawtooth = [1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, . . . ℄Noti
e how this mirrors the idea of a 
ommuni
ations 
hannel, or a wire in a digital system.The list models a sequen
e of values in time, and : 
an be read as \followed by". Su
hlists|often 
alled \streams"|give us the power to express the behaviour of a pro
ess asa fun
tion mapping a stream to a stream.De�nitions 
an be parameterised. For example, the equationfrom n = n : ( from (n + 1) )de�nes from n to be the list of integers starting from n. More generally, fun
tions (likefrom) are de�ned by more than one equation:exp 0 x = 1exp (n+1) x = x � (exp n x)In this book we will be 
areful to write su
h de�nitions so that at most one left-hand side
an possibly mat
h any parti
ular expression. For this reason, unless the �rst parameterof exp is restri
ted to the natural numbers (i.e. the integers � 0), a better way to writethe de�nition above is: 7



exp n x = 1, if n = 0exp n x = x � (exp (n�1) x), if n > 0The Boolean expressions are 
alled guards, whi
h must be satis�ed before the 
orrespond-ing equation 
an be applied. They must be mutually-ex
lusive. The keyword otherwise isa shorthand for the guard whi
h su

eeds when all others fail2.Fun
tions over data types 
an be de�ned using pattern-mat
hing on the LHS. Forexample, the fun
tion map is de�ned below by two equations, one for the two possibleforms its list parameter may take:map f [ ℄ = [ ℄map f (x:xs) = (f x) : (map f xs)map applies its fun
tion parameter f elementwise to its list parameter. We 
an summariseits behaviour informally by writingmap f [a1, a2, . . . an℄ = [f a1, f a2, . . . f an℄or even,map f [ . . . ai . . . ℄ = [ . . . f ai . . . ℄To illustrate map in use, we must supply it with a single-parameter fun
tion. We 
an use+ as a pre�x operator by en
losing it in parentheses, so that(+) 3 5 = 3 + 5By writing (+) 3 we denote the fun
tion whi
h adds 3 to its parameter (a te
hnique 
alledpartial appli
ation, or sometimes 
urrying, after the logi
ian H.B. Curry). Thus,map ((+) 3) [1, 2, 5, 10, 20, 50, 100℄ = [4, 5, 8, 13, 23, 53, 103℄and similarly,map ((�) 3) sawtooth = [3, 6, 9, 12, 15, 3, 6, 9, 12, 15, 3, 6, 9, 12, 15, 3, 6 . . . ℄Constru
tors 
an be 
urried in just the same way as 
an ordinary fun
tions. For example,map (CONS `f') [\lame", \lies", \airy"℄ = [\
ame", \
ies", \fairy"℄(remembering that \� � �" is shorthand for a list of 
hara
ters.)2A 
omplete programming language would in
lude a shorthand allowing equations to be prioritised, toallow overlapping equations and non-ex
lusive guards to be used. See Appendix C, se
tion C.2
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2.2.1 Types and Type Che
kingWe employ a strongly-typed language, that is, type errors 
annot o

ur at run-time.Type spe
i�
ations are optional, and we will usually give them. If not provided by theprogrammer, a variable's type is inferred automati
ally from its de�nition and use.A 
ompiler 
an infer automati
ally, for example, that sawtooth is a list of numbers.We 
an provide its type spe
i�
ation expli
itly as follows:sawtooth :: list NumFor \::" read \has the type". The list type is expressed in a natural shorthand: [Num℄denotes the type list Num.It is easy to see that the partial appli
ation (+) 3 is a fun
tion from numbers tonumbers. We 
an assert this by writing a type spe
i�
ation:(+) 3 :: Num ! NumBe
ause it is applied to 3, we 
an infer the type for (+):(+) :: Num ! (Num ! Num)As another example, take the append fun
tion (in�x version \++"), whi
h joins two liststogether:append [a1, a2, . . . an℄ [b1, b2, . . . bn℄ = [a1, a2, . . . an, b1, b2, . . . bn℄Nowappend [a1, a2, . . . an℄ [b1, b2, . . . bn℄ :: [�℄therefore the partial appli
ation of append to its �rst parameter only must have the typeappend [a1, a2, . . . an℄ :: [�℄ ! [�℄and therefore append itself should have the type spe
i�
ationappend :: [�℄ ! ( [�℄ ! [�℄ )In general, if f is a fun
tion whi
h takes n parameters, with types �, � . . .  , and returnsa result of type !, its type is:f :: � ! � ! 
 ! � � � !  ! !For 
onvenien
e, we assume that ! asso
iates to the right, so to understand this typespe
i�
ation, re-insert the missing bra
kets:f :: � ! (� ! (
 ! � � � ! ( ! !)) � � � ))9



This notation may seem slightly 
ounter-intuitive, but arises quite naturally from the needto assign a type to a partial appli
ation.Be
ause the! operator is not asso
iative, bra
kets are ne
essary when parameters arethemselves fun
tions. For example, from the de�nition of map the 
ompiler infers the typespe
i�
ationmap :: (� ! �) ! [�℄ ! [�℄As with the de�nition of the list type, type variables � and � show where a 
onsistentsubstitution with a
tual types 
an be made. The fun
tion map takes two parameters, afun
tion (type � ! �) and a list (type [�℄). It returns a list, of type [�℄.While type spe
i�
ations are not stri
tly ne
essary, and even in strongly-typed lan-guages 
an still be optional, they will always be given from here onwards.2.2.2 Blo
k stru
ture: where 
lausesIt is often useful to abstra
t a subexpression to avoid writing it twi
e. For example:f :: Num ! Num ! Numf a x = b + x � (b + x � (b + x � b))whereb = a � a + 1Note that� A where 
lause 
an be asso
iated with the right-hand side of an equation.� The s
ope of a where 
lause (i.e. the extent of the s
ript over whi
h its de�nitionsare to be applied) is de�ned to be the right-hand side of the equation to whi
h it isatta
hed.� A where 
lause may 
omprise several de�nitions of fun
tions and values, but maynot introdu
e new types.2.2.3 The layout ruleWe employ a simple rule to avoid ambiguity in where 
lauses: the right-hand side of anequation must remain stri
tly to the right of the equation's \=" sign|even if it spills overonto several lines. This rule applies to equations nested inside where 
lauses as well asat the top-level. For example:ti
ket :: Ti
ketReturnTo :: Destination ! Date ! Class ! Ti
ketAwayDay :: Ti
ket ! Ti
ket
10



ti
ket = AwayDay (ReturnTo \Buxton" today SECOND)whereReturnTo dest date 
lass = RETURN 
lass date ReturnPri
e dest periodwhereReturnPri
e = (Pri
eOf dest) � 2period = 90AwayDay (RETURN 
lass date pri
e dest period)= RETURN 
lass date (pri
e � redu
tion) dest 1whereredu
tion = 2/3It is very rare indeed that deeply-nested where 
lauses are desirable or ne
essary.Ordinary systems of de�nitions are valid where 
lauses, and may be re
ursive. Notethat as well as fun
tions, it is often also useful to de�ne values re
ursively, an examplebeing sawtooth as given above.2.2.4 Redu
tionIf there is any doubt about the value an expression should have, one 
an always 
al
ulate it.We apply the equations whi
h make up the s
ript to simplify the expression, su

essivelyrepla
ing an instan
e of an equation's LHS by the 
orresponding RHS. Let us take a simpleexample without the list shorthand:map ((+) 3) (1 : (2 : (5 : 10 : [ ℄)))Now the se
ond of the two equations de�ning the map fun
tion 
an be applied, sin
e itsleft-hand side mat
hes the parameter value supplied. We bind f to ((+) 3), x to 1 and xsto (2 : (5 : 10 : [ ℄)), and substitute in the right-hand side to yield(((+)3)1)| {z } : (map ((+) 3) (2 : (5 : 10 : [ ℄)))We 
all an expression whi
h mat
hes some left-hand side a redu
ible expression, or redexfor short. The resulting expression 
ontains several redexes, of whi
h the �rst (marked bythe bra
e) is an appli
ation of the built-in addition operator:(((+) 3) 1) = 4so we have4 : (map((+)3)(2 : (5 : 10 : [ ℄)))| {z }(by 
onvention, the bra
e marks the expression next to be rewritten). At this point, weknow that the �rst element of the list is 4. To �nd the next element, re-apply the equationde�ning map: 11



4 : (((+)3)2)| {z } : (map ((+) 3) (5 : 10 : [ ℄))That is:4 : 5 : (map((+)3)(5 : 10 : [ ℄))| {z }Now we know the se
ond element is 5. Repeat to �nd the third and fourth:4 : 5 : (((+)3)5)| {z } : (map ((+) 3) (10 : [ ℄))= 4 : 5 : 8 : (map((+)3)(10 : [ ℄))| {z }= 4 : 5 : 8 : (((+)3)10)| {z } : (map ((+) 3) [ ℄)= 4 : 5 : 8 : 13 : (map((+)3)[ ℄)| {z }= 4 : 5 : 8 : 13 : [ ℄The �nal redu
tion made use of the �rst equation de�ning map. There are no more redexes:the expression is in normal form.Noti
e that during redu
tion the equations are not treated symmetri
ally: an instan
eof an RHS is not rewritten to the 
orresponding LHS. A redu
tion pro
ess whi
h in
ludessu
h steps may fail to terminate when it should, although it 
annot derive in
orre
t results.Redu
tion forms the basis for most implementations of fun
tional programming lan-guages, and after extensive optimisation it 
an be done very eÆ
iently indeed.2.2.5 Pattern mat
hing and redu
tion orderAt ea
h stage during redu
tion, several equations may apply to the expression at the sametime. If we are to use redu
tion to de�ne the meaning of an expression, there are someimportant questions to answer. Does it matter in what order the redu
tions are performed?How do we make sure the redu
tions we do 
ontribute to the result, rather than to anexpression whi
h is ultimately dis
arded? Fortunately, the theory of su
h systems givesus some very strong properties. We must, however, obey the mutual ex
lusion rule forwriting equations: of all the equations de�ning a variable, at most one may ever apply.Thus, we 
annot writeeither x y = xeither x y = ynorSpe
ialCase 818 = TRUESpe
ialCase 242 = TRUESpe
ialCase n = FALSEWith guards the responsibility rests with the programmer to ensure mutual ex
lusion; ingeneral, the 
ompiler 
annot verify that a de�nition like12



f x = TRUE, if g1 xf x = FALSE, if g2 xis allowable.Provided mutual ex
lusion is satis�ed, the following properties hold:� Con
uen
e: No matter what order we apply appli
able equations to an expression,it is always possible to rea
h the expression's normal form, if it has one. It isimpossible to redu
e an expression to two di�erent normal forms. This property issometimes 
alled the Chur
h-Rosser property.� A general normalisation strategy: If an expression has a normal form, it 
an befound by the following strategy:1. Identify the outermost redu
ible fun
tion appli
ation. This 
onsists of a knownfun
tion identi�er, say f, and zero or more parameters p1, p2 . . . pn. The pa-rameters need not be known.2. Test the appli
ation against ea
h of f's de�ning equations. Ea
h of the testsis performed in parallel, evaluating parameters as ne
essary. At most one willterminate signaling su

ess. The other tests may terminate signaling failure, ormay fail to terminate. On
e a winning test has been identi�ed, the other testpro
esses 
an be abandoned. Thanks to the mutual ex
lusion rule, we knowthat their 
an be only one su

essful test.(A redu
ible fun
tion appli
ation is a fun
tion identi�er applied to as many param-eters as appear in the fun
tion's de�ning equations).A good 
ompiler 
an analyse the patterns 
on
erned and avoid having to ra
e parallelpro
esses. A sequential s
an 
an be used instead. Most pra
ti
al fun
tional languagesonly allow patterns whi
h 
an be sequentialised in this way.2.2.6 More de�nitions to think aboutBefore moving on to program transformation, here are some simple de�nitions to illustratethe language in use. The de�nitions of these and other handy \building blo
ks" are
olle
ted in Appendix B.List proje
torsBe
ause they model a sequen
e in time, lists are a fundamental 
on
ept in fun
tionalprogramming, espe
ially in this book. Extensive use will be made of these two fun
tionsto de
ompose them:
13



hd :: [�℄ ! �tl :: [�℄ ! [�℄hd (x : xs) = xtl (x : xs) = xsThe fun
tions hd and tl are 
alled the proje
tors of the list data type, and satisfy theequationfor all as 2 [�℄, as 6= [ ℄:as = (hd as) : (tl as)We 
an prove this (informally) using the equations de�ning hd and tl by making thesubstitution (whi
h makes the assumption that as does evaluate to some known list),b : bs = asgiving usb : bs = (hd (b : bs)) : (tl (b : bs))Using the equations de�ning hd and tl this follows immediately.Generalising \+" over listsIt is natural to generalise an operator like + to add 
orresponding elements of a pair oflists of numbers. If we have, for example,(+) :: Num ! Num ! Numand two lists of numbers,as = [a1, a2, a3, . . . an℄bs = [b1, b2, b3, . . . bn℄we would want the result of generalising + to lists to bemap2 (+) as bs = [(+) a1 b1, (+) a2 b2, (+) a3 b3, . . . (+) an bn℄That is,map2 (+) as bs = [a1+b1, a2+b2, a3+b3, . . . an+bn℄This fun
tion map2 is de�ned by the equations
14



map2 :: (� ! � ! 
) ! [�℄ ! [�℄ ! [
℄map2 op (a : as) (b : bs) = (op a b) : (map2 op as bs)map2 op [ ℄ [ ℄ = [ ℄It is 
alled map2 be
ause it is a natural extension of map to fun
tions of two parameters.Our next de�nition is a generalisation of fun
tion appli
ation to lists of fun
tions andlists of parameters:ply :: [(� ! �)℄ ! [�℄ ! [�℄ply [ ℄ [ ℄ = [ ℄ply (f : fs)(x : xs) = (f x) : (ply fs xs)A very alert reader might realise thatply = map2 applywhereapply f x = f xWe 
an verify that this is so by substitutingop = applyin the de�nition of map2. This yields a de�nition identi
al in stru
ture to the expli
itde�nition of ply, ex
ept that map2 apply now appears where ply did.InsertionAn important family of operations (often 
alled folding or, 
onfusingly, redu
tion) 
on
erninserting an operator between adja
ent pairs of elements of a list. Suppose op is an in�xoperator akin to +. An intuitive de�nition of su
h an insertion fun
tion might beinsert (op) base [ ℄ = baseinsert (op) base [a1, a2, a3, � � � aN℄ = a1 op a2 op a3 � � � op aNThis is ambiguous in general, sin
e we have not spe
i�ed the bra
keting to be applied inthe RHS|we have left some freedom in the redu
tion order. This makes no di�eren
e ifop is asso
iative:for all a, b, 
a op (b op 
) = (a op b) op 
The list joining operator ++ is asso
iative, for example, but subtra
tion is not. Stri
tly,addition of integers is asso
iative only if it is implemented 
orre
tly for values of arbitrarysize. If over
ow 
an o

ur, the order in whi
h a list of numbers is added 
an a�e
t theresult. Note that all asso
iative fun
tions have the type15



� ! � ! �An asso
iative fun
tion must take parameters of the same type as ea
h other and as itsresult. Thus, the type of insert isinsert :: (� ! � ! �) ! � ! [�℄ ! �When the fun
tion being inserted is not asso
iative, we must 
hoose an ordering forthe bra
kets. There are two sensible options: we 
an asso
iate the operator to the left orto the right. We de�ne variants of insert for ea
h option. For example,insertleft (op) base [a1, a2, a3, a4, a5, a6℄= (((((base op a1) op a2) op a3) op a4) op a5) op a6andinsertright (op) base [a1, a2, a3, a4, a5, a6℄= a1 op (a2 op (a3 op (a4 op (a5 op (a6 op base)))))For non-asso
iative operators, it is more 
ommon to use the usual pre�x form of fun
tionappli
ation, so thatinsertleft f base [a1, a2, a3, a4, a5, a6℄= f (f (f (f (f (f base a1) a2) a3) a4) a5) a6andinsertright f base [a1, a2, a3, a4, a5, a6℄= f a1 (f a2 (f a3 (f a4 (f a5 (f a6 base)))))Their de�nitions areinsertleft :: (� ! � ! �) ! � ! [�℄ ! �insertleft f base [ ℄ = baseinsertleft f base (a : as) = insertleft f (f base a) asandinsertright :: (� ! � ! �) ! � ! [�℄ ! �insertright f base [ ℄ = baseinsertright f base (a : as) = f a (insertright f base as)(In insertleft noti
e how the base parameter is used to a

umulate the result so far). Be
ausethe fun
tion f need not be asso
iative, the types of its parameters need not be the same.For insertleft it must be 16



f :: � ! � ! �while for insertright it must bef :: � ! � ! �In either 
ase, base is needed to form a \seed" value from whi
h to build a result of theright type.Here are a handful of examples. With asso
iative operators we 
an use insert and leavethe 
hoi
e of insertleft or insertright or whatever free. To sum the elements of a list, writesum :: [Num℄ ! Numsum as = insert (+) 0 as = insertleft (+) 0 as = insertright (+) 0 asTo join up all the lists in a list of lists, writejoin :: [[�℄℄ ! [�℄join as = insert (++) [ ℄ asTo reverse a list, tryreverse :: [�℄ ! [�℄reverse as = insertright postpend [ ℄ aswherepostpend a as = as ++ [a℄The intuition behind insertleft's operation is that the result is formed by repeatedly buildingon the base using su

essive elements of the list, starting from the end. For example,suppose we want to 
ount the frequen
y of o

urren
e of integers between 0 and range ina list, in order to build a histogram. De�nehistogram :: Num ! [Num℄ ! [Num℄histogram range data = insertleft In
rementBu
ket EmptyBu
kets datawhereEmptyBu
kets = repli
ate range 0In
rementBu
ket bu
kets n = MapElement ((+) 1) n bu
ketsEmptyBu
kets is a list of range zeroes, 
onstru
ted using repli
ate:
17



repli
ate :: Num ! � ! [�℄repli
ate 0 x = [ ℄repli
ate (n+1) x = x : (repli
ate n x)In
rementBu
ket bu
kets n adds one to the nth element of the list of frequen
ies bu
kets. Ituses the more general-purpose fun
tion MapElement,MapElement :: (� ! �) ! Num ! [�℄ ! [�℄MapElement f 0 (x : xs) = (f x) : xsMapElement f (n+1) (x : xs) = x : (MapElement f n xs)Bird and Wadler give an ex
ellent 
overage of the insertion fun
tions, whi
h they 
all foldland foldr, in their textbook [BW88℄.2.2.7 Re
urren
esWe have now seen a 
ouple of ways of 
apturing 
ommon 
omputational stru
tures in ourfun
tional notation, but it is still not obvious how to express simple 
al
ulations su
h asthose 
omputed by loops in an imperative language. There are several ways of doing this,but here we are going to introdu
e an \idiom"|a 
lear and 
ommonly-understood way toexpress iteration. The idiom is developed by means of two examples: the 
al
ulation of theFibona

i numbers, and the appli
ation of the Newton-Raphson method to the 
al
ulationof square roots.Example: the Fibona

i numbersThe nth Fibona

i number is de�ned by a re
urren
e relation:�b 0 = 1�b 1 = 1�b n = (�b (n�-1)) + (�b (n�2)), if n � 2This mathemati
al de�nition serves as a 
omputational de�nition, and when exe
uted givesthe desired result. It does take a very long time when given larger parameters be
auseea
h re
ursive invo
ation of �b re
al
ulates many values already 
omputed elsewhere. To
onstru
t a more sensible program we need to make sure that these values are saved forre-use. Let's build them into a list, �bs, so that the nth element of �bs 
ontains �b n. Thelist is de�ned by the equations�bs sub 0 = 1�bs sub 1 = 1�bs sub n = (�bs sub (n�1)) + (�bs sub (n�2)), if n � 2where sub is the list indexing operator, 18



(a : as) sub 0 = a(a : as) sub (n+1) = as sub nThis de�nition of �bs is not quite a valid de�nition in our language, be
ause of the use ofsub on the left hand side. One approa
h might be to extend the language to allow it, buta simple de�nition makes this an unne
essary luxury. De�negenerate :: (Num ! �) ! [�℄generate f = map f (from 0)(re
all that from n 
omputes the list of integers starting from n). Informally,generate f = [f 0, f 1, f 2, � � �℄Now, we 
an de�ne the list of Fibona

i numbers by writing�bs = generate NextFibwhereNextFib 0 = 1NextFib 1 = 1NextFib n = (�bs sub (n�1)) + (�bs sub (n�2)), if n � 2All that remains is to pi
k out the Fibona

i number we wanted in the �rst pla
e,�b n = �bs sub nNoti
e, of 
ourse, that only a limited number of elements of �bs need to be 
al
ulatedbefore �b n is found.Example: Newton-Raphson approximationThe Fibona

i example 
orresponds to a for loop in an imperative language, be
ause thenumber of iterations (n) is �xed beforehand. The Newton Raphson example 
orrespondsto a while loop in an imperative language, where the number of iterations is determinedby testing some 
ondition at ea
h iteration.To 
al
ulate the square root of a using the Newton-Raphson method, we solve theequation x2 � a = 0by de�ning a fun
tion f x = x2 � a, and its derivative, f' x = 2 � x, and forming the seriesde�ned by x0 = x=2xi+1 = xi � f(xi)f 0(xi) = xi + a=xi2(x=2 is just an initial guess). Translating this into the programming notation, usinggenerate, gives 19



xs = generate NextEstimatewhereNextEstimate 0 = x/2NextEstimate (i+1) = ((xs sub i) + a/(xs sub i))/2The square root is the limit of the series, de�ned to be the value of xi su
h thatj(xi � xi�1)=xij � �for some given value of �. We 
an �nd this value by de�ning a fun
tion until,until :: (Num ! Bool) ! [Num℄ ! Numuntil predi
ate xs = sele
t (map predi
ate (from 0)) xswheresele
t (FALSE : tests) (x : xs) = sele
t tests xssele
t (TRUE : tests) (x : xs) = xThis fun
tion �nds the �rst element of xs whi
h satis�es predi
ate. Now the square rootfun
tion as a whole is given bysqrt a = until 
onverges xswhere
onverges 0 = FALSE
onverges (i+1) = abs( ((xs sub (i+1)) � (xs sub i))/(xs sub(i+1)) ) � �xs = generate NextEstimatewhereNextEstimate 0 = a/2NextEstimate (i+1) = ((xs sub i) + a/(xs sub i))/2This expresses the iteration rather neatly, keeping quite 
lose to the original mathemati
s.A parti
ularly pleasing feature is that if a more 
omplex solution s
heme were employedwhi
h involved referen
es to xi�2 and xi�3, for example, very little 
hange is required.There does in fa
t remain one ineÆ
ien
y in this idiom: the list indexing operationsub must step through the list to �nd the nth element, and as this is done at ea
h iterationanew a great deal of unne
essary work is involved. For reasonable uses of sub in su
hre
urren
es, this 
an be removed by a straightforward program transformation whi
h isshown in se
tion 4.5.1 and in Appendix A, se
tion A.3. We assume that this is done bythe 
ompiler.IterationWhen ea
h su

essive state depends only on the previous state, an espe
ially simple formof re
urren
e applies. De�ne
20



iterate :: (� ! �) ! � ! [�℄iterate f x = x : (iterate f (f x))so thatiterate f x = [x, f x, f (f x), f (f (f x)), f (f (f (f x))), . . . ℄We will see later that it is sometimes useful, parti
ularly when looking for parallelism,to transform iterate into a 
ir
ular form:iterate f x = outputwhereoutput = x : (map f output)The de�nition of a variable in terms of itself may seem surprising. Compare it with this(somewhat 
onvoluted) de�nition of the fa
torial fun
tion:fa
 :: Num ! Numf :: (Num ! Num) ! Num ! Numfa
 x = f fa
 xwheref g x = 1, if x = 0= x � (g (x � 1)), if x > 0Just as a fun
tion 
an be de�ned re
ursively, so 
an any other value. One 
an think ofthis as an aspe
t of \equal rights" for all the programming language's obje
ts.2.2.8 Ve
tors and matri
esA ve
tor is similar to a list, but is designed for eÆ
ient a

ess and 
onstru
tion. A matrixis a two-dimensional array with similar properties. Higher-dimensional arrays 
an be builtfrom ve
tors of ve
tors, matri
es of matri
es et
.The size of a ve
tor v is represented by a number n, and its elements are indexed v sub0 . . . v sub (n�1), just as with lists. A ve
tor 
an be 
reated by the fun
tion MakeVe
tor:MakeVe
tor :: Num ! (Num ! �) ! <�>MakeVe
tor bound f = <f 0, f 1, f 2, . . . , f (bound�1)>The bound of a ve
tor 
an be found using the fun
tion Ve
torBound:Ve
torBound <�> ! NumThe size of a matrix m is represented by a pair of numbers, MatrixBounds m = (xBnd,21



yBnd), and its elements are indexed in a similar way:� m sub (0,0), m sub (1,0), . . . m sub (xBnd�1,0),m sub (0,1), m sub (1,1), . . . m sub (xBnd�1,1),...m sub (0,yBnd�1), m sub (1,yBnd�1), . . . m sub (xBnd�1,yBnd�1) �A matrix is 
reated using the fun
tion MakeMatrix:MakeMatrix :: (Num, Num) ! ((Num, Num) ! �) ! ���and is de�ned so thatMakeMatrix (xBnd,yBnd) f= � f (0,0), f (1,0), . . . f (xBnd�1,0),f (0,1), f (1,1), . . . f (xBnd�1,1),...f (0,yBnd�1), f (1,yBnd�1), . . . f (xBnd�1,yBnd�1) �Example: integration by Simpson's ruleA ve
tor or matrix 
an be de�ned using a re
urren
e in exa
tly the same way we used alist earlier. This fun
tion integrates f(x) over the range a! b using Simpson's rule witha step length h:integral f a b h = MakeVe
tor ((b�a)/h) NextElementwhereNextElement 0 = 0NextElement n = (integral sub (n�1))+ (h/3)� ((f (x�h))+ 4�(f x)+ f (x+h)), if n � 1wherex = n�h + aThis de�nition re
omputes f three times at ea
h point, and we 
an use the same te
hniquewe used with �b to avoid it by introdu
ing a list:
22



integral f a b h = MakeVe
tor ((b�a)/h) NextElementwhereNextElement 0 = 0NextElement n = (integral sub (n�1)) +(h/3)� ((fs sub (n�1))+ 4�(fs sub n)+ (fs sub (n+1))), if n � 1fs = generate fnwherefn n = f (n�h + a)There is no problem mixing generate'd lists and MakeVe
tor'ed ve
tors in the same re
ur-ren
e. The di�eren
e between them is that the spa
e o

upied by a ve
tor is used as longas any element is referred to, while early parts of a list whi
h are no longer needed 
anbe re
laimed. Generally, a list is a better 
hoi
e if all that is required for output is the�nal state, but a ve
tor is good for when the entire 
ourse of values is to be presented asoutput.Matri
es 
an also be de�ned by re
urren
es, in many interesting ways. For example,in applying the Gauss-Seidel method to the solution of linear simultaneous equations, amatrix is built whose \South" and \West" boundary is de�ned independently, but whoseinternal elements depend on their South and West neighbours. This 
omes out very easily:GaussSeidel f a= MakeMatrix (Bound, Bound) NextElementwhereNextElement (0,0) = aNextElement (0,y) = a, if y 6= 0NextElement (x,0) = a, if x 6= 0NextElement (x,y) = f (NewMatrix sub (South (x,y)))(NewMatrix sub (West (x,y))), if x � 1 ^ y � 1where f depends on the equations being solved. South and West 
al
ulate neighbours'
oordinates from the present 
oordinate:South (x,y) = (x,y�1)West (x,y) = (x�1,y)This example is interesting be
ause it is very 
lose to the original mathemati
s, and ishighly parallel. Computation 
an pro
eed in a \wavefront", whi
h mar
hes diagonallya
ross the matrix. Coding the algorithm in an imperative language is rather awkwardbe
ause the matrix must be s
anned in the right order to ensure that values are de�nedbefore they are used. Writing an imperative parallel version is harder still. This and otherexamples are the subje
t of an ex
ellent arti
le on de
larative s
ienti�
 programming byArvind and Ekanadham [AE88℄.
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Fun
tion 
ompositionFun
tions are obviously important in fun
tional programming|but what 
an one do witha fun
tion? A fundamental operation on fun
tions is to 
ompose them, to form anotherfun
tion whi
h applies �rst one fun
tion, and then the other. It should be possible todedu
e pre
isely what 
ompose must do from its type spe
i�
ation:
ompose :: (� ! 
) ! (� ! �) ! � ! 
Its de�nition is
ompose f g = hwhereh x = f (g x)Though more explanatory, this is pre
isely equivalent to
ompose f g x = f (g x)The in�x form of 
ompose is written \Æ":(f Æ g) x = f (g x)Composition is 
learly asso
iative:(f Æ g) Æ h = f Æ (g Æ h)This is easily shown by providing the missing parameter x, and then redu
ing. The LHSis ((f Æ g) Æ h) x| {z } = (f Æ g) (h x)| {z }= f (g (h x))and the RHS is(f Æ (g Æ h)) x| {z } = f ((g Æ h) x)| {z }= f (g (h x))as expe
ted.The purpose of \Æ" is to allow us to build fun
tional obje
ts without having to introdu
eparameters expli
itly. This is taken one step further by the next example.Combinators and 
ombinator abstra
tionThe fun
tion \Æ" passes only one parameter at a time. It is sometimes useful to pass morethan one, and this requires a generalisation of fun
tion 
omposition:24



ÆÆ :: (�1 ! �2 ! 
) ! (� ! �1) ! (� ! �2) ! � ! 
f ÆÆ g1 g2 = hwhereh x = f (g1 x) (g2 x)An interesting early result in the theory of fun
tional programs is that these fun
tionsallow us to express arbitrary fun
tions without referring to variables at all. For example,the fun
tion f de�ned byf x = (log x) / ((sqrt x) � (2 � x))is equivalent tof = (/) ÆÆ log((�) ÆÆ sqrt((�) 2) )(we assume for 
onvenien
e here that \ÆÆ" binds more tightly than appli
ation). To seethat this is so, let us provide the missing parameter and apply redu
tion:f x = ( (/) ÆÆ log((�) ÆÆ sqrt((�) 2) )) x| {z }= (/) (log x)( ((�) ÆÆ sqrt((�) 2) x) )| {z }= (/) (log x)((�) (sqrt x)(2 � x) )= (log x) / ((sqrt x) � (2 � x))It is possible to �nd an algorithm, 
alled a 
ombinator abstra
tion algorithm, whi
h sys-temati
ally transforms any de�nition to remove variables, introdu
ing operators like \ÆÆ"(
alled 
ombinators) instead. This is frequently useful in program transformation, and, aswe shall see in Chapter 3, it is a 
ommon 
ompilation te
hnique.Classi
al works use a more fundamental set of 
ombinators, 
alled S K and I:S a b 
 = a 
 (b 
)K a b = aI a = a 25



It happens thatS a b 
 = apply ÆÆ a b 
whereapply f x = f xField and Harrison [FH88℄ and Glaser, Hankin and Till [GHT84℄ both give good introdu
-tions.2.3 Equational ReasoningWe have already seen some simple arguments about fun
tions like hd, tl, map2 and ply.These employed the straightforward approa
h of using the equalities given in the programs
ript to rewrite expressions. This equational way of reasoning about fun
tional programsderives its basis from the redu
tion me
hanism by whi
h the meaning of an expression is
al
ulated: it is really only 
ontrolled, symboli
 evaluation of the program.We examine the te
hnique more 
losely by means of an example, whi
h we draw fromthe ri
h algebra of equalities between fun
tions like map, map2 and ply. We will prove thatfor all op 2 � ! � ! 
,as 2 [�℄,bs 2 [�℄:map2 op as bs = ply (map op as) bsWe begin by de�ning a new fun
tion map2', a name for the form on the RHS:map2' op as bs = ply (map op as) bsNow instantiate this equation for the 
ases of the parameters as and bs, that is spe
ialisethe equation for parti
ular forms of parameters. Begin with when both as and bs areempty:map2' op [ ℄ [ ℄ = ply (map op [ ℄) [ ℄Now apply redu
tion (sometimes 
alled unfolding when used in program transformation)to the RHS. Use the de�nitions of map and ply:map2' op [ ℄ [ ℄ = ply (map op [ ℄)| {z } [ ℄= ply [ ℄ [ ℄| {z }= [ ℄Next we take the 
ase where both are lists of one or more elements:
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map2' op (a : as) (b : bs) = ply (map op (a : as)) (b : bs)Now we apply some redu
tion to the RHS, using the equations for map and ply:map2' op (a : as) (b : bs) = ply (map op (a : as))| {z } (b : bs)= ply ((op a) : (map op as)) (b : bs)| {z }= (op a b) : (ply (map op as) bs)| {z }In the RHS of this equation is an instan
e of the RHS of the equation we used to de�nemap2'. We 
an use that equation to rewrite the equation above tomap2' op (a : as) (b : bs) = (op a b) : (map2' op as bs)This step, 
alled folding, used an equation ba
kwards, from RHS to LHS. As was notedearlier, 
omputations whi
h use su
h steps may not always terminate when they should.Thus, this transformation is not guaranteed to preserve termination properties 
orre
tly|an independent proof is needed, whi
h would normally use the te
hnique of indu
tion,whi
h is introdu
ed in se
tion 2.5. We do, of 
ourse, retain the guarantee that when theprogram does terminate it yields the expe
ted answer.The result of these instantiations and simpli�
ations is a new pair of equations 
on-
erning map2':map2' op [ ℄ [ ℄ = [ ℄map2' op (a : as) (b : bs) = (op a b) : (map2' op as bs)This de�nition of map2' is identi
al in stru
ture to the de�nition of map2, and we 
antherefore 
on
lude that, indeed,map2' = map2that is,map2 op as bs = ply (map op as) bsNote that we used four kinds of step in this argument: de�nition (of fun
tion map2'),instantiation (of map2' for empty and non-empty lists parameters), folding and unfold-ing. Similar steps whi
h will be used later in
lude in
lude abstra
tion (introdu
tion of awhere 
lause), laws, meaning the appli
ation of ready-proven equalities, and 
an
ellation.Can
ellation is simply the rule that if, for all parameters x,f x = g xthen we 
an infer that f = g |in fa
t this is the de�nition of equality for fun
tions. Wewill often use it in de�ning fun
tions. For example, one might write27



sum as = insert (+) 0 asBy 
an
ellation this is equivalent tosum = insert (+) 0Together, these rules 
onstitute a very powerful transformation te
hnique and we shalluse it extensively. It was pioneered in Darlington and Burstall [Dar82℄, where it is 
alledthe fold/unfold system. A great deal of work has been done on providing automatedsupport to 
he
k and manage su
h derivations. Very powerful automati
 te
hniques existwhi
h 
an derive many useful results without human intervention. Furthermore, while theneed to assure the preservation of 
orre
t termination behaviour remains in general, it ispossible to show that many forms of derivation are 
ompletely valid despite the use offolding.Be
ause of the problem of assuring termination 
orre
tness, equational reasoning mustbe supplemented by indu
tion te
hniques. In fa
t, it often turns out to be easier to performa 
omplete veri�
ation by indu
tion rather than �nd a forward derivation. The next fewse
tions develop a very simple basis for using indu
tive arguments of various kinds.2.4 Partial fun
tions and partial data stru
turesSeveral of the de�nitions given so far have been re
ursive: an obje
t is de�ned in termsof itself. Whenever this o

urs, the possibility exists that the obje
t's value has not beenproperly de�ned. When one applies redu
tion to �nd the value of su
h an obje
t, wemay never rea
h the normal form. This se
tion introdu
es the ideas ne
essary to framequestions about the termination of fun
tional programs, whi
h 
an be
ome quite subtlewhen, for example, in�nitely-long lists are 
onsidered.A parti
ularly useful way to address the problem is to introdu
e a spe
ial symbol, ?(
alled \bottom"), the ar
hetypi
al non-terminating 
omputation, whi
h 
an be expressedin the fun
tional language simply by the equation? = ?We 
onsider all non-terminating 
omputations, and all 
omputations with an unde�nedresult, to be equal to ?. This presumption is valid as long as we 
onsider only the resultof the 
omputation (its extensional properties), and not the manner of its exe
ution (itsintensional properties).Of 
ourse we 
annot always tell whether a parti
ular expression is equal to ?. As anexample, we might try to write a program to �nd whether my telephone number appearsin the de
imal expansion of e:FindSubList MyPhoneNumber DigitsOfewhereDigitsOfe = [2, 7, 1, 8, 2, 8, . . . ℄ 28



The rôle of ? is to provide the algebrai
 language to ask su
h questions.2.4.1 Stri
tnessFor example, one interesting question to ask of an N-parameter fun
tion f is whether, whenwe make the i'th parameter ?, the result has to be ? too. More formally the question iswhetherf x1 . . . xi�1 ? xi+1 . . . xN = ?for all xj, j 6= i. If so, f is said to be stri
t in its i'th parameter: either� f x1 . . . xi�1 xi xi+1 . . . xN = ?always, or� f must use its i'th parameter to produ
e its result.If f is not stri
t in its i'th parameter, it 
annot make use of its i'th parameter in formingits result.The pra
ti
al import of this is that if f is stri
t in parameter i, then when redu
ing anappli
ation of f to a
tual parameters e1 to eN ,f e1 . . . ei�1 ei ei+1 . . . eNparameter ei 
an be redu
ed before the appli
ation of f, or in parallel with it, while stillretaining the guarantee that the normal form will be found if it exists.Powerful te
hniques exist for stri
tness analysis based on the te
hnique of abstra
tinterpretation [HBJ88℄, and this o�ers the prospe
t of highly parallel redu
tion. Seese
tion 3.1.5 for more details.2.4.2 Re
ursionAnother use of ? is to lend a mathemati
al meaning to re
ursive de�nitions, and to forma basis for the indu
tion te
hniques we will introdu
e later in the 
hapter.It is quite straightforward to give a mathemati
al semanti
s to non-re
ursive de�nitions,but a re
ursive de�nition has to be unravelled into an in�nitely large expression before itloses its re
ursive nature. Using ?, however, we 
an approximate to the semanti
s of are
ursive de�nition as 
losely as ne
essary.Firstly, let us de�ne our notion of approximation (
onsider fun
tions over numbersonly): the fun
tion f approximates the fun
tion g (written f v g) if and only iffor all xf x = g x _ f x = ?(where _ denotes logi
al \or"). For example, if we have the de�nitions
29



f x = ? g 1 = a h 1 = ag 3 = 
 h 2 = bh 3 = 
Fun
tions g and h yield ? ex
ept where de�ned otherwise. Nowf v g v hsin
e h is 
onsistent with g, but is de�ned for more parameter values. All fun
tions aremore de�ned than f, whi
h is unde�ned for all parameters.Now suppose we have a re
ursively-de�ned fun
tion r,r x = . . . r . . . r . . .in whi
h r appears one or more times on the RHS. Let us abstra
t r from the RHS:r x = body r xwherebody r' x' = . . . r' . . . r' . . .The fun
tion body 
aptures the 
ontents of the \. . . ", but allows us to manipulate there
ursive 
all expli
itly. The primed symbols r' and x' are new variables. De�ner0 x = ?andr1 x = body r0 xthat is,r1 = body r0Clearly, r0 v r1. The fun
tion r1 is not mu
h use: it is unde�ned on all but the simplestinput values. However, we 
an extend it by iterating again:r2 = body r1and again,r3 = body r2Thus,
30



ri = bodyiwherebodyi x = body ( body � � � body| {z }i times ( ? ) � � � )We 
an generate a list of all these iterates:[r0, r1, r2, r3 � � � ℄ = iterate body ?For any given input x there is some integer n su
h thatrn x = r xNoti
e that the iterations form an in
reasing 
hain, 
alled the Kleene 
hain:r0 v r1 v r2 v � � � v ri � � �The meaning of r itself is just the limit of this 
hain as i tends to in�nity:r = limi!1 ribe
ause then the equationri = body ri�1will a
tually hold. This limit is, therefore, the solution of the equation we used to de�ner in the �rst pla
e.Te
hni
ally, r is 
alled the least �xed point of body, be
ause r is the least-de�ned fun
tionwhi
h is un
hanged by the transformation body. For a more formal treatment of thismaterial the reader is referred to [S
h86℄.2.4.3 Partial data stru
turesA partial list is a �nitely-long list whi
h ends with ? instead of [ ℄. For example,1 : ?1 : 2 : ?1 : 2 : 3 : ?1 : 2 : 3 : 4 : ?are partial lists of numbers. When in�nite lists were �rst introdu
ed earlier in this 
hapter,attention was drawn to the analogy with a 
ommuni
ations 
hannel, on whi
h values aretransmitted periodi
ally|or even sporadi
ally|but inde�nitely. A partial list representsa 
hannel on whi
h a few elements are sent, but then is silent forever. It is impossibleto distinguish a partial list from a longer one simply by 
omputing its value, be
ause one
annot tell when to give up waiting for the next value to appear.Just as with fun
tions, there is a useful notion of approximation for partial lists: l1 v31



l2 if and only ifl1 = ? _ (hd l1 v hd l2 ^ tl l1 v tl l2)This is sometimes 
alled the pre�x ordering be
ause l1 v l2 if and only if l1 is an initialpre�x of l2 and ends in ? (or is a
tually equal to l2). Under this ordering, it should be
lear that? v 1 : ? v 1 : 2 : ? v 1 : 2 : 3 : ?Just as with the re
ursive fun
tion r, we 
an give a meaning to a re
ursively-de�ned list l,l = . . . l . . . l . . .by 
onsidering su

essive iterates starting from ?. This time, let us take a 
on
reteexample:�bs = 1 : 1 : (map2 (+) �bs (tl �bs))We abstra
t out the re
ursive referen
e to �bs:�bs = body �bswherebody �bs' = 1 : 1 : (map2 (+) �bs' (tl �bs'))Now we 
an enumerate the �rst few iterates, and use redu
tion to �nd their values:�bs0 = ?�bs1 = body �bs0 = 1 : 1 : (map2 (+) �bs0 (tl �bs0))| {z } = 1 : 1 : ?�bs2 = body �bs1 = 1 : 1 : (map2 (+) �bs1 (tl �bs1))| {z } = 1 : 1 : 2 : ?�bs3 = body �bs2 = 1 : 1 : (map2 (+) �bs2 (tl �bs2))| {z } = 1 : 1 : 2 : 3 : ?�bs4 = body �bs3 = 1 : 1 : (map2 (+) �bs3 (tl �bs3))| {z } = 1 : 1 : 2 : 3 : 5 : ?�bs5 = body �bs4 = 1 : 1 : (map2 (+) �bs4 (tl �bs4))| {z } = 1 : 1 : 2 : 3 : 5 : 8 : ?and so on. As before, we 
an easily generate a list of all these iterates:[�bs0, �bs1, �bs2, . . . ℄ = iterate body ? 32



and the limit of this series,�bs = limi!1 �bsisatis�es the original re
ursive equation used to de�ne �bs.The value of an element of this series, �bsi, say, denotes the result of an un�nished
omputation. Thus we 
an think of the ? whi
h appears in, for example,�bs5 = 1 : 1 : 2 : 3 : 5 : 8 : ?as meaning \not yet" instead of \never". This should provide further support for theanalogy between lists and 
ommuni
ations 
hannels.2.5 Indu
tionIn this se
tion the most powerful te
hnique for reasoning about fun
tional programs ispresented. Proof by indu
tion over the natural numbers should be familiar from s
hoolmathemati
s. We will introdu
e some slight variations, all ultimately redu
ible via 
om-putational indu
tion (below) to indu
tion over natural numbers.2.5.1 Computational indu
tionThe most fundamental form of indu
tive argument about a fun
tional program's behaviouris based on the number of iterations in the Kleene 
hain of approximations to a re
ursively-de�ned value. Suppose we have some re
ursive de�nition:x = . . . x . . . x . . .Using the ideas from the previous se
tion, we havex = limi!1 f x0, x1, x2, . . . gand we need to show that some property P holds for x. It is easy to show P xi for all i:Base 
ase: show that P ?.Indu
tive step: show that, given P xi, P xi+1 holds.This establishes P xi for all i, but does not automati
ally imply that P holds for the limit,x, whi
h is what a
tually interests us. Fortunately it is valid for a very large 
lass of\admissible" predi
ates.2.5.2 Admissible predi
atesA predi
ate P is admissible if it is 
hain 
omplete: P is de�ned to be 
hain 
omplete ifwhen P holds for every element of a Kleene 
hain it holds for its limit. That is,33



x0 v x1 v x2 v � � �andP x0 ^ P x1 ^ P x2 ^ � � �impliesP ( limi!1 f x0, x1, x2, . . . g )We will �nd that all the program properties we are interested in are admissible, be
ausethe assertion that any two expressions are equal is 
hain 
omplete. An example of anon-
hain-
omplete predi
ate is a test whether a list is partial.A more mathemati
al treatment of this material in
luding the 
hara
terisation of a
lass of admissible predi
ates is to be found in [MNV73℄.2.5.3 Partial stru
tural indu
tionThis is by far the most 
ommonly-used indu
tion method. Just as 
omputational indu
tionapplies when re
ursion is used in a fun
tion or value's de�nition, stru
tural indu
tion dealswith re
ursion in data types, as, for example is found in the de�nition of lists given earlier:List � ::= NIL j CONS � (List �)More generally, su
h de�nitions de�ne tree-like stru
tures, for example:Tree � ::= LEAF � j NODE (Tree �) (Tree �)Just as with data value re
ursion, we 
an unravel this data type de�nition into its Kleene
hain, starting with the type 
ontaining only unde�ned elements, whi
h we will 
all f?g:Tree0 � ::= f?gTree1 � ::= LEAF � j NODE (Tree1 �) (Tree0 �)::= LEAF � j NODE f?gf?gTree2 � ::= LEAF � j NODE (Tree1 �) (Tree1 �)::= LEAF � j NODE (LEAF � j NODE f?gf?g)(LEAF � j NODE f?gf?g)...This suggests an indu
tion s
hema for showing that P x for all x 2 Tree �:Base 
ase: show that P ?.Indu
tive step: Given that 34



for all x 2 Treei �:P xshow thatfor all x 2 Treei+1 �:P xProvided P is admissible, this s
hema proves P for any 
hoi
e of � in Tree �: it subsumesthe proofs for Tree [Char℄, Tree (Tree Num) et
.We 
an improve the s
hema above substantially by observing that the indu
tive step isalways proved for ea
h 
ase of the data type separately, and that the non-re
ursive 
ases(su
h as NIL and LEAF �) are more properly moved into the base-
ase sin
e they do notrequire the indu
tive assertion. The simpli�ed s
hema for partial stru
tural indu
tion onTrees is as follows:Base 
ases: 1. Show that P ?.2. Show thatfor all x 2 �P (LEAF x)Indu
tive step: Given that P t1 and P t2, show thatP (NODE t1 t2)The partial indu
tion s
hema for lists isBase 
ases: 1. Show that P ?.2. Show that P [ ℄.Indu
tive step: Given that P xs, show thatfor all x 2 �:P (x : xs)Noti
e that just as with 
omputational indu
tion, we require that P be admissible to inferfrom su
h a proof that P holds for an in�nitely-large stru
ture.
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2.5.4 Total stru
tural indu
tionThere are many useful properties whi
h hold for all �nite, total (i.e. not partial) elementsof a data type. An example isfor all as, bs 2 [�℄, FiniteAndTotal as:reverse (as ++ bs) = (reverse bs) ++ (reverse as)wherereverse :: [�℄ ! [�℄reverse [ ℄ = [ ℄reverse (x : xs) = (reverse xs) ++ [x℄Re
all that \++" is the in�x form of append, the fun
tion whi
h joins lists. We assumethe ar
hetypal non-admissible predi
ate FiniteAndTotal, whi
h holds for only those �nitelists ending in [ ℄. The property obviously fails for in�nite and partial lists:reverse ([1,2,3, � � �℄ ++ bs) = ? 6= (reverse bs) ++ (reverse [1,2,3, � � �℄)A partial stru
tural indu
tion proof of this property fails in its base 
ase, quite reasonably,be
ausereverse (? ++ bs) 6= (reverse bs) ++ (reverse ?)For su
h proofs, the total stru
tural indu
tion s
hema is useful. Here is the version for[�℄:Base 
ase: Show that P [ ℄.Indu
tive step: Given that P xs, show thatfor all x 2 �:P (x : xs)This establishes P for all �nite and total elements of [�℄. For total stru
tural indu
tion,we drop the ? part from the base 
ase, and no longer require that P be admissible.A parti
ularly 
ommon use of total stru
tural indu
tion is over the natural numbers.These 
an be de�ned as a data type:Nat ::= ZERO j SUCC NatFor example the natural number 3 would be writtenSUCC (SUCC (SUCC ZERO))However, this data type in
ludes su
h elements as36



