
S
of

tw
ar

e 
P

er
fo

rm
an

ce
 

O
pt

im
is

at
io

n 
G

ro
up

°

p ; q
p | q

p(q)     p<q>
p || q

f gGenerative and 
adaptive methods in 
performance 
programming

Paul H J Kelly
Imperial College London

Joint work with Olav 
Beckmann
Including contributions from Tony 
Field and numerous students



Where we’re coming from…
I lead the Software 
Performance Optimisation 
group at Imperial College, 
London
Stuff I’d love to talk about 
another time:

Run-time code-motion 
optimisations across network 
boundaries in Java RMI
Bounds-checking for C, links 
with unchecked code
Is Morton-order layout for 2D 
arrays competitive?
Domain-specific optimisation 
frameworks
Domain-specific profiling
Proxying in CC-NUMA cache-
coherence protocols –
adaptive randomisation and 
combining

Hyde Park

Albert Hall

Imperial College

Science Museum

V & A
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Performance programming

Performance programming is the discipline 
of software engineering in its application to 
achieving performance goals

This talk aims to review a selection of 
performance programming techniques we 
have been exploring 
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What is the role of constructive methods in 
performance programming? 

“by construction”

“by design”

How can we build performance into a 
software project?
How can we build-in the means to detect and 
correct performance problems?
As early as possible
With minimal disruption to the software’s 
long-term value?
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“In constructive logic, we can synthesize 
correct programs by expressing the 
specification as a formula, and proving 
it. We call this style of programming 
constructive” 

(Sato Masahiko／Kameya Yukiyoshi, Constructive Programming 
based on SST/Λ, IPSJ SIGNotes Software Foundation Abstract 
No.031 - 006)
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Most performance 
improvement 
opportunities come from 
adapting components to 
their context

So the art of 
performance 
programming is to 
figure out how to design 
and compose 
components  so this 
doesn’t happen

Most performance 
improvement measures break 
abstraction boundaries

This talk is about two ideas 
which can help:

Run-time program generation 
(and manipulation) 
Metadata, characterising data 
structures, components, and 
their dependence relationships 
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Most performance 
improvement 
opportunities come from 
adapting components to 
their context

So the art of 
performance 
programming is to 
figure out how to design 
and compose 
components  so this 
doesn’t happen

Most performance 
improvement measures break 
abstraction boundaries

This talk is about two ideas 
which can help:

Run-time program generation 
(and manipulation) 
Metadata, characterising data 
structures, components, and 
their dependence relationships 
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Most performance 
improvement 
opportunities come from 
adapting components to 
their context

So the art of 
performance 
programming is to 
figure out how to design 
and compose 
components  so this 
doesn’t happen

Most performance 
improvement measures break 
abstraction boundaries

This talk is about two ideas 
which can help:

Run-time program generation 
(and manipulation) 
Metadata, characterising data 
structures, components, and 
their dependence relationships 
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Most performance 
improvement 
opportunities come from 
adapting components to 
their context

So the art of 
performance 
programming is to 
figure out how to design 
and compose 
components  so this 
doesn’t happen

Most performance 
improvement measures break 
abstraction boundaries

This talk is about two ideas 
which can help:

Run-time program generation 
(and manipulation) 
Metadata, characterising data 
structures, components, and 
their dependence relationships 
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This talk:
Communication fusion
Alignment in parallel BLAS
Partial evaluation/specialisation
Adapting to platform/resources
Cross-component loop fusion

Adapting to context

Dependence metadata

Performance 
metadata

Component model to 
support composition-
time adaptation 



double s1, s2;

void sum( double& data ) {

double r = 0.0 ; …

for (j=jmin;j<=jmax;j++) {

r += data[j] ;

}

MPI_Allreduce(&r,&s1,1,MPI_SUM,...);

}

void sumsq( double& data ) {

double r = 0.0 ; …

for (j=jmin;j<=jmax;j++) {

r += data[j]*data[j] ;

}

MPI_Allreduce(&r,&s2,1,...);

}

double a[…][…],var[…] ;

for( i=0; i<N; i++ ) {

sum(a[i]) ;

sumSq(a[i]) ;

var[i] = (s2-s1*s1/N)/(N-1);

}

Component #1

Component #2

Component composition

Adaptation #1: Communication fusion
Example: calculating 
variance of distributed 
vector “data”



double rVec[2];

void sum( double& data ) {

double r = 0.0 ; …

for (j=jmin;j<=jmax;j++) {

r += data[j] ;