(SUCC (SUCC (SUCC (SUCC (SUCC (SUCC (SUCC (SUCC( � � � )) � � � )) = 1andSUCC (SUCC (SUCC ?))whi
h might be thought of as \at least 3". Clearly, for most purposes we mean to dealwith the �nite, total natural numbers. Their total indu
tion s
hema isBase 
ase: Show P ZERO.Indu
tive step: Given P n, show that P (SUCC n).It is often fruitful to think of the �nite and total elements of a data type as a distin
tsubtype, and we might use some notation to that e�e
t in type spe
i�
ations, as inreverse :: [�℄! ! [�℄!where the \!" suÆx indi
ates that the fun
tion requires a �nite, total list to produ
e aresult, and that the result it produ
es is �nite and total.In general, it is not stri
tly ne
essary to base a total stru
tural indu
tion argument ona data type. Any stru
ture will suÆ
e, provided a well-founded ordering 
an be imposedon it. A well-founded ordering is an ordering relation, say �, on a set, say A, su
h thatthe set 
ontains no in�nitely long de
reasing 
hain of elements� � � a4 � a3 � a2 � a1 � a0The ordering may be a partial one: for some elements a and b, it may be that neithera � b or b � a holds. Using it we 
an state the general version of the stru
tural indu
tionprin
iple:To prove that: P x for all x 2 A where � is a well-founded ordering on A,Base 
ase: Show that P x for all minimal elements x of A, that is for all x 2 A su
h thatthere is no x' � x.Indu
tive step: Given that P x' for all x' � x, show that P x.Note that we 
an in fa
t assume P for all values smaller than x; this extends the indu
tions
hemata given so far.2.5.5 Re
ursion indu
tionThis �nal te
hnique is arguably not an indu
tion argument at all. In using the limit ofthe Kleene 
hain to give a meaning to a re
ursively-de�ned variable, we argued that if ris de�ned by the re
ursive equation
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r = body rwherebody r' = . . . r' . . . r' . . .and[r0, r1, r2 � � � ℄ = iterate body ?thenr = limi!1 riis a solution to the re
ursive de�nition of r be
ause at the limit,ri = ri�1However, we may be able to �nd a solution by other means. For example, let us de�nethe fun
tion triangle over the natural numbers:triangle :: Num ! Numtriangle n = 1, if n = 1triangle n = n + (triangle (n�1)), if n > 1We 
an use the Kleene 
hain to �nd the result of applying triangle to any parti
ularparameter by unravelling far enough. However, there is a non-re
ursive solution to theseequations:triangle2 n = n�(n+1)/2To verify that this is so, we 
an see whether the equations de�ning triangle are indeedsatis�ed when we substitute triangle2 for triangle. Is it true thattriangle2 n = 1, if n = 1triangle2 n = n + (triangle2 (n�1)), if n > 1 ?Unfolding triangle2 throughout gives:n�(n+1)/2 = 1, if n = 1whi
h is trivially satis�ed, andn�(n+1)/2 = n + ((n�1)�((n�1)+1))/2, if n > 1We use arithmeti
 laws to simplify this:
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n�(n+1)/2 = n + ((n�1)�n)/2= (2�n + ((n�1)�n))/2= (2�n + n2 � n)/2= (n + n2)/2= n�(n+1)/2This 
ompletes the proof that triangle2 satis�es the equations de�ning triangle.This means that when triangle x is de�ned, triangle2 x must also be de�ned, and mustgive the same result. This is not quite the same as proving that for all x, triangle x =triangle2 x, be
ause triangle2 x may be de�ned when triangle x is not. This happens in ourexample when x < 1.To be more pre
ise, what re
ursion indu
tion veri�es is thatfor all x 2 Numtriangle x v triangle2 xThis is just the de�nition of v on fun
tions:triangle v triangle2If triangle had been de�ned for all of its domain type, we 
ould immediately infer thattriangle2 = triangle. Indeed, if we modify triangle's type spe
i�
ation totriangle :: Nat ! Natso that triangle is a total fun
tion, then, over this restri
ted domain type, triangle2 mustbe equal to it.The re
ursion indu
tion prin
ipleFrom this example we derive the following proof s
hema: given a system of re
ursiveequations de�ning f, and a value f' whi
h satis�es these equations, infer thatf v f'Commonly, the proof of a
tual equality is unne
essary.Note that a simple form of re
ursion indu
tion was used earlier (page 27) to assertthat be
ause map2' and map2 are de�ned by equations of the same stru
ture, they are thesame.2.6 Why Fun
tional Languages?Having introdu
ed fun
tional programming and given a very brief guide to transformationand veri�
ation within the fun
tional style, we 
on
lude this 
hapter with a review of thesu

ess and generality of the approa
h. 39



Fun
tional languages are very often de�ned by default: they la
k assignment. Theyare of interest here for positive, rather than for negative reasons. The prohibition ofassignment does not prevent the 
onstru
tion of evolving data stru
tures, but the inter-dependen
ies between operations, whi
h arise when 
hanges to data must be propagatedbetween operations, must be made expli
it. It is not proven that prohibiting assignmentalways simpli�es programming, although the examples where the fun
tional approa
h failslead one to 
on
lude that a neater solution than simply re-introdu
ing assignment is pos-sible (see [ASS85℄ pg. 290 for a dis
ussion).Foregoing expli
it assignment removes a major sour
e of programming errors by lettingthe ma
hine arrange re-use of memory 
ells. Assignment is a means of informing the
omputer that a value is no longer required, and that the 
ell holding it is to be re-usedfor holding the new value given. In a fun
tional language, the programmer is relieved ofany 
on
ern for the lifetime of values, and the timing of destru
tive overwriting of the 
ells
ontaining them. This is an important abstra
tion from the housekeeping needed with vonNeumann programming. It is also a big step towards avoiding unne
essary 
on
ealmentof a program's parallelism, sin
e programmed memory re-use introdu
es spurious pointsof syn
hronisation between 
omputations whi
h might otherwise pro
eed in parallel.2.6.1 Referential Transparen
yThe �rst positive reason for 
onsidering fun
tional languages is that fun
tional programsare easier to reason about than imperative ones. This should have be
ome 
lear from theexamples in this 
hapter.In a fun
tional program, any pair of expressions whi
h are synta
ti
ally the same aresemanti
ally the same, s
ope rules allowing. This property, \referential transparen
y", is a
orollary of the prohibition of assignment|without assignment, expression evaluation 
anhave no side-e�e
ts, so di�erent evaluations of the same expression must yield the sameresult. Referential transparen
y means that a program's s
ript 
an be treated as a systemof equations, and the equational form of reasoning familiar from algebra is appli
able.2.6.2 Higher-Order Fun
tionsAnother bene�t of the fun
tional approa
h is the ease and 
leanliness with whi
h higherorder fun
tions 
an be de�ned. Generally, no spe
ial syntax is needed to de�ne or ma-nipulate fun
tions whose parameters or values are also fun
tions. Moreover, algebrai
properties su
h as referential transparen
y still hold; there is no 
ontext sensitivity prob-lem for higher-order fun
tions, as there is with dynami
ally-s
oped languages su
h as(some diale
ts of) Lisp.2.6.3 Polymorphi
 Type Che
kingStrong typing in traditional languages destroys the usefulness of higher-order fun
tions byinsisting that a separate de�nition be written for ea
h di�erent parameter type 
ombina-tion, even if the fun
tion need not know its parameters' types. For example, the 
ontextof \map" above implies that its type is 40



map :: (line ! line) ! ([line℄ ! [line℄)This type would 
on
i
t with many other likely uses of \map", resulting in a type errorunder a strong type dis
ipline like Pas
al's [JW75℄.Polymorphi
 type 
he
king enables a single, generi
 fun
tion to be written instead. Thegeneri
 fun
tion is assigned a type expression detailing the minimum stru
ture requiredfor type 
onsisten
y:map :: (� ! �) ! ([�℄ ! [�℄)If the usage of the fun
tion is then 
onsistent with the fun
tion's type expression, run-timetype errors 
an be guaranteed never to o

ur.An obje
t's 
ontextually-implied type is 
onsistent with its generi
 type expressionif the implied type 
an be obtained from the generi
 type expression by a 
onsistentsubstitution of type variables by sub-expressions of the 
ontextual type.Polymorphi
 type inferen
e and 
he
king are not 
on�ned to fun
tional languages,but re
e
t the importan
e of higher-order fun
tions to the expressive power of fun
tionallanguages.2.6.4 De
larative CompletenessViewing a fun
tional program as a system of re
ursive equations leads to a de
larativereading, where the meaning of the program is taken to be the mathemati
al solution ofthe equation system. Our language has a very valuable 
ompleteness property: the redu
-tion of an expression by rewriting terms a

ording to the program's equations, using thegeneral normalisation strategy, is guaranteed to yield a result if a result is mathemati
allydedu
eable. This leads to a view, taken in [HOS85℄, where a suitable fun
tional languageis regarded as a logi
 programming language based on equations (in 
ontrast to relations,as in Prolog). The equational nature, 
ombined with the 
ompleteness property, suggeststhat fun
tional languages have a fundamental importan
e.2.7 Why Not Fun
tional Languages?There are problems with fun
tional languages. A sele
tion are listed here.2.7.1 La
k of Expressive Power.Serious problems have been en
ountered with extensions of fun
tional languages to expressintera
tive resour
e management. Finding language 
onstru
ts to express the kind ofnon-determinism needed is quite easy, and several examples have been implemented andused su

essfully, su
h as the \merge" operator of [AS85℄ and [Jon84℄, and the resour
emanagers of [AB84℄. The diÆ
ulty is rather with maintaining the language's desirablealgebrai
 properties.In the 
ontext of parallel programming, the e�e
t of this restri
tion is that a fun
tionalprogram's result 
annot depend on the order or speed of evaluation of its 
onstituent41



expressions. This is a very attra
tive safety feature for parallel programming, but doeslimit the appli
ation to some extent.2.7.2 La
k of Abstra
tive Power.Allowing program obje
ts to have evolving lo
al state 
an substantially simplify the expres-sion of 
ertain algorithms|the fun
tional style prohibits an \obje
t-oriented" program-ming stru
ture. [ASS85℄ argues that, although assignment 
an always be avoided (e.g.using lazy streams), their 
onstraint-propagation 
ir
uit simulator, for example, would beinordinately 
ompli
ated if no assignment were allowed at all. An obs
ure program in amathemati
ally-simple language is, surely, at least as diÆ
ult to reason about as a 
learprogram in a language with a more 
omplex logi
.An alternative to simply re-introdu
ing assignment is to noti
e that the language fea-tures proposed to help with the problem of intera
tive resour
e management mentionedabove, su
h as Abramsky and Sykes' non-deterministi
 merge, or Arvind and Bro
k's re-sour
e managers, 
an also be used to help simplify the expression of shared a

ess to a statevariable. This may be a more stru
tured and uniform approa
h than allowing assignment,but the semanti
 problems remain.2.7.3 Performan
eUntil re
ently, the usefulness of fun
tional languages has been hampered by a la
k offast implementations on 
onventional 
omputers. Their use as a basis for resear
h intoprogramming for high-performan
e, parallel 
omputers therefore needed some justi�
ation.Fun
tional programs tend to run slowly be
ause the language provides useful servi
esto the programmer. These generally in
lude1. Dynami
 store allo
ation.2. Lazy semanti
s.3. Higher-order fun
tions.It has been shown (see [Jon87℄, [Aug84℄, [BGS82℄) that these features 
an often be re-moved from the 
ompiled 
ode, after 
areful program analysis. We review su
h te
h-niques in Chapter 3. When su
h modern 
ompiler te
hnology is applied, performan
e on
onventional ma
hines 
an be very nearly 
omparable to standard imperative languageimplementations.32.7.4 The update problemThere remains a systemati
 performan
e problem whi
h is harder in general to resolve.The histogram fun
tion given in se
tion 2.2.6 was introdu
ed as an illustration. At itsheart lies the fun
tion MapElement f i xs, whi
h was de�ned so that3Languages having 
all-by-value semanti
s, su
h as Common Lisp [Ste84℄, and Hope [BMS80℄ 
ertainlyhave implementations with performan
e 
ompetitive with the standard imperative language 
ompilers (see[BGS82℄). Compilers for lazy languages, su
h as Lazy ML [Aug84℄, are not far behind.42



MapElement f i [x1, x2, . . . xi, . . . xn℄= [x1, x2, . . . f xi, . . . xn℄It is not possible to de�ne this fun
tion within the language in a way whi
h avoids some
opying of the list. The reason is that referen
es to the un
hanged list must retain thesame meaning. We 
annot, in general, just repla
e the 
hanged element in situ. Su
h anupdate might be 
alled \destru
tive", sin
e it overwrites a value whi
h is already de�ned.What this means is that we 
annot simulate a 
onventional, imperative programminglanguage (where assignment 
an be destru
tive) with the same eÆ
ien
y. By using a treerepresentation, it 
an be shown that the loss need only be a fa
tor proportional to thelogarithm of the data stru
ture's size, but the overheads of su
h s
hemes 
ompared withthe imperative approa
h are inevitably large.Of 
ourse, in parti
ular 
ases a 
ompiler 
an lo
ate where a destru
tive implementationof fun
tions like MapElement 
an be used. This is rather 
ompli
ated, and not very pre-di
table; for example, it depends on evaluation order, whi
h in turn depends on stri
tnessanalysis. The spa
e usage 
hara
teristi
s of fun
tional programs are notoriously diÆ
ultto predetermine.2.8 SummaryThis 
hapter has given a swift introdu
tion to fun
tional programming in the style usedin the remainder of this book. A parti
ular emphasis has been laid on te
hniques formanipulating and verifying fun
tional programs, as a foundation for the more extensivederivations whi
h follow. One aim of the approa
h to programming being advo
ated isthat programmers will make use of simple identities when 
onstru
ting and maintainingprograms, and for this reason the presentation has not separated the a
tivity of writingprograms from that of reasoning about them.2.9 Pointers into the literatureStandard texts on fun
tional programmingBird and Wadler's textbook [BW88℄ is the most appropriate sour
e for material whi
hexpands on the 
ontent of this 
hapter at a similar level. Their notation is very similar.Field and Harrison [FH88℄ give a mu
h deeper treatment of a wide range of subje
ts inthe area, and is re
ommended for the reader wishing to go beyond the introdu
tory levelof this 
hapter.Mu
h of the material in Henderson's book [Hen80℄ is 
overed by these later books,but it is at least worth referring to for its investigations of stream programming andba
ktra
king. Glaser, Hankin and Till wrote a fundamental textbook [GHT84℄ 
overingeverything needed for a basi
 grounding in the area at the time. Their treatment ofmathemati
al foundations su
h as 
ombinators and the �-
al
ulus is parti
ularly worthreferring to. It la
ks 
overage on topi
s whi
h have sin
e gained importan
e, su
h as typesystems. Another useful, but again somewhat dated, referen
e is the 
olle
tion (
ommonly43




alled the \blue book") edited by Darlington, Henderson and Turner [DHT82℄. This isinteresting be
ause of the breadth of the fun
tional programming resear
h 
ommunity itspans.Abelson and Sussman's textbook [ASS85℄ is outstanding in many respe
ts. They areespe
ially su

essful in pla
ing the fun
tional paradigm in 
ontext, 
arefully developing adis
ussion of whether a pure fun
tional language is suÆ
iently expressive. Their book givesa taste for the work of the large Lisp-based 
ommunity, ostensibly based on a fun
tionalview but extending far outside it. For an introdu
tion 
loser to the mainstream of Lisp
ulture, one might look to Wilensky [Wil84℄.Foundations for reasoning about fun
tional programsThe �-
al
ulus, originated by Chur
h [Chu41℄, was introdu
ed as a notation for fun
tions ingeneral, and deals with higher-order fun
tions parti
ularly tidily. Its 
orresponden
e withmost fun
tional programming languages is 
lose enough for us to think of their syntax as\sugar" for what is really just programming dire
tly in the �-
al
ulus. Dana S
ott foundeda large body of theoreti
al 
omputer s
ien
e by 
onstru
ting a model of the �-
al
ulus,using only fundamental mathemati
al notions su
h as set theory. This enables fa
ts aboutthe �-
al
ulus to be proven using 
lassi
al mathemati
s, and forms the formal basis, 
alleddomain theory, for reasoning about fun
tional programs as mathemati
al obje
ts. Stra-
hey applied this to the problem of giving mathemati
al meaning to other programminglanguages as a means of formal spe
i�
ation of programming language meaning. Thisarea, denotational semanti
s, is well 
overed by [S
h86℄ and [Sto77℄. The �-
al
ulus itselfis rather thoroughly 
overed by Barendregt [Bar84℄. Stoy gives a parti
ularly a

essibleintrodu
tion to S
ott's domain theory in [DHT82℄.The prin
iples of reasoning about programs using the te
hniques presented here werea
tually developed before that mathemati
s were formalised, in the �rst re
orded instan
eby M
Carthy [M
C67℄. The survey of indu
tion te
hniques given here was based on aarti
le by Manna, Ness and Vuillemin [MNV73℄, where a variety (more than were givenhere) are illustrated and veri�ed with respe
t to 
omputational indu
tion, and ultimately,therefore, to S
ott's domain theory.Ba
kus [Ba
78℄ presents a rather di�erent approa
h based on the 
ombinator languageFP. Whereas in our language higher-order fun
tions 
an be 
onstru
ted at will, FP isrestri
ted to small set of well-understood higher-order 
ombining forms, and the languageis 
hara
terised by a quite small set of generally-appli
able equivalen
es whi
h 
onstitutean \algebra of programs". Being a 
ombinator language, there are no variables at all, onlyfun
tions to pi
k out and manipulate parameters. This avoids 
onsideration of parametervalues in de
iding the appli
ability of algebrai
 laws, and leads to a 
laim that reasoningo

urs at a \fun
tion level". The reader is referred to Field and Harrison [FH88℄.The presentation in this book avoids the �-
al
ulus, drawing instead from the theoryof term rewriting systems. This allows a simpler explanation of equational reasoning andpattern mat
hing. It is slightly more general, sin
e it in
ludes some fun
tions (su
h as thenon-stri
t or of se
tion 3.1.3) whi
h 
annot be written in the �-
al
ulus (although theyare represented in most models of the �-
al
ulus). The reader is referred to Klop [Klo90℄or Huet and Oppen [HO80℄. 44



Assessing fun
tional programmingIt is for the reader to ponder the question of whether fun
tional programming has anythingto o�er programming pra
titioners, and if so what. As already mentioned, this is onetheme of Abelson and Sussman's book [ASS85℄. They identify some serious problems inexpressing 
ertain program stru
tures in the fun
tional style, but they do not deal withthe question of reasoning about programs. Hughes' arti
le \Why fun
tional programmingmatters" [Hug84℄ �nds mu
h expressive power in the fun
tional style, and some of thispresentation has been drawn from it. His emphasis is on using streams and fun
tion
omposition to separate programs into modules. Note that these 
on
lusions are not
ontradi
tory, but rather indi
ate that the fun
tional style does matter, but is not auniversal pana
ea.Arvind and Ekanadham advo
ate their language, Id Nouveau, for s
ienti�
 program-ming in [AE88℄. They �nd mu
h to 
ommend a purely fun
tional approa
h. The ve
torand matrix re
urren
e notation used here is drawn from their \I-stru
tures", and sharesthe interesting advantage seen in the Gauss-Seidel example (see se
tion 2.2.8), that thematrix's s
an order need not be spe
i�ed. They do �nd 
ause to augment their languagewith features whi
h are not purely fun
tional, but are still relatively pure (see se
tion 4.11).They have not yet found 
ause to deal espe
ially with the \update problem" outlined inse
tion 2.7.4.Determina
y and operating systemsFor parallel programming, fun
tional languages have an outstanding advantage: regardlessof the parallelism used in the evaluation, the result will be 
ompletely repeatable. It isnot possible, either by a

ident or by design, to write a fun
tional program whose resultdepends on who wins a \ra
e" between two parallel pro
esses.Although very handy for many appli
ations, there are situations where some kind ofra
e is just what is wanted. For example, one might have a parallel algorithm in whi
hany solution will do, but we do not know whi
h \solver" pro
ess will �nd a solution �rst(M
Burney and Sleep give an example of this, where a global bounding value is non-deterministi
ally updated to 
ontrol pruning in a parallel sear
hing algorithm).More 
ommon examples o

ur in operating systems and when dealing with input andoutput devi
es. It is in the nature of an operating system that its behaviour depends onthe termination order of the pro
esses for whi
h it is responsible.A substantial amount of work has been done on operating system design in the fun
-tional style. Abramsky and Sykes [AS85℄ and Simon Jones [Jon84℄ have built operatingsystems by introdu
ing a spe
ial operator, merge. The stream returned by merge e1 e2 
on-tains the elements of the streams e1 and e2 in the order in whi
h they are 
omputed. This\fair, bottom-avoiding" merge operator is suÆ
ient to en
ode all the operating systemsappli
ations studied, and is not diÆ
ult to implement. Unfortunately, programs usingmerge are very diÆ
ult to reason about.
45



Input-output and the \plumbing problem"In a fun
tional language, all the obje
ts upon whi
h an expression's value might dependmust be manifest in the expression itself. When programming input and output this raisesthe \plumbing problem": every expression, fun
tion or module whi
h might perform inputor output must be \plumbed in" to the input and output 
ontrollers, at the very top level ofthe program. Thus an apparently quite small modi�
ation, making a fun
tion print somestatus information for example, 
an involve substantial 
hanges at all levels of abstra
tion.The only published attempt known by this author to deal with this problem appears inthe FL language design, and is studied by Williams and Wimmers in [WW88℄.Extensions to our fun
tional language's type systemThe language presented here uses the Hindley-Milner system [DM82℄, with no frills. Itla
ks overloading, for example of integers and reals, and 
ould be extended relatively easilyto in
lude subtypes and inheritan
e, giving an immense boost in its power to des
ribe
ompli
ated logi
al stru
tures 
learly and 
on
isely.A simple example of a subtype stru
ture o

urs with re
ords, where a re
ord is a
olle
tion of obje
ts stru
tured into named �elds. A subtype of a re
ord is a larger re
ord,
ontaining all of the �rst re
ord's �elds, and more. A fun
tion f de�ned to take an obje
tof type A as a parameter is automati
ally de�ned on obje
ts of subtypes of A. We say thatf is inherited by the subtypes of A.Cardelli and Wegner review of types in programming languages [CW85℄ is requiredreading. Kaes has proposed an attra
tive approa
h to introdu
ing overloading to a lan-guage like ours [Kae88℄, and this is likely to be in
orporated in the Haskell languagedesign [HWA+88℄. Fuh and Mishra [FM88℄ present the basis for a type s
heme whi
hretains the polymorphism and type inferen
e properties of the Hindley-Milner system, butin
orporates subtypes and inheritan
e.Our language has no modules, as would be required for writing large programs. Mod-ules 
an be parameterised by types, and 
an pa
kage stru
tures to re
e
t their mathe-mati
al stru
ture. Standard ML [Mil84℄ is an example, while Cardelli and Wegner, andBurstall [Bur84a℄ develop the theory. See also the work of Goguen and the OBJ group[Gog88℄. Goguen argues that higher-order fun
tions are not needed for typi
al higher-orderprogramming examples: parameterised modules do the job more simply, and fa
ilitate theimposition of semanti
 
onstraints on parameters (e.g. that the operator be asso
iative forinsert).Spe
i�
ation languagesThe de
larative 
ompleteness property of fun
tional programs implies that an obje
t 
an-not be spe
i�ed in the language without a giving a program to 
onstru
t it. It is oftenuseful to be able to write down the behaviour expe
ted of a program in a formal manner,before going into the detail needed to implement it. Mu
h of this book is devoted to gener-ating improved implementations from spe
i�
ations given as simple implementations, butnon-exe
utable spe
i�
ation te
hniques are o

asionally used informally. See, for example,46



the breadth-�rst list-tree inter
onversion fun
tions in Appendix A, se
tion A.6.2, and thede�nition of the ve
tor and matrix operations in Appendix B.Several languages have been designed spe
i�
ally for giving formal spe
i�
ations ofsoftware systems. Examples in
lude Z (a good, short introdu
tion is [Suf82℄), VDM[BJ82℄, OBJ [GT79℄ and Lar
h [GH86
℄. All these languages have an exe
utable subsetwhi
h is fun
tional.Another approa
h to extending the power of a fun
tional language to spe
ify is byaugmenting it with the me
hanisms of logi
 languages. Degroot and Lindstrom [DL86℄give a 
omprehensive survey. An interesting attempt to 
apture an obje
t-oriented stylein a spe
i�
ation language is des
ribed by Goguen and Meseguer [GM86℄.
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Chapter 3Sequential and ParallelImplementation Te
hniquesHopefully Chapter 2 gave the reader a feel for the power and simpli
ity of the fun
tionalapproa
h to programming. This 
hapter deals with implementation te
hniques. The aimsof this 
hapter are� To demonstrate that fun
tional programs 
an be 
ompiled to a
hieve performan
e
ompetitive with other programming paradigms on 
onventional, sequential 
omput-ers.� To explain how these fast sequential implementation te
hniques 
an be extended totightly-
oupled multipro
essors.� To develop an understanding of how parallelism arises in the fun
tional program'ssour
e 
ode.� To provide a framework for assessing the 
osts involved in attempting to exploitparallelism, so that they may be weighed against the possible bene�ts.The treatment of implementation te
hnology will not be very profound or detailed: theintention is to give just enough detail to understand the problems of writing good parallelfun
tional programs.The 
hapter deals with the graph redu
tion approa
h to fun
tional language imple-mentation, and for a deeper des
ription see Peyton Jones' textbook [Jon87℄. There areother approa
hes but the in
uen
e on the programmer's view of program behaviour is thesame.3.1 An Overview of CompilationCompiling a fun
tional language is not fundamentally di�erent from 
ompilation of 
onven-tional languages, but the opportunities for analysis and optimisation are more abundant.Moreover, the analysis and simpli�
ation often have quite tidy justi�
ations with referen
eto the language's underlying theory.The phases one would expe
t in a high-quality 
ompiler for our language will in
lude49



1. Type 
he
king,2. Simpli�
ation,3. Removal of pattern mat
hing,4. Variable abstra
tion|removal of parameterised where 
lauses.5. Stri
tness analysis,6. Boxing analysis,7. Code generationSophisti
ated 
ompilers will in
lude other phases, su
h as storage 
lass analysis to 
lassifyvalues a

ording to whether register, global, sta
k or heap (in that order of preferen
e)storage 
an be used. The next few se
tions give some explanation of ea
h phase.3.1.1 Type 
he
kingThis has two purposes: to dete
t and report programmer's mistakes as 
learly as possi-ble, and to annotate the program with information needed later. The language used inthis book uses a straightforward polymorphi
 type s
heme, essentially the Hindley-Milnertype system [DM82℄. This system allows an obje
t to be assigned the most general typeexpression possible, under the 
ondition that its 
ode a
t identi
ally on all instan
es ofthat type expression. It also has the advantage that type de
larations 
an be inferred ifthey are not given, and that the type 
he
king algorithm will fail if a run-time error 
ouldo

ur due to a type mismat
h.More realisti
 programming languages require a slightly ri
her type system than this,if only to handle 
oer
ion of integers to reals properly. As is shown by Fuh and Mishra,[FM88℄ and Kaes [Kae88℄ this need not be a substantial 
ompli
ation.3.1.2 Simpli�
ationThere are many opportunities to apply the algebra of programs, and in parti
ular the prop-erties of well-known operators, to simplify the program whi
h the programmer originallywrote. Examples in
ludeCommon subexpression elimination: This standard 
ompiler te
hnique is appli
ablewithout restri
tion in the fun
tional world, be
ause no fun
tion 
an have a side-e�e
t. Some 
are does have to be applied to avoid in
reasing the amount of workingmemory a program may require.Partial evaluation: When all parameters to a fun
tion are provided at 
ompile-timethe 
ompiler 
an simply 
al
ulate the value. When some but not all parameters areprovided, massive simpli�
ations 
an still o

ur. In parti
ular, 
ommon higher-orderfun
tions like map and insertleft 
an be spe
ialised to their fun
tion parameter. This
an improve stri
tness information, redu
e fun
tion 
all overheads and allow betterstorage 
lass optimisation. 50



Unfolding simple fun
tions: This is 
alled `inlining' in the standard 
ompiler litera-ture. It often leads to mu
h more substantial simpli�
ations.Data type transformations: Library fun
tions like ListToVe
tor and Ve
torToList areknown to satisfy handy properties su
h asListToVe
tor (Ve
torToList as) = asThus, for example, if operations like map and insertleft are de�ned over ve
tors by�rst translating to lists, this simpli�
ation is appli
able as soon as the de�nitionsare unfolded.This is an area of very a
tive resear
h, and several transformations appearing in this bookare 
andidates. For example, see the ++ optimisation in Appendix A, se
tion A.1.1.It may seem unwise to apply so mu
h unfolding to programs. There is a danger that thespa
e o

upied may be too large, but the prin
iple at work is quite reasonable: operatorslike insertright, map and so on are shorthand for what in an imperative language wouldappear as an expli
itly-
oded loop. Thus the \ma
ro-expansion" implementation shouldbe no worse than the imperative 
ase.3.1.3 Removal of pattern mat
hingIn Chapter 2 se
tion 2.2.5, a strategy was given for sele
ting whi
h equation to apply toa redex. As des
ribed there, the normalisation strategy is very ineÆ
ient: it may involvemany tests being performed more than on
e, and it in
urs the overhead of spawningand then tidying up a number of parallel testing pro
esses. We simplify the dis
ussionhere by insisting (along with almost all existing 
ompilers and language designs), thatthe patterns be restri
ted in form so that the parallel, \ra
ing" implementation is notne
essary. Instead, a sequential pattern testing implementation 
an be used.Normal-order redu
tionFor programs whi
h use no pattern mat
hing, a trivial sequential strategy is guaranteedto �nd the normal form if it exists:� The normal-order normalisation strategy: The left-most, outermost redu
ibleexpression is redu
ed at ea
h step.Without pattern mat
hing, ea
h variable is de�ned by a single equation of the formf x1 x2 . . . xN = RHSfor N � 0. There is no need for any pattern-testing pro
esses as there is never more thana single 
andidate equation. Under the normal redu
tion order, none of the parametersare evaluated at all before the fun
tion is invoked.It is helpful (although not formally ne
essary) to allow just one fun
tion to be de-�ned by pattern-mat
hing, a 
onditional with the rôle of the if. . .then. . .else 
onstru
t of
onventional languages: 51



Bool ::= TRUE j FALSE
ond :: Bool ! � ! � ! �
ond TRUE a b = a
ond FALSE a b = bNormal order is still a normalisation strategy even with the addition of 
ond. We 
anthink of 
ond as being a built-in primitive.Compiling pattern-mat
hingThe purpose of the pattern-mat
hing removal phase of the 
ompiler is to translate aprogram with patterns into a program without, so that the normal redu
tion strategyabove 
an be used instead of the general (parallel) normalisation strategy. To do this, thesequen
e of parameter testing must be expli
itly 
oded using the 
ond operator.As a very simple example, 
onsider a variation of 
ond de�ned by the equationsguard :: � ! � ! Bool ! �guard a b TRUE = aguard a b FALSE = bThis fun
tion is just the same as 
ond ex
ept that the 
ondition is the leftmost parameterinstead of the leftmost one. It is easily translated into a pattern-free de�nition using 
ond:guard a b test = 
ond test a bNow when an appli
ation of guard is applied to some parameters, this equation is usedstraight away, before evaluating any parameters. The next redex will be an appli
ation of
ond, and this will require test to be evaluated. Thus, although the guard fun
tion doesnot work properly under the normal redu
tion order, we 
an 
ode it in terms of 
ond toget the desired e�e
t.Non-sequential patternsThis 
ompilation te
hnique 
annot work in general. Take for exampleor :: Bool ! Bool ! Boolor FALSE FALSE = FALSEor TRUE x = TRUEor x TRUE = TRUEThis is the well-known Boolean `or' fun
tion, but unusually it is de�ned to yield TRUE ifone of its inputs is TRUE, even if the other input is still unde�ned. Its full truth table is52



or FALSE FALSE = FALSEor FALSE TRUE = TRUEor TRUE FALSE = TRUEor TRUE TRUE = TRUEor ? TRUE = TRUEor TRUE ? = TRUEThe only 
orre
t implementation of this or spawns two parallel pro
esses, one to test these
ond de�ning equation (by evaluating the �rst parameter), the other to test the thirdequation (by evaluating the se
ond parameter).3.1.4 Variable abstra
tionThe next phase is a form of 
ombinator abstra
tion, as des
ribed in Chapter 2, se
tion2.2.8. The di�eren
e is that the 
ombinators are not 
hosen from a �xed set, but are derivedfrom the input program. The pro
ess is often 
alled �-lifting, or, if 
ertain \laziness"
onstraints are satis�ed, super
ombinator abstra
tion.The obje
t of �-lifting is to eliminate fun
tion de�nitions from where 
lauses. Theproblem de�nitions are those whi
h introdu
e new parameters in the LHS. For example,g inf x y = (some expression involving g)whereg z = (some other expression)The transformation is very straightforward if the RHS of g's equation makes no referen
eto variables lo
al to f, su
h as x and y. We just move g out of the where 
lause, if ne
essaryrenaming g to g' to make sure that no name 
lash is introdu
ed:f x y = (some expression involving g)g' z = (some other expression)If g's RHS does refer to free variables su
h as x and/or y, the free variables must be passedexpli
itly as parameters to g' every time g' is 
alled. This givesf x y = (some expression involving g x y)g' x y z = (some other expression)Peyton Jones gives the full details, whi
h are quite 
ompli
ated be
ause of re
ursive de�-nitions and the need to ensure that the transformation introdu
es no re
omputation. Thesuper
ombinator abstra
tion algorithm makes this guarantee for all expressions (
alledfull laziness, while �-lifting introdu
es no re
omputation of named expressions, but mayre
ompute some unnamed ones. Most 
ompilers employ �-lifting be
ause it involves lessrun-time overhead.The result of the variable abstra
tion phase is a set of simple re
ursion equations, withsimple LHS's (thanks to the pattern mat
hing removal), and 
at RHS's: a 
at RHS either53



has no where 
lause, or has a where 
lause all of whose equations have variables asLHS's. For example,f x = map ((+) 1) xswherexs = x : xsis a simple re
ursion equation be
ause although it has a where 
lause, the LHS of theequation de�ning xs 
onsists only of a variable.Alternative implementation te
hniques avoid this step, with the result that an environ-ment data stru
ture must be 
arried about at run-time, 
arrying the values of variablesbound for the s
ope of a where 
lause. The �-lifting pro
ess simply makes this environ-ment expli
it: it makes sure that ea
h free variable is passed as a parameter to just thoseexpressions whi
h need it.3.1.5 Stri
tness analysisThe de�nition of stri
tness was �rst given in se
tion 2.4.1. In its simplest form it 
an begiven in terms of a single fun
tion appli
ation with a single parameter: the fun
tion f isstri
t in its parameter iff ? = ?Stri
tness analysis is a 
ompiler algorithm whi
h analyses the syntax of every fun
tionde�nition and every fun
tion appli
ation and dete
ts in ea
h 
ase whether the equationabove holds. If this is not easily dedu
ed, perhaps be
ause of run-time dependen
y orsimply intra
tability, the analyser assumes that the fun
tion is not stri
t. The analysisalgorithm employs a parti
ularly elegant approa
h (
alled abstra
t interpretation) basedon an abstra
tion of the language's standard semanti
s, in whi
h ea
h value is representedby an abstra
tion|either ? or \not-?". An introdu
tion is given in [Jon87℄, [FH88℄ andin Hankin and Abramsky's introdu
tory 
hapter in [AH87℄.On
e dedu
ed, stri
tness information is manifest as stri
tness annotations appearing onstri
t appli
ations. Thus, if the sour
e program 
ontains the appli
ation of two expressionse1 and e2:e1 e2and the 
ompiler dedu
es that e1 is stri
t in its parameter, i.e. thate1 ? = ?then the appli
ation is annotated:e1 # e2For 
omplete stri
tness information it is also ne
essary to annotate the stri
t formal pa-rameters in fun
tion de�nitions. If f is de�ned by the equation54



f x y z = � � �and f is found to be stri
t in its se
ond parameter, its de�nition is annotated:f x y# z = � � �This is ne
essary if stri
tness information is to be made available when a fun
tion is passedas a parameter and used in a 
ontext in whi
h its identity 
annot be known at 
ompile-time(Peyton Jones 
overs this well [Jon87℄).Stri
tness and redu
tion orderThe value of stri
tness information is in the freedom it 
onfers on the order in whi
hredu
tions are applied. With no stri
tness information, every appli
ation must be appliedin normal order, leftmost �rst: where e1 and e2 are expressions, then in the appli
atione1 e2the evaluation of e2 must be suspended until e1 has been evaluated to a stage where itneeds the value of e2. This approa
h is often 
alled the 
all-by-need parameter passingstrategy. By 
ontrast, with stri
tness information,e1 # e2we 
an evaluate e2 mu
h earlier|as soon as we know we need the result of the appli
ationas a whole. This is be
ause we know that e1 will eventually use e2 (unless it is ? of itsown a

ord!). For example, we 
an employ 
all-by-value parameter passing, where e2 isevaluated 
ompletely before evaluation of e1 begins. This is the 
hoi
e taken by most olderlanguage designs for eÆ
ien
y reasons, regardless of stri
tness.Alternatively, parallel parameter passing 
an be used; see se
tion 3.2.3.1.6 Boxing analysisThe explanation given so far of program exe
ution relies on a tree-stru
tured representationof the expression being evaluated. The tree has a node wherever an appli
ation o

urs, withthe fun
tion being applied as the left sub-tree, and the parameter expression as the rightsub-tree. The tree is represented by a linked stru
ture in the 
omputer's memory. Whena parameter expression is passed into a fun
tion body, a pointer to the pie
e of graphrepresenting the expression is transferred|rather than 
opying the expression. This isimportant not only to redu
e 
opying and redu
e spa
e use: it is also ne
essary so thaton
e a parameter does get evaluated, it 
an be overwritten with the value so that it neednot be 
al
ulated again. Note that this means that after some rewriting the expressiontree will have nodes with more than one parent; it be
omes a general dire
ted graph.In this me
hanism, the parameter is 
alled boxed, and to �nd its value a pointer mustbe followed. This indire
tion is very expensive 
ompared with passing the parameter\unboxed", in a register as might a 
ompiler for a 
onventional language. Clearly aparameter 
an only be passed unboxed if it is passed by value.55