}

rVec[0] = r;

}

void sumsq( double& data ) {

double r = 0.0 ; …

for (j=jmin;j<=jmax;j++) {

r += data[j]*data[j] ;

}

rVec[1]= r;

}

double a[…][…],var[…] ;

for( i=0; i<N; i++ ) {

sum(a[i]) ;

sumSq(a[i]) ;

MPI_Allreduce(&rVec,&s,2,

MPI_SUM,..) ;

var[i] = (s2-s1*s1/N)/(N-1);

}

Component #1

Component #2

Component composition

Adaptation #1: Communication fusion

For N=3000 fusing MPI 
Allreduces improved 
performance on linux 
cluster by 48.7%

Example: calculating 
variance of distributed 
vector “data”



CFL_Double s1(0), s2(0) ;

void sum( double& data ) {

s1 = 0.0 ; …

for (j=jmin;j<=jmax;j++) {

s1 += data[j] ;

}

}

void sumsq( double& data ) {

s2 = 0.0 ; …

for (j=jmin;j<=jmax;j++) {

s2 += data[j]*data[j] ;

}

}

double a[…][…],var[…] ;

for( i=0; i<N; i++ ) {

sum(a[i]) ;

sumSq(a[i]) ;

var[i] = (s2-s1*s1/N)/(N-1);

}

Shared variable declaration

Global reduction 

Assignment to local
force point 

Global reduction 

Component #1

Component #2

Component composition

Adaptation #1: Communication fusion

For N=3000 our CFL 
library improved 
performance on linux 
cluster by 44.5%



Carbon Evolve

Stats

Zoo

Phyto

Physics
Move

Nutrient

Energy

Total Biomass 
computed here

Used here

Cell Nitrogen 
computed here
Used here

And so on…

…

Nz
Az
Iz
CO2z

…

Ocean
surface

Application: 
ocean 
plankton 
ecology 
model

27 reduction 
operations in total
3 communications 
actually required!
60% speedup for 32-
processor AP3000

A.J. Field, P.H.J. Kelly and T.L. Hansen, "Optimizing Shared Reduction Variables in MPI Programs". In Euro-Par 2002 
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This is a generic conjugate-
gradient solver algorithm, part 
of Dongarra et al’s IML++ 
library
It is parameterised by the 
Matrix and Vector types
Our DESOBLAS library 
implements this API for dense 
matrices
In parallel using MPI
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x:=αp+x

Execution is delayed until output 
or conditional forces computation
BLAS functions return opaque 
handles

A r x

p:=r

q:=A.p θ:=r.r

χ:=q.p

α:= θ/χ

Library builds up 
data flow graph 
“recipe” 
representing 
delayed 
computation
This allows 
optimization to 
exploit 
foreknowledge 
of how results 
will be used

Example: 
conjugate 
gradient
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For parallel dense BLAS, main issue is avoiding 
unnecessary data redistributions
Consider just the first iteration:

Conflict
q and p have 
incompatible 
distributions

x:=αp+x

A r x

p:=r

q:=A.p θ:=r.r

χ:=q.p

α:= θ/χ

A: blocked row-major x: blocked row-wiser: blocked row-wise

Choose default 
distributions 
when variables 
initialised.  
Vectors are 
usually 
replicatedp:

q:Result of 
matrix-
vector 
multiply is 
aligned with 
the matrix 
columns
(because result column vector is 
formed from dot-products across 
each row)
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We are forced to insert a transpose:

r: blocked row-wiseA: blocked row-major x: blocked row-wise

x:=αp+x

A r x

p:=r

q:=A.p θ:=r.r

χ:=q.p

α:= θ/χ

p:

q: transpose

p: Conflict

x and p have 
incompatible 
distributions
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We are forced to insert another
transpose:

x:=αp+x

A r x

p:=r

q:=A.p θ:=r.r

χ:=q.p

α:= θ/χ

p:

q: transpose

p:

We can transpose either 
p or x

(or we could have kept 
an untransposed copy of 
p – if we’d known it 
would be needed)

transpose
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Delayed execution allows us to see how 
values will be used and choose better:

x:=αp+x

A r x

p:=r

q:=A.p θ:=r.r

χ:=q.p

α:= θ/χ

p:

q: transpose

p:transpose

If we can foresee how p 
will be used, we can see 
it’s the wrong thing to 
transpose…
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Delayed execution allows us to see how 
values will be used and choose better:

x:=αp+x

A r x

p:=r

q:=A.p θ:=r.r

χ:=q.p

α:= θ/χ

A: blocked row-major x: blocked row-wiser: blocked row-wise

Conflict

If we can foresee how p 
will be used, we can see 
it’s the wrong thing to 
transpose…
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Delayed execution allows us to see how 
values will be used and choose better:

x:=αp+x

A r x

q:=A.p θ:=r.r

χ:=q.p

α:= θ/χ

A: blocked row-major x: blocked row-wiser: blocked row-wise

transpose

p:=r
If we can foresee how p 
will be used, we can see 
it’s the wrong thing to 
transpose…
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Cluster of 2GHz P4, 500 MB RAM, running Linux 2.4.20 and gcc 2.95.3, using 
C/Fortran bindings (not C++ overloading)
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Each DESOBLAS library 
operator carries metadata, 
which is used at run-time to find 
an optimized execution plan
For optimizing data placement, 
metadata is set of affine 
functions relating operator’s 
output data placement to the 
placement of each input
Network of invertible linear 
relationships allows optimizer to 
shift redistributions around 
dataflow graph to minimise 
communication cost

((broadcasts and reductions 
involve singular placement 
relationships - see Beckmann 
and Kelly, LCPC’99 for how to 
make this idea still work))

Metadata: 
affine 
relationship 
between 
operand 
alignments 
and result 
alignment

Composition: metadata is assembled 
according to arcs of data flow graph to define 
system of alignment constraints:

Peter Liniker, Olav Beckmann and Paul H J Kelly, Delayed Evaluation, Self-Optimizing Software Components as a Programming Model. In Euro-Par 2002 
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specialisation #include <TaskGraph>

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

using namespace tg;

int main( int argc, char argv[] ) {
TaskGraph T;
int b = 1, c = 1;

taskgraph ( T ) {
tParameter ( tVar ( int, a ) );

a = a + c;
}

T.compile ( TaskGraph::GCC );
T.execute ("a", &b, NULL);

printf("b = %d\n", b);
}

The TaskGraph 
library is a portable 
C++ package for 
building and 
optimising code on-
the-fly
Compare:

`C (tcc) (Dawson 
Engler)
MetaOCaml (Walid 
Taha et al)
Jak (Batory, Lofaso, 
Smaragdakis)

Multi-stage 
programming: 
“runtime code 
generation as a first-
class language 
feature”
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specialisation #include <TaskGraph>

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

using namespace tg;

int main( int argc, char argv[] ) {
TaskGraph T;
int b = 1, c = 1;

taskgraph ( T ) {
tParameter ( tVar ( int, a ) );

a = a + c;
}

T.compile ( TaskGraph::GCC );
T.execute ( “a", &b, NULL);

printf("b = %d\n", b);
}

A taskgraph is an 
abstract syntax 
tree for a piece of 
executable code
Syntactic sugar 
makes it easy to 
construct 
Defines a 
simplified sub-
language

With first-class 
multidimensional 
arrays, no 
alliasing
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specialisation

Binding time is 
determined by types
In this example

c is static
a is dynamic

built using value of 
c at construction 
time

#include <TaskGraph>
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

using namespace tg;

int main( int argc, char argv[] ) {
TaskGraph T;
int b = 1, c = 1;

taskgraph ( T ) {
tParameter ( tVar ( int, a ) );

a = a + c;
}

T.compile ( TaskGraph::GCC );
T.execute (“a", &b, NULL);

printf("b = %d\n", b);
}
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specialisation

Better example:
Applying a 
convolution 
filter to a 2D 
image
Each pixel is 
averaged 
with 
neighbouring 
pixels 
weighted by 
a stencil 
matrix

void filter (float *mask, unsigned n, unsigned m, 
const float *input, float *output, 
unsigned p, unsigned q)

{
unsigned i, j;
int       k, l;
float    sum;
int half_n = (n/2);
int half_m = (m/2);

for (i = half_n; i < p - half_n; i++) {
for (j = half_m; j < q - half_m; j++) {

sum = 0;

for (k = -half_n; k <= half_n; k++)
for (l = -half_m; l <= half_m; l++)

sum += input[(i + k) * q + (j + l)]
* mask[k * n + l];

output[i * q + j] = sum;
}

}
}

Mask

Image

// Loop bounds unknown at compile-time
// Trip count 3, does not fill vector registers

First without TaskGraph
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specialisation

void taskFilter (TaskGraph &t, 
float *mask, unsigned n, unsigned m, 
unsigned p, unsigned q)