This problem is slightly awkward be
ause to take full advantage of unboxed parameterpassing, the 
ode generated for a fun
tion's body must be quite di�erent, but the boxedinterfa
e must still be available for 
all-by-need invo
ations. In the presen
e of manyparameters the number of versions needed of ea
h fun
tion's 
ode 
an be very large, soa 
ompiler should emit 
ode only for those variants a
tually used, and should impose alimit beyond whi
h boxed parameter passing must be used.Only with boxing analysis is the speed improvement due to stri
tness analysis realised(a spa
e improvement almost always o

urs with or without boxing: 
onsider an a

umu-lating parameter fun
tion like length).3.1.7 Code generationAfter simpli�
ation, stri
tness and boxing analysis, mu
h of a typi
al program will behandled well by a 
onventional 
ode generator. However, in the general 
ase problems arisewhi
h are pe
uliar to the fun
tional 
ase: at the heart lies the problem that a fun
tion
an be applied to a parameter in a 
ontext where the 
ompiler 
annot tell whether theresulting appli
ation is a redex. This 
an be resolved by 
arrying an parameter 
ount withthe fun
tion, but this overhead is undesirable, and 
an be avoided.Several fast and su

essful implementations of 
ode generators for lazy, higher-orderfun
tional languages have been in existen
e for some time, and are des
ribed, for example,by Peyton Jones [Jon87℄, Augustsson and Johnsson [Aug87, Joh87℄ and Fairbairn andWray [FW87℄. In order to give the interested reader a 
on
rete understanding of imple-mentation issues, a simple 
ode generator is des
ribed here in some detail. It should beemphasised that the approa
h taken is representative of but di�erent from the variousexisting 
ompilers, and does not des
ribe a parti
ular 
ompleted 
ompiler1.We begin the explanation with an outline of the s
heme, together with some motivation.We will be more spe
i�
 in the next se
tion:� We separate fun
tion appli
ation from obje
t evaluation. The apply operation takesa fun
tion f and a parameter a, and builds a heap 
ell (
alled \an appli
ation box")
ontaining the 
odef1: push apush f1jmp fThe label f1 is the address of the heap 
ell.� Thus, for example, when a three-parameter 
urried fun
tion is applied to threeparameters a, b and 
, three heap 
ells are o

upied:1The ideas presented in this se
tion owe mu
h to work originally done by Hugh Glaser of SouthamptonUniversity
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f1: push apush f1jmp f f2: push bpush f2jmp f1 f3: push 
push f3jmp f2The value f3 represents a fully-parameterised fun
tion appli
ation: it is a redex,although this may not be lo
ally dete
table at the point where the �nal parameteris provided.� When the result of a fun
tion appli
ation is passed to a stri
t basi
 operator (take\+" as an example), the evaluate operator is applied to it �rst. The evaluate operatortakes an appli
ation box as input, and returns an unboxed, evaluated obje
t. Theinput must be of base (i.e. non-fun
tional) type.� When a fun
tion has 
omputed its return result, it must update the appli
ation boxso that it represents the evaluated obje
t rather than the 
orresponding fun
tionappli
ation. For example, if f3 is a three-parameter fun
tion, the box f3 above isoverwritten withf3: push xreturn� The evaluate operator invokes the 
ode to 
al
ulate its input (say f3 for example)by pushing some 
urrent state information, and then bran
hing to f3. Ea
h pa-rameter and the pointer to ea
h 
losure, is thereby sta
ked in turn, and �nally thesuper
ombinator f itself is exe
uted.� When f 
omes to return its result, it must ensure that a base-type normal formis ultimately returned. Thus, every super
ombinator de�nition evaluates its resultbefore returning. This happens naturally when the result returned by f is the outputof a stri
t basi
 operator. However, not all fun
tions do this|some just return (some
omponent of) an input parameter, or an appli
ation box.In general it is possible that f is not a three-parameter fun
tion, but is instead afun
tion of fewer parameters, whi
h returns a fun
tion, and this returned fun
tionis then applied to the remaining parameters.In either 
ase, the 
ompiler 
an dete
t that the return result is not of base type.Instead or returning an unboxed, base-type result, su
h a fun
tion removes the pa-rameters it has 
onsumed from the top of the sta
kThe 
orre
tness of this s
heme relies 
ru
ially on the evaluate operator being applied onlyto redexes. Thus, we 
annot (in general) interpret stri
tness annotations on fun
tion-typedobje
ts as 
all-by-value fun
tion appli
ation.3.1.8 A simple 
ode generatorFor 
on
reteness a simple 
ode generator is sket
hed here. It does not deal with 
on-stru
tors, parameterless de�nitions or where 
lauses, and assumes that pattern mat
hing57



has been transformed away. In the �rst instan
e, it is fully lazy and takes no a

ount ofstri
tness or boxing analysis. The input is a list of equations:Sour
eCode == [Equation℄Equation ::= EQUATION fun
tion [formalparameter℄ rhswhere fun
tion and formalparameter are identi�ers,fun
tion == identi�erformalparameter == identi�erThe right hand side 
an be any expression. Expressions are either base-value 
onstants,fun
tion 
onstants, parameters, appli
ations of primitive (and stri
t) operators su
h as\+", or appli
ations of user-de�ned fun
tions (think of the list of Expressions here as beinga pair for the time being):rhs == ExpressionExpression ::= CONST Num jFUNCTION identi�er jPARAM Num jADD Expression Expression jAPPLY [Expression℄It proves useful to separate right-hand sides into two 
lasses, value-type or graph-type:ValueType :: Expression ! BoolGraphType :: Expression ! BoolValueType (CONST n) = TRUEValueType (FUNCTION f) = FALSEValueType (PARAM n) = FALSEValueType (ADD e1 e2) = TRUEValueType (APPLY [e1, e2℄) = FALSEGraphType exp = not (ValueType exp)The 
ode generator outputs a list of 
ode blo
ks, one for ea
h equation in the sour
e 
ode:CodeGenerator :: Sour
eCode ! [CodeBlo
k℄A 
ode blo
k is simply an entry point label and the asso
iated instru
tion sequen
e:CodeBlo
k ::= LABEL identi�er [Instru
tion℄
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The abstra
t ma
hineThe abstra
t ma
hine's instru
tion set is de�ned by the data type Instru
tion:Instru
tion ::= PUSHVALUE Num jPUSHGRAPH identi�er jPUSHPARAM Num jADD jAPPLY jEVAL jUPDATEVALUE Num jUPDATEGRAPH identi�er jBOX jRETJMP Num jRETJMP identi�erAfter optimisation, this representation is used to generate 
ode for the target pro
essor.This may involve register allo
ation and other issues whi
h will not 
on
ern us here.The abstra
t ma
hine maintains a heap and a single sta
k, into whi
h it has two pointerregisters, the sta
k pointer and the frame pointer. The frame pointer points to the basein the sta
k of the 
urrent invo
ation frame, where the return address is kept, while thesta
k pointer points to the top of the sta
k. Thus, the sta
k just before a three-parameterfun
tion like f returns a result v will have the formsp !
fp !

v (return value)f1 (�rst appli
ation box)a (�rst parameter)f2 (se
ond appli
ation box)b (se
ond parameter)f3 (third appli
ation box)
 (third parameter)ret (invo
ation return address, pushed by EVAL)ofp (pointer to base of previous frame, pushed by EVAL)(previous frame)The PUSHVALUE n instru
tion pla
es the unboxed 
onstant n on the top of the sta
k. ThePUSHGRAPH instru
tion takes a pointer to a fun
tion or heap 
ell and puts it on the topof the sta
k. PUSHPARAM n pi
ks the nth parameter out of the sta
k frame and pushes itonto the sta
k.The APPLY instru
tion takes a fun
tion f and a parameter x from the top of the sta
k,and repla
es them with a pointer f1 to a heap 
ell (an appli
ation box) 
ontaining the
ode
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f1: PUSHGRAPH xPUSHGRAPH f1JMP fThe EVAL instru
tion takes a pointer to an appli
ation box from the top of the sta
k,pushes the 
urrent frame pointer and return address and jumps to the 
ode in the box.On return, an unboxed base-type obje
t will have been pla
ed on the sta
k by the fun
tion.The UPDATEVALUE n instru
tion is used when an n-parameter fun
tion has 
omputedits return value, in the 
ase when the value is unboxed. It takes the value v at the top ofthe sta
k and uses it to overwrite the nth appli
ation box in its invo
ation 
hain. To do thisit �nds the appli
ation box pointer saved adja
ent to the nth parameter, and overwrites itwith the 
odefn: PUSH vRETThe UPDATEGRAPH n instru
tion is similarly used when an n-parameter fun
tion has
omputed its return value, but in the 
ase when the value is boxed. It takes the pointerv (to the boxed result) at the top of the sta
k and uses it to overwrite the nth appli
ationbox in its invo
ation 
hain with the 
odefn :: JMP vThe BOX instru
tion takes an unboxed value v from the top of the sta
k, and puts it ina box in the heap, just like the 
ell fn above. It leaves a pointer to the box on the top ofthe sta
k (this instru
tion will almost always be optimised out in 
ode generators whi
htake boxing analysis into a

ount).The RETJMP n instru
tion is used when a fun
tion has 
omputed its return resultand updated the 
orresponding appli
ation box using UPDATEGRAPH. The obje
t beingreturned is still a pointer to a box. This may o

ur either be
ause one of the parametersis being returned (and so might not yet have been evaluated), or be
ause the result is offun
tion type. It saves the value on the top of the sta
k in a temporary register (whi
h isa pointer to the box being returned), removes the top n parameters from the top of thesta
k, and �nally jumps to the saved pointer. The 
ode thereby invoked will eventually
ompute the unboxed base-type obje
t required, and return.The RET instru
tion is used when a fun
tion has 
omputed a base-type, unboxed result.It pi
ks up the return address and old frame pointer from the base of the invo
ation frame,resets the sta
k pointer to the top of the old sta
k frame, and pushes the returned value.The JMP instru
tion simply transfers 
ontrol to the fun
tion or box named.The translatorThe key to understanding the 
ode generator is to distinguish between two modes, graphmode, where 
ode to build a heap-based graph is generated, and value mode, where 
ode to
al
ulate a
tual values is generated. The main optimisation task is to avoid graph mode.The 
ode generator takes ea
h equation and 
lassi�es its RHS as either value type or graph60



type. It then 
alls the appropriate graph or value mode 
ode generator:CodeGenerator :: Sour
eCode ! [CodeBlo
k℄CodeGenerator equations = map TranslateEquation eqnsTranslateEquation (EQUATION fname params rhs)= LABEL fname ((Ggen rhs)++[UPDATEGRAPH n, RETJMP n℄), if GraphType rhswheren = length params= LABEL fname ((Vgen rhs)++[UPDATEVALUE n, RET℄), otherwisewheren = length paramsThe graph mode 
ode generator Ggen generates 
ode to build the fun
tion appli
ation treeof its result using APPLY and BOX:Ggen :: Expression ! [Instru
tion℄Ggen (CONST n) = [PUSHVALUE n, BOX℄Ggen (FUNCTION f) = [PUSHGRAPH f℄Ggen (PARAM n) = [PUSHPARAM n℄Ggen (ADD e1 e2) = [PUSHFUNCTION \addfun
tion"℄++(Ggen e1)++[APPLY℄++(Ggen e2)++[APPLY℄Ggen (APPLY [e1, e2℄) = (Ggen e1)++(Ggen e2)++[APPLY℄The fun
tion identi�er \addfun
tion" refers to a fun
tion whi
h adds its two parameters.It 
an be 
ompiled in value mode, but is needed here to suspend evaluation of the additionand its parameters during graph 
onstru
tion.The value mode 
ode generator is more straightforward, but must 
all Ggen to buildfun
tions and lazy parameters:Vgen :: Expression ! [Instru
tion℄Vgen (CONST n) = [PUSHVALUE n℄Vgen (FUNCTION f) = [PUSHGRAPH f, EVAL℄Vgen (PARAM n) = [PUSHPARAM n, EVAL℄Vgen (ADD e1 e2) = (Vgen e1)++(Vgen e2)++[ADD℄Vgen (APPLY [e1, e2℄) = (Ggen e1)++(Ggen e2)++[APPLY℄++[EVAL℄A simple exampleAs an example, 
onsider the fun
tion de�nitions61



f x = (ident x) + xident x = xThis program is represented in the Sour
eCode data type as[ EQUATION \f" [\x"℄(ADD (APPLY [FUNCTION \ident", PARAM 1℄) (PARAM 1)),EQUATION \ident" [\x"℄(PARAM 1)℄Applying the 
ode generator we �nd that \f" is 
ompiled in value mode (Vgen), while\ident" is 
ompiled in graph mode using Ggen:[ LABEL \f"[ PUSHFUNCTION \f",PUSHPARAM 1,APPLY,EVAL,PUSHPARAM 1,EVAL,ADD,UPDATEVALUE 1,RET ℄LABEL \ident"[ PUSHPARAM 1,UPDATEGRAPH 1,RETJMP 1 ℄ ℄Optimisations in the 
ode generatorMu
h of the performan
e 
omes from optimisations making use of information aboutparti
ular 
ases. The most basi
 make use of information available from the immediate
ontext, from stri
tness information and from types. A small sele
tion is given here:� Unshared appli
ations: When the APPLY instru
tion is used to build an appli-
ation box, it is possible to dete
t from the 
ontext whether the resulting pointermight be 
opied. If not, the box need not be updated when the fun
tion is evaluated.Then the appli
ation box need not in
lude 
ode to push the box address, although itmust still put something there to make sure the parameters are sta
ked in the frame
orre
tly. We 
all this instru
tion PUSHDUMMY. It is unne
essary if a non-updatingvariant of the fun
tion being applied is used, but this is not likely to be worthwhile.� Combining EVAL and APPLY: this optimisation is simply the observation that ina sequen
e of the form 62



[PUSH f, PUSH x, APPLY, EVAL℄the appli
ation box 
annot be shared, and will be freed immediately. It thereforeneed not be UPDATEVALUEed, and 
an be repla
ed by the 
ode[PUSHSTATUS label, PUSH x, PUSHDUMMY, JMP f, DEFINELABEL label℄where label is an unused identi�er, DEFINELABEL label asso
iates label with thefollowing instru
tion and PUSHSTATUS label pushes the 
urrent frame pointer andlabel onto the sta
k.This optimisation derives from splitting EVAL into [PUSHSTATUS label, JMP oldtop of sta
k, DEFINELABEL label℄. Then it is simply a storage 
lass optimisation tomove the PUSH from the appli
ation box into the instru
tion stream. The APPLYequation for Vgen be
omesVgen (APPLY [e1, e2℄) = [PUSHSTATUS label℄++(Ggen e2)++[PUSHDUMMY℄++(Ggen e1)++[PUSHDUMMY℄++[JMP (top of sta
k),DEFINELABEL label℄� Multiple appli
ations: It is very 
ommon for a 
urried fun
tion to be applied toseveral parameters at on
e. The appli
ation boxes 
an be 
ompressed into a singleheap 
ell. Thus, as well as the binary appli
ation rules in Ggen and Vgen we haverules for 2, 3 or more parameters. For example,Ggen (APPLY [e1, e2, e3℄) = (Ggen e1)++(Ggen e2)++[APPLY2℄where the APPLY2 instru
tion builds an appli
ation box f 
ontaining the 
odef: PUSHGRAPH (graph of e2)PUSHDUMMYPUSHGRAPH (graph of e3)PUSHGRAPH fJMP (graph of e1)This is simply an optimisation by bran
h elimination of the 
ode
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fn�1:f: PUSHGRAPH (graph of e3)PUSHGRAPH fJMP (graph of e1)PUSHGRAPH (graph of e2)PUSHDUMMYJMP fn�1� Stri
t appli
ations: when a fun
tion f is known to be stri
t, and its value is knownto be of base type, then the value-mode 
ode generator 
an generate 
ode to applyEVAL to a parameter before passing it:Vgen (STRICTAPPLY [e1, e2℄) = (Ggen e1)++(Ggen e2)++[EVAL℄++[APPLY℄++[EVAL℄Things are not quite so simple be
ause now e2 is passed to e1 unboxed. It would beeasy to arrange a pointer to its box to be passed instead, but more eÆ
ient wouldbe to use the equationVgen (STRICTAPPLY [e1, e2℄) = (Ggen e1)++(Vgen e2)++[APPLY℄++[EVAL℄(as well as the other optimisations listed above). To do this requires a variant ofe1 to be used whi
h expe
ts its parameter unboxed, and this 
annot in general bemanaged.A similar problem arises when trying to avoid having to BOX 
onstants before passingthem as parameters.� Tail re
ursion: a tail re
ursive fun
tion is one whose result is an appli
ation. Asthings stand, the 
ode generated will build a heap-based appli
ation box representingthe appli
ation being returned, update the 
orresponding appli
ation box, 
lear theparameters 
onsumed from the sta
k, and then jump to the tail-re
ursive 
all. Thisavoids needlessly 
onsuming sta
k spa
e, but is ineÆ
ient be
ause the update isunne
essary, and be
ause the parameters 
ould be updated in pla
e rather thanbeing built in the heap and then 
opied onto the sta
k.It is important to deal with tail re
ursion well, as this is how loops are manifest. Itis quite 
ompli
ated, and the reader is referred to the literature review (se
tion 3.4)for details.To 
on
lude this rather 
ompli
ated 
ode generation s
heme, we note that we have avoidedany run-time testing of the graph to determine whether fun
tions 
an be invoked, and wehave avoided tagging obje
ts with their type. The 
ostly aspe
ts of the language are� non-stri
t fun
tions, requiring parameters to be passed as graph,64



� updating appli
ation boxes, requiring pointers to boxes to be passed with parameters,in 
onjun
tion with higher-order and polymorphi
 fun
tions.Mu
h of the overhead 
an be redu
ed by generating multiple variants of ea
h fun
tion's
ode, but this is not always a

eptable.3.1.9 Garbage 
olle
tionFun
tional language implementations are very reliant on high-performan
e garbage 
ol-le
tion. Very 
areful design of run-time data stru
tures is required to allow unused heapstorage spa
e to be dete
ted and 
olle
ted eÆ
iently. Moreover, garbage must be madeavailable for 
olle
tion as soon as possible, requiring some potentially quite expensive a
-
ounting as pointers are destroyed. Compile-time optimisation of this garbage a

ountinga
tivity is an a
tive resear
h area.3.2 Parallel graph redu
tionIn the last se
tion 
ompilation te
hniques were dis
ussed for exe
ution of a fun
tionalprogramming language on a single, 
onventional pro
essing element. However, it was very
ommon in examples of redu
tion that several redexes 
ould be redu
ed in parallel. This isa
tually done by the large family of parallel graph redu
tion ma
hines being 
onstru
ted,in
ludingAli
e [DCF+87℄ Grip [JCH85℄, Alfalfa [GH86b℄, Flagship [WSWW87℄ andothers.In order to understand how parallelism is exploited in these ar
hite
tures, we examinehow and when potentially-
on
urrent tasks are 
reated, and how they intera
t with oneanother.3.2.1 Pro
essesUnder sequential evaluation, there is a single redu
tion pro
ess, whi
h applies a normal-order redu
tion strategy modi�ed by stri
tness annotations to in
lude 
all-by-value pa-rameter passing. Under parallel graph redu
tion, there may be many su
h pro
esses,ea
h evaluating a di�erent sub-graph. There are several overheads paid by parallel graphredu
tion ma
hines against whi
h the potential speedup must be weighed:Fork overhead: The 
ost of 
reating a new pro
ess arises in three ways:1. Constru
ting the graph representing the expression. This is the same as the
ost of 
all-by-need parameter passing. It is to be 
ompared with the lower 
ostof 
all-by-value parameter passing.2. Pla
ing a new pro
ess des
riptor in a pro
ess pool to await s
heduling. Thenew pro
ess des
riptor will 
ontain a referen
e to the graph of the expressionin question, and when ne
essary, the identi�er of the pro
ess whi
h spawns it.Other pro
essors may take des
riptors from this pool, thus migrating the worka
ross the ma
hine. 65



3. Constru
ting and entering a new pro
ess when the graph referen
e is s
heduledfor exe
ution.In addition, there may be a 
ost asso
iated with distributing the graph referen
eto another pro
essing element for exe
ution. We 
an a

ount for all these 
osts asan average fork overhead 
hargeable for every pro
ess 
reation. Note that mu
h ofthis 
ost is in
urred whether or not the pro
ess is a
tually distributed to anotherpro
essing element.Syn
hronisation 
ontrol: Be
ause of sharing in the graph, a pro
ess may attempt toredu
e a node in the graph whi
h is already being redu
ed by another pro
ess. Ifallowed to pro
eed, 
onsiderable 
haos will result. To prevent this, a marker mustbe pla
ed on a node|signifying that \work is in progress below"|to ensure mutualex
lusion whenever a redu
tion pro
ess attempts to redu
e a node. The marker 
anbe removed when the node is rewritten to normal form.A pro
ess whi
h needs the value of a marked node before it 
an pro
eed must suspenditself, after arranging to be re-awoken when the mark is removed.Join syn
hronisation: When a redu
tion pro
ess su

essfully terminates, having re-du
ed its expression graph to normal form, it overwrites the root node of the graphit redu
ed with the result, and removes its mutual-ex
lusion marker.By this time, several other pro
esses may be suspended awaiting this result. Theidenti�ers of ea
h waiting pro
ess will be held in a pending list asso
iated with thenode. The last thing a pro
ess does is to awaken these pro
esses by informing thes
heduler that they 
an be resumed.Memory a

ess interferen
e: The multiple redu
tion pro
essors must have fast a

essto the shared graph data stru
ture. This requires a 
omplex 
ommuni
ations andarbitration system whi
h in
urs a delay on a

esses to the graph. In the �rst in-stan
e, when assessing the performan
e issues for parallel graph redu
tion ma
hines,this delay is assumed relatively small. This 
an be a
hieved using sophisti
ated in-ter
onne
tion network te
hnology (surveyed in [WF84℄), at a 
onsiderable 
ost. Inse
tion 3.2.3 we will see the in
uen
e of a poorer inter
onne
tion network.As well as these additions to the amount of work a parallel graph redu
tion ma
hine does,there is a severe in
rease in the spa
e o

upied. We return to this question in se
tion 3.4.3.2.2 PartitioningIn prin
iple, a new pro
ess 
an be 
reated whenever an already-existing pro
ess dis
oversa stri
t appli
ation. However, some pro
esses terminate after doing very little usefulwork|and this 
an be dwarfed by the fork and join overheads in
urred by the attempt toemploy parallel redu
tion. When this is the 
ase, it is wiser to generate 
ode for 
all-by-value parameter passing. In general, we would require a 
ompiler to prove for ea
h stri
tappli
ation that a de
ision to use parallel redu
tion rather than fast sequential redu
tion66



will not in
ur a substantial 
ost. This approa
h has been taken by Hudak and Goldbergwith their \serial 
ombinator" 
ompilation te
hnique [HG85℄.Their strategy 
an be used to guarantee some speed-up due to parallelism|and should
ertainly ensure that the attempt to exploit parallelism does not result in a slow-down.Just how mu
h speed-up depends on how mu
h parallelism is a
tually present in thesour
e program after the grain-size analysis. Some highly-parallel programs may 
ontainno expressions whi
h the 
ompiler 
an guarantee are worth distributing. Worse yet, somear
hite
tures may have fork-join overheads so high that distributable expressions are veryrare in any program at all.The problem of ensuring a non-negative speed-up is far easier than arranging for reallygood performan
e. Parti
ular algorithm stru
tures su
h as divide-and-
onquer (see Chap-ter 4) are well-understood, but in general 
onsiderable understanding of the algorithm isrequired, in order to sele
t just the right expressions for whi
h to spawn pro
esses. Thetarget is to maximise the grain size while still providing suÆ
ient parallelism to exploitthe ma
hine's resour
es. Of 
ourse, this all depends on the program itself having a goodparallel stru
ture. To get the best from su
h a ma
hine, these issues must be
ome the
on
ern of the programmer, and the approa
h of Chapter 5 is appli
able.3.2.3 Loosely-
oupled parallel graph redu
tion ma
hinesUp to now, we have assumed a tightly-
oupled underlying ar
hite
ture, in whi
h a

ess toa non-lo
al pro
essing element's memory is not mu
h slower than a

ess to lo
al memory.If this is not so, the performan
e issues be
ome mu
h more 
ompli
ated.The �rst aspe
t of the problem 
an be 
onsidered to be with the notion of \grain-size".This was de�ned for the tightly-
oupled 
ase to be the amount of work done by a pro
essbetween being 
reated (when the fork overhead is in
urred) and terminating (when the joinoverhead is in
urred). We 
an simply 
ompare the pro
ess's (minimum or likely) exe
utiontime with the total overhead to de
ide whether organising a new pro
ess is worthwhile.In a loosely-
oupled ma
hine, a non-trivial overhead is in
urred every time a pro
essmakes a non-lo
al memory referen
e. We are therefore for
ed to think of the grain sizeas the amount of work done between non-lo
al memory a

esses. This rather 
ompli
atesthe 
al
ulation, and 
ertainly redu
es the proportion of stri
t appli
ations whi
h 
an beimplemented safely using parallelism.When an expression is passed from one pro
essing element (say A) to another pro
ess-ing element (say B) for parallel evaluation, its parameters have to be a

essed non-lo
ally,by B from A, and any stru
ture returned will probably be 
onstru
ted by B, in B'smemory, and so will be a

essed non-lo
ally by A.Note that on
e an obje
t has been evaluated to normal form, it 
an be 
opied (withoutintrodu
ing re
al
ulation). Thus, when B a

esses a parameter stru
ture, it need onlya

ess ea
h non-lo
al node on
e. Similarly, when A a

esses the result of the parallelevaluation, it need examine ea
h node of the returned stru
ture at most on
e (Flagship[WSWW87℄ employs this te
hnique). Thus the overhead due to parameter/result a

essin
urred by distribution is bounded by the size of the parameter and result stru
tures.
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Eager evaluation of listsRe
ursively-de�ned data types su
h as lists and trees 
an have unbounded size. However,they are evaluated pie
emeal, just enough to expose the outermost 
onstru
tor (this iste
hni
ally 
alled weak head normal form). Thus the overhead in
urred by non-lo
ala

ess to su
h a stru
ture is limited by the number of parameters taken by the data type's
onstru
tor. A

ess to a subtree, or to the tail of a list, would 
onstitute a quite separateevaluation and the advantage of employing parallelism 
an be 
onsidered separately.However, lists 
an be treated di�erently from other stru
tures be
ause of their sequen-tial a

ess mode. Remote a

ess laten
y 
an be avoided by 
al
ulating several elementsahead, and sending to the 
onsuming pro
essor before they are demanded. This requiresstri
tness analysis to be applied to ensure that unwanted 
omputations are not spawned.Burn's work on evaluation transformers, reported in [Bur87a℄ forms a basis for this ap-proa
h. See also the pro
ess network view presented in se
tion 4.3.3.2.4 Neighbour-
oupled parallel graph redu
tion ma
hinesThe neighbour-
oupled ar
hite
ture, introdu
ed in se
tion 1.3, is an interesting intermedi-ate ar
hite
ture for parallel graph redu
tion. Re
all that in these ar
hite
tures, a general,random, non-lo
al a

ess is relatively slow, just as in a loosely-
oupled ma
hine. The dif-feren
e is that ea
h pro
essing element has a few neighbours to whi
h it is tightly-
oupled.Now mu
h of the problem with 
ompile-time performan
e analysis 
an be simpli�edprovided that a pro
ess is not migrated to a non-neighbour of the pro
essing element whi
hspawned it. With 
are, we 
an ensure that all parameters are available in the spawningpro
essing element's lo
al memory (if ne
essary by judi
ious 
opying).3.3 Con
lusionThis 
hapter has given a very brief overview of the graph redu
tion implementation te
h-nique for fun
tional programming languages. Substantial optimisations 
an be appliedand very high sequential performan
e 
an be a
hieved this way. We went on to exam-ine how parallelism 
an be applied to speed up graph redu
tion. A qualitative analysisof the 
osts of parallel graph redu
tion demonstrated that the approa
h is well-suitedto tightly-
oupled parallel 
omputers, but that in a loosely-
oupled ma
hine the 
ost ofremote memory a

esses dominates, and that 
ompile-time pro
ess distribution be
omesintra
table.3.4 Pointers into the literatureStandard works on 
ompilersDespite the additional problems of fun
tional languages, the standard texts on 
ompilerdesign are indispensable. Examples might in
lude Gries [Gri71℄, Aho, Sethi and Ullman[ASU86℄ and Wulf and his 
olleagues [WJW+75℄.68



Approa
hes to 
ompiling fun
tional programsThere are 
ompilation problems spe
ial to lazy and higher-order languages, and resear
hersstudying the area have developed a number of di�erent abstra
t ma
hine designs. Likeours, these generally form a simple, well-understood instru
tion set for an imaginary 
om-puter, and 
an be translated into instru
tions for a real ma
hine. Field and Harrison[FH88℄ 
over several di�erent approa
hes well.Abstra
t ma
hines 
an be divided into two 
ategories: environment-based and
ombinator-based.� Combinator-based abstra
t ma
hines: this 
hapter has des
ribed a 
ombinator-based approa
h, where the 
ompiler simpli�es the program so that referen
es to non-lo
al, non-global variables are transformed into parameter referen
es. This avoidsthe need for environment links (or displays), simpli�es fun
tion invo
ation and is
laimed to redu
e 
ontention for the environment between parallel redu
tions.The �rst appearan
e of this idea is Turner's 
ombinator redu
tion ma
hine [Tur79℄.Turner translated programs into a �xed set of simple 
ombinators (based on S, K andI, introdu
ed in se
tion 2.2.8), whi
h form the abstra
t ma
hine. Although the setdes
ribed in the paper is small, optimised implementations use a large 
ombinator setin
orporating many of the language's library fun
tions. Clarke and his 
olleaguesat Cambridge University built a prototype sequential ar
hite
ture (
alled SKIM)mi
ro
oded to support su
h 
ombinators as its instru
tion set [CGMN80℄. Stoye(in [Sto85℄) presents a deeper study, developing the instru
tion set towards more
onventional ma
hines.Apparently 
on
urrent work by Hughes [Hug83℄, Augustsson and Johnsson [Joh84b℄developed algorithms to 
onstru
t a 
ombinator set espe
ially for ea
h program.The body of ea
h 
ombinator 
an then be translated into 
ode for a 
onventional
omputer. This is done via the G-ma
hine abstra
t ma
hine by Augustsson andJohnsson's Lazy ML 
ompiler, and is des
ribed in detail in [Aug87℄ and [Joh87℄,where substantial optimisations are presented. This material is given in simpli�edform in Peyton Jones textbook [Jon87℄. Hughes approa
h (
alled super
ombina-tor abstra
tion) maintains non-re
omputation of shared subexpressions whi
h maybe 
ompromised by Augustsson and Johnsson's simpler �-lifting algorithm. It isnot 
lear whether the overheads introdu
ed by Hughes' algorithm are justi�ed, butGoldberg [Gol87℄ gives an analysis whi
h determines when the re
omputation mighto

ur. The Ponder 
ompiler, des
ribed by Fairbairn [Fai82℄, uses similar te
hniques.The 
ode generator presented in se
tion 3.1.8 is based on ideas from Glaser andHayes [GH86a℄ and Fairbairn and Wray [FW87℄, with mu
h help from Hugh Glaser,Sebastian Hunt and Tony Field whi
h is gratefully a
knowledged.� Environment-based abstra
t ma
hines: These extend and formalise the 
on-ventional approa
h to implementation of blo
k-stru
tured programming languages.The �-lifting phase is omitted, so that referen
es to non-lo
al, non-global variablesremain. Ea
h fun
tion maintains not only its own lo
al environment, but also apointer to a linked list of environment re
ords, ea
h holding values of non-lo
al non-global variables it might refer to. In a higher-order language, this 
hain may in
lude69



the lo
al environments of fun
tions whi
h have already returned. They must, there-fore, be kept in the heap rather than on the sta
k, as is possible in 
onventionalblo
k-stru
tured languages.The �rst example is the SECD ma
hine, introdu
ed by Landin [Lan64℄. A thoroughtreatment is given, in
luding a lazy variant and a 
orre
tness proof, by Field andHarrison [FH88℄. For generation of high-performan
e 
ode, they also des
ribe anoptimised variant 
alled FPM. The 
ategori
al abstra
t ma
hine, CAM, 
an alsobe thought of as an optimised SECD-style evaluator. It is interesting in that itsinstru
tions are just 
ombinators, drawn from a �xed set (Categori
al CombinatoryLogi
). See Field and Harrison and Curien [Cur86℄, although the latter is quitetheoreti
ally-oriented.An interesting variation was proposed by Steele in his Rabbit 
ompiler prototype[Ste78℄, a more a

essible presentation being [Kra88℄. These 
ompilers begin with atransformation phase resulting in a \
ontinuation-passing style" (CPS) formulationof the program. This makes a fun
tion's return address an expli
it parameter (offun
tion type), 
alled a 
ontinuation. When a fun
tion returns a value, the CPSfun
tion passes the value as a parameter to the 
ontinuation. CPS style programs
an be evaluated by a simpli�ed interpreter whi
h does not retain fun
tion returnaddresses. The aim of this transformation is shift the data stru
tures needed tomanage 
ontrol-
ow into the domain of values. This makes them available for 
on-ventional value-based optimisations. It also makes the treatment of tail re
ursionmore straightforward.Compiling pattern mat
hingVarious approa
hes have been des
ribed by Wadler, in Peyton Jones textbook [Jon87℄,Field and Harrison [FH88℄ and Augustsson [Aug87℄. More general work on pattern mat
h-ing has been done by Ho�man, O'Donnell and Strandh [HOS85℄, among others. Interestin pattern mat
hing extends to the theorem proving and 
omputer algebra 
ommunities;Klop [Klo90℄ and Huet and Oppen [HO80℄ 
over some of the area.Stri
tness analysisStri
tness analysis 
an be approa
hed using 
onventional data 
ow analysis, but has provena very su

essful appli
ation of abstra
t interpretation. This has the advantage of han-dling inter-fun
tional dependen
y, re
ursion, higher-order fun
tions and data stru
tures.An introdu
tion to abstra
t interpretation is given by Abramsky and Hankin in theirintrodu
tion to [AH87℄.Stri
tness analysis of �rst-order programs (or �rst-order parts of higher-order pro-grams) was �rst des
ribed by My
roft [My
81℄, and this has been implemented with verypositive results in Augustsson and Johnsson's Lazy ML 
ompiler [Aug87, Joh87℄. This wasextended by Burn, Hankin and Abramsky and Peyton Jones to higher-order programs (see[HBJ88℄), although eÆ
ien
y problems with implementations of this s
heme have yet to beresolved. Ba
kwards analysis, as proposed by Hughes [Hug87℄, may prove a more pra
ti
alalternative. 70



Extensions to dis
over stri
tness information about lists have been made by Wadler[Wad87℄, Burn [Bur87a℄ and others. The pra
ti
al appli
ation of stri
tness analysis on listsis still a resear
h topi
; di�erent approximations seem appropriate for di�erent purposes.See, for example, Chapter 5 se
tion 5.4.5.Compile-time simpli�
ationPerforming large-s
ale simpli�
ation of programs is still very mu
h an experimental te
h-nique. For a general review of partial evaluation, see page 160. An example of a 
omplete
ompiler based on simpli�
ation is des
ribed by Hudak and Kranz [HK84℄. Parti
ularte
hniques are des
ribed by Wadler [Wad88b, Wad88a℄.Store management and garbage 
olle
tionThe assignment operation \x := x + 1" 
an be interpreted as a hint to the 
ompiler that theold 
ontents of 
ell x are no longer required, and the spa
e 
an be reused to a

ommodatethe value x + 1. As fun
tional languages have no su
h 
onstru
t, other means must befound to re
laim memory spa
e when it is no longer needed. Some of this 
an be done at
ompile-time, but at present most is the responsibility of the run-time system.Run-time storage re
lamation 
an roughly be divided into two quite di�erent ap-proa
hes: 
opying and referen
e 
ounting.� Copying s
hemes: The starting point for these algorithms is to separate the work-ing memory into two parts, the TOSPACE and the FROMSPACE. When garbage
olle
tion o

urs, data obje
ts in use are 
opied from the FROMSPACE to theTOSPACE. After garbage 
olle
tion, free spa
e and allo
ated spa
e form two ad-ja
ent 
ontiguous blo
ks. In its simplest form, TOSPACE and FROMSPACE arestati
ally allo
ated and of equal size, so half of the available memory is wasted. After
olle
tion, the rôles of the two spa
es are reversed.An important advantage of 
opying is that the memory is 
ompa
ted, so improv-ing the performan
e of a virtual memory system; this 
an be further improved bystrategies like using depth-�rst 
opying to lo
ate linked obje
ts near to one another.Although s
hemes do exist whi
h eliminate the waste of the two-spa
e method, amore attra
tive approa
h is to split the memory into many spa
es, only one of whi
hneed be empty at on
e. This is des
ribed by Lieberman and Hewitt [LH83℄. Thespa
es are ordered by age|the more garbage 
olle
tions an obje
t survives, thedeeper in the ve
tor of spa
es it resides. Thus, most 
olle
tions need deal only withthe youngest obje
ts. Unfortunately, Lieberman and Hewitt's s
heme assumes thatmost pointers point to older obje
ts. In the presen
e of lazy evaluation, assignmentor logi
 variables this 
an often be far from the 
ase, and then a substantial overheadis in
urred. Moon [Moo84℄ des
ribes a similar but mu
h more 
ompli
ated s
heme,using substantial hardware support, to resolve these problems with high performan
e.Copying garbage 
olle
tion is not invoked until free spa
e be
omes short, and thelarger the physi
al memory the less often this need o

ur. The 
ost of ea
h 
ol-le
tion depends only on the amount of spa
e o

upied by non-garbage. This leads71



to a startling 
on
lusion: with enough memory we 
an make the garbage 
olle
tionoverhead asymptoti
ally approa
h zero. When memory is short, on the other hand,performan
e 
an be very poor.� Referen
e 
ounting s
hemes: An alternative to 
opying is simply to keep a
ount with ea
h 
ell of the number of pointers to it. When a pointer is 
opiedor destroyed, this 
ount is adjusted, and when it rea
hes zero the 
ell is markedreallo
able. The main advantage of referen
e 
ounting is that the rate and responsetime of the pro
essing is always 
onstant. Its main problem is that it fails for 
y
li
stru
tures. There is no opportunity for 
ompa
tion, so great 
are must be takento pla
e 
ells to maximise lo
ality when virtual memory is in use. Finally, theoverhead of referen
e 
ounting depends on the amount of 
opying and deletion ofpointers. Nonetheless, a great deal of work has been done in the area, parti
ularlyin parallel systems where 
opying s
hemes be
ome rather 
ompli
ated. For parallelsystems with pa
ket-swit
hed inter
onne
tion, a variation on the s
heme is ne
essaryto avoid ra
e 
onditions [WW87, Bev87℄2, where \weights" are 
arried with thepointers instead of 
ounts with the 
ells. Various other variations have been des
ribedby Glaser and his 
olleagues (e.g. [GT84℄).In prin
iple, garbage 
olle
tion 
an be avoided by 
ompile-time s
heduling of memory use.This has proven diÆ
ult, although attempts have been made by My
roft [My
81℄ andHudak and Bloss [Hud87, HB84℄ and others. More fruitful to date have been transfor-mation ta
ti
s whi
h eliminate intermediate data stru
tures. This is very 
ommon duringderivations given in this book. Wadler [Wad88b℄ attempts to formulate strategies suitablefor in
lusion in optimising 
ompilers.Spa
e leaksBe
ause they la
k expli
it 
ontrol over spa
e re-use, fun
tional programs have a tenden
y to
onsume large quantities of spa
e as they run. In some 
ases, this 
an be quite disastrous,and quite unne
essary. The problems 
an arise in several ways:1. The program may ne
essarily demand more spa
e than a more reasonable imple-mentation would require. This 
an happen quite a

identally. Take, for example,this fun
tion de�nition, whi
h 
ontains dupli
ated 
ommon subexpressions:f xs ys = 
ond ((sum (map g xs)) > 1)(
ond (h ys)(
ond ((sum (map g xs)) < 10)ab)
)d(the 
ond is used to for
e the three 
onditions to be evaluated sequentially). If we2The idea seems also to have been 
urrent in data
ow 
ir
les at MIT as early as 197972



abstra
t the expression map g xs using a where 
lause, we redu
e the amount ofwork done:f xs ys = 
ond ((sum gxs) > 1)(
ond (h ys)(
ond ((sum gxs) < 10)ab)
)dwheregxs = map g xsUnfortunately this means that the list gxs must be retained in memory during theevaluation of h ys. There may not be enough memory remaining for this 
omputation.2. The spa
e o

upied may depend on the evaluation order. An example might be afun
tion mean, spe
i�ed by the equationmean as = (sum as)/(length as)A 
onventional sequential evaluator would sele
t either the sum or the length 
al
u-lation to perform �rst, leaving the other to do se
ond. Either way means the list asmust be held in memory in its entirety. There does exist a redu
tion order whi
hevaluates both expressions in step (a data-driven order, for example). This program
an be rewritten to make the step-by-step 
al
ulation expli
it, but mu
h of the valueof a fun
tional formulation is lost. This problem is approa
hed in more depth byHughes [Hug83℄.3. The spa
e may be inadvertently retained by the implementation, even though it
annot be rea
hed. A 
ommon way this 
an happen is when several variables areheld in a fun
tion's a
tivation re
ord. The variables may be
ome garbage before thea
tivation re
ord does, but many implementations will not free the variables untilthe a
tivation re
ord is freed. With referen
e 
ounting a similar problem o

urs ifreferen
e de
rement 
ode is migrated a
ross fun
tion invo
ations. This is partiallyaddressed by Wadler [Wad86℄.Parallel Graph Redu
tionThe prin
iples of parallel graph redu
tion are reviewed in Chapter 24 of Peyton Jones'textbook [Jon87℄. This 
on
eptual basis was generalised and �rst implemented in theprototype Ali
e ma
hine, by Darlington, Cripps and their 
olleagues [DCF+87℄. TheAli
e work was the foundation for the Flagship proje
t [WSWW87℄, where attempts togeneralise the graph-rewriting model of parallel 
omputation have been 
rystallised in theda
tl language design. Da
tl [GKS87℄, and the related language Lean [BvEG+87a℄,extend the term-rewriting basis of fun
tional programming to the more general rewriting73



of linked graph stru
tures, and have mu
h in 
ommon with the Ali
e 
ompiler targetlanguage CTL. An important result of this work has been the formal veri�
ation thatgraph redu
tion implements fun
tional languages properly (the more general result is givenby Barendregt et al. [BvEG+87b℄, but an interesting algebrai
 approa
h is presented byvan der Broek and van der Hoeven [vdBvdH86℄).Many other resear
h groups have implemented or studied parallel graph redu
tion, anda 
omplete list is impossible. Most notable might be the grip ma
hine being 
onstru
tedby Peyton Jones and his 
olleagues [PCSH87℄ and the Alfalfa and Bu
kwheat imple-mentations by Goldberg and Hudak [Gol88℄, whose partitioning [HG85℄ and work di�usion[HG84℄ studies and espe
ially interesting. Other design studies in
lude Bevan, Burn andKaria's [BBK87℄ and Keller and Lin's Rediflow ma
hine [KL84, KSL86℄.Other approa
hes to parallel 
ode generationThere is not room here to 
over even a fra
tion of the general literature 
on
erned withthe problem of taking a program with little or no spe
i�
 
ontrol over parallel exe
ution,and generating parallel obje
t 
ode from it. A fundamental distin
tion 
an be drawnbetween run-time s
heduled obje
t 
ode and 
ompile-time s
heduled obje
t 
ode. Withrun-time s
heduling the 
ompilation problem is mainly 
on
erned with partitioning theproblem into large-grain pro
esses in order to over
ome the overhead of run-time pro
essmanagement. With 
ompile-time s
heduling, a mu
h �ner \grain" of pro
essing 
an beemployed|typi
ally at the level of instru
tions |be
ause high lo
ality 
an be arrangedand syn
hronisation delays 
an be avoided.Sarkar [Sar89℄ and Goldberg [Gol88℄ des
ribe re
ent quite su

essful approa
hes to thepartitioning problem. Sarkar also approa
hes the problem of 
ompile-time s
heduling oflarge-grain pro
esses to gain yet higher performan
e.The 
ompile-time s
heduling literature goes ba
k mu
h further, be
ause of the earlyprevalen
e of ve
tor pipeline pro
essors (of whi
h the 
ray-1 [Rus78℄ is the 
lassi
alexample). An example of this work might be Ku
k et al. [KKLW81℄. Long instru
tion wordar
hite
tures have led to other interesting �ne-grain 
ompile-time s
heduling 
ompilers.See for example Ellis' bulldog 
ompiler [Ell82℄ and Aiken and Ni
olau [AN88℄. Wolfe[Wol89℄ gives a more unifying view, employing ve
tor operations where possible (a�e
tinginnermost loops), but introdu
ing large-grain pro
esses at the outermost level as well.This kind of 
ompiler is �nding some 
ommer
ial su

ess with re
ent parallel pro
essorsystems [TMS87℄.
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Chapter 4Spe
ifying and Deriving ParallelAlgorithmsThis 
hapter has two aims:� to investigate how parallelism 
an be expressed in the form of a fun
tional program,� to develop te
hniques for transforming programs from one formulation into another,in order to express parallelism in di�erent ways,� to illustrate some of the te
hniques with simple examples, 
ulminating in a simplepipelined ray-tra
ing program.Several of the more involved transformations and veri�
ations have been 
olle
ted sepa-rately, and appear as Appendix A; they would interfere with the development of the �rstaim, to understand how parallelism appears in the 
ode. They are, however, quite impor-tant to the se
ond aim, of building a toolbox of te
hniques for 
hanging the parallelism ina program, and the reader is en
ouraged to follow the Appendix on the se
ond reading.4.1 Horizontal and verti
al parallelismWe have dis
ussed how the graph-rewriting view of expression evaluation 
an be used toexploit parallel hardware. But what 
an we say about the stru
ture of parallel 
omputa-tions under this regime?Goldberg [Gol88℄ distinguishes two sour
es of parallelism in parallel graph redu
tion:� Horizontal parallelism o

urs when two or more of a fun
tion's parameters areevaluated in parallel.� Verti
al parallelism o

urs when a parameter is evaluated in parallel with the fun
-tion appli
ation to whi
h it is being passed.A simple example of purely horizontal parallelism is when a stri
t, built-in operator su
has \+" is applied. In an appli
ation like 75



(+) e1 e2the parameter expressions e1 and e2 
an be evaluated in parallel, but both must �nishbefore the addition 
an pro
eed.Verti
al parallelism 
an o

ur whenever a parameter is passed to a stri
t, user-de�nedfun
tion. The parameter is evaluated in the time \window" between fun
tion appli
ationand use of the parameter by a stri
t, built-in operator like addition. For example, de�nef x y = y+1, if x = 0f x y = f (x�1) y if x > 0A good stri
tness analyser will infer that f is stri
t in both its parameters (parameter x isalways used; parameter y is used whenever f terminates)1. Now suppose we have de�nedg so thatg y = f 10000 yNow suppose we have an appli
ation of g to an expression e1:g # e1Given two pro
essing elements, it should be 
lear how one pro
essor 
an be o

upied
ounting down from 10000 while the other evaluates e1.Horizontal and verti
al parallelism a

ount for all the parallelism available in a parallelgraph redu
tion ma
hine. Ea
h leads to a di�erent algorithmi
 stru
ture. We identify theseas the divide-and-
onquer stru
ture, whi
h exploits horizontal parallelism, and pipelining,whi
h exploits verti
al parallelism.4.2 Divide-and-
onquer parallelismThe 
olonial maxim \Divide-and-
onquer" has broad appli
ation in 
omputer s
ien
e. We
an 
hara
terise a divide-and-
onquer algorithm by a fun
tional program s
heme. Solvesolves some problem, des
ribed by its parameter problem, using the divide-and-
onquerapproa
h:Solve :: � ! �Solve problem = SimplySolve problem, if Trivial problemSolve problem = CombineSolutions problem (map Solve SubProblems) otherwisewhereSubProblems = De
ompose problemwhere SimplySolve, CombineSolutions, De
ompose and Trivial depend on the parti
ulardivide-and-
onquer algorithm. They have the types1Of 
ourse, a good optimiser would remove the 
al
ulations involving x sin
e their results are neverused 76



SimplySolve :: � ! �CombineSolutions :: � ! [�℄ ! �De
ompose :: � ! [�℄Trivial :: � ! BoolIf the problem to be solved is trivially simple, it is solved dire
tly using SimplySolve. If not,the problem is broken down into a list of subproblems. These are ea
h solved separately(usingmap Solve), and �nally CombineSolutions uses the list of solutions to the subproblemsto solve the original problem. Provided CombineSolutions is known to be stri
t in ea
helement of its list parameter SubProblems, plentiful horizontal parallelism is available.4.2.1 Divide-and-
onquer examplesWe 
omplete the 
hara
terisation of divide-and-
onquer by giving a fun
tion whi
h appliesthe divide-and-
onquer strategy given de�nitions of the 
omponent fun
tions:DivideAndConquer :: (� ! �)! (� ! [�℄ ! �)! (� ! [�℄)! (� ! Bool)! �! �DivideAndConquer SimplySolve CombineSolutions De
ompose Trivial problem= Solve problemwhereSolve problem = SimplySolve problem, if Trivial problemSolve problem = CombineSolutions problem(map Solve SubProblems),otherwisewhereSubProblems = De
ompose problemThere follow four examples of how DivideAndConquer 
an be used in pra
ti
e: in theFibona

i re
urren
e, in the Qui
ksort algorithm, as a parallel implementation of insert,and to redu
e overheads in a parallel implementation of map.The Fibona

i Fun
tionThis is naturally de�ned by the re
urren
e relation
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�b n = 1, if n � 2�b n = �b (n�1) + �b (n�2), otherwiseThis is a working fun
tional program (although far better ways of 
al
ulating the Fibona

inumbers exist).We 
an see that it has the form of a divide-and-
onquer algorithm by writing itsde�nition in terms of DivideAndConquer:�b = DivideAndConquer (
onst 1)(
onst sum)(
onstru
t [(subtra
t 1), (subtra
t 2)℄)((�) 2)Here 
onst 1 returns 1 whatever its parameter. The fun
tion sum adds the elements of a listof numbers. subtra
t n de
rements its parameter by n. The fun
tion 
onstru
t is analogousto map, but takes a list of fun
tions and applies ea
h one to the same parameter:
onstru
t :: [� ! �℄ ! � ! �
onstru
t [ ℄ x = [ ℄
onstru
t (f : fs) x = (f x) : (
onstru
t fs x)The Qui
ksort AlgorithmThere are many parallel sorting algorithms, in
luding several divide-and-
onquer ones.This one is parti
ularly straightforward. We de�ne Sele
tSmaller to sele
t all those elementsof an input list smaller than some \pivot" value:Sele
tSmaller :: Num ! [Num℄ ! [Num℄Sele
tSmaller pivot as = �lter ((>) pivot) asSele
tBigger is similar:Sele
tBigger :: Num ! [Num℄ ! [Num℄Sele
tBigger pivot as = �lter ((�) pivot) asThe fun
tion �lter eliminates elements from a list unless they satisfy the predi
ate:
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�lter :: (� ! Bool) ! [�℄ ! [�℄�lter predi
ate [ ℄ = [ ℄�lter predi
ate (a : as) = a : (�lter predi
ate as), if predi
ate a�lter predi
ate (a : as) = (�lter predi
ate as), otherwiseNow the sort fun
tion is easily de�ned:Qui
kSort [ ℄ = [ ℄Qui
kSort as = (Qui
kSort SmallerOnes) ++ (Qui
ksort BiggerOnes)whereSmallerOnes = Sele
tSmaller pivot asBiggerOnes = Sele
tBigger pivot aspivot = hd asThe 
hoi
e of pivot element 
an have a drasti
 e�e
t on the algorithm's performan
e unlessthe input is truly randomly ordered.This algorithm 
an be represented using DivideAndConquer asQui
kSort = DivideAndConquer (
onst [ ℄),(
onst ListAppend),PivotAndSplit,((=) [ ℄)whereListAppend [as, bs℄ = as ++ bsPivotAndSplit as = [ Sele
tSmaller pivot as,Sele
tBigger pivot as ℄wherepivot = hd as(ListAppend is just a spe
ial 
ase of join = insert (++) [ ℄).The Insert fun
tionIn Chapter 2 a fun
tion 
alled insert was introdu
ed, whi
h takes an asso
iative fun
tion,whi
h we denoted by the in�x operator op, and is de�ned informally by the equationsinsert (op) base [ ℄ = baseinsert (op) base [a1, a2, a3, � � � aN℄ = a1 op a2 op a3 � � � op aNThis is unambiguous provided (op) is asso
iative, when we 
an pla
e bra
kets wherever
onvenient on the RHS. We will also require that base have the property that for all a,a op base = a = base op aA simple example is summation, 79



sum as = insert (+) 0 asGiven these restri
tions, we 
an employ a divide-and-
onquer implementation:insert (op) base as= DivideAndConquer (
onst base) (
onst ListOp) ListSplitwhereListOp [a, b℄ = a op bListSplit as = [ take m as,drop m as ℄wherem = (length as)/2A useful more general approa
h to this is to transform the data type being used to representas, from a list to a tree. Let us employ the following binary tree data type:BinaryTree � ::= EMPTY jLEAF � jNODE (BinaryTree �) (BinaryTree �)We need a pair of fun
tions to turn the list into a tree, and vi
e versa:ListToTree :: [�℄ ! BinaryTree �TreeToList :: BinaryTree � ! [�℄and we spe
ify that for all �nite and total lists as,TreeToList (ListToTree as) = asProbably the most natural de�nitions for this pair of fun
tions are:ListToTree1 [ ℄ = EMPTYListToTree1 [a℄ = LEAF aListToTree1 (a0:a1:as) = NODE (ListToTree1 (take m (a0:a1:as)))(ListToTree1 (drop m (a0:a1:as))), if length as > 1wherem = (length (a0:a1:as))/2(it is ne
essary to introdu
e (a0:a1:as) to avoid ambiguity).TreeToList1 EMPTY = [ ℄TreeToList1 (LEAF a) = [a℄TreeToList1 (NODE subtree1 subtree2) = (TreeToList1 subtree1)++ (TreeToList1 subtree2)where 80



take :: Num ! [�℄ ! [�℄take n (a : as) = a : (take (n�1) as), if n 6= 0take n [ ℄ = [ ℄, if n 6= 0take 0 as = [ ℄anddrop :: Num ! [�℄ ! [�℄drop n (a : as) = drop (n�1) as, if n 6= 0drop n [ ℄ = [ ℄, if n 6= 0drop 0 as = asIn Appendix A (Theorem 1) a proof is given that these fun
tions do satisfy the spe
i�
a-tion. More importantly, there are very serious ineÆ
ien
ies in the de�nitions as given andin the appendix a mu
h more eÆ
ient, though more 
ompli
ated, de�nition is derived.Now we 
an turn the list into its tree representation, we must arrange to exploit thedivide-and-
onquer stru
ture available. We haveinsert (op) base as = insert (op) base (TreeToList1 (ListToTree1 as))We apply equational reasoning to improve on this. First, let us name our new version,TreeInsert (op) base as = insert (op) base (TreeToList1 (ListToTree1 as))Now, instantiate it for the 
ase when as has more than one element, and apply the appro-priate equation for ListToTree1:TreeInsert (op) base as= insert (op) base(TreeToList1 (ListToTree1 as)| {z } ), if length as > 1= insert (op) base(TreeToList1 (NODE (ListToTree1 (take m as))(ListToTree1 (drop m as)))), if length as > 1| {z }wherem = (length as)/2= insert (op) base ( (TreeToList1 (ListToTree1 (take m as)))++(TreeToList1 (ListToTree1 (drop m as))) ), if length as > 1wherem = (length as)/2At this point we must use a straightforward extension of asso
iativity:81



insert (op) base (as++bs) = (insert as base) op (insert bs base)The result isTreeInsert (op) base as= (insert (op) base (TreeToList1 (ListToTree1 (take m as))))op(insert (op) base (TreeToList1 (ListToTree1 (drop m as)))), if length as > 1wherem = (length as)/2Finally, applying the original equation de�ning TreeInsert, in reverse, we getTreeInsert (op) base as= (TreeInsert (op) base (take m as))op(TreeInsert (op) base (drop m as)), if length as > 1wherem = (length as)/2The remaining equations required to de�ne TreeInsert for empty and singleton lists areeasily derived:TreeInsert (op) base [ ℄ = baseTreeInsert (op) base [a℄ = aSu
h a transformation is likely to work well if the time required to apply the fun
tion opis quite substantial. However, the tree-based version 
learly does more work and on
e suf-�
ient parallelism has been generated, exe
ution 
ould revert from the expensive, paralleltree-based de�nition of insert to the original list-based one. It is 
on
eivable that su
h ade
ision 
ould be taken at run-time.This transformation example brings out a rather 
ompli
ated and interesting problemfor program transformation te
hnology: we introdu
ed simple de�nitions for ListToTree1and TreeToList1, and then used them to derive a parallel version of insert. Meanwhile, inAppendix A, the very ineÆ
ient de�nitions of ListToTree1 and TreeToList1 are optimisedsubstantially. The optimisations do not destroy the possibility of a divide-and-
onquerversion of insert based on the optimised de�nitions, but we need to go through the deriva-tion again. Be
ause the derivation shares the same stru
ture as before, and uses the sameproperties, we 
an hope that a 
omputer 
ould help.The map fun
tionThe fun
tion map, de�ned by the equations
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map f [ ℄ = [ ℄map f (a : as) = (f a) : (map f as)has a 
lear interpretation for parallel programming: spawn a pro
ess to evaluate f ai forea
h ai of the input list. Provided suÆ
ient stri
tness information is available, this isjust what happens. It is slightly unsatisfa
tory be
ause the pro
esses must be spawnedsequentially, on
e for ea
h time an appli
ation of map is rewritten.Just as with insert, we 
an apply divide-and-
onquer by repeatedly sub-dividing theinput list as to form a tree, at whose leaves we 
an apply the fun
tion f in parallel. In this
ase we 
an use a mu
h simpler and more eÆ
ient version of the list-tree representation,be
ause we are free to 
hoose the order in whi
h elements of the list appear in the tree.Rather than dividing the list into two halves by 
utting it in the middle, we divide it intoodd- and even-indexed sublists:ListToTree2 :: [�℄ ! BinaryTree �ListToTree2 [ ℄ = EMPTYListToTree2 [a℄ = LEAF aListToTree2 (a0:a1:as) = NODE (ListToTree2 (EvenOnes (a0:a1:as)))(ListToTree2 (OddOnes (a0:a1:as))), if (a0:a1:as) 6= [ ℄whereEvenOnes [ ℄ = [ ℄EvenOnes [a0℄ = [a0℄EvenOnes (a0 : a1 : as) = a0 : (EvenOnes as)OddOnes [ ℄ = [ ℄OddOnes [a0℄ = [ ℄OddOnes (a0 : a1 : as) = a1 : (OddOnes as)andTreeToList2 :: BinaryTree � ! [�℄TreeToList2 EMPTY = [ ℄TreeToList2 (LEAF a) = [a℄TreeToList2 (NODE evensubtree oddsubtree)= (merge (TreeToList2 evensubtree) (TreeToList2 oddsubtree))wheremerge (a0 : evens) (a1 : odds) = a0 : a1 : (merge evens odds)merge as [ ℄ = asIn Appendix A (Theorem 2), total stru
tural indu
tion is used to verify that for all �nite83



and total lists as,TreeToList2 (ListToTree2 as) = as(Noti
e the striking resemblan
e between the stru
ture of this 
omputation and the stru
-ture of Qui
kSort).Now let us de�ne a map operator for trees:MapTree :: (� ! �) ! BinaryTree � ! BinaryTree �MapTree f EMPTY = EMPTYMapTree f (LEAF a) = LEAF (f a)MapTree f (NODE subtree1 subtree2) = NODE (MapTree subtree1)(MapTree f subtree2)It is very easy to verify using equational reasoning that for all �nite and total lists as,map f as = TreeToList2 (MapTree f (ListToTree2 as))We 
an simply substitute this implementation of map when required.It is, however, far from 
lear that it will improve matters unless the pro
ess 
reationor migration overhead is very large. It does more overall work than the simpler de�nition,but the work is potentially more parallel and more distributed. If there is already morethan enough parallelism on the ma
hine, it will 
ertainly slow the 
omputation down.4.3 Pipeline parallelismWhen verti
al parallelism is used and the parameter 
on
erned is a list, pipeline parallelism
an o

ur. For example, suppose we have the fun
tion de�nitionsfrom n = n : (from (n+1))andintegrate as = 0 : (integrate' 0 as)whereintegrate' sum [ ℄ = [ ℄integrate' sum (a : as) = newsum : (integrate' newsum as)wherenewsum = a + sumProvided we have suÆ
ient stri
tness information, verti
al parallelism is available in theappli
ation
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Figure 4.1: Pipelining and horizontal parallelismintegrate (from 1)One pro
essor 
an be responsible for exe
uting from 1, while another is responsible for theappli
ation of integrate to the other's output.We 
an easily extend the pipeline:map ((�) 10) (integrate (from 1))Pipelining 
ombines naturally with horizontal parallelism:map2 (+) (map ((�) 2) (from 1))(map ((�) 3) (from 1))This demands a diagram, given in �gure 4.1. This resembles the graph representation ofan expression like (2 � x) + (3 � x), but now the nodes represent pro
esses whi
h 
anexist for a substantial period of time, operating on su

essive input values. Su
h a diagramis often 
alled a data 
ow graph, sin
e one 
ould imagine a real, parallel 
omputer builtfrom units (represented as nodes in the graph) wired together a

ording to the ar
s given.During a 
omputation, data would 
ow along the ar
s and no other 
ommuni
ationswould be ne
essary. This idea has prompted a large variety of 
omputer ar
hite
turesbased on the data 
ow idea, in
luding for example, the Man
hester data 
ow ma
hine[GKW85℄, the MIT Tagged-Token data 
ow ar
hite
ture [AN87℄ and many others. Itmust be emphasised that these 
omputers are not rewired for ea
h data
ow program, butrather exploit a data
ow graph program representation at run-time. We 
all su
h diagramspro
ess networks in this book to emphasise that spe
ial data
ow hardware need not beinvolved, and that, as we shall see in Chapter 5, there may indeed be a stati
 allo
ationof pro
esses to pro
essing elements.4.3.1 Cy
li
 pro
ess networksThe example of Figure 4.1 is a
y
li
, but there is no reason why a 
y
le should not beintrodu
ed. Cy
les in pro
ess networks 
orrespond to iteration, and we 
an derive a
y
li
 pro
ess network de�nition from the re
urren
e idiom introdu
ed in Chapter 2. Two85



examples will be demonstrated: the Fibona

i numbers and the Newton-Raphson method.Re
all the de�nition of the list of Fibona

i numbers:�bs = generate NextFibwhereNextFib 0 = 1NextFib 1 = 1NextFib n = (�bs sub (n�1)) + (�bs sub (n�2)), if n � 2Note that for n � 2,NextFib n = prev�b + pprev�b, if n � 2whereprev�b = �bs sub (n�1)pprev�b = �bs sub (n�2)That is,NextFib n = ((+) ÆÆ (((sub) �bs) Æ (subtra
t 1))(((sub) �bs) Æ (subtra
t 2)) ) n, if n � 2Now in the de�nition of �bs, unfold generate:�bs = map NextFib (from 0)= map NextFib (0:1:(from 2))= (NextFib 0)| {z }:(NextFib 1)| {z }:(map NextFib (from 2))= 1:1:(map NextFib| {z } (from 2))= 1:1:(map ((+) ÆÆ (((sub) �bs) Æ (subtra
t 1))(((sub) �bs) Æ (subtra
t 2)) ) (from 2)| {z }Here we use the properties that map (f Æ g) = (map f) Æ (map g), and map (f ÆÆ g h) =(map2 f) ÆÆ (map g)(map h):�bs = 1:1:( (map2 (+)) ÆÆ (map (((sub) �bs) Æ (subtra
t 1)))(map (((sub) �bs) Æ (subtra
t 2)))| {z } ) (from 2)= 1:1:( (map2 (+)) ÆÆ (map (((sub) �bs) Æ (subtra
t 1)))( (map ((sub) �bs)) Æ (map (subtra
t 2)) ) ) (from 2)| {z }= 1:1:(map2 (+) (map ((sub) �bs) (map (subtra
t 1) (from 2))| {z })(map ((sub) �bs) (map (subtra
t 2) (from 2))| {z }) )Clearly map (subtra
t n) (from m) = from (m�n), and that map ((sub) as) (from 0) = as,so we have 86



Figure 4.2: A 
y
li
 pro
ess network to 
al
ulate the Fibona

i numbers�bs = 1:1:(map2 (+) (map ((sub) �bs) (from 1))| {z }(map ((sub) �bs) (from 0))| {z }= 1:1:(map2 (+) (tl �bs)�bs)This is the 
omplete pro
ess network formulation, and was used as an example in se
tion2.4.3, where its operation is explained. Its pro
ess network is given in Figure 4.2.For the se
ond example let us take for an example the generalised Newton-Raphsonmethod. We solve for f x = 0 with f 0 x = d(f x)dx , and using an initial estimate x0:xs sub 0 = x0xs sub i = (xs sub (i�1)) � ( f (xs sub (i�1))/ f' (xs sub (i�1)) ), if n � 1with the implementation using the re
urren
e idiom:solve f f' x0= until 
onverges xswhere
onverges 0 = FALSE
onverges i = abs(((xs sub i)� (xs sub (i�1)))/(xs sub i))��, if i � 1xs = generate NextEstimatewhereNextEstimate 0 = x0NextEstimate i = (xs sub (i�1))� ( f (xs sub (i�1)) / f' (xs sub (i�1)) ), if n � 1The derivation of the pro
ess network formulation of this de�nition is given in Appendix A,87



se
tion A.3. In simpli�ed form it is:solve f f' x0= sele
t (map2 Test (tl xs) xs) (tl xs)wherexs = x0 : (map Transition xs)Test prevx thisx = abs( (thisx � prevx)/thisx ) � �Transition prevx = prevx � ((f prevx)/(f' prevx))We 
an introdu
e parallelism into this de�nition by separating the arithmeti
 operationsinto pro
esses. This is done by propagating map into the bodies of the arithmeti
 expres-sions. To do this, Map2Test is de�ned to be the transformed version of map2 Test, andMapTransition is de�ned to be the transformed version of Map Transition:solve f f' x0= sele
t (Map2Test (tl xs) xs) (tl xs)wherexs = x0 : (MapTransition xs)Map2Test thisxs nextxs = map ((�) �)(map abs ( (map2 (/) (map2 (�) thisxs prevxs)thisxs)))MapTransition prevxs = map2 (�) prevxs (map2 (/) (map f prevxs)(map f' prevxs))The graphi
al representation of this network is given in Figure 4.3. This example 
learlyhas some potential for parallelism in the evaluation of f xi and f' xi.When the value at ea
h step (xi here) is a ve
tor or matrix rather than a s
alar,additional parallelism is available by pipelining su

essive iterations.4.4 The Kahn prin
ipleThe relationship between the diagrams and the programs they are supposed to representis made pre
ise by what is sometimes 
alled the Kahn Prin
iple. Gilles Kahn, in a 
lassi
paper [Kah74℄, showed how, if we are given a fun
tional spe
i�
ation of the behaviour ofea
h pro
ess in a network, we 
an write down the behaviour of the network as a whole.First, label every ar
 of the network with a separate variable name. Then write down anequation for ea
h variable, de�ning its value in terms of 
onstants and other variables.For example, Figure 4.4 shows the Newton-Raphson pro
ess network with ea
h ar
labelled with a new variable. Ea
h node is labelled with a fun
tional des
ription of itsbehaviour. The Kahn prin
iple says we 
an determine the behaviour of the network as awhole by writing down the system of equations relating the variables:
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Figure 4.3: A 
y
li
 pro
ess network applying the Newton Raphson method
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Figure 4.4: A 
y
li
 network with labelled ar
s
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a = sele
t bs 
sbs = map ((�) �) ds
s = tl esds = map abs fses = x0 : gsfs = map2 (/) hs 
sgs = map2 (�) es ishs = map2 (�) 
s esis = map2 (/) js ksjs = map f esks = map f' esIt is not hard to verify that this de�nition is equivalent to the de�nition of solve f f' x0given earlier.Using this relationship, it is possible to visualise a large and useful 
lass of fun
tionalprograms as pro
ess networks, and this has been the starting point for several data
owprogramming languages, most notably Lu
id [WA85℄.4.5 Parameter-dependent pro
ess networksThe pro
ess networks we have seen so far have been stati
: their size and shape has beenindependent of the program's parameters. This need not always be so. In some 
ases thepro
ess network depends on something simple like the length of some parameter list, asin the next example, although in general the dependen
y 
an in prin
iple be arbitrarily
ompli
ated.For a simple example, suppose we build a pipeline by 
omposing three fun
tions, mapf1, map f2 and map f3:pipeline [f1, f2, f3℄ xs = map f1 (map f2 (map f3 xs))This 
an be rewritten using \Æ":pipeline [f1, f2, f3℄ xs = ((map f1) Æ (map f2) Æ (map f3)) xsWhen we don't know how many fi's there are, we 
an use the insert fun
tion with \Æ",together with the identity fun
tion ident x = x:pipeline [f1, f2, f3℄ xs = (insert (Æ) ident [(map f1), (map f2), (map f3)℄) xsso thatpipeline fs xs = (insert (Æ) ident (map map fs)) xsThis 
aptures a pipeline of pro
esses as long as the list fs.Now suppose that the fun
tions fi are not 
hosen arbitrarily, but are instan
es of ageneral fun
tion f, spe
ialised by partial, 
urried, appli
ation to su

essive elements of the91



list, say [a1, a2, a3℄, i.e.[f1, f2, f3℄ = map f [a1, a2, a3℄or fs = map f asNow the pipeline ispipeline (map fs as) xs = (insert (Æ) ident (map map (map f as))) xsThis de�nition is rather hair-raising, what with insert (Æ) ident and map map (map f) as,but what these forms a
tually do is quite down-to-earth. They appear in 
on
rete form inan example drawn from the ray-tra
ing algorithm for three-dimensional image rendering.4.5.1 Example: ray interse
tion testWe have a list of rays and a list of obje
ts, and we need to �nd whi
h obje
t ea
h raystrikes �rst. To avoid te
hni
alities, let us assume suitable de�nitions for a data type Rayto represent a ray, giving its dire
tion and starting point, a data type Obje
t, des
ribingperhaps a sphere, plane or just a polygonal fa
et, and a fun
tionTestForImpa
t :: Ray ! Obje
t ! Impa
twhere Impa
t is a data type whi
h des
ribes the intera
tion between the ray and the obje
t.This may be a miss NOIMPACT, or a hit IMPACT, with details of how far along the raythe impa
t o

urs (needed to �nd the ray's �rst impa
t), and other information relating tothe angle of impa
t, the surfa
e texture, refra
tion et
. whi
h need not be spe
i�ed here:Impa
t ::= NOIMPACT jIMPACT Num Impa
tInformationNow what we need to �nd is the �rst obje
t stru
k by the ray in the list of all obje
ts ofinterest:FirstImpa
t :: [Obje
t℄ ! Ray ! Impa
tFirstImpa
t obje
ts ray = earliest (map (TestForImpa
t ray) obje
ts)whereearliest impa
ts = insert earlier NOIMPACT impa
tsThe fun
tion earlier 
ompares two impa
ts, and returns the one whi
h o

ured earlier inthe ray's travel|i.e. the one the ray a
tually hits. It must take a

ount of NOIMPACTproperly:
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Figure 4.5: The untransformed parallel ray interse
tion testearlier :: Impa
t ! Impa
t ! Impa
tearlier NOIMPACT NOIMPACT = NOIMPACTearlier (IMPACT distan
e1 info1) NOIMPACT = (IMPACT distan
e1 info1)earlier NOIMPACT (IMPACT distan
e2 info2) = (IMPACT distan
e2 info2)earlier (IMPACT distan
e1 info1)(IMPACT distan
e2 info2) = (IMPACT distan
e1 info1), if distan
e1 � distan
e2earlier (IMPACT distan
e1 info1)(IMPACT distan
e2 info2) = (IMPACT distan
e2 info2), if distan
e1 > distan
e2The 
omplete de�nition to �nd the impa
ts 
orresponding to a list of rays is nowFindImpa
ts :: [Ray℄ ! [Obje
t℄ ! [Impa
ts℄FindImpa
ts rays obje
ts = map (FirstImpa
t obje
ts) raysThis de�nition has the potential for very highly-parallel evaluation, arising from horizontalparallel evaluation of ea
h FirstImpa
t obje
ts rayi expression. Figure 4.5 shows the patternof data dependen
y in this 
omputation.Introdu
ing pipeline parallelismIt is possible to make this algorithm more suitable for loosely-
oupled parallel pro
essorsby transforming it to in
rease its lo
ality.The pipelined implementation 
onsists of a 
hain of pipeline stages, PipelineStage. Ea
hlooks after its own obje
t. PipelineStage obje
t takes as input and produ
es as output astream of PipeItems: 93



PipeItem � � ::= PIPEITEM � �A obje
t of the type PipeItem ray impa
t 
ontains a ray and its earliest impa
t so far.The pipeline stage fun
tion PipelineStage tests the ray against the stage's obje
t, and then
ompares the resulting impa
t with impa
t. Its output is a 
opy of the input ray, togetherwith the earlier impa
t:PipelineStage :: Obje
t ! PipeItem Ray Impa
t ! PipeItem Ray Impa
tPipelineStage obje
t (PIPEITEM ray impa
t)= PIPEITEM ray impa
t'whereimpa
t' = earlier impa
t NewImpa
tNewImpa
t = TestForImpa
t ray obje
tNow it should be 
lear that we 
an write the de�nition of FirstImpa
t asFirstImpa
t [obje
t1, obje
t2, . . . obje
tN℄ ray= impa
twherePIPEITEM ray impa
t= PipelineStage obje
t1(PipelineStage obje
t2� � � (PipelineStage obje
tN (ray, NOIMPACT)) � � � )= ((PipelineStage obje
t1) Æ(PipelineStage obje
t2) Æ� � � Æ (PipelineStage obje
tN)) PIPEITEM ray NOIMPACTThis de�nition 
an be tidied somewhat using fun
tions to build the PipeItem stru
ture atthe input to the pipeline, and to sele
t out the impa
t at the output:MakePipeItem ray = PIPEITEM ray NOIMPACTTakeImpa
t (PIPEITEM ray impa
t) = impa
tgiving usFirstImpa
t [obje
t1, obje
t2, . . . obje
tN℄ ray= (TakeImpa
t Æ((PipelineStage obje
t1) Æ(PipelineStage obje
t2) Æ� � � Æ (PipelineStage obje
tN))Æ MakePipeItem)rayWe 
an remove the \� � �" notation using insert (Æ) ident and map:94



Figure 4.6: The transformed, pipeline-parallel ray interse
tion testFirstImpa
t obje
ts ray= (TakeImpa
t Æ(insert (Æ) ident (map PipelineStage obje
ts))Æ MakePipeItem)rayFinally, re
all thatFindImpa
ts rays obje
ts = map (FirstImpa
t obje
ts)| {z } rays= map ( (TakeImpa
t Æ(insert (Æ) ident(map PipelineStage obje
ts))Æ MakePipeItem )raysNow propagate the map into the 
omposition using map (f Æ g) = (map f) Æ (map g):FindImpa
ts rays obje
ts = ( (map TakeImpa
t) Æ(insert (Æ) ident(map map (map PipelineStage obje
ts)))Æ (map MakePipeItem) )raysThis transformation is justi�ed more formally in Appendix A, se
tion A.4. The trans-formed version's pro
ess network is shown in Figure 4.6. The important di�eren
e betweenthe transformed and untransformed algorithms is that in �gure 4.5 the graph's 
onne
tivityis very high, sin
e every interse
tion test pro
ess requires a

ess to the entire obje
ts list.95



By 
ontrast, in the pipeline version, �gure 4.6, the graph's 
onne
tivity is very low. It is amu
h more distributed algorithm, more suitable for a distributed memory, loosely-
oupledmultipro
essor. We return to this point in the next 
hapter, se
tion 5.1.2.4.6 In�nite pro
ess networksWe have seen pro
ess networks whose size depends on the size of some data stru
ture.In our fun
tional language data stru
tures need not be �nite in size|a list might growinde�nitely, and the same 
an happen with a pro
ess network, as happens in the nextexample.4.6.1 Example: generating primes using Eratosthenes' sieveThe in�nite list of prime numbers 
an be 
omputed as follows:primes = sieve (from 2)wheresieve (a : as) = a : (sieve (FilterMultiples a as))whereFilterMultiples p (a:as) = a : (FilterMultiples p as), if not(divides p a)= FilterMultiples p as, if divides p aThis neat (although hardly 
lear) example2 
omputes the list of all the prime numbers,using Eratosthenes' famous sieve algorithm. An explanation and derivation of this formu-lation of the algorithm is given in Appendix A, se
tion A.5.Its pro
ess network is given in Figure 4.7. At ea
h invo
ation of sieve, a new instan
eof FilterMultiples is generated. Thus the pro
ess network has the form of a 
hain, whi
h is
onstantly being extended as more primes are found.The primes sieve is not a good parallel algorithm, be
ause most of the work is doneby a small number of the FilterMultiples pro
esses. In fa
t in�nite pro
ess networks don'tseem very useful for parallel programming in general. As well as this balan
e problem,the pro
esses must be mapped to pro
essors at run time. The example is given mainly todemonstrate the potential existen
e of su
h programs.4.7 Pro
ess networks as hardware des
riptionsWhen a pro
ess network is �nite in size, it is very natural to interpret it as a des
riptionof a physi
al, parallel, 
omputer. A restri
ted form of our fun
tional language 
an be usedas a hardware des
ription language, and we 
ould use it to spe
ify the design of VLSIdevi
es, as in the example given here.2Attributed to P. Quarendon by Henderson and Morris [HM76℄.96



Figure 4.7: Some steps in the evaluation of the primes sieve4.7.1 Primitives for hardware des
riptionIn spe
ifying a digital ele
troni
 
ir
uit, the fundamental data type is the (approximate)voltage on a wire at a parti
ular time. We 
onsider here just three possibilities: a settledhigh or low logi
 level, or some temporary intermediate value \XX":Sample ::= HI j LO j XXWe will model the behaviour of a wire by the sequen
e of voltage samples taken at regularintervals inde�nitely:Signal == [Sample℄We will bundle wires using the tuple \(� � �)" notation, and form indexed aggregates (torepresent numbers, for example), using ve
tors:bus == <Signal>The approa
h is to use the fun
tional notation to 
onne
t simple 
ombinational 
ir
uitsin a restri
ted set of ways.Spe
ifying 
ombinational logi
 using truth tablesTo do this we need a primitive for implementing 
ir
uits spe
i�ed using just truth tables:97



SignalCase :: [Signal℄ ! ([Sample℄,[Sample℄) ! [Signal℄SignalCase inputsignal 
ases= (transpose ÆÆ (map (Sele
tMat
h 
ases))Æ transpose) inputsignalwhereSele
tMat
h :: ([Sample℄,[Sample℄) ! [Sample℄ ! [Sample℄Sele
tMat
h ((lhs, rhs) : 
ases) samples = rhs, if lhs = samplesSele
tMat
h ((lhs, rhs) : 
ases) samples = Sele
tMat
h 
ases samples, otherwiseandtranspose :: [[�℄℄ ! [[�℄℄transpose rows = [ ℄, if rows = [ ℄transpose rows = (map hd rows) : (transpose (map tl rows)) otherwiseTransposition is spe
i�ed by the requirement that for all n and m,(rows sub n) sub m = (
ols sub m) sub nwhere
ols = transpose rowsIt is used here to transform an �nite list of signals into an in�nitely-long list of samples.For example, a 3-element list of signals is transformed into a stream of three-element listsof samples:transpose [[a1, a2, . . . ℄[b1, b2, . . . ℄[
1, 
2, . . . ℄℄ = [[a1, b1, 
1℄,[a2, b2, 
2℄,[a3, b3, 
3℄,...In this form map Sele
tMat
h 
an be used to apply the transformation spe
i�ed by thetruth table, to produ
e a stream of lists of samples as output. This is turned ba
k into alist of signals by applying transpose again.Using SignalCase it is easy to de�ne the building blo
ks for more 
ompli
ated 
ir
uits.For example, the \or" operation is de�ned by
98



IdealOr :: (Signal, Signal) ! SignalIdealOr a b = hd (SignalCase [a,b℄[[[LO, LO℄, [LO℄℄,[[LO, HI℄, [HI℄℄,[[HI, LO℄, [HI℄℄,[[HI, HI℄, [HI℄℄,[[XX, HI℄, [XX℄℄,[[HI, XX℄, [XX℄℄,[[XX, LO℄, [XX℄℄[[LO, XX℄, [XX℄℄℄ )Many 
ombinational 
ir
uits are unde�ned if any input is unde�ned, so it might provehelpful to build this into SignalCase. It is left out here for 
larity.Modeling propagation delayNoti
e the use of \don't know" values in the truth table, so that the gate propagatesunde�ned results properly (this 
ould be done automati
ally by SignalCase. Unde�nedresults 
ome into the world when the ma
hine is swit
hed on, and �lter through the
ir
uit at a rate determined by propagation delays. Thus, a more realisti
 or-gate wouldbe Or (a, b) = Delay � (IdealOr (a, b))where � is the number of samples-worth of delay in
urred. This is implemented by simplyprepending � unde�ned samples to the gate's output:Delay t signal = (Unde�nedFor �) ++ signalwhereUnde�nedFor � = repli
ate � XXThus, the or-gate's �rst � outputs are unde�ned even if its input is de�ned. Thereafter,
hanges to the input are delayed � time units in the output. This is not the only physi
allysensible model of delay.Lat
hes and registersA register is the primitive storage element in a digital 
ir
uit. The behaviour of a simpleregister is spe
i�ed by the equationsRegister :: Sample ! Signal ! Signal ! Signal
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Register initialstate (si : input)(XX : strobe) = initialstate : (Register initialstate input strobe)Register initialstate (si : input)(LO : strobe) = initialstate : (Register initialstate input strobe)Register initialstate (si : input)(HI : strobe) = initialstate : (Register si input strobe)The register maintains and outputs an internal state, whi
h retains the last value of theinput when the strobe is HI. It is not hard to verify (using the alternative de�nitions ofiterate) that this re
ursive de�nition is equivalent toRegister initialstate input strobe= outputwhereoutput = initialstate : Feedba
kFun
tion [output, input, strobe℄whereFeedba
kFun
tion [op, ip, st℄ = hd (SignalCase [op, ip, st℄[[[HI, HI, HI℄, [HI℄℄,[[LO, HI, HI℄, [HI℄℄,[[HI, LO, HI℄, [LO℄℄,[[LO, LO, HI℄, [LO℄℄,[[HI, HI, LO℄, [HI℄℄,[[HI, LO, LO℄, [HI℄℄,[[LO, LO, LO℄, [LO℄℄,[[LO, HI, LO℄, [LO℄℄℄)This de�nition of Register spe
i�es a 
ombinational 
ir
uit and a wiring diagram, and sodoubles as both a behavioural and a stru
tural des
ription of a 
ir
uit. The feedba
k, inthe form of a re
ursive stream de�nition, is a ne
essary feature of any history-sensitive
ir
uit des
ription.4.7.2 Example: AdderA binary adder 
ir
uit would normally be provided to the VLSI designer as a 
arefullyhand-
rafted library \
ell". However, we 
an spe
ify it quite naturally. Following thestandard digital 
ir
uit design textbooks, we start by building a bit-wise adder, from two\half-adders":HalfAdder :: (Signal, Signal) ! (Signal, Signal)
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HalfAdder (a, b) = SignalCase [Delay � a, Delay � b℄[[[LO, LO℄, (LO, LO)℄,[[LO, HI℄, (HI, LO)℄,[[HI, LO℄, (HI, LO)℄,[[HI, HI℄, (HI, HI)℄,[[XX, HI℄, (XX, XX)℄,[[XX, LO℄, (XX, XX)℄,[[HI, XX℄, (XX, XX)℄,[[LO, XX℄, (XX, XX)℄℄Now we 
an put together a full adder taking two numbers and a 
arry from the pre
edingdigit, and produ
ing this digit pair's sum, and a 
arry for the next digit:FullAdder :: (Signal, Signal, Signal) ! (Signal, Signal)FullAdder (a, b, CarryIn) = (sum2, CarryOut)where(sum2, Carry2) = HalfAdder (sum1, CarryIn)CarryOut = Or (Carry1, Carry2)(sum1, Carry1) = HalfAdder (a, b)For 
onvenien
e we will de�ne proje
tors to pi
k out the sum and the 
arry:SumOf (sum, 
arry) = sumCarryOf (sum, 
arry) = 
arryWe 
onstru
t the 
omplete, multi-digit adder by writing down the standard additionalgorithm as a ve
tor re
urren
e:BitwiseAdder :: Num ! (Signal, bus, bus) ! (bus, Signal)BitwiseAdder BusSize (CarryIn, aBus, bBus)= (ResultBus, CarryOut)where
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ResultBus = MakeVe
tor BusSize SumswhereSums n = SumOf (AdderOutputs sub n)CarryOut = CarryBus sub BusSizeAdderOutputs = MakeVe
tor BusSize FullAdderswhereFullAdders n = FullAdder ((aBus sub n),(bBus sub n),(CarryBus sub n))CarryBus = MakeVe
tor (BusSize+1) CarrieswhereCarries 0 = CarryInCarries (n+1) = CarryOf (AdderOutputs sub n)(where BusSize is the length (Ve
torBound) of aBus and bBus. This algorithm is entirelysequential and so rather slow, although it 
an be implemented with very little hardware.More realisti
 adders use a \look-ahead" 
arry s
heme whi
h breaks the 
hain of depen-den
y between su

essive digits. This is left as an exer
ise for the interested reader.4.7.3 Fun
tional hardware des
ription languagesThe ease with whi
h digital hardware 
an be spe
i�ed in the fun
tional notation has ledto several 
ommer
ial sili
on design systems based on the fun
tional approa
h, notablyElla [MPT85℄. It has even been 
laimed (by Johnson [Joh84a℄) that the way a systemis des
ribed fun
tionally 
oin
ides pre
isely with the abstra
tion imposed by the digitalview of 
ir
uit design.Noti
e the distin
tion between fun
tions whi
h 
orrespond to a
tive 
ir
uitry (ulti-mately using the SignalCase 
onstru
t), and fun
tions whi
h arrange wiring only|su
h asMakeVe
tor, SumOf, sub et
. It was 
lear from the way we used the notation that these\wiring" fun
tions are s
a�olding whi
h is not supposed to be present in the resulting
ir
uit. We 
an remove the s
a�olding using redu
tion, as soon as we know the size of theinput buses. For example, a 3-bit adder 
ir
uit is spe
i�ed byBitwiseAdder 3 (CarryIn, <a0, a1, a2>, <b0, b1, b2>)= (ResultBus, CarryOut)where
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ResultBus = MakeVe
tor 3 SumswhereSums n = SumOf (AdderOutputs sub n)| {z }CarryOut = CarryBus sub 2AdderOutputs = MakeVe
tor 3 FullAdderswhereFullAdders n = FullAdder ((<a0, a1, a2> sub n),(<b0, b1, b2> sub n),(CarryBus sub n))| {z }CarryBus = MakeVe
tor 3 CarrieswhereCarries 0 = CarryInCarries (n+1) = CarryOf (AdderOutputs sub n)| {z }This redu
es toBitwiseAdder 3 (CarryIn, <a0, a1, a2>, <b0, b1, b2>)= (ResultBus, CarryOut)whereResultBus = <SumOf( FullAdder (a0, b0, CarryBus sub 0) ),SumOf (FullAdder (a1, b1, CarryBus sub 1)),SumOf (FullAdder (a2, b2, CarryBus sub 2)) >CarryOut = CarryBus sub 2AdderOutputs = <FullAdder (a0, b0, CarryBus sub 0),FullAdder (a1, b1, CarryBus sub 1),FullAdder (a2, b2, CarryBus sub 2) >CarryBus = <CarryIn,CarryOf (FullAdder (a, b0, CarryBus sub 0)),CarryOf (FullAdder (a1, b1, CarryBus sub 1)) >This 
ir
uit this des
ribes is illustrated in �gure 4.8.This use of symboli
 evaluation in order to produ
e a stati
 pro
ess network froman abstra
t des
ription was seen in the ray-tra
er pipeline example. In the hardwaredes
ription 
ontext, it is useful to be able to distinguish \stati
" 
omponents from the\dynami
" parts of the program whi
h serve only to 
apture the wiring in an abstra
tway. In some fun
tional hardware des
ription languages (e.g. Johnson's Daisy language103



Figure 4.8: A three-bit adder 
ir
uit[Joh84a℄, the language is synta
ti
ally separated to make the distin
tion espe
ially 
lear.4.8 Divide-and-
onquer using a pro
ess networkThis 
hapter began by distinguishing two di�erent forms in whi
h parallelism 
an appearin fun
tional programs, being in essen
e \divide-and-
onquer" and the pipeline/parallelpro
ess network. To 
omplete this 
hapter's brief overview of transformation te
hniques,we present a transformation whi
h 
an turn the divide phase of a re
ursive divide-and-
onquer parallel program into a 
y
li
 pro
ess network. For motivation, it will be used ina very simple ray-tra
er, where the pro
ess network formulation allows a highly parallelpipeline algorithm. The transformation is quite 
omplex and detailed, and is not vitalto the remainder of the book, so the reader is invited to skip to the end of this 
hapter,pausing only to look at the introdu
tory material here and in the next subse
tion.The untransformed versionRe
all the generi
 divide-and-
onquer formulation (we simplify it by representing the triv-ial 
ase by a de
omposition with no subproblems):DivideAndConquer :: (� ! [�℄ ! �) ! (� ! [�℄) ! � ! �
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DivideAndConquer CombineSolutions De
ompose problem= Solve problemwhereSolve problem = CombineSolutions problem (map Solve SubProblems)whereSubProblems = De
ompose problemThe transformed versionThe �nal, transformed version has the formDivideAndConquer CombineSolutions De
ompose problem= EvaluateTree (StreamToMTree (StreamOfSubProblemTree [problem℄))whereStreamOfSubProblemTree problems= outputwhere(output, feedba
k)= SplitStreamDividePhase (problems++feedba
k)DividePhase NewAndRe
y
ledProblems= insert (++) [ ℄(map LayerOf NewAndRe
y
ledProblems)LayerOf problem= (OUTPUTTAG (MTREETOKEN problem CombineSolutions NoOfSubproblems)): (map FEEDBACKTAG Subproblems)whereSubproblems = De
ompose problemNoOfSubproblems = length SubproblemsThe pro
ess network of the 
y
li
 pipeline is given in Figure 4.9. This de�nition makesuse of several fun
tions whose de�nitions have will be given shortly. They are 
olle
ted inAppendix A, se
tion A.6, where a proof of 
orre
tness of the transformation is given.4.8.1 Operation of the 
y
li
 divide-and-
onquer programTo understand �gure 4.9, it is ne
essary to think of the tree of subproblem de
ompositionas an expli
it data stru
ture. We have a \divide" phase where the tree is 
onstru
ted, and105



Figure 4.9: Sket
h of the 
y
li
 pipeline formulation of divide-and-
onquera \
onquer" phase, where solutions to subproblems are propagated up the tree from itsleaves, until a solution to the root problem 
an be found.The 
y
li
 part of the transformed program appears in the divide phase. The treeis 
onstru
ted generation by generation in a breadth-�rst manner. This means problemde
omposition 
an be performed on all the elements of a generation at on
e.The �rst generation is the input problem by itself. When the divide phase is appliedto this, one node of the de
omposition tree is built and a number of subproblems aregenerated. The node is tagged using OUTPUTTAG and is passed through SplitStreamto output where it is 
olle
ted (StreamToMTree) to form the de
omposition tree. Thesubproblems are tagged using FEEDBACKTAG, and are passed by SplitStream to feedba
k.They are �nally fed ba
k to su

eed input in the input stream to DividePhase.The pro
ess 
omes to an end when subproblems 
an be de
omposed no further. Whena whole generation of subproblem-less subproblems is rea
hed, the 
omplete de
ompositiontree 
an be 
ompleted, and the 
onquer phase 
an begin.4.8.2 Derivation of the 
y
li
 divide-and-
onquer programThe derivation 
onsists of the following steps:� Separating the two phases, divide and 
onquer, linked by the de
omposition tree,� Transforming the tree into a stream, s
anned in breadth-�rst order|and ba
k again,� Integrating the tree 
onstru
tion pro
ess with transformation of the tree into abreadth-�rst s
an,� Introdu
tion of a 
y
li
 stream version of the integrated tree 
onstru
tion and s
anpro
ess.Separating divide from 
onquer with a de
omposition treeThe intermediate tree has the type
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MultiTree � � ::= MNODE � (� ! [�℄ ! �) Num [MultiTree � �℄Although there is only one kind of element in this type, it is tagged with the 
onstru
torMNODE for 
larity.Ea
h node of a MultiTree,MNODE Problem CombiningFun
tion NoOfSubproblems Subproblems
onsists of a list of subtrees Subproblems, a number NoOfSubproblems giving the numberof subtrees in the list, CombiningFun
tion, a fun
tion to take solutions of the subtrees'problems, and produ
e a solution of the problem the node itself represents, and Problem,the original problem to be solved. At the leaves, the list of subtrees is empty. UsingMultiTree, we have the new fun
tionsBuildTree :: � ! MultiTree � �EvaluateTree :: (MultiTree � �) ! �whi
h make the intermediate tree expli
it when put together:DivideAndConquer CombineSolutions De
ompose problem= EvaluateTree (BuildTree problem)whereBuildTree problem = MNODE problemCombineSolutionsNoOfSubproblems(map BuildTree Subproblems)whereSubproblems = De
ompose problemNoOfSubproblems = length SubProblemswhereEvaluateTree (MNODE problem CombineSolutions n subtrees)= CombineSolutions problem (map EvaluateTree subtrees)This is proven in Appendix A se
tion A.6.1, but note that it holds only if CombineSolutionsis stri
t in all the sub-solutions.Separating the phases by a streamThe next stage of the derivation is to 
atten the intermediate tree stru
ture into a stream(i.e. a lazily-produ
ed list). To do this a spe
ial tree{stream data type transformation isused. It is ne
essary to s
an the tree breadth �rst in order to bring out its parallelism. Weuse a list of spe
ial tokens, 107



MultiTreeToken � � ::= MTREETOKEN � (� ! [�℄ ! �) Num(the number 
arries the number of subtrees for this node, and is ne
essary to enable thetree to be re
onstru
ted from the stream). To perform the transformation we need twofun
tions,MTreeToStream :: MultiTree � � ! MultiTreeToken � �StreamToMTree :: MultiTreeToken � � ! MultiTree � �For all (�nitely-bran
hing) MultiTrees mtree we require thatStreamToMTree (MTreeToStream mtree) = mtree(The fun
tions StreamToMTree and MTreeToStream are de�ned in Appendix A se
tionA.6.2, where they are derived. Now we 
an rewrite the two-phase divide-and-
onquerformulation asDivideAndConquer CombineSolutions De
ompose problem= EvaluateTree (StreamToMTree (MTreeToStream (BuildTree problem)))whereBuildTree problem = � � �Simplifying tree 
onstru
tionIn the next step of the transformation, we have the 
ompositionMTreeToStream (BuildTree problem)whereBuildTree problem = MNODE problemCombineSolutionsNoOfSubproblems(map BuildTree Subproblems)whereSubproblems = De
ompose problemNoOfSubproblems = length SubProblemswhere
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MTreeToStream tree = ListOfTreesToStream [tree℄ [ ℄ListOfTreesToStream [ ℄ [ ℄ = [ ℄ListOfTreesToStream [ ℄ 
hildren = ListOfTreesToStream 
hildren [ ℄ListOfTreesToStream ((MNODE p op n new
hildren) : siblings) old
hildren= (MTREETOKEN p op n): (ListOfTreesToStream siblings (old
hildren++new
hildren))We 
an use redu
tion to de�ne a new fun
tion BuildStream whi
h 
onstru
ts the streamdire
tly, so that the tree need not be built at all here. We pro
eed by writing down aspe
i�
ation for BuildStream, and then redu
ing:BuildStream problem = MTreeToStream (BuildTree problem)| {z }= ListOfTreesToStream [BuildTree problem℄ [ ℄Clearly it is ListOfTreesToStream whi
h does all the work, so de�neBuildStream problem = BuildStreamsOfTrees [problem℄ [ ℄whereBuildStreamsOfTrees problems subproblems= ListOfTreesToStream (map BuildTree problems) subproblemsThis gives us a spe
i�
ation for BuildStreamsOfTrees. The equations de�ning BuildStream-sOfTrees dire
tly are derived from those de�ning ListOfTreesToStream by instantiation andthen redu
tion:BuildStreamsOfTrees [ ℄ [ ℄ = [ ℄BuildStreamsOfTrees [ ℄ subproblems = BuildStreamsOfTrees subproblems [ ℄BuildStreamsOfTrees (problem : siblingproblems) oldsubproblems= (MTREETOKEN problem CombineSolutions NoOfSubproblems): (BuildStreamsOfTrees siblingproblems(oldsubproblems++Subproblems))whereSubproblems = De
ompose problemNoOfSubproblems = length SubproblemsBuilding the 
y
leThe next step is the only \eureka" step in the derivation, so-
alled be
ause it is pulled outa hat and then veri�ed rather than derived. It is not 
ompletely unexpe
ted as we have109



already seen several re
ursive de�nitions transformed into a similar form. One of the �rstexamples was iterate, given in Chapter 2, se
tion 2.2.7. The 
laim, proven in Appendix A,se
tion A.6.3 (Theorem 5), is that an equivalent de�nition for BuildStreamsOfTrees isBuildStreamsOfTrees [ ℄ [ ℄ = [ ℄BuildStreamsOfTrees problems subproblems= outputwhere(output, feedba
k)= SplitStream((map FEEDBACKTAG subproblems) ++(join (map LayerOf (problems++feedba
k))))LayerOf problem= (OUTPUTTAG (MTREETOKEN problem CombineSolutions NoOfSubproblems)): (map FEEDBACKTAG Subproblems)whereSubproblems = De
ompose problemNoOfSubproblems = length SubproblemsThe unde�ned fun
tions and data types are de�ned in a moment. Before explaining this,let's simplify things by presenting BuildStream itself in this form:BuildStreamOfTrees problem= outputwhere(output, feedba
k)= SplitStream(join (map LayerOf (problem : feedba
k)))LayerOf problem= (OUTPUTTAG (MTREETOKEN problem CombineSolutions NoOfSubproblems)): (map FEEDBACKTAG Subproblems)whereSubproblems = De
ompose problemNoOfSubproblems = length SubproblemsThe fun
tion LayerOf takes a problem and produ
es a list 
ontaining the problem's node(tagged with OUTPUTTAG), followed by all the problem's subproblems (tagged withFEEDBACKTAG). The fun
tion SplitStream pi
ks out the obje
ts in the list and dispat
hesthose marked for output as the fun
tion's result, but routes the subproblems, taggedFEEDBACKTAG, ba
k to be de
omposed again by LayerOf.The de�nitions are as follows: the data type for the tagged list is110



TaggedStreamItem � � ::= OUTPUTTAG (MultiTreeToken � �)j FEEDBACKTAG �The sele
tion fun
tion SplitStream is de�ned asSplitStream :: [TaggedStreamItem � �℄ ! ([MultiTreeToken � �℄, �)SplitStream [ ℄ = ([ ℄, [ ℄)SplitStream ((OUTPUTTAG token) : rest)= (token : rest1, rest2)where(rest1, rest2) = SplitStream restSplitStream ((FEEDBACKTAG subproblem) : rest)= (rest1, subproblem : rest2)where(rest1, rest2) = SplitStream restThe fun
tion join 
attens a list of lists into a list:join :: [[�℄℄ ! [�℄join xss = insert (++) [ ℄ xss4.9 Appli
ation to ray tra
ingTo �nish the 
hapter, we apply this transformation to a simple re
ursive ray-tra
ing pro-gram. By transforming the divide-and-
onquer formulation into a 
y
li
 de�nition, large-s
ale pipeline parallelism in the ray-interse
tion test is un
overed.4.9.1 An introdu
tion to ray-tra
ingA variety of high-quality 
omputer graphi
s appli
ations require the generation, from a
omputer model of a three-dimensional spa
e, of a view whi
h in
ludes shadows, and alsomodels refra
tion and re
e
tion from shiny and non-shiny surfa
es. This is in additionto the more standard requirements for hidden surfa
e removal, perspe
tive, depth-
ueing,et
.The only generally-appli
able way of generating su
h images is by modeling the pathsand intensity of rays of light as they are re
e
ted, refra
ted et
. in the simulated region.The 
ru
ial observation behind ray-tra
ing is that only rays whi
h pass through a pixel,and are in
ident on the viewer's eye (stereo vision is generally ignored), need be 
onsidered,and that these rays 
an be followed ba
kwards to their sour
e. The 
lassi
 referen
e onray-tra
ing is Whitted [Whi80℄. 111



Tra
ing rays ba
kwards ensures that only rays of interest are 
onsidered. Forward raytra
ing is infeasible be
ause, when a 
urved wavefront is approximately represented bymany rays, the unavoidable quantisation 
an be arbitrarily ampli�ed by unfortunately-pla
ed 
urved re
e
ting surfa
es.The system being 
onsidered 
onsists of the viewer's eye, the mesh imposed by thepixel pattern of the display devi
e, and a simulated region behind the display devi
e. Ourtask is to render the surfa
e of the display devi
e with just the 
olours, brightnesses andhues of the light passing through it from the simulated region to the viewer's eye. For thesake of simpli
ity we shall refer to the appearan
e of a pixel as its 
olour.The set of obje
ts in the simulated region will be 
alled the obje
t database. Ea
h obje
thas a 
hara
teristi
 surfa
e: given an in
oming ray, this determines where the 
ontributoryrays 
ome from, and how their intensities are 
ombined to produ
e the outgoing ray.In essen
e, the ray tra
ing algorithm is as follows:1. For every pixel, 
ompute the ray starting from the viewpoint, whi
h passes throughit.2. For ea
h of these rays, �nd the �rst obje
t in the obje
t database whi
h the raystrikes.3. When a ray strikes a surfa
e, 
ompute the ray's 
olour. If the surfa
e is a light sour
ein its own right (or is 
ompletely dark), this is trivial. If not, 
al
ulate whi
h rays
ontribute to this ray's intensity, and ray-tra
e them in turn. The intensities of thesubrays 
an then be 
ombined to give the resulting ray's intensity, using a formulamodeling the surfa
e's 
hara
teristi
s.Thus, for ea
h original ray, a tree of sub-rays is 
onstru
ted during a re
ursive, divide-and-
onquer 
omputation of ea
h pixel's 
olour and intensity properties.It must be emphasised before going on to the details that this example is for illustrationonly:� For pra
ti
al use, a far more subtle initial approa
h is always justi�ed. This ver-sion tests every ray against every obje
t; a smarter algorithm would partition theenvironment, so that one interse
tion test against a large \envelope" obje
t (
alleda bounding volume) would determine whether tests on obje
ts inside the envelope
ould possibly su

eed.� This approa
h applies parallelism to the \divide" phase of the algorithm, duringwhi
h interse
tion tests are performed. It leaves the \
onquer" phase, during whi
hpixel intensities are a
tually 
al
ulated given their 
ontributory ray trees, to beperformed entirely sequentially. For simple models of surfa
es' opti
al properties,the divide phase does dominate [Whi80℄, but not by a large fa
tor.4.9.2 A simple divide-and-
onquer ray tra
erTo begin with, we must generate the list of all the rays passing from the viewer's eyethrough ea
h pixel of the display devi
e, into the simulated region. Without going into112



detail, we assume we have a fun
tion whi
h does this, given details of the display meshand the position of the viewer's eye:GenerateInitialRays :: mesh ! point ! [Ray℄There is no need to de�ne the types mesh, point or Ray here. Now the fundamental questionis, given a ray and the obje
t database, what 
olour should we paint the 
orrespondingpixel? Let us introdu
e a fun
tion to answer this, whi
h we will re�ne shortly:FindRayColour :: Obje
tDatabase ! Ray ! PixelColourWe have no need to re�ne the type PixelColour, but we do assume that the obje
t databaseis represented by a list of obje
ts:Obje
tDatabase == [Obje
t℄At the �rst level of abstra
tion, the ray tra
er as a whole is de�ned byRayTra
er :: Obje
tDatabase ! point ! [PixelColour℄RayTra
er obje
ts viewpoint = map (FindRayColour obje
ts)(GenerateInitialRays obje
ts viewpoint)The pixel 
olours are output in the order they were generated by GenerateInitialRays.The ray-tra
ing is done by the re
ursive fun
tion FindRayColour:FindRayColour obje
ts ray = Surfa
eModelFun
tion ColoursOfSubrayswhereColoursOfSubrays = map (FindRayColour obje
ts) SubraysSubrays = GetSubrays Impa
tInfoSurfa
eModelFun
tion = GetSurfa
eModel Impa
tInfoImpa
tInfo = FirstImpa
t obje
ts rayThis employs the fun
tion FirstImpa
t, whi
h was introdu
ed ba
k in se
tion 4.5.1:FirstImpa
t :: Obje
tDatabase ! Ray ! Impa
twhere the data type Impa
t was de�ned asImpa
t ::= NOIMPACT jIMPACT Num Impa
tInformationWithout elaborating fully the type Impa
tInformation, we assume that the 
ontributoryrays 
an be found by
113



GetSubrays :: Impa
tInformation ! [Ray℄and that the fun
tion whi
h 
ombines the 
olours of these 
ontributory rays a

ording tothe appropriate surfa
e model 
an be found byGetSurfa
eModel :: Impa
tInformation ! ([PixelColour℄ ! PixelColour)The original ray is also available:GetRay :: Impa
tInformation ! RayWhen a ray strikes an opaque, non-re
e
tive surfa
e, GetSubrays will return an emptylist of 
ontributory rays, while GetSurfa
eModel will return a 
onstant fun
tion giving the
olour of the surfa
e.Expressing the ray-tra
er using DivideAndConquerThe �rst step in the transformation will be to 
onvert the divide-and-
onquer formulationof FindRayColour into a 
y
li
 stream de�nition, using the result of se
tion 4.8. To usethat result, we must �rst express FindRayColour in terms of the generi
 DivideAndConquerform:FindRayColour obje
ts ray= DivideAndConquer CombineSolutions De
ompose raywhereDe
ompose ray = Subrays (FirstImpa
t obje
ts ray)CombineSolutions ray subray
olours = (GetSurfa
eModel (FirstImpa
t obje
ts ray))subray
oloursIt should be noted here that this is a highly parallel algorithm: when the many pixels ona typi
al s
reen are taken into a

ount there will be work for several million PEs. Theaim of the transformation is to organise the avilable parallelism to take advantage of aloosely-
oupled multipro
essor.4.9.3 Transformation to a 
y
li
 stream de�nitionOn
e we have the ray tra
er expressed using DivideAndConquer, we 
an now apply the
y
li
 stream transformation, giving:
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FindRayColour obje
ts ray= EvaluateTree (StreamToMTree (StreamOfContributoryRayTrees [ray℄))whereStreamOfContributoryRayTrees rays= outputwhere(output, feedba
k)= SplitStream (DividePhase (rays ++ feedba
k))DividePhase NewAndRe
y
ledRays= (insert (++) [ ℄(map LayerOf NewAndRe
y
ledRays))LayerOf ray= (OUTPUTTAG (MTREETOKEN ray CombineSubrayColours NoOfSubRays)): (map FEEDBACKTAG subrays)whereCombineSubrayColours = GetSurfa
eModel impa
tinfosubrays = Subrays impa
tinfoimpa
tinfo = FirstImpa
t obje
ts rayNoOfSubRays = length subraysWe 
an tidy this up a little by separating out the interse
tion test:FindRayColour obje
ts ray= EvaluateTree (StreamToMTree (StreamOfContributoryRayTrees [ray℄))whereStreamOfContributoryRayTrees rays= outputwhere(output, feedba
k)= SplitStream (DividePhase (FindImpa
ts (rays ++ feedba
k)))
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whereDividePhase NewAndRe
y
ledRaysImpa
ts= (insert (++) [ ℄(map LayerOf' NewAndRe
y
ledRaysImpa
ts))LayerOf' impa
tinfo= (OUTPUTTAG (MTREETOKEN ray CombineSubrayColours NoOfSubRays)): (map FEEDBACKTAG subrays)whereCombineSubrayColours = GetSurfa
eModel impa
tinfosubrays = Subrays impa
tinforay = GetRay impa
tinfoNoOfSubRays = length subrayswhereFindImpa
ts rays obje
ts = map (FirstImpa
t obje
ts) rays4.9.4 Exploiting pipeline parallelism in the 
y
leThe next step is to employ our pipelined formulation of FindImpa
ts,FindImpa
ts rays obje
ts = ( (map TakeImpa
t) Æ(insert (Æ) ident(map map (map PipelineStage obje
ts)))Æ (map MakePipeItem) )raysThis exploits parallelism su

essfully provided suÆ
ient rays are present in the feedba
k
y
le (�gure 4.9) to keep the pipeline 
omponents busy.4.9.5 Using pixel-wise parallelismAt present we 
an exploit pipeline parallelism to speed the appli
ation of the interse
tiontest to ea
h su

essive generation of a single pixel's 
ontributory-ray tree. The pipelinewill often be idle at the top and the bottom of trees, and (as is often the 
ase) whenmost of the trees are quite small. Fortunately we 
an use the pipeline to work on parts ofdi�erent pixels' 
ontributory-ray trees at the same time.First, noti
e that although we have 
on
entrated so far on FindRayColour, the fun
tionwe really need to evaluate isRayTra
er obje
ts viewpoint = map (FindRayColour obje
ts)(GenerateInitialRays obje
ts viewpoint)Now re
all (in fa
t from Appendix A, se
tion A.6.2) that StreamToMTree was de�ned in116



terms of a StreamToListOfMTrees:StreamToMTree stream = StreamToListOfMTrees 1 streamStreamToListOfMTrees n stream pi
ks up a list of n trees from stream. In deriving Stream-ToMTree we proved thatStreamToListOfMTrees (length trees) (ListOfMTreesToStream trees) = treesThus, we 
an very naturally show thatmap (FirstImpa
t obje
ts) rays= (StreamToListOfMTrees (length initialrays)(StreamOfContributoryRayTrees initialrays))This gives us the �nal, 
y
li
, pipelined ray tra
er implementation:RayTra
er obje
ts viewpoint= map EvaluateTree(StreamToListOfMTrees (length initialrays)(StreamOfContributoryRayTrees initialrays))whereStreamOfContributoryRayTrees rays= outputwhere(output, feedba
k)= (SplitStreamÆ joinÆ (map LayerOf')Æ (map TakeImpa
t)Æ (insert (Æ) ident(map map (map PipelineStage obje
ts)))Æ (map MakePipeItem))(rays ++ feedba
k)where

117



LayerOf' impa
tinfo= (OUTPUTTAG (MTREETOKEN ray CombineSubrayColours NoOfSubRays)): (map FEEDBACKTAG subrays)whereCombineSubrayColours = GetSurfa
eModel impa
tinfosubrays = Subrays impa
tinforay = GetRay impa
tinfoNoOfSubRays = length subrays4.10 Con
lusionsThis formulation of the ray tra
er 
ompletes the 
hapter's illustrative investigation ofte
hniques for transforming programs to bring out parallelism in easily-exploited ways.We return to the example in the next 
hapter.The main obje
tive of developing some general methods has only been partially a
h-ieved. Some useful te
hniques have been presented, but not in their most general form,nor so that they might be automated dire
tly. There is plenty of room for further work.In parti
ular, the transformation from divide-and-
onquer into a 
y
li
 stream formu-lation 
an be improved. The approa
h 
an be extended to in
lude the \
onquer" phase,and 
an be generalised to apply when CombineSolutions is not stri
t in all the subproblems.This is interesting be
ause a re
ursive expression evaluator is of this form, and would leadto a stru
ture mu
h like a 
y
li
-pipeline data 
ow ar
hite
ture su
h as the Man
hesterData Flow Ma
hine [GKW85℄.To make the approa
h pra
ti
al, a 
onsiderable level of support is ne
essary. The workshown was developed using pen
il and paper, and so mistakes inevitably 
reep in. Buildingsoftware to help is a 
onsiderable 
hallenge: systems to 
he
k derivations and proofs haveexisted for some 
onsiderable time (notable are LCF [GMW79℄ and its derivatives), butbuilding proofs with su
h systems is a slow and painstaking task|mu
h slower than pen
iland paper. What has not yet been a
hieved 
onvin
ingly is 
omputer-aided programtransformation and veri�
ation whi
h is a
tually qui
ker and easier than doing it by hand.A great deal of work is in progress.4.11 Pointers into the literatureParallelism in graph redu
tionDespite the large amount of resear
h and development work on implementing parallelgraph redu
tion ma
hines, there is very little published material des
ribing how programsmight be designed to exploit these designs' 
apabilities. Goldberg's thesis [Gol88℄ is themost 
omprehensive to date, although other studies are under preparation. Goldberg'sresults are interesting in parti
ular be
ause of the light they throw on the importan
e ofshared memory hardware. 118



Divide and 
onquerDivide-and-
onquer has a very long history in algorithm design, and its extension toparallel algorithm design 
omes very naturally. Thus, mu
h of the standard algorithmdesign literature serves as a good introdu
tion (see for example Aho, Hop
roft and Ull-man [AHU83℄). Horowitz and Zorat survey general parallel divide-and-
onquer algorithms[HZ83℄, while Stout gives a survey of divide-and-
onquer image pro
essing algorithms[Sto87℄. Rayward-Smith and Clark develop a theory for s
heduling divide-and-
onquer al-gorithms [RSC88℄. Hartel and Vree present an interesting approa
h to the eÆ
ient imple-mentation of a 
lass of divide-and-
onquer programs on relatively loosely-
oupled parallelgraph redu
tion ma
hines [HV87℄. Vree applied program transformation to improve thegrain size of a divide-and-
onquer implementation of a simulation of tidal motion in theNorth Sea [Vre87℄.Data
ow and pipeline parallelismPipelining as a te
hnique in the ar
hite
ture of 
onventional 
omputers is the subje
t of areview arti
le by Ramamoorthy and Li [RL77℄, and a book by Kogge [Kog81℄.Our interpretation of fun
tional programs as spe
i�
ations of networks of pro
essesis shared by data
ow proponents. Data
ow languages like VAL [M
G82℄, Id [NPA86℄,Lu
id [WA85℄ and Sisal [MSA+85℄ are essentially forms of pure fun
tional languages,normally restri
ted at least to �rst-order pro
edures (i.e. no fun
tion values), and 
om-monly augmented by \synta
ti
 sugar" for re
urren
es and other forms 
onvenient fors
ienti�
 
omputation.This sugaring 
an often be thought of as restri
ting an imperative language so thatno variable or stru
ture element may be assigned to more than on
e. This leads to aslight in
rease in expressive power, exploited in Id Nouveau [AE88℄, where, for example,an array 
an be passed to two fun
tions whi
h then intera
t by assigning to array elements.This 
apability, shared with 
ommitted-
hoi
e logi
 languages like Parlog [Gre87℄ andStrand�Strand [AI 88℄, goes beyond what 
an naturally be expressed in the purely-fun
tional language used in this book.The data
ow 
on
ept has prompted several hardware design proje
ts, aimed at usinga data
ow graph representation of a program's 
onsituent instru
tions at run-time, sothat parallelism 
an be exploited instru
tion by instru
tion on a large s
ale. This di�ersfrom 
onventional look-ahead pro
essors [Kel77℄ where data dependen
ies are analysedat run-time in a look-ahead bu�er of limited size. A by-produ
t of organising the fullyasyn
hronous instru
tion s
heduling this requires is that PE's 
an be made very tolerantof large and variable memory a

ess laten
y [AI86℄, but the overheads are non-trivial(although for a 
ontrary view see [ACE88℄). Criti
isms of the approa
h are summarisedby Gajski and his 
olleagues [GPKK82℄. Classi
al early work in the area in
ludes theMan
hester Data Flow Ma
hine proje
t, reviewed in [GKW85℄, and more thoroughly inpart I of [CDJ84℄. More re
ent work in
ludes Arvind's \Monsoon" proje
t, reported in[AN87℄ and [Pap89℄.Elsewhere, 
onsiderable progress has been made 
ompiling data
ow languages for 
on-ventional shared-memory multipro
essors su
h as the Cray-XMP [Lee88℄. This has arisenfrom su

ess with the partitioning problem, as reported by Sarkar [Sar89℄.119



Hardware des
ription and derivationJohnson [Joh84a℄ argues that the abstra
tion made in 
ir
uit design when moving froman analogue to a digital model of devi
e behaviour pre
isely mat
hes the fun
tional view.There is some pra
ti
al support for the view, not least the su

ess of 
ommer
ial produ
tslikeElla [MPT85℄. In the 
ontext of systoli
 designs, it has led to a great deal of su

essfulwork in deriving eÆ
ient VLSI implementations of parallel algorithms. Su
h work, notablyby Quinton [Qui84℄, Chen [Che84℄ and Moldovan [Mol83℄, has developed a 
onsiderableunderstanding of s
heduling 
omputations onto �xed arrays of syn
hronous PE's.There are some weaknesses with the fun
tional approa
h. Certainly when one needsto work below or outside the abstra
tion of syn
hronous digital 
ir
uits, more generalte
hniques are needed. Quite an e�e
tive treatment of this is the higher-order logi
 (HOL)approa
h of Hanna and Dae
he [HD85℄ and Fourman [FPZ88℄. At a higher level, Sheeranidenti�es a failure to 
apture ideas like handshaking, where, for example, an input to a
ir
uit in
ludes an a
knowledgement output. Sheeran proposes Ruby, an experimentalrelational language [She88℄, to deal with the problem.The existen
e of hardware des
ription and spe
i�
ation languages poses the quite 
on-tentious question of whether programming is a good model for digital systems design, orat least VLSI 
ir
uit design. One theme of this book is that parallel programming is di�er-ent and more 
ompli
ated than sequential programming. This 
ertainly extends to digital
ir
uit design, whi
h 
an be yet more 
ompli
ated when pa
kaging, power distribution andte
hnology mixing are taken into a

ount. Even in the mu
h simpli�ed arena of a singleVLSI 
hip, the use of 
ompilation te
hniques in favour of more intera
tive design tools isdiÆ
ult to justify when the 
ost of a devi
e rises exponentially with the 
hip's size.The Kahn prin
ipleKahn observed [Kah74℄ that the meaning of 
ertain simple systems of intera
ting pro-
esses 
an be given using the standard �xed-point methods of denotational semanti
s. Fora introdu
tion to the denotational approa
h to giving a mathemati
al semanti
s to a pro-gram, see S
hmidt [S
h86℄. The restri
tion Kahn imposed was that the behaviour of the
omponent pro
esses be 
hara
terisable by fun
tions mapping the history (i.e. stream) ofinput values to the history of output values. Keller [Kel74℄ details this simpli�
ation in awider 
ontext, but it was not until Faustini's thesis [Fau82℄ that Kahn's \prin
iple" wasformally proven in a general 
ontext.Ray tra
ingAlthough it goes ba
k at least to 1968 [App68℄, the te
hnique was �rst presented in detailby Turner Whitted in 1980 [Whi80℄. It is now 
ommonly dealt with in introdu
tory
omputer graphi
s textbooks. The range of smart ray-tra
ing algorithms is enormous,but they essentially depend on the notion of a \bounding volume", a simple arti�
ialsolid introdu
ed to envelop a real obje
t with a more 
omplex form, so that most rays
an bypass the interse
tion test with the 
omplex shapes. This and other te
hniques aresurveyed in [WHG84℄. Kajiya [Kaj83℄ gives an interesting twist to the bounding volume120



approa
h when applied to s
enes generated at random in a \fra
tal" fashion: the s
eneitself together with bounding volumes is generated only when a ray might strike it.Automati
 transformation te
hniquesThe emphasis in this 
hapter has been on developing manual te
hniques for exploringprogram transformations. A large body of work has been done towards understanding thealgebra of programs enough to give algorithms for manipulating programs into spe
i�edforms. A simple example (explored by Wadler [Wad88a℄) might be the te
hnique of propa-gating \++" into fun
tions returning lists to avoid 
opying, as employed in se
tion A.1.1.A more 
ompli
ated one might be the elimination of sub from re
urren
es, as given inse
tion A.3. For more examples, see Field and Harrison's textbook [FH88℄.Computer-aided program transformation and veri�
ation environmentsProgram veri�
ations 
annot be expe
ted to be 
he
ked by well-quali�ed reviewers in thesame way that mathemati
al veri�
ations appearing in the s
ienti�
 literature are. Theyare generally too boring! A formal approa
h 
arries no more weight than vigorous assertionunless the steps are 
he
ked, and so 
omputer support is a ne
essity, not a luxury. Proof
he
kers exist, LCF being a prime example [GMW79℄. Unfortunately using su
h a system
an be very hard work indeed be
ause of the amount of detail required.One approa
h to alleviating the tedium of 
he
ked veri�
ation is to employ a me
hani
altheorem prover. The 
lassi
 work in this area is by Boyer and Moore [BM79℄, whilst Gordongives an introdu
tion [Gor88℄ and Chang and Lee give a more general treatment [CL73℄.An interesting alternative, whi
h applies more neatly to program derivation, is to
apture proof te
hniques or derivation strategies as programs in a meta-language (in the
ase of LCF this was ML|whi
h took on a life of its own [Mil83℄). These \ta
ti
als" arebuilt by 
ombining fundamental inferen
e rules of the program logi
. Milner [Mil85℄ givesa good introdu
tion. A parti
ular su

ess of the ML/LCF approa
h of Gordon, Milner andWadsworth is the use of a polymorphi
 type system to ensure that only formally-derivedstatements a
hieve the status of theorems. Darlington pioneered the appli
ation of thisproof development work to program derivation with [Dar81℄, using the fun
tional languageHope [BMS80℄ as both the meta-language and the obje
t language.Darlington's group have gone on to base a 
omplete programming environment onformal program transformation [De88℄. Their aim is to 
apture software spe
i�
ation,derivation and 
hange 
ontrol by using Hope+ to do
ument software modi�
ations asexe
utable meta-programs.Reviews of related work are given by Pepper [Pep83℄ and Feather [Fea86℄.
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Chapter 5Distributed Parallel Fun
tionalProgrammingThis 
hapter examines the problem of 
ontrolling the distribution of a parallel programa
ross a loosely-
oupled multipro
essor, and develops an extension to the programminglanguage to resolve it.The main points are� In general fun
tional programs demand some additional 
ontrol if the parallelismwhi
h is present is to be exploited eÆ
iently.� This 
ontrol over spatial program distribution, although not impervious to 
ompilerte
hnology, 
an legitimately be thought of as part of the programming task.� The pro
ess network diagram used to illustrate parallelism stru
ture is an appropri-ate level of abstra
tion for program design and analysis.� The pro
ess network asso
iated with a program is not uniquely determined by theprogram's form. In fa
t, the 
hoi
e of whi
h pro
ess network to use to distribute aprogram 
an depend on run-time data values.� A de
larative program annotation is presented whi
h asso
iates a program with itspro
ess network. The notation has two natural abstra
tion me
hanisms, and hasappli
ation in more tightly-
oupled multipro
essors.5.1 Communi
ation patternsA 
ommuni
ation o

urs every time a value is stored in or read from a memory lo
ation.The 
ommuni
ation o

urs between a memory devi
e and a PE. The memory may be very
lose to the PE { perhaps on the same 
hip. It may be in some other PE's lo
al memory, orin some spe
ial memory organ shared between many PE's by means of a high-performan
einter
onne
tion network. At the far extreme, a

ess to non-lo
al memory may be providedby expli
itly-programmed message passing over a 
ommuni
ations network.123



As well as optimising the use of pro
essing power, we must treat the target ar
hite
-ture's 
ommuni
ations 
apabilities as a 
riti
al resour
e. In a loosely-
oupled multipro-
essor the number of immediately-a

essible PE's or memories for ea
h pro
ess is stri
tlylimited. Thus, a ring-shaped pro
ess network is far easier to a

ommodate than a star net-work, or even a mesh or (hyper)
ube. The 
ommuni
ations demands of a parallel algorithmmust be taken into a

ount in evaluating its suitability for su
h ma
hines. The importan
eof 
ommuni
ation to parallel program performan
e is often hidden in small-s
ale parallel
omputers, but when really large s
ale parallelism is to be exploited it is ines
apable. Indevi
es fabri
ated using photolithography, e.g. VLSI, it is already paramount.5.1.1 The speed-up of a sequential multipro
essorOne way to demonstrate the importan
e of 
ommuni
ations is to 
onsider a 
omputationwhi
h 
ould be made faster by repli
ating PE's without involving any parallelism at all.Let us imagine a single pro
essor 
omputer, linked to a single, large, memory devi
e.Its performan
e is, to a large extent, governed by the 
y
le time of the memory devi
e.The speed of a memory devi
e depends on its 
apa
ity, sin
e its operation depends onsignal propagation a
ross the memory matrix. In the worst 
ase, this propagation delayis quadrati
 in the memory matrix's width, but with 
areful design it 
an be redu
ed to alogarithmi
 fa
tor (see Mead and Conway [MC80℄, se
tion 8.5.2.3).For some 
omputation, it might be possible to determine in advan
e that the memorywill be a

essed region-by-region, in a sequential fashion. Thus, if we 
ould break thememory devi
e up into many sub-memories, ea
h 
overing exa
tly one region, we 
ouldhope to in
ur only the a

ess time of a small memory devi
e at ea
h memory a

ess, ratherthan the a

ess time of the entire memory. With a single PE, this would save no time,be
ause the signals would still need to travel to and from the 
orre
t sub-memory, but ifwe make many dupli
ates of the PE and s
atter them among the submemories, we 
ouldarrange for the program to move to the appropriate PE before a

essing ea
h region.Just this e�e
t is exploited with transputers, where there is a spe
ial advantage tokeeping ea
h pro
ess's memory requirements small so that the on-
hip RAM is suÆ
ient.Of 
ourse, if we 
an use the results from more than one region's 
al
ulation at a time, we
an exploit parallelism too, giving a double bonus.5.1.2 The ray interse
tion test exampleOne of the example program transformations used in the previous 
hapter (se
tion 4.5.1)is an illustration of this. We had a 
omputation initially given asFindImpa
ts rays obje
ts= map (FirstImpa
t obje
ts) rayswhereFirstImpa
t obje
ts ray = earliest (map (TestForImpa
t ray) obje
ts)whereearliest impa
ts = insert earlier NOIMPACT impa
tsCommonly, both the number of rays and the number of obje
ts are very large. It is124




lear, therefore, that this program has no shortage of parallelism: we 
an use horizontalparallelism to spawn a pro
ess to 
ompute every element of the result list in parallel.Noti
e, though, that every one of these pro
esses,FirstImpa
t obje
ts rayiwill need extensive a

ess to the list obje
ts { in fa
t every pro
ess will be 
ontinuously a
-
essing all of obje
ts. Only in an ar
hite
ture with a very powerful inter
onne
tion s
heme
an this level of shared memory traÆ
 be supported. Most su

essful implementations
opy the database instead, and with a moderate number of obje
ts 
opying works well.The transformed version of the program took the form of a pipeline, ea
h 
omponentof whi
h was responsible for a single element of the obje
ts list:FindImpa
ts2 rays obje
ts = ( (map TakeImpa
t) Æ(insert (Æ) ident(map map (map PipelineStage obje
ts)))Æ (map MakePipeItem) )rayswhere the pipeline stage is de�ned byPipelineStage obje
t (PIPEITEM ray impa
t)= PIPEITEM ray impa
t'whereimpa
t' = earlier impa
t NewImpa
tNewImpa
t = TestForImpa
t ray obje
tThe body of the pipeline is a 
hain of pro
esses evaluatingmap PipelineStage obje
t pipeitemsThe pipeline stage's only 
ommuni
ations are with the next and previous stages in the
hain. The number of obje
ts handled by ea
h stage 
an be in
reased if ne
essary, al-lowing 
omplete 
ontrol over how mu
h lo
al memory is used, and over the 
ommuni-
ation/
omputation ratio. This implementation does, indeed, seem to win the \doublebonus" promised above!5.1.3 Is this programming?This leads us to a rather awkward question: are the two formulations of the ray inter-se
tion test given above di�erent parallel algorithms? In sequential programming terms,we must answer \no", for they do represent exa
tly the same 
omputation. Nonethelessthe di�eren
e is substantial: the pipelined form elu
idates an organisation of the problemwhi
h seems pra
ti
ally important.Be
ause the problem of distributing a parallel 
omputation in spa
e is so 
ompli
ated,it is reasonable to 
onsider taking the view that it is the programmer's responsibility. If125



Figure 5.1: A four-element 
y
li
 graphwe take this view, then we must hope to o�er some support in the programming languageto make the task easy. We 
an still hope for theoreti
al advan
es to eliminate su
h detailsfrom programmers' daily work; the notation presented might then be an intermediate formin the 
ompilation pro
ess.5.2 De
larative des
riptions of pro
ess networksWe have dis
overed that the unadorned text of a program does not 
onstrain its parallelevaluation enough for us to 
laim that the s
ript serves to des
ribe a parallel algorithm.Instead of re�ning programs into des
riptions of parallel algorithms using annotationsto 
ontrol operational aspe
ts of evaluation, it seems preferable to apply de
larative pro-gramming to the problem. A pro
ess network (like any graph) 
an be des
ribed by itsnodes and its ar
s. If we name the nodes in the program a, b, 
 et
. we 
an represent thenetwork's ar
s using a list of assertions. For example, the four element 
y
li
 graph shownin �gure 5.1 
an be written(ar
 a b) ^ (ar
 b 
) ^ (ar
 
 d) ^ (ar
 d a)Here, a, b, 
 and d are labels identifying expressions in the program, and ^ denotes logi
al\and". By asserting ar
 a b, the programmer is informing the 
ompiler that expressionsa and b ought to be 
omputed in parallel, and that the pro
esses evaluating them areexpe
ted to intera
t. Just how they intera
t is not explained by the pro
ess network:one must refer to the de�nitions of the labelled expressions. In parti
ular, the ar
s inthe pro
ess network des
ribed do not 
arry arrows indi
ating any parti
ular dire
tion ofinformation 
ow. We will see examples (see se
tion 5.3.3) where an ar
 stands for abidire
tional 
ow.Let us look a little more 
losely at a simpler example, a three element 
hain:(ar
 a b) ^ (ar
 b 
) ^ (ar
 
 d)with the asso
iated de�nitions 126



a = map ((+) 2) bb = map ((�) 3) 

 = map sqrt dd = from 1The network assertion ar
 
 d demands that the expressions named 
 and d ea
h be anindependent pro
ess, to be allo
ated to a pro
essor of its own (at least notionally). Itfurther requires the 
ompiler to arrange things so that the pro
essor exe
uting 
 is linkeddire
tly to the pro
essor exe
uting d, be
ause they are expe
ted to 
ommuni
ate duringthe 
omputation.Looking at the body of d we �nd that there are no free variables: the expression isquite self-
ontained, apart from the 
ode it exe
utes. Its only ne
essary 
ommuni
ation isto deliver its result stream.The body of 
 has one free variable (apart from the 
ode it exe
utes), d. Fortunately,we already know that d is pla
ed on a neighbouring pro
essor, so its value is easily availableto the pro
essor whi
h must evaluate 
. Indeed it is be
ause of this dependen
y that thear
 assertion was made. The 
ompiler 
an 
he
k that all of a program's data dependen
iesare re
e
ted by ar
s in the network, although the programmer may 
hoose to ignore su
hwarnings if the expe
ted level of traÆ
 on the ar
 
on
erned is thought to be very small.Looking at b the pattern should be
ome 
lear. It is the entire expression whi
h is namedand mentioned in the de
larative pro
ess network des
ription. Thus, b is the 
ompletefun
tion appli
ation map ((�) 3) 
. This might seem somewhat 
onfusing sin
e in ourpro
ess network diagram this node would be labelled just map ((�) 3), being the fun
tionthe node applies to its input. We use a shorthand to resolve it, introdu
ed shortly.5.2.1 A pro
ess network languageThis te
hnique for asso
iating a program s
ript with a pro
ess network diagram forms thebasis for an interesting extension to our fun
tional programming language. We add a newkeyword,moreover, to introdu
e a \moreover 
lause" 
ontaining a de
larative des
riptionof the stru
ture of the intended pro
ess network, using as labels any names 
urrently ins
ope. The resulting language is 
alled \Caliban" for somewhat obs
ure reasons, afterthe 
hara
ter from Shakespeare's The Tempest. Caliban, bereft of his on
e-great magi
alpower, is mu
h maligned in modern interpretations of the play.Thus the example above might be written in Caliban asawherea = map ((+) 2) bb = map ((�) 3) 

 = map sqrt dd = from 1moreover(ar
 a b) ^ (ar
 b 
) ^ (ar
 
 d) 127



5.2.2 A shorthand for naming pro
essesThis des
ription is a little 
ompli
ated, be
ause every time we want to distinguish a pro
esswe must use where to give a name to the appli
ation. We introdu
e a shorthand, 2f (read\make pro
ess f"), to denote a name for the appli
ation in whi
h f appears. The fun
tionf must appear exa
tly on
e in the sour
e program (or a 
ompile-time error should bereported). We 
an use it to re-express our pipeline asf (g (h d))wheref = map ((+) 2)g = map ((�) 3)h = map sqrtd = from 1moreover(ar
 2f 2g) ^ (ar
 2g 2h) ^ (ar
 2h d)Of 
ourse it would be equivalent to use parameterised de�nitions of f, g and h, su
h asf xs = map ((+) 2) xsThe di�eren
e between f and 2f is that f is the name of a pro
ess to 
ompute the fun
tionso named, while 2f is the name of a pro
ess whi
h applies it. Be
ause our host languageallows fun
tions as values, either of these 
an 
onstitute a sensible pro
ess body.We 
an be a little informal and use 
omposition rather than appli
ation provided theappli
ation 
an be un
overed by the use of redu
tion at 
ompile-time. Doing this allowsus to write(f Æ g Æ h) dwheref = map ((+) 2)g = map ((�) 3)h = map sqrtd = from 1moreover(ar
 2f 2g) ^ (ar
 2g 2h) ^ (2h d)5.2.3 Abstra
ting pro
ess networksIt is frustrating to have to write out the details of highly-stru
tured pro
ess networks likeour 
hain example. It would be mu
h tidier to have some means of de�ning on
e-and-for-all what a pro
ess 
hain looks like. This turns out to be very easy, be
ause we have all theme
hanisms we require in the host language. In order to spe
ify a 
hain network given alist of fun
tions, [f1, f2, f3, . . . fn�1, fn℄, we need to build an assertion128



(ar
 2f1 2f2) ^ (ar
 2f2 2f3) ^ . . . ^ (ar
 2fn�1 2fn)This is easy. We de�ne a fun
tion, whi
h we will 
all a \network forming operator":
hain :: (Bool ! Bool ! Bool) ! [(� ! �)℄ ! Bool
hain relation [f℄ = TRUE
hain relation (f1 : f2 : fs) = (relation f1 f2) ^ (
hain relation f2 fs)Now suppose we write(f Æ g Æ h) dmoreover
hain ar
 [2f, 2g, 2h, d℄| {z }We 
an apply redu
tion to expand this annotation:(f Æ g Æ h) dmoreover(ar
 2f 2g) ^ (
hain ar
 [2g, 2h, d℄)| {z }(f Æ g Æ h) dmoreover(ar
 2f 2g) ^ (ar
 2g 2h) ^ (
hain ar
 [2h, d℄)| {z }(f Æ g Æ h) dmoreover(ar
 2f 2g) ^ (ar
 2g 2h) ^ (ar
 2h d) ^ (
hain ar
 [d℄)| {z }(f Æ g Æ h) dmoreover(ar
 2f 2g) ^ (ar
 2g 2h) ^ (ar
 2h d) ^ TRUEBe
ause the annotation has the form of a 
onjun
tion of Boolean assertions, TRUE repre-sents the empty annotation, and so 
an be removed.Other network-forming operatorsA 
hain is not the only useful pattern of 
ommuni
ation to 
apture. Di�erent appli
ationsmay require more spe
ialised stru
tures, but we 
an 
omplete an initial toolkit with thefun
tions ladder and fan de�ned as follows:
129



ladder :: (Bool ! Bool ! Bool) ! [� ! �℄ ! [
 ! Æ℄ ! Boolladder relation [ ℄ [ ℄ = TRUEladder relation (a : as) (b : bs) = (relation a b) ^ (ladder relation as bs)Thus, ladder ar
 as bs takes two lists of pro
esses and builds an assertion that they belinked pairwise by the relation. It might more neatly be expressed asladder relation as bs = all (map2 relation as bs)whereall = insert (^) TRUEThis makes 
lear the relationship between ladder and map2.The fan operator takes a pro
ess and a list of pro
esses and builds an assertion thatevery pro
ess in the list is linked to the �rst pro
ess:fan :: (Bool ! Bool ! Bool) ! � ! [� ! 
℄ ! Boolfan relation a bs = all (map (relation a) bs)We will assume ve
tor variants of the network forming operators, de�ned likeVe
torLadder relation av bv = ladder relation (Ve
torToList av) (Ve
torToList bv)5.2.4 A se
ond abstra
tion me
hanismA fun
tion like 
hain allows patterns of ar
s to be abstra
ted, and treated as a single link ofa higher-level kind. A dual to this ar
 abstra
tion me
hanism is node abstra
tion, a meansof pa
kaging up 
olle
tions of nodes as a single, higher-level form. Let us 
ontinue withthe pro
ess 
hain example we have been using so far, whi
h is, in fa
t, used as a pipeline.We 
ould try to 
apture the notion of a pipeline as a single higher-order 
ombining form:pipeline :: [� ! �℄ ! � ! �pipeline fs x = (insert (Æ) ident fs) xmoreover(
hain ar
 (map (2) fs))^ (ar
 2(last fs) x)^ (ar
 2(hd fs) interfa
e)pipeline takes a list of fun
tions, ea
h of whi
h spe
i�es a 
omponent pro
ess of the pipeline.Themoreover annotation asserts that the 
omponents are ea
h separate pro
esses linkedinto a 
hain, while the body part �lls in the details of the 
ommuni
ations, applying ea
hfun
tion to the result of the next in the pipeline. Note that map (2) fs must be redu
edso that 2 is applied to ea
h element of fs before being interpreted as a referen
e to the130



pro
esses.The keyword interfa
e is a shorthand for the name of the fun
tion's result { the de�-nition above is equivalent topipeline fs x = resultwhereresult = (insert (Æ) ident fs) xmoreover(
hain ar
 (map (2) fs))^ (ar
 2(last fs) x)^ (ar
 2(hd fs) resultThe purpose of making this link to result is to 
onne
t the output of the pro
ess networkof this fun
tion 
orre
tly into the pro
ess network of the 
alling program. In this example,the pipeline has a single output ar
, so interfa
e is the name of a single node.5.2.5 Simpli�
ation rulesWe have now seen all the 
omponents of the Caliban language. Examples of appli
ationswill be given shortly, but �rst a simple program will be analysed. The fundamentalnotation is based on naming and the moreover 
lause, but this is augmented by the 2operator, the interfa
e pseudonym, the use of network forming operators like 
hain, and theappearan
e ofmoreover 
lauses in auxiliary fun
tion de�nitions like pipeline as well as atthe outermost level of a program. We understand the meaning of 
omplex 
onstru
tionsby applying simpli�
ation rules and redu
tion. The rules 
an be summarised ase1ff xg1 moreover e2f2fg � e1fag where a = f x moreover e2fagLHS = e1 moreover e2finterfa
eg � LHS = a where a = e1 moreover e2fageAfeB moreover eCg moreover eD � eAfeBg moreover eC ^ eDWhere� a is a 
urrently unused name in ea
h 
ase,� e1fe2g stands for an expression e1 
ontaining an instan
e of e2.� e1fe2g1 stands for an expression e1 
ontaining exa
tly one instan
e of e2.� all the names referred to by eC are de�ned in eA 
orre
tly.A program is 
ompiled by applying these rules, together with redu
tion as required, untilthe program has just onemoreover 
lause 
onsisting only of a 
onjun
tion of ar
 assertionsabout named pro
esses. This may involve evaluating a substantial portion of the program,and there is a risk that the 
ompiler will fail to terminate.The last restri
tion means that parameters and names de�ned in nested where 
lausesmust be lifted to the outermost lexi
al level. This may not be possible. It might, therefore,prove impossible to 
oat all moreover 
lauses to the outermost level. For example, thiso

urs if a re
ursive fun
tion depending on a run-time variable is annotated so that the131



Figure 5.2: The expanded pro
ess networknesting ofmoreover 
lauses 
annot be unravelled at 
ompile-time. Su
h programs spe
ifydynami
 pro
ess networks, whi
h evolve at run-time. These are not dealt with by thissimpli�
ation s
heme. Some examples are given in se
tion 5.2.7.5.2.6 An example of simpli�
ationA simple example of the use of these rules { whi
h would normally be applied by the
ompiler { is given below. This program spe
i�es the pro
ess network given in �gure 5.2:f x y = 
ombine (left x)(right y)where
ombine xs ys = map2 op xs ysleft = pipeline [f1, g1, h1℄right = pipeline [f2, g2, h2℄moreover(fan 22
ombine [2left, 2right℄)^ (ar
 22
ombine interfa
e)There are three points to wat
h out for here:� When a two-parameter 
urried fun
tion like 
ombine is applied to both parameters,two 2 operators are needed to refer to the 
omplete appli
ation.� The presen
e of the ar
 assertion between two pro
esses does not re
e
t the dire
tionof data transfer.� At this level, 2left and 2right appear to be single pro
esses. Sin
e they are instan
esof pipeline, they a
tually unfold into pipelines of three pro
esses ea
h. The outputof ea
h pipeline is its \interfa
e", to whi
h it delivers its output, and to whi
hpro
esses 
onsuming its output are linked.The input of ea
h pipeline is 
onne
ted by the assertion that ea
h pipeline is linkedto its parameter x. 132



We begin by expanding the interfa
e and 2 shorthands:f x y= resultwhereresult = boxbox
ombineboxbox
ombine = 
ombine boxleftboxrightboxleft = pipeline [f1, g1, h1℄ xboxright = pipeline [f2, g2, h2℄ y
ombine xs ys = map2 op xs ysmoreover(fan boxbox
ombine [boxleft, boxright℄)^ (ar
 boxbox
ombine result)Sin
e boxbox
ombine = result, ar
 boxbox
ombine result = TRUE. This is eviden
e of someredundan
y in the notation: the interfa
e link was not stri
tly ne
essary here, but wasin
luded to make all the ar
s manifest in the moreover 
lause. The next step is to unfoldthe referen
es to pipeline. We take the �rst one, and remove the use of \Æ", 2, interfa
eand 
hain ar
 straight away:f x y= resultwhereresult = boxbox
ombineboxbox
ombine = 
ombine boxleftboxright
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boxleft = result2whereresult2 = boxf1boxf1 = f1 boxg1boxg1 = g1 boxh1boxh1 = h1 xmoreover(
hain ar
 [boxf1, boxg1, boxh1℄)^ (ar
 boxh1 x)^ (ar
 boxf1 result2)boxright = pipeline [f2, g2, h2℄ y
ombine xs ys = map2 op xs ysmoreover(fan boxbox
ombine [boxleft, boxright℄)^ (ar
 boxbox
ombine result)Noti
e the need to introdu
e result2 to avoid a 
lash with result. The next step is to tryto 
oat the nested moreover 
lause out to join the outer one. To do this we must makesure that all the names it refers to are de�ned in the outer s
ope:f x y= resultwhereresult = boxbox
ombineboxbox
ombine = 
ombine boxleftboxrightboxleft = result2moreover(
hain ar
 [boxf1, boxg1, boxh1℄)^ (ar
 boxh1 x)^ (ar
 boxf1 result2)result2 = boxf1boxf1 = f1 boxg1boxg1 = g1 boxh1boxh1 = h1 xboxright = pipeline [f2, g2, h2℄ y
ombine xs ys = map2 op xs ys 134



moreover(fan boxbox
ombine [boxleft, boxright℄)^ (ar
 boxbox
ombine result)Merging moreover 
lauses givesf x y= resultwhereresult = boxbox
ombineboxbox
ombine = 
ombine boxleftboxrightboxleft = result2result2 = boxf1boxf1 = f1 boxg1boxg1 = g1 boxh1boxh1 = h1 xboxright = pipeline [f2, g2, h2℄ y
ombine xs ys = map2 op xs ysmoreover(
hain ar
 [boxf1, boxg1, boxh1℄)^ (ar
 boxh1 x)^ (ar
 boxf1 result2)^ (fan boxbox
ombine [boxleft, boxright℄)^ (ar
 boxbox
ombine result)We 
omplete the simpli�
ation by doing the same with the other instan
e of pipeline, andunfolding the uses of 
hain and fan:f x y= resultwhereresult = boxbox
ombineboxbox
ombine = 
ombine boxleftboxright
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boxleft = result2result2 = boxf1boxf1 = f1 boxg1boxg1 = g1 boxh1boxh1 = h1 xboxright = result3boxf2 = f2 boxg2boxg2 = g2 boxh2boxh2 = h2 y
ombine xs ys = map2 op xs ysmoreover(ar
 boxf1 boxg1) ^ (ar
 boxg1 boxh1)^ (ar
 boxh1 x)^ (ar
 boxf1 result2)^ (ar
 boxf2 boxg2) ^ (ar
 boxg2 boxh2)^ (ar
 boxh2 x)^ (ar
 boxf2 result3)^ (fan boxbox
ombine [boxleft, boxright℄)^ (ar
 boxbox
ombine result)This de�nition now uses only Caliban's fundamental me
hanisms. We might 
all this\normal form" Caliban.5.2.7 Some examples where simpli�
ation failsSimpli�
ation may not always su

eed in �nding a \normal form" Caliban formulation ofthe input program. This happens with programs whose pro
ess network evolves duringprogram exe
ution, as with the primes sieve program (se
tion 4.6.1):primes = sieve (from 2)wheresieve (a : as) = a : (sieve (�lter a as))moreoverar
 2sieve 22�lterIt also happens if insuÆ
ient information is available to determine the pro
ess network,as in a program likef xs = map g xsmoreoverfan 2g (map (2) xs)where xs is a program input, and yet determines the size of the network.136



Finally, a rather pathologi
al possibility is that the 
omputation ne
essary to �nd thepro
ess network fails to terminate, even though the program terminates 
orre
tly. This
an happen if the output of the pro
ess network is not needed at run time, as might o

urin this example:f a = if (satisfa
tory a)a(map g xs)wherexs = 1 : xsmoreoverfan 2g (map (2) xs)5.3 Some examplesHaving introdu
ed the bones of the Caliban language, we need some examples to see howit works out in pra
ti
e.5.3.1 Example: the square root pipelineThis example is derived from an O

am tutorial. It is very simple, being a systoli
 algo-rithm of the most basi
 kind. The problem is to take a list of numbers, and 
ompute thelist of their 
orresponding square roots. The solution is a pipeline algorithm, with onestage for ea
h iteration of the Newton-Raphson approximation te
hnique.Begin with the standard Newton-Raphson algorithm, from se
tion 4.3.1:solve f f' x0= until 
onverges xswhere
onverges 0 = FALSE
onverges i = abs(((xs sub i) - (xs sub (i-1)))/(xs sub i))��, if i � 1xs = generate NextEstimatewhereNextEstimate 0 = x0NextEstimate i = (xs sub (i-1))- ( f (xs sub (i-1)) / f' (xs sub (i-1)) ), if n � 1To �nd a square root, we solve for f x = 0, wheref x = x2 - aso f' x = 2�x. A fair guess to start with is x0 = a/2, so we have
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sqrt a= until 
onverges xswhere
onverges 0 = FALSE
onverges i = abs(((xs sub i) - (xs sub (i-1)))/(xs sub i))��, if i � 1xs = generate NextEstimatewhereNextEstimate 0 = aNextEstimate i = ((xs sub (i-1)) + a/(xs sub (i-1)))/2, if i � 1Testing for 
onvergen
e at ea
h step is quite expensive; it turns out to be easier (and mu
hbetter for a pipelined implementation) to iterate a �xed number of times before �nishing:sqrt a= until �nished xswhere�nished i = TRUE, if i = NumIterates�nished i = FALSE, otherwisexs = generate NextEstimatewhereNextEstimate 0 = a/2NextEstimate i = ((xs sub (i-1)) + a/(xs sub (i-1)))/2Applying our standard te
hnique for optimising re
urren
es (Appendix A, se
tion A.3),this be
omessqrt a = xs sub NumIterateswherexs = (a/2) : (map Transition xs)Transition prevx = (prevx + a/prevx)/2If we �x NumIterates at some given value, say four, and apply redu
tion this 
an be writtensqrt a = (Transition Æ Transition Æ Transition Æ Transition) (a/2)whereTransition prevx = (prevx + a/prevx)/2If we apply fa
t 2 (Appendix A, se
tion A.4) here we 
an make the free variable a inTransition a parameter of Transition, and propagate it through using a pair:sqrt a = fst ((Transition' Æ Transition' Æ Transition' Æ Transition')(a/2, a))whereTransition' (prevx, a) = ((prevx + a/prevx)/2, a)We a
tually need to apply this to a stream of in
oming values. By distributing map over138



\Æ" we getmap sqrt as = ((map fst)Æ (map Transition')Æ (map Transition')Æ (map Transition')Æ (map Transition')Æ (map MakePair))aswhereTransition' (prevx, a) = ((prevx + a/prevx)/2, a)MakePair a = (a/2, a)Adding the network annotationThis is the �nal, parallel form of the square root pipeline. We have now to use Calibanto distribute it in the obvious pipeline fashion. We 
an do this in a number of ways: we
ould use the pipeline operator given earlier:map sqrt as = pipeline [map fst,map Transition',map Transition',map Transition',map Transition',map MakePair℄asAlternatively, we 
ould use 
hain:map sqrt as = (insert (Æ) ident pro
esses) aswherepro
esses = [map fst,map Transition',map Transition',map Transition',map Transition',map MakePair℄moreover(
hain ar
 (map (2) pro
esses))^ (ar
 2(last pro
esses) as)(As an aside, noti
e that the elements of the list pro
esses are not all of the same type,and so fail to satisfy the type s
heme even although no run-time type error 
an o

ur.The problem disappears after simpli�
ation so is not pursued here).139



5.3.2 Bundling: a partitioning te
hniqueOne of the main fun
tions of the annotation is to 
ontrol pro
ess partitioning. Bundlingis a way of doing so whi
h does not disturb existing 
ode. Suppose we wish to pla
e someof the 
omponents of the 
omposition above in the same PE. We 
ould modify the 
odebody to get the e�e
t:map sqrt as = (insert (Æ) ident pro
esses) aswherepro
esses = [(map fst) Æ (map Transition'),(map Transition') Æ (map Transition'),(map Transition') Æ (map MakePair)℄moreover(
hain ar
 (map (2) pro
esses))^ (ar
 2(last pro
esses) as)In making a 
hange to the distribution of the program, we had to 
hange the body of the
ode. The idea of bundling is to build a data stru
ture 
ontaining the 
omponent parts ofea
h pro
ess, and talk about that instead. Any data stru
ture will do, but for 
larity wewill tag data stru
tures built for bundling purposes with the 
onstru
tor BUNDLE:Bundle � ::= BUNDLE �We 
an now write the partitioned pipeline as follows:map sqrt as = (insert (Æ) ident pro
esses) aswherepro
esses = [map fst,map Transition',map Transition',map Transition',map Transition',map MakePair℄[ba
k, t1, t2, t3, t4, front℄ = map (2) pro
essespartitions = [BUNDLE (ba
k, t1),BUNDLE (t2, t3),BUNDLE (t4, front)℄moreover
hain ar
 partitionsHere, we named the 
omponents of pro
esses ba
k, t1, t2 . . . front (by de�ning them usingpattern mat
hing). On
e they have names it is easy to use BUNDLE to bundle them up.It would have been tidier, though perhaps not quite so 
lear, to write
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partitions = map2 Make2Bundle oddones evenoneswhereMake2Bundle a b = BUNDLE (a, b)oddones = OddOnes (map (2) pro
esses)evenones = EvenOnes (map (2) pro
esses)where OddOnes and EvenOnes sele
t the odd- and even-indexed elements of the list. Thenext example gives a more 
onvin
ing demonstration of bundling at work.5.3.3 Example: lo
al neighbourhood operationsA two-dimensional lo
al neighbourhood operation takes a matrix and maps ea
h elementto a fun
tion of its immediate neighbours, produ
ing a new matrix. Lo
al neighbourhoodoperations are widely used in image pro
essing and in 
omputational physi
s.In our ve
tor notation we might de�ne a generi
 fun
tion for applying lo
al neighbour-hood operations:ApplyLNO :: ([�℄ ! �) ! ��� ! ���ApplyLNO op matrix= MakeMatrix Lo
alOperationwhereLo
alOperation (i,j) = matrix sub (i,j), if OnBoundary matrix (i,j)Lo
alOperation (i,j)= op [matrix sub (i-1,j),matrix sub (i,j-1),matrix sub (i+1,j),matrix sub (i,j+1),matrix sub (i,j)℄, otherwisewhereOnBoundary matrix (i,j) = (i=0) _ (j=0) _ (i=iBound-1) _ (j=jBound-1)where(iBound,jBound) = MatrixBound matrixThe parameter op determines what fun
tion of the four neighbours is applied. A typi
alone might be a low-pass �lter:LowPass matrix = ApplyLNO average matrixwhereaverage [west, south, east, north, home℄ = (west+south+east+north+home)/5Very 
ommonly we will apply a lo
al neighbourhood operation repeatedly, produ
ing a141



sequen
e of iterates:iterate (ApplyLNO LowPass) InitialMatrix= [InitialMatrix,ApplyLNO LowPass InitialMatrix,ApplyLNO LowPass (ApplyLNO InitialMatrix),ApplyLNO LowPass (ApplyLNO LowPass (ApplyLNO InitialMatrix)),...Constru
ting a network-forming operator for a meshAlthough not the only option, for the sake of an example we will distribute this programover a mesh of PE's. To do so, we need a network forming operator whi
h takes a matrixand asserts that ea
h element is 
omputed by a separate PE, and that ea
h PE intera
tswith the element's four nearest neighbours. This turns out quite surprisingly easy:mesh :: ��� ! Boolmesh matrix = MatrixAll (ApplyLNO LinkNeighbours matrix)whereLinkNeighbours [west, south, east, north, home℄= fan ar
 home [west, south, east, north℄where MatrixAll matrix is TRUE just when every element of matrix is TRUE. Just as fan
orresponds to map and ladder 
orresponds to map2, so there is a natural relationshipbetween mesh and ApplyLNO.Adding the network annotationWe are now ready to express the distribution of the lo
al-neighbourhood operation 
om-putation over a mesh of PEs:LowPass matrix = outputwhereoutput = ApplyLNO average matrixmoreovermesh outputIn fa
t we 
an write this more brie
y using the interfa
e shorthand:LowPass matrix = ApplyLNO average matrixmoreovermesh interfa
eThis makes 
lear that the elements of the array are generated in a distributed fashion.142



If the result were passed to another mesh-distributed fun
tion, the two pro
ess networks
ould be 
ombined to minimise data movement.Distributing an iterated lo
al neighbourhood operationIf we wanted to iterate this 
omputation, maintaining the expression-to-PE mapping fromiteration to iteration, we 
ould try writingIteratedFilter initialmatrix = iterate LowPass initialmatrixwhere LowPass is the distributed version given above. This doesn't work be
ause thesimpli�
ation s
heme 
annot shift the moreover 
lause to the outer level, be
ause thematrix parameter is di�erent for ea
h su

essive iteration. It a
tually spe
i�es that a freshnetwork be used for ea
h iteration. Instead we must build a stru
ture to bundle the valueswe want ea
h PE to 
ompute { that is, 
orresponding elements of su

essive matri
es.This 
omes out quite easily by permuting indi
es. What we need is a single matrix,ea
h of whose elements is a stream of elements from su

essive iterations. Let us de�nea fun
tion StreamOfMatri
esToMatrixOfStreams to make this transformation: we demandthat(ms sub k) sub (i,j) = ((StreamOfMatri
esToMatrixOfStreams ms) sub (i,j))sub kThis is a
hieved by the de�nitionStreamOfMatri
esToMatrixOfStreams ms= MakeMatrix (MatrixBounds (hd ms)) Ea
hStreamwhereEa
hStream (i,j) = generate ElementswhereElements k = (ms sub k) sub (i,j)(We assume that all the matri
es in the stream have the same bounds as the �rst, hd ms).We are now ready to give the distributed implementation of IteratedFilter:IteratedFilter initialmatrix = iterate LowPass initialmatrixwhereLowPass matrix = ApplyLNO average matrixmoreovermesh (MatrixMap BUNDLE(StreamOfMatri
esToMatrixOfStreams interfa
e))Here MatrixMap is the natural extension of map to matri
es. It is used to introdu
e theBUNDLE tags, whi
h appear simply to indi
ate to the reader whi
h data stru
tures areused for bundling purposes. 143



Partitioning the lo
al-neighbourhood operationHardware spe
ially designed for su
h algorithmsmay be able to implement this distributioneÆ
iently, but for more general-purpose ar
hite
tures there is a \grain size" problem: ea
hPE does a great deal of 
ommuni
ation for ea
h item of useful 
omputation performed.At ea
h step, ea
h PE re
eives data from four neighbours, does �ve arithmeti
 operations,and then distributes the result to four neighbours.For eÆ
ient exe
ution on more typi
al hardware, we 
an break the matrix up, makingea
h PE responsible for a sub-matrix rather than a single element. This strategy redu
esthe ratio of 
ommuni
ation to 
omputation in dire
t proportion to the ratio between theperimeter and the area of the submatri
es. Let us de�ne a partitioning fun
tion Partitionn m, whi
h builds an n�n matrix of adja
ent equal-size submatri
es of m. We require nto divide both of m's bounds exa
tly. The property required is that:mat sub (i,j) = ((Partition n mat) sub (majori,majorj))sub (minori,minorj)wheremajori = i div nmajorj = j div nminori = i mod nminorj = j mod n(where div denotes integer division, and mod denotes the remainder). This spe
i�
ationis satis�ed byPartition n matrix= MakeMatrix (n,n) Ea
hSubMatrixwhereEa
hSubMatrix (majori,majorj)= MakeMatrix (minoriBound,minorjBound) ElementswhereElements (minori,minorj) = matrix sub (imap majori minori, jmap majorj minorj)imap majori minori = (majori�minoriBound) + minorijmap majorj minorj = (majorj�minorjBound) + minorj(iBound,jBound) = MatrixBounds matrixminoriBound = iBound div nminorjBound = jBound div nGiven this partitioning fun
tion, the distributed, partitioned, iterated �lter program 
anbe written as
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IteratedFilter initialmatrix = iterate LowPass initialmatrixwhereLowPass matrix = ApplyLNO average matrixmoreovermesh (MatrixMap BUNDLE(partition MeshDimension(StreamOfMatri
esToMatrixOfStreams interfa
e)))This spe
i�es that the 
omputation be distributed over a MeshDimension�MeshDimensionfour-
onne
ted mesh of PEs. Noti
e that the body of IteratedFilter remains un
hanged.Transformation into stream-pro
essing formThere are some implementation problems with this formulation, be
ause ea
h 
omponentpro
ess a

esses a sequen
e of global matri
es. A 
ompiler must 
he
k the matrix indi
esto verify that ea
h pro
ess a

esses only its neighbours. We 
an simplify matters a greatdeal by modifying the program so that all the indexing o

urs at 
ompile-time. We will
laim, but not prove, that1. We have an inverse for StreamOfMatri
esToMatrixOfStreams so thatMatrixOfStreamsToStreamOfMatri
es (StreamOfMatri
esToMatrixOfStreams as) = as2. That we 
an propagate map inside ApplyLNO:map (ApplyLNO f) as = MatrixOfStreamsToStreamOfMatri
es(ApplyLNO ((map f) Æ transpose)(StreamOfMatri
esToMatrixOfStreams as))(where transpose (de�ned on page 98) inter
hanges rows and 
olumns in a list-of-lists).Now re
all thatiterate f x = outputwhereoutput = x : (map f output)so thatIteratedFilter initialmatrix= outputwhereoutput = initialmatrix : (map LowPass output)so that 145



IteratedFilter initialmatrix= outputwhereoutput = initialmatrix: (MatrixOfStreamsToStreamOfMatri
es(ApplyLNO ((map f) Æ transpose)(StreamOfMatri
esToMatrixOfStreams output)))This 
an be simpli�ed by using the property thatStreamOfMatri
esToMatrixOfStreams (initialmatrix : xs)= MatrixMap2 (:) initialmatrix (StreamOfMatri
esToMatrixOfStreams xs)(where MatrixMap2 is the natural extension of map2 to matri
es). This lets us writeIteratedFilter initialmatrix= MatrixOfStreamsToStreamOfMatri
es outputwhereoutput = MatrixMap2 (:) initialmatrix(ApplyLNO ((map f) Æ transpose)output)Now when we add the moreover 
lause,moreovermesh (MatrixMap BUNDLE(partition n output))we 
an unfold the program so that all 
ommuni
ation paths are manifest at 
ompile-time, and 
arry streams. We have built a mesh of pro
esses, ea
h intera
ting in bothdire
tions with their four nearest neighbours. The ar
s's of the pro
ess network 
orrespondto multiple bidire
tional 
ommuni
ation 
hannels { as was promised.5.4 Implementation of stati
 network programsProvided suÆ
ient parameters are supplied, and the 
omputation required to build the pro-
ess network terminates, a program whi
h employs the shorthand and abstra
tion me
ha-nisms available 
an be simpli�ed to \normal form", in whi
h there is just one moreover
lause qualifying the entire program, 
onsisting of a simple 
onjun
tion of ar
 assertionsapplied to expression names.In this se
tion we explain how normal form programs 
an be 
ompiled to eÆ
ient obje
t
ode for a loosely-
oupled multipro
essor. The work des
ribed here is still in progress: noimplementation of Caliban exists yet.
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5.4.1 Compiler stru
ture� Pro
ess separation: The expression ea
h pro
ess is to 
ompute is separated intoa distin
t pro
ess 
onstru
t. All the de�nitions on whi
h this expression dependsare also in
luded in ea
h pro
ess 
onstru
t, with the ex
eption of any de�nitionmentioned in the moreover 
lause.Referen
es to names referred to in the moreover 
lause are repla
ed by 
alls tospe
ial 
ommuni
ations 
ode, detailed in a moment.� Pro
ess 
ompilation: Ea
h pro
ess 
onstru
t is 
ompiled using 
onventional
ompilation te
hnology (as des
ribed in Chapter 3).� Mapping and 
on�guration: The logi
al network spe
i�ed by the moreover
lause is analysed to �nd how best to embed it in the available multipro
essor net-work. For re
on�gurable networks this involves generating a table of inter
onne
tionswit
h settings. For non-
on�gurable networks it involves �nding a graph embed-ding whi
h maintains lo
ality as well as possible. For dynami
-routing networks itinvolves 
hoosing a layout whi
h will minimize network 
ongestion, and allo
atingnetwork addresses.The mapping phase may fail, if the logi
al network makes demands on the physi
alnetwork whi
h 
annot be met { for example requiring too many lo
al neighbours.The output 
onsists of the network 
on�guration 
ode, whi
h depends on the networkdesign, together with a binding of pro
ess names to PE identi�ers.� Link-editting and load module 
onstru
tion: Finally, ea
h pro
ess is linkedwith libraries and the run-time system as required. The linker produ
es a �le readyfor loading on the multipro
essor, making sure that the right 
ode is 
opied a
rossthe network to the right PE as required.The most 
ompli
ated part of the implementation lies in the run-time system, ne
essary tohandle inter-pro
essor 
ommuni
ation 
orre
tly. Rather than go into the 
ompiler phasesin great detail, we will 
on
entrate on when 
ommuni
ation o

urs, and what has to bedone when it does.5.4.2 When does 
ommuni
ation o

ur?Communi
ation may o

ur when a pro
ess (as separated in the �rst phase of the 
ompiler)refers to a name whi
h is itself identi�ed as a (di�erent) pro
ess. The 
ompiler should
he
k that this happens just when an ar
 assertion links the two pro
esses. If a pro
essrefers to a name whi
h is not identi�ed in the moreover 
lause as a di�erent pro
ess,then the expression to whi
h the name refers is in
orporated in the pro
ess.If su
h a name is referred to by more than one pro
ess, then its de�ning expression isdupli
ated in the body of ea
h one. This is very natural when the expression is alreadyin normal form, as most fun
tion de�nitions are { so 
ode is 
opied to those PE's whi
hmight refer to it. If the expression is not in normal form, it is often still sensible to 
opyit, but if the re
omputation involved is substantial some warning to the programmer is147



probably justi�ed. Lo
al re
omputation is quite 
ommonly preferred over having a singleglobal 
opy of an obje
t.5.4.3 Channels: the implementation of 
ommuni
ationWe will present an implementation s
heme whi
h handles all possible 
ases; mu
h of thismight be simpli�ed by an optimizing 
ompiler. For the time being we will 
onsider only
hannels 
orresponding to stream 
ommuni
ations. We 
an generalise later.Let us 
all the link between two pro
esses a 
hannel. Channels may be 
reated atrun-time { in fa
t we will assume that all 
hannels are. Moreover, there may be several
hannels linking two PE's, for reasons whi
h should be
ome 
lear later. Ea
h 
hannel isimplemented by a pair of drivers, the sender and the re
eiver, responsible for managing thelink. The 
hannel 
arries su

essive elements of the stream. How the elements themselvesare represented is dis
ussed later.The re
eiverThe re
eiver tries to maintain a full bu�er of re
eived values, so that the re
eiving pro
essneed never be delayed waiting for the sender to respond. We 
an think of the re
eiversending the sender a bag of tokens, ea
h allowing the sender to write one value to there
eiver's bu�er. Every time the re
eiving pro
ess 
onsumes a value from its bu�er, itsends the 
orresponding token ba
k to the sender. A value is delivered by the re
eiver tothe re
eiving pro
ess by 
opying into the heap of the re
eiving pro
ess. This is ne
essaryto make sure that the bu�er spa
e is freed for subsequent use.The senderThe sender end of a 
hannel 
orresponds quite 
losely to the notion of a pro
ess, sin
eit is the sender whi
h generates demand for values. The distin
tion is that our pro
essis identi�ed with the expression to be evaluated. There may be several referen
es to theexpression, so there may be several 
hannels linking to it. Thus, there may be severalsenders ea
h holding a referen
e to the expression.When the expression 
onstru
ts a stream, it may happen that after some 
omputationthe di�erent senders refer to di�erent parts of the stream. This situation may persistbe
ause a sender may be blo
ked awaiting a token from its 
orresponding re
eiver. In thisevent, a blo
ked sender may hold a pointer to an early part of the stream while anothersender demands many more elements. In this event the intermediate list elements mustbe stored (in the heap, as usual) inde�nitely. This is all managed quite naturally bya garbage 
olle
tor provided every sender pro
ess, and all to whi
h it refers, is treatedas non-garbage. We are 
ommitted to ensuring that sender pro
esses are independentlydestroyed when they are no longer needed.If a single PE runs out of heap spa
e, the entire 
omputation may deadlo
k. Thus,some emergen
y arrangement for 
laiming spa
e from neighbouring PEs may be justi�edif the ar
hite
ture 
an support remote memory a

ess at all eÆ
iently.
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Observe that after 
omputation has begun, two senders pointing to the same expression
an evolve so that they point to di�erent pla
es in the stream being 
omputed. Thus theydo 
orrespond to our original notion of a pro
ess.5.4.4 Proto-
hannels, 
hannel 
reation and 
hannel deletionAlthough the pro
ess network remains stati
, the 
hannels linking a pair of PEs 
an be
reated at run-time. For simpli
ity we will assume that they are all 
reated at run-time,although an optimising 
ompiler will perform some 
hannel 
reation at 
ompile-time inorder to un
over other optimisation opportunities.A 
hannel is 
reated when a pro
ess makes a referen
e to an expression whi
h hasbeen pla
ed on another PE. To a
hieve this, ea
h su
h referen
e in the original programis repla
ed by a spe
ial obje
t, a proto-
hannel. A proto-
hannel 
an be implemented as abox (see se
tion 3.1.7), 
ontaining a pointer to 
ode in the run-time system together witha representation of the name of the expression referred to.When a proto-
hannel is evaluated, the run-time system sets up a 
hannel to theappropriate PE (presumed nearby). A sender pro
ess is 
reated on the other PE, anda re
eiver obje
t is 
reated on the 
urrent PE. The initiating pro
ess is blo
ked until aresponse from the sender arrives. When the �rst CONS 
ell of the stream is transmittedby the sender to the re
eiver, the initiating pro
ess is re-awakened, and the original boxrepresenting the remote value is repla
ed by a CONS 
ell 
ontaining the value re
eived(the hd of the 
ell) together with a referen
e to the re
eiver (as the tl of the 
ell. Thisreferen
e to the re
eiver is another spe
ial obje
t, a 
hannel referen
e, also represented asa box.When the tl of the CONS 
ell is needed, the re
eiver is interrogated. If it has a valuealready in its bu�er, this is built into a new CONS 
ell and returned, and a token is sentba
k to the sender to signify that the bu�er spa
e is available. If the value is not availablethe pro
ess is suspended until it is re
eived.Channel deletion and garbage 
olle
tionChannels are 
olle
ted during the normal pro
ess of garbage 
olle
tion lo
al to ea
h PE.An obje
t is not garbage if and only if it is referred to by some existent sender. A 
hannelis deleted when its re
eiver be
omes garbage. A 
onventional single-pro
essor garbage
olle
tion s
heme 
an be used. The only addition whi
h might be required is some meansto trigger garbage 
olle
tion on other PE's in the hope of freeing spa
e lo
ally.5.4.5 Representation of stream elementsThus far we have 
onsidered streams as just 
hains of CONS 
ells. We have ignored the hd
omponents, the a
tual values being 
arried. In the absen
e of any stri
tness information,these values must be passed unevaluated, as pointers (in fa
t proto-
hannels) to suspendedfun
tion appli
ations (i.e. boxes) lo
ated on the sending PE. In the 
ase of tuples, we 
an
arry pointers to suspensions of ea
h tuple element.149



When the re
eiving fun
tion needs the head of a CONS 
ell it has re
eived, it will �nda proto-
hannel, a sender will be spawned on the sending PE and the value will be sentover a new 
hannel.This is unfortunate for two reasons:1. It in
urs a large overhead 
ompared with the sequential implementation.2. If the proto-
hannel is passed on unevaluated to a third PE, a non-lo
al 
ommuni-
ation 
hannel 
ould be needed when the obje
t is �nally evaluated.The �rst problem is unfortunate, but the se
ond is intolerable. We must insist that noproto-
hannel is ever sent over a 
hannel to a PE whi
h is not a neighbour of its home. Itmust either be evaluated and used by the re
eiving pro
ess, or it must be dis
arded.A partial solution, at least, is to be found in re
ent work on stri
tness analysis oflist programs, for example by Burn [Bur87a℄ and Wadler [Wad87℄. Alternatively, theprogrammer 
ould be required to introdu
e assertions about stri
tness in order to 
onstrainthe evaluation order.Non-stream 
ommuni
ationsWe must be able to use a 
hannel to pi
k any obje
t from another PE { not just astream, but also s
alars, tuples, trees, ve
tors, matri
es and so on. We have 
on
entratedon streams be
ause they form the natural in
arnation of a 
ommuni
ation link in thefun
tional programming language. The reason is that there is just one order in whi
h toexamine the CONS 
ells whi
h form a list. With trees, ve
tors and matri
es there are manyorders in whi
h to traverse the data stru
ture. We are for
ed to take a very 
onservativeapproa
h.In the 
ase of a ve
tor or matrix, the simplest solution is to send a ve
tor or matrix ofproto-
hannels. This leaves the elements unevaluated until the re
eiver needs them. If theelements are streams, pipeline parallelism 
an be exploited by 
omputing elements eagerlyas usual. If the elements are s
alars, the parallelism available may be very limited.For a tree, we send a 
onstru
tor, e.g. NODE, with proto-
hannels as its parameters.Unfortunately, this 
onservative approa
h allows no produ
er-
onsumer, pipeline par-allelism unless streams are involved at some point. This does seem the only predi
tableand 
ontrollable 
hoi
e. Although a more eager s
heme is desirable in many 
ases, it 
anoften have a very bad e�e
t, 
on
entrating PE power away from the tasks most urgentlyat hand.5.4.6 MultitaskingIt should now be 
lear that ea
h PE must be multiplexed between the various senderpro
esses pla
ed upon it. A slight 
ompli
ation here is that the pro
esses must share thePE fairly: none 
an be allowed to monopolize the PE inde�nitely. Thus, pro
esses mustbe time-sli
ed. The di�erent pro
esses will often share 
ommon sub-expressions, so somesyn
hronisation 
ontrol must be imposed to prevent evaluation being attempted by severalpro
esses of the same expression simultaneously.150



It 
ould be quite straightforward to employ tightly-
oupled multipro
essors as PEs inour loosely-
oupled network, as the syn
hronisation ne
essary for time-sli
ed multitaskingis suÆ
ient to syn
hronise multiple truly-parallel pro
esses.5.4.7 Communi
ations optimisationsWhat has been des
ribed applies to the general 
ase. In parti
ular examples many op-timisations 
an be applied. We have already seen how stri
tness analysis 
an avoid theneed for passing proto-
hannels over 
hannels by evaluating obje
ts before sending them.If a stream has only one 
hannel 
onsuming it, the sender's 
ode 
an be 
ompiled insidethe expression, so that instead of building a CONS 
ell, the value is sent dire
tly along the
hannel. This is the starting point for a series of powerful optimisations. To begin with,one 
an extend the appli
ability by observing that if the 
hannel has several 
onsumerswho 
an all re
eive their values in lo
k-step, then they 
an share the output of a singlesender pro
ess. If the sender is the only pro
ess on its PE, and the 
onsumers are alone ontheir PEs too, then it may be possible to optimise out the 
hannel syn
hronisation. Theneighbouring PEs simply swap values on agreed 
lo
k ti
ks. This is elaborated by Bailey,Cuny and Ma
Leod in [BCM87℄.In \neighbour-
oupled" ma
hines, where a

ess to a neighbour's lo
al memory is almostas eÆ
ient as to a PE's own, mu
h 
opying 
an be avoided. A 
hannel need 
arry onlya pointer to the obje
t being transferred. A 
opy must still be made if the obje
t isforwarded to a third PE.An optimisation for the general 
ase might be to 
he
k that an obje
t has not alreadybeen 
opied to this PE before following a proto-
hannel to another to get it. This 
anbe done using a hash table, as used for the same purpose in the Flagship parallel graphredu
tion ma
hine [WSWW87℄.Finally, one might hope that hardware or mi
ro
ode support for the 
ommuni
ation ands
heduling operations might be provided. The overheads of dis
overing a proto-
hannel,setting up the link, spawning the sender and waiting for a value are a serious threat tothe feasibility of the s
heme when non-stream obje
ts are 
ommuni
ated.5.5 A simple guide to the e�e
t of ar
To �nish the dis
ussion of implementation strategies, we give a des
ription of the e�e
t ofthe ar
 assertion. Suppose we have a program fragment summarized byx = outputwhereoutput = f aa = g bmoreover(ar
 output a)^ . . . b . . .
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Figure 5.3: The pro
ess network for example x� Pla
ement of output: The result, output, will be delivered to a PE at or next tothe PE where it is required. Thus, if the output is to be displayed on a graphi
sdevi
e, it will be pla
ed on or adja
ent to a PE with a

ess to the graphi
s hardware.� Pla
ement for input: If input is required, it will be manifest as a free variablenamed in the moreover 
lause, su
h as b in the example. The pro
ess networkwill be pla
ed so that its 
ommuni
ation with the produ
er of b is neighbour-to-neighbour.� Partitioning of 
omponents: The expression output is pla
ed on a PE of itsown, together with all the expressions to whi
h it refers { ex
ept a, whi
h is pla
edelsewhere. For example, if f is a fun
tion, the 
ode for f is 
opied to output's PE.Similarly, a is pla
ed on a di�erent PE, of its own, together with a 
opy of g.� Pla
ement of 
omponents: The PE 
arrying output is 
hosen so that it enjoysneighbour-to-neighbour 
ommuni
ations with the PE 
arrying a.� Evaluation parallelism: The PEs 
arrying output and a intera
t be
ause theexpression output refers to a. If a is a s
alar or a list, its evaluation will pro
eed inparallel with output.If a is ve
tor, matrix or tree, evaluation of a will not begin until output demands it.At that point, output will be blo
ked, waiting for a's value. This pre
ludes pipelineparallelism, but horizontal parallelism may yet keep the PE's usefully employed.However, verti
al parallelism 
an still o

ur if a returns a stru
ture 
ontainingstreams, whi
h are examined by output.Finally, note that output may not be able to pro
eed in parallel with a if a depends on x.If a is a stream, and su

essive elements depend on one another due to su
h a re
ursivestream de�nition, then the pipeline parallelism available may be restri
ted by the span ofthis dependen
y. We return to this point in se
tion 5.10.The pro
ess network is illustrated in �gure 5.3.
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5.6 Semi-stati
 pro
ess networksA Caliban program may spe
ify a pro
ess network whi
h is not entirely determined at
ompile-time. In the simplest 
ase, as with the size of the matrix in the ApplyLNO example,the network might depend on just one parameter. We 
ould delay 
ompilation until thisparameter is known, and then generate a spe
ialised version to apply to the remainingparameters.Another example might be the ray tra
er, where the length of the ray interse
tiontest pipeline depends on the number of obje
ts in the obje
t database. In fa
t, of 
ourse,the length of the pipeline is limited by the number of PEs available. We 
ould write ade�nition of the distributed ray tra
er like this:RayTra
er obje
ts viewpoint= map EvaluateTree(StreamToListOfMTrees (length initialrays)(StreamOfContributoryRayTrees initialrays))whereStreamOfContributoryRayTrees rays= outputwhere(output, feedba
k)= (SplitÆ joinÆ (map LayerOf')Æ (map TakeImpa
t)Æ Interse
tionPipelineComponentsÆ (map MakePipeItem))(rays ++ feedba
k)whereInterse
tionPipelineComponents= (insert (Æ) ident(map map (map PipelineStage obje
ts)))partitions = map BUNDLE(PartitionList (NumFreePEs-1)(map (2) Interse
tionPipelineComponents)moreover(
hain partitions)^ (ar
 output (hd partitions))^ (ar
 (last partitions) output)where NumFreePEs is the number of available PE's. We reserve one PE for output, re-sponsible for the join, map LayerOf' and map TakeImpa
t pro
esses. The \++" and mapMakePipeItem operations are automati
ally 
olle
ted in the last 
omponent of Interse
tion-153



PipelineComponents. The fun
tion PartitionList n xs gathers the list xs into a list of n lists:PartitionList n xs= PartitionListWithSize bitsize xswherebitsize = 
eiling ((length xs) / n)PartitionListWithSize bitsize= (take bitsize xs): (PartitionList n (drop bitsize xs))where 
eiling x yields the smallest integer larger that the real number x. The 
onstru
torBUNDLE is mapped over partitions to indi
ate that the list is for bundling purposes only.This program is partitioned automati
ally to make use of just the resour
es available.A slightly more subtle version might �rst ensure that the obje
t database is big enoughto justify distribution over NumFreePEs-1 with a worthwhile grain size.Kedem and Ellis give an interesting example [KE84℄ of a program for parallel ray-
asting whose pro
ess network depends on the stru
ture of the obje
t database in a mu
hmore 
ompli
ated way. The database takes the form of an expression in the algebra ofConstru
tive Solid Geometry (CSG). The expression's shape varies from problem to prob-lem and is typi
ally quite a severely unbalan
ed tree. They employ an eÆ
ient embeddingalgorithm to map this tree into their ar
hite
ture's mesh of PEs at the beginning of ea
h
omputation.It might be quite reasonable for a 
omputation to go through a series of phases, ea
hrequiring a di�erent pro
ess network. The 
ommuni
ations would be re
on�gured afterea
h phase, giving the e�e
t of an evolving network. This has not yet been 
aptured inthe Caliban network des
ription language.5.7 Dynami
 pro
ess networksIt is quite possible to write down Caliban programs whose pro
ess network is not deter-mined until all parameters are present. An example might o

ur in 
omputational 
uiddynami
s, where the grid is re�ned between iterations to 
over regions of turbulen
e more�nely. The 
omputation would start with a small mesh of PEs, but as areas of interestare dete
ted, and the grid is re�ned, more PEs 
ould be 
alled in to 
over regions showingpoor 
onvergen
e. Some PEs might �nish their tasks early. They 
ould make themselvesavailable to be reused at another point of the grid.We have an algorithm of the form
154



solve f a= generate Ea
hMatrixwhereEa
hMatrix 0 = aEa
hMatrix (i+1)= MakeMatrix Bounds Ea
hElementwhereEa
hElement= solutionwherePointSolution = . . .solution = PointSolution, if PointError � �solution = solve f submatrix, otherwisesubmatrix = . . .Mu
h has been simpli�ed here. The important point is that solve is o

asionally 
alledre
ursively on a smaller mesh submatrix (using a re�ned grid). Depending on the solutions
heme (i.e. how PointSolution is de�ned), several possible pro
ess networks might be used.Let us suppose a mesh is used: we might write the moreover 
lausemoreovermesh interfa
eWe �nd that the pro
ess network 
an develop into a mesh-shaped tree of meshes. Thisinteresting area is not 
overed by the explanation given here of how Caliban programsmight be implemented , but 
ould prove fruitful on a 
lass of more tightly-
oupled ma
hineswhere lo
ality is still important.5.8 Related WorkCaliban builds on a fast sequential implementation of a fun
tional programming language,as presented by [Jon87℄. It should be 
ontrasted with dynami
-s
hedule approa
hes toparallel implementation of fun
tional languages, for example as proposed in 
hapter 24 ofPeyton Jones' textbook [Jon87℄ (parallel graph redu
tion), and in [AN87℄ (data
ow).5.8.1 O

amCaliban's aims are similar to those of O

am [PM87℄. It di�ers in three prin
iple respe
ts:1. Fun
tional base language. Caliban inherits the expressive power of a full, lazy,higher-order fun
tional language, along with its highly dynami
 store use.Caliban retains the fun
tional base language's very simple and attra
tive transfor-mation properties. Like all fun
tional languages, Caliban pays for its theoreti
alsimpli
ity with its innate determina
y: a pro
ess 
annot make de
isions based onthe order of 
ompletion of subtasks. This limits the appli
ability of the language.155



2. Abstra
t Networks. Caliban does not demand that the programmer's pro
essnetwork be expli
itly mapped to physi
al 
hannels. That responsibility is devolvedto the 
ompiler { more pre
isely, to the post-
ompilation mapping phase. Therewould appear to be no reason, in prin
iple, why an O

am implementation shouldnot do the same.3. Dynami
 networks. Caliban fa
ilitates the des
ription of pro
ess networks whosesize, and possibly form, 
annot be determined until at least some parameters arepresent. This 
an be used to des
ribe run-time dynami
 networks, or, perhaps moreinterestingly, to express a family of pro
ess networks for di�erent 
hoi
es of parti
ularparameters. A good example of su
h a program is given in [KE84℄.O

am does not allow dynami
 networks, although simple parameters su
h as apro
essor array's size 
an be given as a manifest 
onstant. This restri
tion wasimposed, however, solely to simplify implementation: [May87℄ shows how a variantof O

am with re
ursion 
ould des
ribe a tree of pro
esses.To summarise, Caliban ful�ls a very similar role to O

am, and promises similar per-forman
e, but o�ers an improvement in expressive power, and a basis for more powerfulprogram transformation and veri�
ation te
hniques. Caliban is substantially more reliantthan O

am on advan
ed 
ompiler te
hnology.5.8.2 \Para-Fun
tional" ProgrammingThis is an extension to the lazy fun
tional programming language \alfl" proposed byPaul Hudak in [Hud86b℄, 
alled \paralfl". An expression \e" 
an be annotated by ase
ond expression, \p", whose value indi
ates the PE on whi
h \e" is to be exe
uted:e $on pTo simplify use of this me
hanism, the value of the reserved identi�er \$self" is de�nedto be the index of the PE upon whi
h the expression 
on
erned is exe
uted. This 
an beused in \e" as well as in \p", thus subverting referential transparen
y. PE's are indexedby integers. Related ideas appear in [KL82℄ (by Keller and Lindstrom) and [Bur84b℄ and[Bur87b℄ (by Burton).Hudak's approa
h has the merit of simple implementation. The notion of a program's\pro
ess network" { whi
h lies at the root of the Caliban approa
h { seems to be wellhidden in the text of a para-fun
tional program. Caliban o�ers some abstra
tion here, byleaving responsibility for mapping of a logi
al pro
ess network to a
tual pro
essors withan automati
 post-
ompilation phase.Caliban also makes some attempt to ensure that all pro
ess intera
tions appear ex-pli
itly in the program s
ript. Paralfl has no su
h aspiration, with the result that un-expe
ted interdependen
ies between pro
esses mapped to distant pro
essors 
ould meanvery disappointing performan
e.
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5.8.3 FloThis parallel fun
tional programming language was developed by Floating Point SystemsIn
. and is des
ribed in [You85℄. Flo is based on Ba
kus' FP [Ba
78℄, augmented withstreams and a reverse fun
tion 
omposition operator \!". It is aimed at providing ahigh-level language for building autonomous parallel appli
ations programs running ontheir proprietary s
ienti�
 
o-pro
essors. These are mi
ro-programmed ve
tor pro
essorso�ering a variety of built-in high level fun
tions, su
h as the Fast Fourier Transform andmatrix multipli
ation. Flo is responsible for partitioning large problems between multiplePE's.Flo in
ludes various operators for partitioning arrays, distributing them over pools ofPE's, and 
olle
ting the results. A very simple example whi
h they give is the fun
tion\fun" (whose type spe
i�
ation has been omitted):DEFINE fun = f ! [OnAny(D1) ! g, OnAny(D2) ! h℄This is fun
tionally equivalent to our de�nitionfun x = (g y, h y)wherey = f xThe \OnAny" operator results in a 
hange of \
ontext": the input stream to \g" is
opied to a PE sele
ted from D1 (a set of PE identi�ers), where \g" is applied. Run-timeme
hanisms sele
t PE's as available.Flo is interesting in being motivated by pra
ti
al 
on
erns raised by trying to runs
ienti�
 appli
ations very fast on fairly 
onventional hardware. The limited 
ontrol overpro
ess pla
ement probably derives from the use of a bus as the 
ommuni
ations medium:ea
h PE is e�e
tively equidistant from all the others. This is made more feasible by theuse of PE's with substantial fundamental operations, making large granularity easy toa
hieve.5.8.4 Graph Grammar-based Spe
i�
ation of Inter
onne
tionStru
turesThis work, reported in [BC87℄, aims to simplify the des
ription of pro
ess network familiesin an intera
tive parallel program development environment. A graph family arises when aparallel algorithm is designed to be portable between similar ar
hite
tures of di�ering sizes{ for example, after testing on a small program development 
on�guration. It is ne
essaryto give a formal des
ription of how the graph generalises for larger 
on�gurations.Details of the approa
h are rather 
omplex, and merit more thorough study. Theformalism employed, a restri
tion of aggregate-rewriting graph grammars to allow onlythree kinds of rewrite, would appear to be at least as powerful as Caliban. The use ofgraph grammars expli
itly o�ers the prospe
t of a sound theory for embedding program-generated graphs in physi
al 
ommuni
ations networks.157



Bailey and Cuny may gain some additional expressive power over Caliban by 
ompletelyseparating the way the graph is 
onstru
ted from the program's re
ursive stru
ture.5.9 Future Resear
hMu
h of this 
hapter has been devoted to preliminary investigation of areas deservingmore extensive study. Here, some of the more interesting areas are summarised:CompilersThe development of a pilot implementation of Caliban is the most pressing next step. Atransputer network is a very attra
tive target ar
hite
ture.Dynami
 networks may stret
h the 
ommuni
ations 
apabilities of present-day trans-puters. Caliban's dynami
 networks 
an make use of software-
on�gurable networks withrelatively long swit
hing times, whi
h may �t well with novel te
hnologies, based, forexample, on opti
s.Programming EnvironmentsCaliban's design is based on the hypothesis that pro
ess networks are a useful way for aprogrammer to think about parallel algorithms. They demand graphi
al presentation. ACaliban programming environment 
ould illustrate a program's pro
ess network, perhapsshowing traÆ
 levels on ar
s and load levels on bubbles, derived from simulation statisti
s.Program transformation and analysis tools 
ould be in
luded, in
luding stri
tness analysis,
y
le-starvation analysis, \granularity" analysis (identifying pro
esses whi
h may have ahigh 
ommuni
ation-to-
omputation ratio) et
.Semanti
sGiving a mathemati
al explanation of what Caliban's annotations mean is an interestingarea. Hudak has given an \exe
ution tree" semanti
s for paralfl [Hud86a℄, and Williams[Wil88℄ has extended and re�ned this for a Caliban-like language. Caliban seems to de-mand a ri
her domain of semanti
 values, to in
lude arbitrary, possibly 
y
li
, graphs.The graph grammar approa
h taken by Bailey and Cuny may prove of use.As mentioned earlier, of most value would be a semanti
s whi
h assigns a pro
essnetwork family to a fun
tion, 
orresponding to the networks whi
h might result for di�erentparameter 
hoi
es.5.10 Pointers into the literatureCommuni
ation in parallel algorithmsVitanyi [Vit86℄, Feldman and Shapiro [FS88℄ and others have investigated the 
onstraintsimposed by the physi
al universe on 
ommuni
ation in parallel 
omputations (although158



Deuts
h [Deu85℄ suggests the real world admits more possibilities than presently ex-ploited). The importan
e of su
h arguments when 
omputer manufa
ture 
an employall three dimensions for wiring 
an be disputed, although heat dissipation pla
es a limiton three dimensional pa
king density.However, the situation is mu
h 
learer in two dimensions, and VLSI 
omplexity theoryaddresses the problem of a

ounting for 
ommuni
ation in algorithm design and analy-sis with 
onsiderable su

ess. A good introdu
tory work is Ullman's textbook [Ull84℄.Although there are many di�erent VLSI 
omplexity measures, they all take the area ofthe wiring into a

ount as well as the number of \a
tive" data operations performed.Some theories also a

ount for the signal propagation delay in the wiring, whose length isdetermined by the layout and size of the 
ir
uit.It is 
lear that good VLSI algorithms make good algorithms for loosely-
oupled multi-pro
essors { in fa
t one might think of a loosely- or neighbour-
oupled multipro
essor as a\universal" VLSI ma
hine, being programmable to implement any algorithm with similarbehaviour but at a substantial interpretation overhead. One might expe
t that this over-head would mask some of the importan
e of 
ommuni
ations 
onne
tivity. The questionof the existen
e and nature of a universal parallel 
omputer is the subje
t of 
ontinuingwork by Valiant, see for example [Val81℄.The nature of parallel programmingMu
h has been made of the \von Neumann bottlene
k", a term 
oined by Ba
kus [Ba
78℄.Ba
kus argues that programming in an imperative style imposes the presen
e of a singleword-at-a-time memory a

ess path on the design of programs { redu
ing programmingto the s
heduling of traÆ
 to and from memory. That 
onventional high-performan
evon Neumann ma
hines need have no su
h bottlene
k is not as important as the damagedone by the von Neumann model of 
omputation to program design. Sutherland and Mead[SM77℄ extend this argument in a substantial way: they argue that sequential 
omputationhas arti�
ially dominated the study and tea
hing of 
omputer s
ien
e from its beginning.The te
hnologi
al a

ident responsible for this, that swit
hing has been more expensiveand slower than wiring, they argue, is no longer valid { and yet its heritage is still withus. An example Sutherland and Mead use 
on
erns the parallel inter
hange sort algorithm,where a PE is responsible for every element, and neighbours swap if their elements areout of order. This algorithm is expensive in sequential terms, be
ause to sort n elementsit requires O(n2) (order n2: proportional to n2 when n be
omes large) 
omparisons asopposed to Qui
ksort (see se
tion 4.2.1) whi
h needs only O(n log2 n) 
omparisons in theaverage 
ase. However, Qui
ksort involves global 
ommuni
ations at every step, while theinter
hange sort involves neighbours only. We 
an expe
t the inter
hange sort to give byfar the better performan
e for a large range of 
ases, although when sorting a very largedata set Qui
ksort must win.Of 
ourse there are far better parallel sorting algorithms; see Ullman [Ull84℄ and the
lassi
 work by Thompson ([TK77℄ and [Tho81℄).
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Partial evaluationThe simpli�
ation pro
ess by whi
h a normal-form Caliban program is derived from oneusing the abstra
tion me
hanisms is a kind of partial evaluation. Partial evaluation is theappli
ation of a program to some but not all of its parameters, so that simpli�
ations 
an bemade to save time when subsequent parameters are provided. It was pioneered by Ershov[Ers82℄, who 
alled it \mixed 
omputation". Jones' group at Copenhagen have made greatprogress in understanding the stru
ture of a partial evaluator, and the simpli�
ations andanalyses possible. Most ex
iting has been their 
onstru
tion of a self-appli
able partialevaluator, MIX, and its appli
ation to 
ompiler generation: MIX takes a program, and its�rst parameter, and generates a new, simpli�ed program su
h that(MIX p a) b = p a bThey apply MIX to an interpreter Int for another programming language, l. Int takes aprogram in l, pl, and its input:Int pl inputIt yields the output resulting from running the program pl on input. Now we 
an get a
ompiled implementation of pl by evaluatingMIX Int plThus, the partial appli
ation MIX Int plays the part of a 
ompiler. In fa
t the spe
ialised
ompiler is generated byMIX MIX IntRepeating the pro
ess, we 
an observe that the partial appli
ationMIX MIX plays the partof a 
ompiler generator { when given an interpreter it produ
es a 
ompiler. Thus, we 
angenerate the 
ompiler generator by writingMIX MIX MIXThe idea is attributed to Futamura [Fut71℄.More pra
ti
ally dire
ted appli
ations in
lude ray-tra
ing, whi
h has been investigatedby Mogenson [Mog87℄. Mogenson takes a simple ray-tra
er (more realisti
 than the im-plementations given here), and partially-evaluates it with details of the s
ene but notthe viewpoint. The residual program 
an then be applied to di�erent viewpoints, and a
onsiderable saving is observed.Starvation and Deadlo
kRe
all the fun
tion to 
ompute the list of Fibona

i numbers:
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�bs = 1 : 1 : (map2 (+) �bs (tl �bs))This re
urren
e is too trivial for real parallelism, but suppose we 
ould de
ompose map2(+) into a pipeline,xs = 1 : 1 : (map f (map g (map2 h xs (tl xs))))Now there might seem to be pipeline parallelism available. However, 
loser inspe
tionreveals that ea
h element xs sub n depends on the immediately pre
eding element of thestream, xs sub (n-1). There 
an be only a single lo
us of 
omputation in the 
y
le.We 
an in
rease the amount of parallelism available by in
reasing the data dependen
ygap. For example, the (di�erent!) programys = 1 : 1 : 1 : (map f (map g (map2 h ys (tl ys))))has two lo
i of 
omputation. The amount of parallelism 
ould depend on a run-timevariable, as inf initialvalues = xswherexs = initialvalues ++ (map f (map g (map2 h xs (tl xs))))This a
tually happens in the 
y
li
-pipeline implementation of the ray tra
er, given inse
tion 4.9.This program will deadlo
k: if length initialvalues� 1 there are zero lo
i of 
omputation.It is important to realise that deadlo
k in a fun
tional language is quite independent ofany parallel a
tivity, and re
e
ts nothing more than a parti
ular form of unde�nedness.Semanti
ally, deadlo
k is indistinguishable from non-termination, ?. Thus, the programtransformations in this book 
an be used to transform a deadlo
king program into onewhi
h is simply unde�ned: from�bishs = 1 : (map2 (+) �bishs (tl �bishs))it is not hard to derive the re
urren
e�bishs sub 0 = 1�bishs sub (n+1) = (�bishs sub n) + (�bishs sub (n-1))whi
h is 
learly ill-founded. Thus, deadlo
k is a semanti
 property of a program, una�e
tedby how the program is distributed, or use of parallel evaluation.A simple test exists to predi
t when deadlo
k will o

ur, 
alled the 
y
le sum test. Anumber is 
al
ulated for ea
h 
y
le in the data 
ow graph, giving the data dependen
ybetween su

essive elements. The 
y
le sum test was introdu
ed and justi�ed by W.W.Wadge [Wad81℄ in the 
ontext of the data
ow language Lu
id. Wadge veri�es it bydire
t referen
e to the denotational semanti
s of the language: there is no need for anyoperational reasoning. 161
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Chapter 6EpilogueMu
h of this book has been 
on
erned with details. It is the rôle of the 
on
luding 
hapterto regain a broader perspe
tive on what has been a
hieved, and where the resear
h is going.Let us begin by returning to to E
kert's advi
e quoted in the introdu
tion, thatAny steps whi
h are 
ontrolled by the operator, who sets up the ma
hine,should be set up only in a serial fashion.Things have 
hanged a great deal sin
e the time when E
kert was writing. Obviously the
apabilities of the hardware have improved, but the hardware's stru
ture has not reallyaddressed the parallel programming problem. Mu
h more signi�
ant to the argument havebeen the advan
es in software te
hnology: E
kert was writing before the �rst 
ompilerwas written, so did not take into a

ount the possibility that the 
ompiler as well as thehardware 
ould exploit parallelismwithout the programmer being involved. The fun
tionalapproa
h to parallel programming takes this idea to its limit, by removing the step-by-stepimperative per
eption of program exe
ution 
ompletely. The line is drawn at programswhose behaviour is non-deterministi
|whi
h is where the trouble E
kert refers to reallystarts. The happy 
oin
iden
e whi
h forms the basis of this book is that this 
lass oflanguages is also very easy to manipulate mathemati
ally.There are alternative approa
hes. One of the most 
ommon is simply to ignore E
k-ert's problem, and employ a great deal of 
are and dis
ipline in writing expli
itly-parallelmultipro
essor programs. This approa
h may be res
ued by the advent of simple math-emati
al systems of reasoning about parallel programs in the general, non-deterministi

ase. Resear
h aimed at providing su
h a system is very mu
h still in progress. Anotherarea of re
ent su

ess has been the development of parallelising 
ompilers for imperativelanguages.Meanwhile, the problem of ensuring the 
orre
tness of 
omputer programs has be
omemore and more a
ute. This is espe
ially interesting in appli
ation areas like natural andmedi
al s
ien
e, where te
hnology has made the 
omputer a ubiquitous tool, and oftenmeans that a 
omputer program is not just a test of a s
ienti�
 model|but is the onlytested model in existen
e. The problem is understanding su
h models, testing them, andpresenting them in the literature. However, formality must be tempered by the need tobuild and use 
omputer programs qui
kly, and to run them very fast. This demandsa high level of 
omputer support and very well-designed and well-explained tools anddo
umentation. 163



This book is a manifesto for a programme of resear
h aimed at making derivationand transformation of 
omputer programs an a

essible and e�e
tive tool to enable thenon-spe
ialist to produ
e more reliable 
omputer programs more qui
kly.
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Appendix AProofs and DerivationsIn the body of the book it has been useful to state several laws relating expressions in thefun
tional notation. Rather than interrupt the narrative 
ow, their proofs appear in thisappendix.A.1 ListToTree and TreeToList, simple versionsThis is an example of a 
ommon requirement during a program transformation by datatype transformation|that we 
an get the original representation ba
k. It was used toprodu
e a divide-and-
onquer implementation of map. We have some auxiliary fun
tions:take n (a:as) = a : (take (n�1) as), if n 6= 0take n [ ℄ = [ ℄, if n 6= 0take 0 as = [ ℄anddrop n (a:as) = drop (n�1) as, if n 6= 0drop n [ ℄ = [ ℄, if n 6= 0drop 0 as = asA list is 
onverted into its binary tree representation by the fun
tion ListToTree1:ListToTree1 [ ℄ = EMPTYListToTree1 [a℄ = LEAF aListToTree1 (a0:a1:as) = NODE (ListToTree1 (take m (a0:a1:as)))(ListToTree1 (drop m (a0:a1:as)))wherem = (length (a0:a1:as))/2To 
onvert it ba
k to a list again, we have
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TreeToList1 EMPTY = [ ℄TreeToList1 (LEAF a) = [a℄TreeToList1 (NODE subtree1 subtree2) = (TreeToList1 subtree1)++ (TreeToList1 subtree2)We have, for all n and as,(take n as) ++ (drop n as) = asThis 
an be shown using total stru
tural indu
tion on n. The proof is omitted in 
ase thereader should attempt it as an exer
ise. Theorem 1 is our main 
on
ern:Theorem 1 We require that for all �nite, total lists as,TreeToList1(ListToTree1 as) = asThe proof uses total stru
tural indu
tion, but unfortunately the standard ordering onlists doesn't do the job. Instead we employ a \bise
tion" ordering, with basis [a℄ andas ++ bs � asandas ++ bs � bsfor any as, bs 6= [ ℄. The 
ase of empty as must be shown separately, but is triviallysatis�ed.Proof:By total stru
tural indu
tion on the bise
tion ordering.Empty 
ase: TreeToList1(ListToTree1 [ ℄) = TreeToList1 EMPTY= [ ℄as required.Base 
ase: TreeToList1(ListToTree1 [a℄) = TreeToList1 (LEAF a)= [a℄as required.Indu
tive Step: Assuming that for all �nite and total as and bs,TreeToList1(ListToTree1 as) = asand 166



TreeToList1(ListToTree1 bs) = bswe must show thatTreeToList1(ListToTree1 (as ++ bs)) = (as ++ bs)Apply redu
tion to the LHS:LHS = TreeToList1 (ListToTree1 (as ++ bs)| {z })= TreeToList1 (NODE (ListToTree1 (take m (as ++ bs)))(ListToTree1 (drop m (as ++ bs))) )wherem = (length (as++bs)) / 2We 
an de�ne
s = take m (as ++ bs)andds = drop m (as ++ bs)So we haveLHS = TreeToList1 (NODE (ListToTree1 
s)(ListToTree1 ds)| {z }wherem = (length (as++bs)) / 2= (TreeToList1 (ListToTree1 as))| {z }++ (TreeToList1 (ListToTree1 bs))| {z }Our indu
tive assumptions hold for any 
hoi
e of as and bs, so this isLHS = 
s ++ ds = (take m (as ++ bs)) ++ (drop m (as ++ bs))| {z }Using the property of take, drop and \++" 
laimed earlier, this is justLHS = (as++bs)as required.
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A.1.1 Removing the ineÆ
ien
yListToTree1 and TreeToList1 are ineÆ
ient for several reasons:� the length of the parameter list is 
al
ulated at ea
h re
ursion.� both take and drop s
an the input list at ea
h re
ursion.� the append operator \++" s
ans and re
onstru
ts its left parameter.We 
an use program transformation to remove ea
h of these ineÆ
ien
ies.Removing the length re
al
ulationFirst let us de�ne a version of ListToTree1 whi
h 
al
ulates the length of its input list.The intention is thatListToTree1' as n = ListToTree1 aswheren = length asDe�ne:ListToTree1' [ ℄ 0 = EMPTYListToTree1' [a℄ 1 = [a℄ListToTree1' (a0:a1:as) n = NODE (ListToTree1' (take m (a0:a1:as)) m)(ListToTree1' (drop m (a0:a1:as)) m)wherem = n/2Now we rede�ne ListToTree1 to use this modi�ed version:ListToTree1 as = ListToTree1' as (length as)It is easy to verify the equivalen
e using re
ursion indu
tion.Removing the re-s
anning in take and dropLet us de�nesplit n as = (take n as, drop n as)Now we 
an re-express ListToTree1' to use it:
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ListToTree1' [ ℄ 0 = EMPTYListToTree1' [a℄ 1 = [a℄ListToTree1' (a0:a1:as) n = NODE (ListToTree1' front m) (ListToTree1' ba
k m)where(front, ba
k) = split m (a0:a1:as)m = n/2We 
an derive a more eÆ
ient version of split. Instantiate its de�nition for a non-emptyparameter list:split n (a:as) = (a: (take (n�1) as), drop (n�1) as), if n 6= 0But we 
an rewrite this as another instan
e of split:split n (a:as) = (a: front, ba
k), if n 6= 0where(front, ba
k) = split (n�1) asAll that remains is to derive the equation for the other 
ases. For the empty list 
ase:split n [ ℄ = (take n [ ℄| {z } , drop n [ ℄),| {z } if n 6= 0= ([ ℄, [ ℄), if n 6= 0When n = 0,split 0 as = (take n as| {z } , drop n as)| {z }= ([ ℄, as)Avoiding re
onstru
tion in \++"The �nal transformation avoids the use of \++", whi
h is ineÆ
ient be
ause it mustalways make a 
opy of its left parameter. Instead we use the list 
onstru
ted by the leftparameter, but modify the left parameter expression so that the right parameter is pla
edon the end instead of [ ℄. The property we exploit is(f x) ++ (g y) = f' x (g y)wheref' x as = (f x) ++ asThe optimisation 
omes by applying equational reasoning to the de�nition of f' above, sothat the \++" is not needed. This optimisation is straightforward enough to be 
onsideredfor in
lusion as an automati
 pro
ess in optimising 
ompilers (the interested reader might
ompare it with the use of di�eren
e lists in Prolog, as introdu
ed by Clark and Tarnlund169



[CT77℄. In our 
ase, we de�neTreeToList1' tree rest = (TreeToList1 tree) ++ restNote thatTreeToList1 tree = TreeToList1' tree [ ℄Instantiate the de�nition of TreeToList1' for the empty tree:TreeToList1' EMPTY rest= (TreeToList1 EMPTY)| {z } ++ rest= [ ℄ ++ rest| {z }= restNow instantiate it for the LEAF 
ase:TreeToList1' (LEAF a) rest= (TreeToList1 (LEAF a))| {z } ++ rest= [a℄ ++ rest= a : rest(note that this is where the \++" disappears). The NODE 
ase is the most 
ompli
ated:TreeToList1' (NODE subtree1 subtree2) rest= (TreeToList1 (NODE subtree1 subtree2))| {z } ++ rest= (TreeToList1 subtree1) ++ (TreeToList1 subtree2) ++ rest| {z }At this point we 
an use the de�nition of TreeToList1', ba
kwards:TreeToList1' (NODE subtree1 subtree2) rest= (TreeToList1 subtree1) ++ (TreeToList1' subtree2 rest)| {z }And now do the same to the whole RHS, getting rid of \++" altogether:TreeToList1' (NODE subtree1 subtree2) rest= (TreeToList1' subtree1 (TreeToList1' subtree2 rest))(This optimisation of \++" 
an be in
orporated as a 
ompiler optimisation, and Wadlerhas 
hara
terised where it 
an be applied [Wad88a℄. It is a form of linearisation; see Fieldand Harrison [FH88℄).This 
ompletes our optimisation pro
ess. Colle
ting the results, we have ListToTree1:ListToTree1 as = ListToTree1' as (length n)170



ListToTree1' [ ℄ 0 = EMPTYListToTree1' [a℄ 1 = [a℄ListToTree1' (a0:a1:as) n = NODE (ListToTree1' front m) (ListToTree1' ba
k m)where(front, ba
k) = split m (a0:a1:as)m = n/2wheresplit 0 as = ([ ℄, as)split 0 [ ℄ = ([ ℄, [ ℄), if n 6= 0split n (a:as) = (a: front, ba
k), if n 6= 0where(front, ba
k) = split (n�1) asand TreeToList1:TreeToList1 tree = TreeToList1' tree [ ℄TreeToList1' EMPTY rest = restTreeToList1' (LEAF a) rest = a : restTreeToList1' (NODE subtree1 subtree2) rest = (TreeToList1' subtree1(TreeToList1' subtree2 rest))A.2 ListToTree and TreeToList, shu�ed versionsIn this se
tion we show the 
orre
tness of an alternative approa
h to the problem ofrepresenting a list as a binary tree. In this version ea
h node has all the even-indexedelements of the list it represents to its left, and all the odd-indexed ones to its right. Wemake use of some auxiliary fun
tions, whose rôle here is analogous to the rôles of take,drop and \++" in the straightforward versions given in the previous se
tion:EvenOnes [ ℄ = [ ℄EvenOnes [a0℄ = [a0℄EvenOnes (a0:a1:as) = a0:(EvenOnes as)OddOnes [ ℄ = [ ℄OddOnes [a0℄ = [ ℄OddOnes (a0:a1:as) = a1:(OddOnes as)
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merge (a0:evens) (a1:odds) = a0:a1:(merge evens odds)merge as [ ℄ = asThe fun
tions we are interested in are:ListToTree2 [ ℄ = EMPTYListToTree2 [a℄ = LEAF aListToTree2 (a0:a1:as) = NODE (ListToTree2 (EvenOnes (a0:a1:as)))(ListToTree2 (OddOnes (a0:a1:as)))andTreeToList2 EMPTY = [ ℄TreeToList2 (LEAF a) = [a℄TreeToList2 (NODE evensubtree oddsubtree)= (merge (TreeToList2 evensubtree) (TreeToList2 oddsubtree))That they satisfy the spe
i�
ation as required is the subje
t of the next theorem:Theorem 2 For all �nite and total lists as,TreeToList2 (ListToTree2 as) = asThe natural approa
h for the proof is total stru
tural indu
tion. The base 
ase as = [ ℄is trivial. The obvious indu
tive step is to show the property for a:as assuming it for as.This fails, and the reason is not hard to �nd. The algorithm looks two elements aheadinto the input list (via EvenOnes and OddOnes). A better indu
tive step is to assume theproperty for as and a1:as, and try to show it for a0:a1:as. This is valid provided we makesure all possible values for as are 
overed|a spe
ial proof must be given for as = [a℄.It is surely no 
oin
iden
e to �nd that the de�nition of ListToTree2 does indeed dealwith the [a℄ 
ase spe
ially!ProofBy total stru
tural indu
tion on the length of the list as.Base 
ases: Trivial for both as = [ ℄ and as = [a℄.Indu
tive step: Assuming that for all �nite and total lists as,TreeToList2 (ListToTree2 as) = asandTreeToList2 (ListToTree2 (a1:as)) = a1:aswe must show that 172



TreeToList2 (ListToTree2 (a0:a1:as))| {z } = a0:a1:asApply redu
tion to the LHS:LHS = TreeToList2 (NODE (ListToTree2 (EvenOnes (a0:a1:as))| {z })(ListToTree2 (OddOnes (a0:a1:as))| {z }))= TreeToList2 (NODE (ListToTree2 (a0:(EvenOnes as)))(ListToTree2 (a1:(OddOnes as))))| {z }= merge (TreeToList2 (ListToTree2 (a0:(EvenOnes as))))| {z }(TreeToList2 (ListToTree2 (a1:(OddOnes as))))| {z }The underbra
ed expressions here are instan
es of our se
ond indu
tive assumption,givingLHS = merge (a0:(EvenOnes as)) (a1:(OddOnes as))| {z }= a0:a1:(merge (EvenOnes as) (OddOnes as))| {z }By Lemma 1, this is simply a0:a1:as as required.The alert reader will realise that Lemma 1 has not yet been exhibited. However, it doesseem to be 
ru
ial to the algorithm's operation. We've su

eeded in redu
ing our originalproblem so that all remains is this lemma|an a
tivity mu
h like stepwise re�nement ofprograms. Fortunately, the lemma is easily proved:Lemma 1 For all �nite and total lists as,merge (EvenOnes as) (OddOnes as) = asProofBy total stru
tural indu
tion on the length of as.Base 
ases: Trivial for both as = [ ℄ and as = [a℄.Indu
tive step: Assuming that for all �nite and total lists as,merge (EvenOnes as) (OddOnes as) = asandmerge (EvenOnes (a1:as)) (OddOnes (a1:as)) = a1:aswe must show that 173



merge (EvenOnes (a0:a1:as))| {z } (OddOnes (a0:a1:as))| {z } = a0:a1:asApply redu
tion to the LHS:LHS = merge (a0:(EvenOnes as)) (a1:(OddOnes as))| {z }= a0:a1:(merge (EvenOnes as) (OddOnes as))| {z }Our �rst indu
tive assumption applies here, to give a0:a1:as as required.We did not need the se
ond indu
tive assumption here. This is somewhat disturbing|often a sign of some error. But 
uriously, in the proof of Theorem 2, we didn't usethe �rst indu
tive assumption: between the two proofs we did eventually dis
harge bothassumptions.A.3 Turning re
urren
es into 
y
li
 networksIn introdu
ing the fun
tional language employed in this book, an idiom was employed forre
urren
es|what in an imperative language would simply be written as a loop. Althoughvery 
lear and 
on
ise, this idiom has an ineÆ
ien
y be
ause of the use of the sub operatorto sele
t values from previous iterations. In this se
tion we transform su
h a re
urren
einto a 
y
li
 pro
ess network formulation. This removes the use of the sub operator, andalso elu
idates some potential parallelism. We work with the Newton Raphson example.We solve for fx = 0 with f 0x = d(f x)dx , and using an initial estimate x0:xs sub 0 = x0xs sub i = (xs sub (i�1)) � ( f (xs sub (i�1)) / f' (xs sub (i�1)) ), if n � 1with the implementation using the re
urren
e idiom:solve f f' x0= until 
onverges xswhere
onverges 0 = FALSE
onverges i = abs( ((xs sub i) � (xs sub (i�1)))/(xs subi) ) � �, if i � 1xs = generate NextEstimatewhereNextEstimate 0 = x0NextEstimate i = (xs sub (i�1))� ( f (xs sub (i�1)) / f' (xs sub (i�1)) ), if n � 1We now transform this into a 
y
li
 pro
ess network. Unfold generate in the de�nition ofxs:
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xs = map NextEstimate (from 0)| {z }= map NextEstimate (0:(from 1))| {z }= (NextEstimate 0)| {z } : (map NextEstimate (from 1))= x0 : (map NextEstimate (from 1))Now we must de
ompose (the � 1 
ase of) NextEstimate into the transition fun
tion andthe indexing fun
tion:NextEstimate i = (xs sub (i�1)) � ( f (xs sub (i�1)) / f' (xs sub (i�1)) ), if n � 1= prevx � ((f prevx)/(f' prevx))whereprevx = xs sub (i�1)= (Transition Æ (Index xs)) iwhereTransition prevx = prevx � ((f prevx)/(f' prevx))Index xs i = xs sub (i�1)We 
an de
ompose this a little further (re
all that xs sub i = ((sub) xs) i):NextEstimate i = (Transition Æ ((sub) xs) Æ (subtra
t 1)) iwheresubtra
t n m = m � nSo now we havexs = x0 : (map (Transition Æ ((sub) xs) Æ (subtra
t 1))| {z } (from 1))It is easy to verify (using partial stru
tural indu
tion on the list's length) that map (f Æ g)= (map f) Æ (map g), so that this isxs = x0 : (((map Transition) Æ (map ((sub) xs)) Æ (map (subtra
t 1))) (from 1))| {z }= x0 : (((map Transition) Æ (map ((sub) xs))) (map (subtra
t 1) (from 1))| {z } )Clearly map (subtra
t 1) (from 1) = from 0, givingxs = x0 : (((map Transition) Æ (map ((sub) xs))) (from 0) )| {z }= x0 : (map Transition (map ((sub) xs) (from 0))| {z })By the de�nition of sub, map ((sub) xs) (from 0) = xs, so this isxs = x0 : (map Transition xs)This is a de�nition of a pro
ess network to generate a stream of su

essive estimates. To175




omplete the task we must 
onvert the until 
onverges part into a pro
ess network too. Weemploy a similar approa
h; �rst de
ompose 
onverges:
onverges i = abs( (thisx � prevx)/thisx ) � �wherethisx = xs sub iprevx = xs sub (i�1)= Test (xs sub i) (xs sub (i�1))whereTest thisx nextx = abs( (thisx � prevx)/thisx ) � �= (Test ÆÆ ((sub) xs) (((sub) xs) Æ (subtra
t 1))) iwhereTest thisx nextx = abs( (thisx � prevx)/thisx ) � �Re
all from Chapter 2 that (f ÆÆ g h) x = f (g x)(h x). Now take the appli
ation of untiland unfold it:until 
onverges xs = sele
t (map 
onverges (from 0))| {z } xs= sele
t (FALSE : (map 
onverges (from 1))) xs| {z }= sele
t (map 
onverges (from 1)) (tl xs)= sele
t (map (Test ÆÆ ((sub) xs)(((sub) xs) Æ (subtra
t 1))) (from 1))| {z }(tl xs)Using the property that map (f ÆÆ g h) = (map2 f) ÆÆ (map g)(map h), we haveuntil 
onverges xs = sele
t ( (map2 Test) ÆÆ (map ((sub) xs))(map (((sub) xs) Æ (subtra
t 1)))| {z }(from 1) )(tl xs)= sele
t ( (map2 Test (map ((sub) xs) (from 1))| {z }(map ((sub) xs) (map (subtra
t 1) (from 1)))) )(tl xs)Now we again use the property map ((sub) xs) (from 0) = xs to getuntil 
onverges xs = sele
t (map2 Test (tl xs)(map ((sub) xs) (map (subtra
t 1) (from 1))| {z } ))(tl xs)= sele
t (map2 Test (tl xs) (map ((sub) xs) (from 0))| {z } )(tl xs)= sele
t (map2 Test (tl xs) xs) (tl xs)176



This 
ompletes the transformation to pro
ess network form. Putting it all together wehavesolve f f' x0= sele
t (map2 Test (tl xs) xs) (tl xs)wherexs = x0 : (map Transition xs)Test thisx nextx = abs( (thisx � prevx)/thisx ) � �Transition prevx = prevx � ((f prevx)/(f' prevx))We 
an introdu
e parallelism into this de�nition by separating the arithmeti
 operationsinto pro
esses:solve f f' x0= sele
t (Map2Test (tl xs) xs) (tl xs)wherexs = x0 : (MapTransition xs)Map2Test thisxs nextxs = map abs ( (map2 (/) (map2 (�) thisxs prevxs) thisxs) )MapTransition prevxs = map2 (�) prevx (map2 (/) (map f prevx)(map f' prevx))The graphi
al representation of this network is given in Figure 4.3, ba
k in Chapter 4,se
tion 4.3.1, where the transformation is employed to express a parallel implementationof the re
urren
e.The transformation 
an be applied automati
ally, by a 
ompiler, provided that at ea
hstep the referen
es ba
kwards to previous iterations are at a �xed o�set. The te
hnique
an be summarised as follows:1. Find the state transition fun
tion in terms of indexing into the list of iterates. Inour examples these were NextEstimate and NextFib.2. Take the de�nition of the list of iterates (written in terms of generate), and unfoldgenerate. Apply redu
tion to generate the initial state or states for whi
h values aregiven dire
tly by the transition fun
tion.3. De
ompose the remaining, re
ursive, 
ase of the state transition fun
tion into thebody itself, and the fun
tions used to 
olle
t the values from previous iterations. Inour examples these wereNextEstimate = Transition Æ ((sub) xs) Æ (subtra
t 1)andNextFib = ((+) ÆÆ (((sub) �bs) Æ (subtra
t 1))(((sub) �bs) Æ (subtra
t 2)) ) n
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4. Distribute the map introdu
ed by generate into this 
omposition, to produ
e, forexample,xs = map NextEstimate (from 1)= ((map Transition) Æ (map ((sub) xs)) Æ (map (subtra
t 1))) (from 1)5. Unfold the 
omposition, giving for example,xs = map Transition (map ((sub) xs) (map (subtra
t 1) (from 1)))6. Apply the equationmap (subtra
t n) (from m) = from (m�n), produ
ing, for example,xs = map Transition (map ((sub) xs) (from 0))7. Apply the equations map ((sub) xs) (from 0) = xs, map ((sub) xs) (from 1) = tl xs,et
. to get, for example,xs = map Transition xsThe transformation-based programming environment implemented by John Darlingtonand his 
olleagues at Imperial College [De88℄ is designed spe
i�
ally to allow transforma-tions like this to be developed, en
oded and reused.A.4 The ray-tra
er pipelineIn this example, a sequential sear
h pro
ess is distributed over a pipeline. We have anunspe
i�ed fun
tionTestForImpa
t :: Ray ! Obje
t ! Impa
twhere Impa
t is a data type whi
h des
ribes the intera
tion between a ray and an obje
t.We must �nd the earliest impa
t made by a ray, so we are also given a sele
tion fun
tionearlier:earlier :: Impa
t ! Impa
t ! Impa
tThe original formulation was
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FindImpa
ts rays obje
ts= map (FirstImpa
t obje
ts) rayswhereFirstImpa
t obje
ts ray = earliest (map (TestForImpa
t ray) obje
ts)whereearliest impa
ts = insert earlier NOIMPACT impa
tsThe 
laim is that this is equivalent to a pipelined formulation:FindImpa
ts2 rays obje
ts = ( (map TakeImpa
t) Æ(insert (Æ) ident(map map (map PipelineStage obje
ts)))Æ (map MakePipeItem) )rayswhere the pipeline stage is de�ned byPipelineStage obje
t (PIPEITEM ray impa
t)= PIPEITEM ray impa
t'whereimpa
t' = earlier impa
t NewImpa
tNewImpa
t = TestForImpa
t ray obje
tand the stages are linked by lists of PipeItem's:PipeItem � � ::= PIPEITEM � �with 
onstru
tion and proje
tion fun
tions:MakePipeItem ray = PIPEITEM ray NOIMPACTTakeImpa
t (PIPEITEM ray impa
t) = impa
tTheorem 3 We 
laim that for all �nite and total lists rays and obje
ts,FindImpa
ts rays obje
ts = FindImpa
ts2 rays obje
tsBefore giving the proof we give some identities we will use. Proofs are left as exer
isesfor the reader:Fa
t 1 Combining insertright and map:insertright op x (map g xs) = insertright h x xswhereh a b = op (g a) b179



Fa
t 2 Abstra
ting a free variable from the operator parameter of insertright:insertright (f a) x bs = fst (insertright f' (x, a) bs)wheref' b (x, a) = (f a b x, a)For our purposes this fa
t is better expressed in terms of our data types:insertright (f ray) NOIMPACT obje
ts= TakeImpa
t (insertright f' (MakePipeItem ray) obje
ts)wheref' obje
t (PIPEITEM ray impa
t) = PIPEITEM (f ray obje
t impa
t) ray(sin
e PIPEITEM ray impa
t is essentially equivalent to (ray, impa
t) but with a mnemoni
tag to aid readability1).Fa
t 3 Expressing insertright using a 
hain of 
ompositions:insertright op x xs = (insert (Æ) ident (map op xs)) xFa
t 4 Propagating map into a 
hain of 
ompositions:map (insert (Æ) ident fs) = insert (Æ) ident (map map fs)Proof:By redu
tion and use of the above fa
ts.Take the LHS:FindImpa
ts rays obje
ts = map (FirstImpa
t obje
ts) raysLet us 
onsider to FirstImpa
t alone:FirstImpa
t obje
ts ray= insert earlier NOIMPACT (map (TestForImpa
t ray) obje
ts)| {z }Using Fa
t 1 gives1There is a subtle di�eren
e; see se
tion C.2.
180



FirstImpa
t obje
ts ray= insertright TestAndCompare NOIMPACT obje
tswhereTestAndCompare obje
t impa
t = earlier (TestForImpa
t ray obje
t) impa
tAbstra
t ray from TestAndCompare as a parameter:FirstImpa
t obje
ts ray= insertright (TestAndCompare' ray) NOIMPACT obje
tswhereTestAndCompare' ray obje
t impa
t = earlier (TestForImpa
t ray obje
t) impa
tThis is where Fa
t 2 
omes into play, introdu
ing the PipeItem data type: givingFirstImpa
t obje
ts ray= TakeImpa
t (insertright TestAndCompare" (MakePipeItem ray) obje
ts)whereTestAndCompare" obje
t (PIPEITEM ray impa
t)= PIPEITEM (TestAndCompare' ray obje
t impa
t) ray= PIPEITEM (earlier (TestForImpa
t ray obje
t) impa
t) rayFa
t 3 introdu
es the 
hain of 
ompositions:FirstImpa
t obje
ts ray= TakeImpa
t ((insert (Æ) ident (map TestAndCompare" obje
ts))(MakePipeItem ray))whereTestAndCompare" obje
t (PIPEITEM ray impa
t)= PIPEITEM (earlier (TestForImpa
t ray obje
t) impa
t) ray= (TakeImpa
t Æ(insert (Æ) ident(map TestAndCompare" obje
ts))Æ MakePipeItem)raywhereTestAndCompare" obje
t (PIPEITEM ray impa
t)= PIPEITEM (earlier (TestForImpa
t ray obje
t) impa
t) rayPutting this ba
k into its 
ontext in the LHS, we 
an propagate the map into the
omposition (using Fa
t 4):
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FindImpa
ts rays obje
ts= map (FirstImpa
t obje
ts)| {z } rays= map (TakeImpa
t Æ(insert (Æ) ident(map TestAndCompare" obje
ts))Æ MakePipeItem)rays| {z }= ((map TakeImpa
t) Æ(insert (Æ) ident(map map (map TestAndCompare" obje
ts)))Æ (map MakeItem))rayswhereTestAndCompare" obje
t (PIPEITEM ray impa
t)= PIPEITEM (earlier (TestForImpa
t ray obje
t) impa
t) rayThis is trivially equal to the RHS.A.5 The sieve of EratosthenesThis derivation is parti
ularly fas
inating. We have a �ltering fun
tion, whi
h takes anumber p (whi
h will be prime), and a list of numbers as, and produ
es the list of elementsof as whi
h are not divisible by p:FilterMultiples p (a:as) = a : (FilterMultiples p as), if not(divides p a)= FilterMultiples p as, if divides p aThis has the e�e
t of \
rossing out" every multiple of p from the list of numbers as.Eratosthenes' approa
h was to repeat this for every prime, in in
reasing order. Clearlythe resulting list would 
onsist only of prime numbers|but how do we �nd the primesin the �rst pla
e? Happily, after doing all the 
rossings out up to a prime p, the nextun
rossed-out number must also be prime: no fa
tor of p is greater than p, and all smallerfa
tors have already been eliminated.This leads us to an iterative formulation. We start with the list of natural numbers(ex
luding 1 for 
onvenien
e). At ea
h iteration, we �lter the remaining numbers with thelatest prime:
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sieves = generate NextSievewhereNextSieve 0 = from 2NextSieve (n+1) = FilterMultiples newprime (sieves sub n)wherenewprime = hd (sieves sub n)At ea
h step, the �rst element in the list is guaranteed prime, and is used in the next stepfor 
rossing out. From this iteration, the list of primes itself is easily found:primes = generate FindPrimewhereFindPrime n = hd (sieves sub n)We just 
olle
t the �rst element of the list at ea
h iteration. It is not hard, using thete
hniques developed for removing sub from re
urren
es, to simplify this de�nition to justprimes = map hd (iterate g (from 2))whereg (a:as) = FilterMultiples a asRe
all one of the alternative de�nitions of iterate:iterate f x = x : (iterate f (f x))(So that iterate f x = [x, f x, f(f x). . .℄). Now de�ne a fun
tion sieve so thatprimes = sieve (from 2)wheresieve as = map hd (iterate g as)Instantiate sieve for non-empty as, and then unfold the de�nition of iteratesieve (a:as) = map hd (iterate g (a:as))| {z }= map hd ((a:as):(iterate g (g (a:as))))| {z }= a : (map hd (iterate g (g (a:as))))| {z }= a : (sieve (g (a:as))| {z } )= a : (sieve (FilterMultiples a as))This gives the de�nition as required:primes = sieve (from 2)wheresieve (a:as) = a : (sieve (FilterMultiples a as))183



A.6 Transforming divide-and-
onquer into a 
y
leThe next 
lut
h of proofs support the derivation of a 
y
li
 formulation of the divide-and-
onquer algorithm form. The derivation itself appears in Chapter 4 se
tion 4.8. Thestarting point is the higher-order fun
tion to 
apture the divide-and-
onquer form:DivideAndConquer :: (� ! [�℄ ! �) ! (� ! [�℄) ! � ! �DivideAndConquer CombineSolutions De
ompose problem= Solve problemwhereSolve problem = CombineSolutions problem (map Solve SubProblems)whereSubProblems = De
ompose problemA.6.1 Introdu
ing an intermediate treeWe introdu
e an intermediate data stru
ture to represent how the problem is broken downinto subproblems:MultiTree � � ::= MNODE � (� ! [�℄ ! �) Num [MultiTree � �℄We de�neDivideAndConquer' CombineSolutions De
ompose problem= EvaluateTree (BuildTree problem)whereBuildTree problem = MNODE problemCombineSolutionsNoOfSubproblems(map BuildTree Subproblems)whereSubproblems = De
ompose problemNoOfSubproblems = length SubProblemswhereEvaluateTree (MNODE problem CombineSolutions n subtrees)= CombineSolutions problem (map EvaluateTree subtrees)Theorem 4 DivideAndConquer' = DivideAndConquerProofBy equational reasoning: 184



First, introdu
e an auxiliary fun
tion Solve':DivideAndConquer' CombineSolutions De
ompose problem= Solve' problemwhereSolve' problem = (EvaluateTree Æ BuildTree) problemBuildTree problem = MNODE problemCombineSolutionsNoOfSubproblems(map BuildTree Subproblems)whereSubproblems = De
ompose problemNoOfSubproblems = length SubProblemsThen apply redu
tion:Solve' problem= EvaluateTree (MNODE problemCombineSolutionsNoOfSubproblems(map BuildTree Subproblems))| {z }whereSubproblems = De
ompose problemNoOfSubproblems = length SubProblems= CombineSolutions problem (map EvaluateTree (map BuildTree Subproblems))| {z }whereSubproblems = De
ompose problemNoOfSubproblems = length SubProblems= CombineSolutions problem (map (EvaluateTree Æ BuildTree)| {z } Subproblems)whereSubproblems = De
ompose problemNoOfSubproblems = length SubProblemsAt this point a fold step applies, giving
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Solve' problem= CombineSolutions problem (map Solve' Subproblems)whereSubproblems = De
ompose problemNoOfSubproblems = length SubProblemsThis has pre
isely the form of the original de�nition of DivideAndConquer.A.6.2 The breadth-�rst tree{stream inter
onversionIn this se
tion we derive a pair of breadth-�rst tree{stream inter
onversion fun
tions. Thetree is transformed into a list of tokens, ea
h 
arrying details of a node:MultiTreeToken � � ::= MTREETOKEN � (� ! [�℄ ! �) NumThe fun
tions we must derive have the type spe
i�
ationsMTreeToStream :: MultiTree � � ! [MultiTreeToken � �℄andStreamToMTree :: [MultiTreeToken � �℄ ! Multitree � �It turns out to be easier to derive a slightly more general pair of fun
tions,ListOfMTreesToStream :: [MultiTree � �℄ ! [MultiTreeToken � �℄StreamToListOfMTrees :: Num ! [MultiTreeToken � �℄ ! [Multitree � �℄so thatMTreeToStream tree = ListOfMTreesToStream [tree℄andStreamToMTree stream = StreamToListOfMTrees 1 streamThe �rst parameter to StreamToListOfMTrees must be the number of trees we must extra
tfrom the in
oming stream|in this 
ase just one.The spe
i�
ationThe spe
i�
ation 
omes in two parts. Firstly, we obviously require that the type spe
i�-
ations be satis�ed, and that we 
an get the trees ba
k again:StreamToListOfMTrees (length trees) (ListOfMTreesToStream trees) = treesHowever, we also demand that the list representation be generated in \breadth-�rst" order,and this needs spe
ifying. The idea is that the tree is made up of su

essive generations,186



so that ea
h node of ea
h generation is the same distan
e from the root. We 
an formalisethis by writing down some fun
tions for separating o� the �rst generation of a list of treesfrom the subsequent ones:RootsOf :: [MultiTree � �℄ ! [MultiTreeToken � �℄RootsOf [ ℄ = [ ℄RootsOf ((MNODE p op n subtrees) : trees) = (MTREETOKEN p op n): (RootsOf trees)RootsOf trees produ
es a list of tokens, ea
h representing the root node of the 
orrespondingtree in trees. Noti
e that we expe
t n to be the number of 
hildren of this node|i.e. lengthsubtrees.RootsOf's 
ounterpart is SubtreesOf, whi
h pi
ks out ea
h node's 
hildren:SubtreesOf :: [MultiTree � �℄ ! [MultiTree � �℄SubtreesOf [ ℄ = [ ℄SubtreesOf ((MNODE p op n subtrees) : trees) = subtrees ++ (SubtreesOf trees)These two fun
tions allow us to de
ompose trees into generations. All that remains is to�nd a way to put them ba
k together again:JoinLayers :: [MultiTreeToken � �℄ ! [Multitree � �℄ ! [Multitree � �℄JoinLayers [ ℄ [ ℄ = [ ℄JoinLayers ((MTREETOKEN p op n) : l1) l2 = (MNODE p op n (take n l2)): (JoinLayers l1 (drop n l2))It is not hard to verify (using partial stru
tural indu
tion) that these fun
tions operate asintended: for all lists of trees, trees,trees = JoinLayers (RootsOf trees) (SubtreesOf trees)These fun
tions establish a well-founded ordering based on generations. Now to the spe
i-�
ation that the list be generated in breadth-�rst order. What we mean is that the outputlist should 
onsist of ea
h 
omplete generation, one-at-a-time, from the roots:ListOfMTreesToStream trees = (RootsOf trees) ++(RootsOf (SubtreesOf trees)) ++(RootsOf (SubtreesOf (SubtreesOf trees))) ++ � � �This is simply 
aptured re
ursively:
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ListOfMTreesToStream [ ℄ = [ ℄ListOfMTreesToStream trees = (RootsOf trees) ++(ListOfMTreesToStream (SubtreesOf trees))This is an adequate implementation for ListOfMTreesToStream.It will also be fruitful to note how to separate the generations when they are representedin the stream form. For this, we must know the number n of nodes in the �rst generation.Then we have simply thatFirstGeneration n tokens = take n tokensSubsequentGenerations n tokens = drop n tokensTo �nd n we spe
ify thatSizeOfNextGeneration (RootsOf trees) = length (SubtreesOf trees)We have to use an implementation whi
h doesn't need the tree form. If tokens = RootsOftrees thenSizeOfNextGeneration tokens = sum (map NumberOfChildren tokens)whereNumberOfChildren (MTREETOKEN p op n) = nBefore pro
eeding, take note of two equalities whi
h are easily veri�ed by redu
tion (again,n = length (RootsOf trees)):FirstGeneration n (ListOfMTreesToStream trees) = RootsOf treesandSubsequentGenerations n (ListOfMTreesToStream trees)=ListOfMTreesToStream (SubtreesOf trees)Deriving StreamToListOfMTreesWhile the translation from trees to lists was easily derived from its spe
i�
ation, syn-thesising an exe
utable de�nition for StreamToListOfMTrees is rather more diÆ
ult. Itsspe
i�
ation is just
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StreamToListOfMTrees n stream = trees| {z }wherestream = ListOfMTreesToStream treesn = length treesLet us instantiate StreamToListOfMTrees for two 
ases: when the list of trees (and thereforestream) is empty, and when it 
onsists of one or more generations. For streams = [ ℄, it is
lear that n must also be zero, and we 
onstru
t the empty list of trees:StreamToListOfMTrees 0 [ ℄ = [ ℄For the non-empty 
ase we know that we 
an de
ompose stream so thatstream = (FirstGeneration n stream) ++ (SubsequentGenerations n stream)We observed earlier thatFirstGeneration n (ListOfMTreesToStream trees) = RootsOf treesandSubsequentGenerations n (ListOfMTreesToStream trees)=ListOfMTreesToStream (SubtreesOf trees)We haveStreamToListOfMTrees n stream= JoinLayers (RootsOf trees)| {z } (SubtreesOf trees)= JoinLayers gen1 (SubtreesOf trees)| {z }wheregen1 = FirstGeneration n stream= JoinLayers gen1 subtreeswheregen1 = FirstGeneration n streamsubtrees = StreamToListOfMTrees m (ListOfMTreesToStream (SubtreesOf trees))| {z }m = length (SubtreesOf trees)(by hypothesis)
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= JoinLayers gen1 subtreeswheregen1 = FirstGeneration n streamsubtrees = StreamToListOfMTrees m (SubsequentGenerations n(ListOfMTreesToStream trees)| {z })m = length (SubtreesOf trees)= JoinLayers gen1 subtreeswheregen1 = FirstGeneration n streamsubtrees = StreamToListOfMTrees m (SubsequentGenerations n stream)m = length (SubtreesOf trees)| {z }= JoinLayers gen1 subtreeswheregen1 = FirstGeneration n streamsubtrees = StreamToListOfMTrees m (SubsequentGenerations n stream)m = SizeOfNextGeneration (RootsOf trees)| {z }= JoinLayers gen1 subtreeswheregen1 = FirstGeneration n streamsubtrees = StreamToListOfMTrees m (SubsequentGenerations n stream)m = SizeOfNextGeneration gen1This 
ompletes the derivation, sin
e StreamToListOfMTrees n stream no longer refers totrees. The de�nitions are 
olle
ted below for 
larity:ListOfMTreesToStream :: [MultiTree � �℄ ! [MultiTreeToken � �℄ListOfMTreesToStream trees = (RootsOf trees) ++(ListOfMTreesToStream (SubtreesOf trees))and
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StreamToListOfMTrees :: [MultiTreeToken � �℄ ! [Multitree � �℄StreamToListOfMTrees 0 [ ℄ = [ ℄StreamToListOfMTrees n stream= JoinLayers gen1 subtrees, n 6= 0wheregen1 = FirstGeneration n streamsubtrees = StreamToListOfMTrees m (SubsequentGenerations n stream)m = SizeOfNextGeneration gen1The de�nition of StreamToListOfMTrees 
an be made more eÆ
ient using the optimisa-tions of se
tion A.1.1. In parti
ular, the �rst generation, its length, and the subsequentgenerations 
an all be 
omputed in a single pass.A.6.3 Verifying the 
y
li
 de�nitionBy applying redu
tion (see se
tion 4.8.2) to 
ombine BuildTree with ListOfMTreesToStream,we rea
hed the following re
ursive de�nition for BuildStreamsOfTrees, a fun
tion whi
hde
omposes a list of rays dire
tly into the stream representation of their subray trees:BuildStreamsOfTrees [ ℄ [ ℄ = [ ℄BuildStreamsOfTrees [ ℄ subproblems = BuildStreamsOfTrees subproblems [ ℄BuildStreamsOfTrees (problem:siblingproblems) oldsubproblems= (MTREETOKEN problem CombineSolutions NoOfSubproblems): (BuildStreamsOfTrees siblingproblems(oldsubproblems++Subproblems))whereSubproblems = De
ompose problemNoOfSubproblems = length SubproblemsIn se
tion 4.8.2 we 
laim that this is equivalent to a de�nition whi
h is not re
ursiveas su
h, but uses a 
y
li
 stream de�nition:BuildStreamsOfTrees' [ ℄ [ ℄ = [ ℄
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BuildStreamsOfTrees' problems subproblems= outputwhere(output, feedba
k)= SplitStream((map FEEDBACKTAG subproblems) ++(join (map LayerOf (problems++feedba
k))))LayerOf problem= (OUTPUTTAG (MTREETOKEN problem CombineSolutions NoOfSubproblems)): (map FEEDBACKTAG Subproblems)whereSubproblems = De
ompose problemNoOfSubproblems = length Subproblemswhere SplitStream separates a stream of tagged obje
ts into two streams of untagged ones:SplitStream :: [TaggedStreamItem � �℄ ! ([MultiTreeToken � �℄, �)SplitStream [ ℄ = ([ ℄, [ ℄)SplitStream ((OUTPUTTAG token) : rest)= (token : rest1, rest2)where(rest1, rest2) = SplitStream restSplitStream ((FEEDBACKTAG subproblem) : rest)= (rest1, subproblem : rest2)where(rest1, rest2) = SplitStream restand join 
attens a list of lists into a list:join :: [[�℄℄ ! [�℄join xss = insert (++) [ ℄ xssTheorem 5 BuildStreamsOfTrees = BuildStreamsOfTrees'
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ProofBy re
ursion indu
tion. We must show that BuildStreamsOfTrees' satis�es ea
h of thethree equations de�ning BuildStreamsOfTrees. This veri�es that BuildStreamsOfTrees vBuildStreamsOfTrees' (see se
tion 2.5.5). We omit a proof of the equality itself, be
ausewe know that BuildStreamsOfTrees is de�ned for all parameter values of interest.First Equation: We must show thatBuildStreamsOfTrees' [ ℄ [ ℄ = [ ℄This follows trivially from the �rst equation de�ning BuildStreamsOfTrees'.Se
ond Equation: We must show thatBuildStreamsOfTrees' [ ℄ subproblems = BuildStreamsOfTrees' subproblems [ ℄If we unfold the RHS we getRHS = outputwhere(output, feedba
k)= SplitStream((map FEEDBACKTAG [ ℄) ++(join (map LayerOf (subproblems++feedba
k))))The LHS unfolds toLHS = outputwhere(output, feedba
k)= SplitStream((map FEEDBACKTAG subproblems) ++(join (map LayerOf (feedba
k))))The elements of the list subproblems are tagged so they are emitted in the right-handfeedba
k stream:LHS = outputwhere(output, feedba
k) = (output, subproblems++feedba
k')(output, feedba
k')= SplitStream((map FEEDBACKTAG [ ℄) ++(join (map LayerOf (feedba
k))))Simplifying to get rid of feedba
k' we get193



LHS = outputwhere(output, feedba
k)= SplitStream((map FEEDBACKTAG [ ℄) ++(join (map LayerOf (subproblems++feedba
k))))But this is pre
isely the same as the RHS.Third Equation: We must show thatBuildStreamsOfTrees' (problem:siblingproblems) oldsubproblems= (MTREETOKEN problem CombineSolutions NoOfSubproblems): (BuildStreamsOfTrees' siblingproblems(oldsubproblems++Subproblems))whereSubproblems = De
ompose problemNoOfSubproblems = length SubproblemsWe apply redu
tion to the LHS:LHS = BuildStreamsOfTrees' (problem:siblingproblems) oldsubproblems| {z }= outputwhere(output, feedba
k)= SplitStream((map FEEDBACKTAG oldsubproblems) ++(join (map LayerOf ((problem:siblingproblems)++feedba
k))| {z } ))= outputwhere(output, feedba
k)= SplitStream((map FEEDBACKTAG oldsubproblems) ++(join ((LayerOf problem)| {z }: (map LayerOf (siblingproblems++feedba
k))) ))Unfolding LayerOf gives
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LHS = outputwhere(output, feedba
k)= SplitStream((map FEEDBACKTAG oldsubproblems) ++(join ((OUTPUTTAG (MTREETOKEN problemCombineSolutionsNoOfSubproblems)): (map FEEDBACKTAG Subproblems)): (map LayerOf (siblingproblems++feedba
k)) ))| {z }whereSubproblems = De
ompose problemNoOfSubproblems = length SubproblemsRedu
ing the appli
ation of join givesLHS = outputwhere(output, feedba
k)= SplitStream((map FEEDBACKTAG oldsubproblems) ++[OUTPUTTAG (MTREETOKEN problemCombineSolutionsNoOfSubproblems)℄ ++(map FEEDBACKTAG Subproblems) ++(map LayerOf (siblingproblems++feedba
k)))whereSubproblems = De
ompose problemNoOfSubproblems = length SubproblemsWe 
an now 
oat the MTREETOKEN stru
ture out to the output:LHS = (MTREETOKEN problem CombineSolutions NoOfSubproblems): output'where(output', feedba
k)= SplitStream((map FEEDBACKTAG oldsubproblems) ++(map FEEDBACKTAG Subproblems) ++(map LayerOf (siblingproblems++feedba
k)))whereSubproblems = De
ompose problemNoOfSubproblems = length SubproblemsWe know that map FEEDBACKTAG is distributive over \++", giving195



LHS = (MTREETOKEN problem CombineSolutions NoOfSubproblems): output'where(output', feedba
k)= SplitStream((map FEEDBACKTAG oldsubproblems++Subproblems) ++(map LayerOf (siblingproblems++feedba
k)))whereSubproblems = De
ompose problemNoOfSubproblems = length SubproblemsNow noti
e thatoutput' = BuildStreamsOfTrees' siblingproblems(oldsubproblems++Subproblems)so we haveLHS = (MTREETOKEN problem CombineSolutions NoOfSubproblems): BuildStreamsOfTrees' siblingproblems(oldsubproblems++Subproblems)whereSubproblems = De
ompose problemNoOfSubproblems = length SubproblemsThis is identi
al to the RHS.
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Appendix BCommon De�nitionsThis appendix 
olle
ts de�nitions of 
ommonly used symbols and fun
tions. Intermediaryde�nitions in program derivations are not generally in
luded.B.1 Symbols== Equality of types, used for de�ning synonyms for types. For example name ==[Char℄.::= Algebrai
 data type de
laration. Used to 
onstru
t a new data type from taggedalternatives (separated by | and re
ursion. The tags are known as 
onstru
tors.:: Type spe
i�
ation/assertion. For example, f :: � assert the f is a member of the type� . It is generally used to give a partial spe
i�
ation of the obje
t to aid the reader'sunderstanding and to aid 
ompiler 
he
king.! � ! � is the type of a fun
tion whi
h takes one parameter of type �, and returns aresult of type �. �! (� ! 
) is the type of a two-parameter fun
tion. The bra
ketshere 
an be omitted.| {z } An underbra
e is used in this book to mark an expression whi
h is shortly to berewritten._ Logi
al or.^ Logi
al and. 197



++ The in�x form of the append fun
tion, de�ned below.:, [ ℄ Shorthand forms of the CONS and NIL 
onstru
tors of the List data type.\. . . "The expression \ab
" is shorthand for the list of 
hara
ters 'a' : 'b' : '
' : [ ℄.Æ The in�x form of the fun
tion 
ompose. f Æ g denotes a fun
tion whi
h applies g toits parameter, and then applies f to the result.ÆÆ The in�x form of the fun
tion 
ompose2. f ÆÆ g h is a two parameter fun
tion whi
happlies g to its �rst parameter, h to its se
ond parameter, and applies f to the tworesults.? Read \bottom", ? denotes a 
omputation whi
h does not terminate. When lookingat snapshots of a 
omputation, ? 
an be thought of as standing for a value whi
hhas not yet been 
omputed.v Read \approximates". Informally x v y if further 
omputation might re�ne x untilit is equal to y.�, �These symbols are used in this book for an ordering relation (analogous to � and >)whi
h is \well founded"|that is there exists no in�nite 
hain of de
reasing values.# An appli
ation a b 
an be marked a # b is its result must be unde�ned if b isunde�ned|in whi
h 
ase it is 
alled a \stri
t" appli
ation. A fun
tion de�nition fa b 
 = e 
an be marked f a b# 
 = e if all appli
ations of f to its se
ond parameterare stri
t.2 The expression 2f denotes the expression in whi
h f is applied. This must be uniquelydetermined. When written (2), redu
tion must be applied until 2 is applied to avalue.B.2 TypesBinaryTree:
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BinaryTree � ::= EMPTY jLEAF � jNODE (BinaryTree �) (BinaryTree �)Bool: Bool ::= TRUE j FALSEBundle:Bundle � ::= BUNDLE �BUNDLE is used only as a visible signal to the reader that the parameter datastru
ture is being used for bundling.Char: This type 
ontains all the 
hara
ters, and might be de�ned by the equationChar ::= 'a' j 'b' j '
' . . . 'z' j 'A' j 'B' . . . 'Z' j '0' j '1' . . . '9' . . .It would normally in
lude the 
hara
ters of the ASCII 
ode, and be ordered in thesame way.Impa
t:Impa
t ::= NOIMPACT jIMPACT Num Impa
tInformationList: List � ::= NIL j CONS � (List �)MultiTree:MultiTree � � ::= MNODE � (� ! [�℄ ! �) Num [MultiTree � �℄In this kind of tree, ea
h node 
arries a fun
tion as well as a list of subtrees. Thenumber should be equal to the number of subtrees.
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MultiTreeToken:MultiTreeToken � � ::= MTREETOKEN � (� ! [�℄ ! �) NumThis type is used in the breadth-�rst stream representation of the MultiTree type.PipeItem:PipeItem � � ::= PIPEITEM � �This is simply a tagged pair type, used instead of just (�, �) for ease of readability.It is need when pipelining and insert operation.Sample:Sample ::= HI j LO j XXThis is an approximation to the signal level on a wire, used in spe
ifying digital
ir
uits.Signal:Signal == [Sample℄TaggedStreamItem:TaggedStreamItem � � ::= OUTPUTTAG (MultiTreeToken � �)j FEEDBACKTAG �This type is like a \union" type: it in
ludes two di�erent typed obje
ts, requiringthat they be tagged to indi
ate whi
h. It is used in the 
y
li
 formulation of thedivide phase of DivideAndConquer.B.3 Fun
tionsappend (++):append :: [�℄ ! [�℄ ! [�℄append (a : as) bs = a : (append as bs)append [ ℄ bs = bsThe appli
ation append as bs is normally written as++bs.200



ApplyLNO:ApplyLNO :: ([�℄ ! �) ! ��� ! ���ApplyLNO op matrix= MakeMatrix Lo
alOperationwhereLo
alOperation (i,j)= matrix sub (i,j), if OnBoundary matrix (i,j)Lo
alOperation (i,j)= op [matrix sub (i�1,j),matrix sub (i,j�1),matrix sub (i+1,j),matrix sub (i,j+1),matrix sub (i,j)℄, otherwisear
: ar
 :: � ! � ! BoolThis relation is used to build assertions about pro
ess distribution. The assertionar
 a b requires the 
ompiler to pla
e the pro
esses whi
h 
ompute expressions a andb on separate pro
essors, but to arrange for them to be able to 
ommuni
ate withone another eÆ
iently. Note that ar
 a b is equivalent to the assertion ar
 b a.DivideAndConquer:DivideAndConquer :: (� ! �)! (� ! [�℄ ! �)! (� ! [�℄)! (� ! Bool)! �! �
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DivideAndConquer SimplySolve CombineSolutions De
ompose Trivial problem= Solve problemwhereSolve problem = SimplySolve problem, if Trivial problemSolve problem = CombineSolutions problem(map Solve SubProblems) otherwisewhereSubProblems = De
ompose problemabs: abs :: Num ! Numabs x = x, if x � 0abs x = �x, otherwiseall: all :: [Bool℄ ! Boolall = insert (^) TRUE
hain:
hain :: (Bool ! Bool ! Bool) ! [(� ! �)℄ ! Bool
hain relation [f℄ = TRUE
hain relation (f1 : f2 : fs) = (relation f1 f2) ^ (
hain relation f2 fs)
ompose (Æ):
ompose :: (� ! 
) ! (� ! �) ! � ! 

ompose f g = f Æ g = hwhereh x = f (g x)
ompose2 (ÆÆ):
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ompose2 :: (�1 ! �2 ! 
) ! (� ! �1) ! (� ! �2) ! � ! 

ompose2 f g1 g2 = f ÆÆ g1 g2 = hwhereh x = f (g1 x) (g2 x)
ond: 
ond :: Bool ! � ! � ! �
ond TRUE a b = a
ond FALSE a b = b
onstru
t:
onstru
t :: [� ! �℄ ! � ! �
onstru
t [ ℄ x = [ ℄
onstru
t (f : fs) x = (f x) : (
onstru
t fs x)
onst:
onst :: � ! �
onst x = xdivides:divides :: Num ! Num ! Booldivides p a is TRUE is p divides a exa
tly, False otherwise.drop: drop :: Num ! [�℄ ! [�℄drop n (a : as) = drop (n�1) as, if n 6= 0drop n [ ℄ = [ ℄, if n 6= 0drop 0 as = as 203



earlier:earlier :: Impa
t ! Impa
t ! Impa
tearlier NOIMPACT NOIMPACT = NOIMPACTearlier (IMPACT dist1 info1) NOIMPACT = (IMPACT dist1 info1)earlier NOIMPACT (IMPACT dist2 info2) = (IMPACT dist2 info2)earlier (IMPACT dist1 info1)(IMPACT dist2 info2) = (IMPACT dist1 info1), if dist1 � dist2earlier (IMPACT dist1 info1)(IMPACT dist2 info2) = (IMPACT dist2 info2), if dist1 > dist2EvaluateTree:EvaluateTree :: (MultiTree � �) ! �EvaluateTree (MNODE problem CombineSolutions n subtrees)= CombineSolutions problem (map EvaluateTree subtrees)EvenOnes:EvenOnes :: [�℄ ! [�℄EvenOnes [ ℄ = [ ℄EvenOnes [a0℄ = [a0℄EvenOnes (a0 : a1 : as) = a0 : (EvenOnes as)fan: fan :: (Bool ! Bool ! Bool) ! � ! [� ! 
℄ ! Boolfan relation a bs = all (map (relation a) bs)�lter:
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�lter :: (� ! Bool) ! [�℄ ! [�℄�lter predi
ate [ ℄ = [ ℄�lter predi
ate (a : as) = a : (�lter predi
ate as), if predi
ate a�lter predi
ate (a : as) = (�lter predi
ate as), otherwiseFindImpa
ts:FindImpa
ts :: [Ray℄ ! [Obje
t℄ ! [Impa
ts℄FindImpa
ts rays obje
ts = map (FirstImpa
t obje
ts) raysFirstImpa
t:FirstImpa
t :: [Obje
t℄ ! Ray ! Impa
tFirstImpa
t obje
ts ray = earliest (map (TestForImpa
t ray) obje
ts)whereearliest impa
ts = insert earlier NOIMPACT impa
tsfrom: from :: Num ! [Num℄from n = n : ( from (n + 1) )fst: fst :: (�, �) ! �fst (a, b) = agenerate:generate :: (Num ! �) ! [�℄generate f = map f (from 0)hd:
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hd :: [�℄ ! �hd (x : xs) = xident: ident :: � !�ident x = xinsert:insert :: (� ! � ! �) ! � ! [�℄ ! �insert (op) base [ ℄ = baseinsert (op) base [a1, a2, a3, � � � aN℄ = a1 op a2 op a3 � � � op aNThe fun
tion parameter is written (op) here be
ause it is 
onvenient to use it in in�xform on the RHS. This fun
tion is appli
able only when (op) is asso
iative.insertleft:insertleft :: (� ! � ! �) ! � ! [�℄ ! �insertleft f base [ ℄ = baseinsertleft f base (a : as) = insertleft f (f base a) asinsertright:insertright :: (� ! � ! �) ! � ! [�℄ ! �insertright f base [ ℄ = baseinsertright f base (a : as) = f a (insertright f base as)iterate:iterate :: (� ! �) ! � ! [�℄iterate f x = x : (iterate f (f x))A useful alternative de�nition of iterate is206



iterate f x = outputwhereoutput = x : (map f output)join: join :: [[�℄℄ ! [�℄join as = insert (++) [ ℄ asladder:ladder :: (Bool ! Bool ! Bool) ! [� ! �℄ ! [
 ! Æ℄ ! Boolladder relation [ ℄ [ ℄ = TRUEladder relation (a : as) (b : bs) = (relation a b) ^ (ladder relation as bs)length:length :: [�℄ ! Numlength [ ℄ = 0length (a : as) = 1 + (length as)A more eÆ
ient de�nition (when stri
tness analysis annotations are interpreted as
all-by-value parameter passing) islength as = length' 0 aswherelength' n [ ℄ = nlength' n (a:as) = length' (n+1) asListToTree1:ListToTree1 :: [�℄ ! BinaryTree �
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ListToTree1 [ ℄ = EMPTYListToTree1 [a℄ = LEAF aListToTree1 (a0:a1:as) = NODE (ListToTree1 (take m (a0:a1:as)))(ListToTree1 (drop m (a0:a1:as)))wherem = (length (a0:a1:as))/2ListToTree2:ListToTree2 :: [�℄ ! BinaryTree �ListToTree2 [ ℄ = EMPTYListToTree2 [a℄ = LEAF aListToTree2 (a0:a1:as) = NODE (ListToTree2 (EvenOnes (a0:a1:as)))(ListToTree2 (OddOnes (a0:a1:as)))whereEvenOnes [ ℄ = [ ℄EvenOnes [a0℄ = [a0℄EvenOnes (a0 : a1 : as) = a0 : (EvenOnes as)OddOnes [ ℄ = [ ℄OddOnes [a0℄ = [ ℄OddOnes (a0 : a1 : as) = a1 : (OddOnes as)ListToVe
tor:ListToVe
tor :: [�℄ ! <�>This is spe
i�ed (but not implemented) by the requirement that for all 0 � i �(length as)�1,(ListToVe
tor as) sub i = as sub iMakeList:
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MakeList :: Num ! (Num ! �) ! [�℄MakeList length f = Ve
torToList (MakeVe
tor length f)MakeMatrix:MakeMatrix :: (Num, Num) ! ((Num, Num) ! �) ! ���This is spe
i�ed (but not implemented) by the requirement that for all 0 � i �xBound and 0 � j � yBound,(MakeMatrix (xBound,yBound) f) sub (i.j) = f (i,j)MakePipeItem:MakePipeItem :: Ray ! PipeItem Ray Impa
tMakePipeItem ray = PIPEITEM ray NOIMPACTMakeVe
tor:MakeVe
tor :: Num ! (Num ! �) ! <�>This is spe
i�ed (but not implemented) by the requirement that for all 0 � i �bound,(MakeVe
tor bound f) sub i = f imap: map :: (� ! �) ! [�℄ ! �map f [ ℄ = [ ℄map f (x:xs) = (f x) : (map f xs)map2:
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map2 :: (� ! � ! 
) ! [�℄ ! [�℄ ! [
℄map2 op (a : as) (b : bs) = (op a b) : (map2 op as bs)map2 op [ ℄ [ ℄ = [ ℄MatrixAll:MatrixAll :: �Bool� ! BoolThis is spe
i�ed by the requirement that for all 0 � i � xBound and 0 � j � yBound,m sub (i,j) = TRUEwhere (xBound,yBound) = MatrixBounds m.MatrixBounds:MatrixBounds :: ��� ! (Num,Num)This is spe
i�ed by the requirement thatMatrixBounds (MakeMatrix (xBound,yBound) f) = (xBound,yBound)MatrixMap:MatrixMap :: (� ! �) ! ��� ! ���We require thatMatrixMap f (MakeMatrix (xBnd,yBnd) g)= MakeMatrix (xBnd,yBnd) (f Æ g)MatrixMap2:MatrixMap2 :: (� ! � ! 
) ! ��� ! ��� �
�We require thatMatrixMap2 f (MakeMatrix (xBnd,yBnd) g)(MakeMatrix (xBnd,yBnd) h) = MakeMatrix (xBnd,yBnd) (f ÆÆ g h)210



mesh:mesh :: ��� ! Boolmesh matrix = MatrixAll (ApplyLNO LinkNeighbours matrix)whereLinkNeighbours [west, south, east, north, home℄= fan ar
 home [west, south, east, north℄MTreeToStream:MTreeToStream :: MultiTree � � ! [MultiTreeToken � �℄MTreeToStream tree = ListOfMTreesToStream [tree℄whereListOfMTreesToStream :: [MultiTree � �℄ ! [MultiTreeToken � �℄ListOfMTreesToStream trees = (RootsOf trees) ++(ListOfMTreesToStream (SubtreesOf trees))not: not :: Bool ! Boolnot TRUE = FALSEnot FALSE = TRUEOddOnes:OddOnes :: [�℄ ! [�℄OddOnes [ ℄ = [ ℄OddOnes [a0℄ = [ ℄OddOnes (a0 : a1 : as) = a1 : (OddOnes as)OnBoundary:
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OnBoundary :: ��� ! (Num,Num) ! BoolOnBoundary matrix (i,j) = (i=0) _ (j=0) _ (i=iBound�1) _ (j=jBound�1)where(iBound,jBound) = MatrixBound matrixpair: pair :: � ! � ! (�, �)pair a b = (a, b)pipeline:pipeline :: [� ! �℄ ! [�℄ ! [�℄pipeline fs xs = (insert (Æ) ident (map map fs)) xsply: ply :: [(� ! �)℄ ! [�℄ ! [�℄ply [ ℄ [ ℄ = [ ℄ply (f : fs)(x : xs) = (f x) : (ply fs xs)repli
ate:repli
ate :: Num ! � ! [�℄repli
ate 0 x = [ ℄repli
ate (n+1) x = x : (repli
ate n x)reverse:reverse :: [�℄ ! [�℄reverse [ ℄ = [ ℄reverse (x : xs) = (reverse xs) ++ [x℄ 212



sele
t:sele
t :: [Bool℄ ! [�℄ ! �sele
t (FALSE : tests) (x : xs) = sele
t tests xssele
t (TRUE : tests) (x : xs) = xsnd: snd :: (�, �) ! �snd (a, b) = bsplit: split :: Num ! [�℄ ! ([�℄,[�℄)split 0 as = ([ ℄, as)split 0 [ ℄ = ([ ℄, [ ℄), if n 6= 0split n (a:as) = (a: front, ba
k), if n 6= 0where(front, ba
k) = split (n�1) asSplitStream:SplitStream :: [TaggedStreamItem � �℄ ! ([MultiTreeToken � �℄, �)SplitStream [ ℄ = ([ ℄, [ ℄)SplitStream ((OUTPUTTAG token) : rest)= (token : rest1, rest2)where(rest1, rest2) = SplitStream restSplitStream ((FEEDBACKTAG subproblem) : rest)= (rest1, subproblem : rest2)where(rest1, rest2) = SplitStream rest
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StreamOfMatri
esToMatrixOfStreams:StreamOfMatri
esToMatrixOfStreams :: [���℄ ! �[�℄�StreamOfMatri
esToMatrixOfStreams ms= MakeMatrix (MatrixBounds (hd ms)) Ea
hStreamwhereEa
hStream (i,j) = generate ElementswhereElements k = (ms sub k) sub (i,j)StreamToMTree:StreamToMTree :: [MultiTreeToken � �℄ ! Multitree � �StreamToMTree stream = StreamToListOfMTrees 1 streamwhereStreamToListOfMTrees :: [MultiTreeToken � �℄ ! [Multitree � �℄StreamToListOfMTrees 0 [ ℄ = [ ℄StreamToListOfMTrees n stream= JoinLayers gen1 subtrees, n 6= 0wheregen1 = FirstGeneration n streamsubtrees = StreamToListOfMTrees m (SubsequentGenerations n stream)m = SizeOfNextGeneration gen1sub :This subs
ripting operator is used for lists, ve
tors and matri
es. For lists its de�ni-tion is(sub) :: [�℄ ! Num ! �(a : as) sub 0 = a(a : as) sub (n+1) = as sub n
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sum: sum :: [Num℄ ! Numsum as = insert (+) 0 as = insertleft (+) 0 as = insertright (+) 0 astake: take :: Num ! [�℄ ! [�℄take n (a : as) = a : (take (n�1) as), if n 6= 0take n [ ℄ = [ ℄, if n 6= 0take 0 as = [ ℄TakeImpa
t:TakeImpa
t :: PipeItem Ray Impa
t ! Impa
tTakeImpa
t (PIPEITEM ray impa
t) = impa
tTestForImpa
t:TestForImpa
t :: Ray ! Obje
t ! Impa
tThis fun
tion's de�nition is not given here to avoid unne
essary detail. It 
he
kswhether Ray interse
ts with Obje
t. If not it returns NOIMPACT. If so, it returns anImpa
t data obje
t 
ontaining details of how far along the ray the impa
t o

urred,where the rays (if any) 
ontributing to this ray's 
olour 
ome from, and details ofthe surfa
e 
hara
teristi
s in the form of a fun
tion whi
h 
ombines the 
olours ofthe 
ontributory rays to yield the 
olour of the original ray.tl: tl :: [�℄ ! [�℄tl (x : xs) = xstranspose:
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transpose :: [[�℄℄ ! [[�℄℄transpose rows = [ ℄, if rows = [ ℄transpose rows = (map hd rows) : (transpose (map tl rows)) otherwiseThe important use for this fun
tion is in transforming an in�nite stream of (�nitelength) lists into a (�nite length) list of in�nite streams|and ba
k again.TreeToList1:TreeToList1 :: BinaryTree � ! [�℄TreeToList1 EMPTY = [ ℄TreeToList1 (LEAF a) = [a℄TreeToList1 (NODE subtree1 subtree2) = (TreeToList1 subtree1)++ (TreeToList1 subtree2)TreeToList2:TreeToList2 :: BinaryTree � ! [�℄TreeToList2 EMPTY = [ ℄TreeToList2 (LEAF a) = [a℄TreeToList2 (NODE evensubtree oddsubtree)= (merge (TreeToList2 evensubtree) (TreeToList2 oddsubtree))wheremerge (a0 : evens) (a1 : odds) = a0 : a1 : (merge evens odds)merge as [ ℄ = asuntil: until :: (Num ! Bool) ! [Num℄ ! Numuntil predi
ate xs = sele
t (map predi
ate (from 0)) xswheresele
t (FALSE : tests) (x : xs) = sele
t tests xssele
t (TRUE : tests) (x : xs) = xVe
torBound: 216



Ve
torBound :: <�> ! NumWe spe
ify thatVe
torBound (MakeVe
tor bound f) = boundVe
torToList:Ve
torToList :: <�> ! [�℄This is spe
i�ed by the requirements that(Ve
torToList (MakeVe
tor bound f)) sub i = (MakeVe
tor bound f) sub iandlength (Ve
torToList (MakeVe
tor bound f)) = bound
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Appendix CProgramming in a real fun
tionallanguageThe programming language used in this book is not pre
isely the same as any 
ommonly-available programming language. In fa
t only a small part of a real programming languageis used, so the translation pro
ess required is really very small. It di�ers only super�
iallyfrom several more a

essible languages:� Miranda1 [Tur86℄. A Miranda interpreter and program development environment is
ommer
ially available from its originator, D.A. Turner.� Orwell (available at Oxford University)� Lazy ML [Aug84℄� Haskell [HWA+88℄. This language proposal will hopefully result in a widely a

essiblepubli
-domain implementation, but none exists at the time of writing.The language SASL (also originated by Turner) may be suitable for experimentation. Forour purposes its resembles Miranda but la
ks a type system. A third, similar, languageimplementation distributed by Turner's group, KRC, is not suitable be
ause it la
ks thewhere 
onstru
t.The LispKit system, whi
h is des
ribed in Henderson's textbook [Hen80℄, and Sugar,des
ribed by Glaser, Hankin and Till [GHT84℄ might also be suitable for experimentation,but la
k pattern-mat
hing as well as a type system.Stri
t languagesThe language used here is lazy: a parameter expression is evaluated only if and whenthe appli
ation in whi
h it appears needs its value to return a result. An implementationmust employ normal-order redu
tion (see page 51), unless stri
tness analysis indi
ates thatappli
ative order will be safe.In a stri
t (that is, 
all-by-value) language, a parameter is always evaluated before it ispassed to the fun
tion body. Implementations of su
h languages are mu
h more 
ommon.1Miranda is a trademark of Resear
h Software Ltd.219



Unfortunately translating a program written in a lazy language into a program whi
h willwork under a stri
t interpretation is quite 
ompli
ated, and not re
ommended. Detailsare given in [GHT84℄.C.1 Di�eren
es from MirandaThe main purpose of this appendix is to give enough information for the programs inthis book to be tried out under the Miranda system. Users of other implementationsmust glean what they 
an. Reasons for the di�eren
es are summarised at the end of theappendix.Lexi
al 
onvention for 
onstru
torsAll 
onstru
tors (e.g. NIL, CONS, LEAF, NODE, et
.) appeared in upper 
ase, while allother identi�ers were of mixed 
ase. In Miranda, any identi�er starting with a 
apital isde�ned to be a 
onstru
tor, and all other names must begin in lower 
ase.Type variablesType variables were referred to as �, �, 
 et
. In Miranda they are written *, **, *** et
.Pattern mat
hing and guardsMiranda's syntax in
ludes ours as a spe
ial 
ase, but does not demand that all equationsde�ning an obje
t be mutually ex
lusive. Miranda's semanti
s di�ers: patterns are testedsequentially from the top of the page downwards. This means that fun
tions like the non-stri
t or of page 52 will not work as expe
ted. The 
omponents of a parti
ular equation'spattern are also tested sequentially, in an unspe
i�ed order.Ve
tors and matri
esMiranda has no ve
tors or matri
es. Lists and lists of lists 
an be used instead, providedeÆ
ien
y is not a serious 
on
ern.Built-in operatorsPresent-day keyboards have tied Miranda to forms like \<=" where \�" appears in thisbook, \*" for \�", \->" for \!", \&" for \^" and so on. Fun
tion 
omposition, f Æ g, iswritten \f . g" in Miranda. There is no 
ounterpart to \ÆÆ".The subs
ripting operator sub is used for lists, ve
tors and matri
es. In Miranda, itsonly 
ounterpart is the in�x \!" operator for indexing lists.The list type and its shorthandThe [a, b, . . . ℄, \:" and [ ℄ notations were introdu
ed as shorthand for a list data typede�ned by 220



List � ::= NIL j CONS � (List �)In Miranda they are di�erent (but isomorphi
) types.C.1.1 ExamplesBinary trees: as in this book:BinaryTree � ::= EMPTY jLEAF � jNODE (BinaryTree �) (BinaryTree �)In Miranda:binary_tree * ::= Empty |Leaf * |Node (binary_tree *) (binary_tree *)Square root: as in this book:sqrt :: Num ! numsqrt a = until 
onverges xswhere
onverges 0 = FALSE
onverges (i+1) = abs( ((xs sub (i+1)) � (xs sub i))/(xs sub(i+1)) ) � �xs = generate NextEstimatewhereNextEstimate 0 = a/2NextEstimate (i+1) = ((xs sub i) + a/(xs sub i))/2until :: (Num ! Bool) ! [Num℄ ! Numuntil predi
ate xs = sele
t (map predi
ate (from 0)) xswheresele
t (FALSE:tests) (x:xs) = sele
t tests xssele
t (TRUE:tests) (x:xs) = xIn Miranda:sqrt :: num -> numsqrt a = until 
onverges xswhere
onverges 0 = False
onverges (i+1) = abs( ((xs ! (i+1))221



- (xs ! i))/(xs ! (i+1)) ) <= epsilonxs = generate NextEstimatewhereNextEstimate 0 = a/2NextEstimate (i+1) = ((xs ! i) + a/(xs ! i))/2until :: (num -> bool) -> [num℄ -> numuntil predi
ate xs = sele
t (map predi
ate (from 0)) xswheresele
t (False:tests) (x:xs) = sele
t tests xssele
t (True:tests) (x:xs) = xC.2 Reasons for the di�eren
esThe lexi
al di�eren
es, su
h as the uses of \!" instead of \->", and the admission of
apitals in ordinary identi�ers, were simply to improve readability, at the suggestion ofthe reviewers.The only signi�
ant 
hange is in the rules 
on
erning overlapping patterns and guards.When reasoning about programs, it is important to be able to treat equations indepen-dently of one another, so they must not overlap. However, in a pra
ti
al programminglanguage design di�erent 
riteria apply:� Guards: in a programming language, it is important that a 
ompiler be able to verifythat a program is well formed. To 
he
k whether guards overlap is not 
omputablein general. By 
ontrast, in a language used for spe
ifying and verifying programs,the onus is on the human.� Patterns: patterns di�er from guards be
ause a 
ompiler 
an perform a full analysisof overlapping and missing 
ases. The sequential order of testing patterns used byMiranda simpli�es and shortens programs: one 
an writeEa
hElement (0,0) = edgeEa
hElement (i,0) = edgeEa
hElement (0,j) = edgeEa
hElement (i,j) = f (a sub (i,j�1)) (a sub (i�1,j))whereas we had to introdu
e guards to disambiguate the four equations.A simple resolution of this 
ould be to introdu
e a synta
ti
 
onstru
t for de�nition bysequential pattern/guard mat
hing.Miranda and most other languages with pattern mat
hing have avoided having to usea parallel pattern testing me
hanism like our general normalisation strategy be
ause itis diÆ
ult to implement without a large run-time overhead. This leads to rather moreawkward rules for program syntax and semanti
s than ours. By 
ontrast, 
ommitted
hoi
e logi
 languages like Parlog exploit parallelism in guard evaluation as a positivefeature. 222



Tagged tuplesOne subtlety tou
hed on only slightly in the text is the use of 
onstru
tors to tag data typeswhi
h are really only aggregates of their 
omponents. The main example (see page 180)wasPipeItem � � ::= PIPEITEM � �The 
onstru
tor PIPEITEM was introdu
ed solely so provide a visual 
ue to what is goingon. It does not serve to distinguish di�erent alternative 
ases. We assumed that we 
ouldhave used the pair typePipeItem � � == (�, �)instead. In Miranda they are nearly but not pre
isely equivalent. Suppose we de�nef (PIPEITEM a b) = TRUEIn Miranda, f ? = ?. By 
ontrast, if we writeg (a, b) = TRUEthen f ? = TRUE. In Miranda, the rule is that the parameter must be evaluated enough toun
over the 
onstru
tors appearing on the LHS before the equation 
an be applied. Someother languages, notably Haskell, treat data types with just one alternative as a spe
ial
ase. Su
h a 
onstru
tor is 
alled \irrefutable", and a pre
ise equivalen
e with pairs holds.
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