{
taskgraph (t) {

unsigned img_size[] = { IMG_SIZE, IMG_SIZE };
tParameter(tArray(float, input, 2, img_size ));
tParameter(tArray(float, output, 2, img_size ));
unsigned k, l;
unsigned half_n = (n/2);
unsigned half_m = (m/2);

tVar (float, sum);
tVar (int, i);
tVar (int, j);

tFor (i, half_n, p - half_n - 1) {
tFor (j, half_m, q - half_m - 1) {

sum = 0;

for ( k = 0; k < n; ++k )
for ( l = 0; l < m; ++l )

sum += input[(i + k - half_n)][(j + l - half_m)]
* mask[k * m + l];

output[i][j] = sum;
}

}
}

}

// Inner loops fully unrolled
// j loop is now vectorisable

Now with TaskGraph

TaskGraph 
representation of 
this loop nest
Inner loops are 
static – executed 
at construction 
time
Outer loops are 
dynamic
Uses of mask 
array are entirely 
static

This is deduced 
from the types of 
mask, k, m and l.
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Image convolution 
using 
TaskGraphs: 
performance

We use a 3x3 averaging filter as 
convolution matrix
Images are square arrays of single-
precision floats ranging in size up to 
4096x4096
Measurements taken on a 1.8GHz 
Pentium 4-M running Linux 2.4.17, using 
gcc 2.95.3 and icc 7.0
Measurements were taken for one pass 
over the image

(Used an earlier release of the TaskGraph library)

Generalised Image Filtering Performance (1 Pass)

0

0.2

0.4

0.6

0.8

1

1.2

0 512 1024 1536 2048 2560 3072 3584 4096
Image Size (512 means image size is 512x512 floats)

R
un

tim
e 

in
 S

ec
on

ds

Generic C++ compiled with gcc

Generic C++ compiled with icc

TaskGraph gcc

TaskGraph icc

Generalised Image Filtering - Timing Breakdown

0

0.1

0.2

0.3

Generic gcc
1024

Generic icc
1024

TaskGraph
gcc 1024

TaskGraph
icc 1024

Generic gcc
2048

Generic icc
2048

TaskGraph
gcc 2048

TaskGraph
icc 2048

Ti
m

e 
in

 S
ec

on
ds

Code Runtime

Compile Time

1024x1024 too small

2048x2048 big
enough

Adaptation #3: 
specialisation
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specialisation

Application: Sobel filters in image processing (8-bit RGB data) –
compared with Intel’s Performance Programming Library
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The TaskGraph library is a tool for dynamic 
code generation and optimisation
Large performance benefits can be gained 
from specialisation alone

But there’s more:
TaskGraph library builds SUIF intermediate 
representation
Provides access to SUIF analysis and 
transformation passes

SUIF (Stanford University Intermediate Form)
Detect and characterise dependences between 
statements in loop nests
Restructure – tiling, loop fusion, skewing, 
parallelisation etc
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Example: matrix 
multiply

void taskMatrixMult (TaskGraph &t ,
TaskLoopIdentifier *loop) {

taskgraph ( t ) {
tParameter ( tArray ( float, a, 2, sizes ) );
tParameter ( tArray ( float, b, 2, sizes ) );
tParameter ( tArray ( float, c, 2, sizes ) );
tVar ( int, i );
tVar ( int, j );
tVar ( int, k );

tGetId ( loop[0] ); // label
tFor ( i, 0, MATRIXSIZE - 1 ) {

tGetId ( loop[1] ); // label
tFor ( j, 0, MATRIXSIZE - 1 ) {

tGetId ( loop[2] ); // label
tFor ( k, 0, MATRIXSIZE - 1 ) {

c[i][j] += a[i][k] * b[k][j];
}

}
}

}
}

int main ( int argc, char **argv ) {
TaskGraph mm;
TaskLoopIdentifier loop[3];

// Build TaskGraph for ijk multiply
taskMatrixMult ( loop, mm );

// Interchange the j and k loops
interchangeLoops ( loop[1], loop[2] );

int trip[] = { 64, 64 };

// Tile the j and k loops into 64x64 tiles
tileLoop ( 2, &loop[1], trip );

mm.compile ( TaskGraph::GCC );
mm.execute ( "a", a, "b", b, "c", c, NULL );

}

Original TaskGraph
for matrix multiply

Code to interchange and tile
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void taskMatrixMult (TaskGraph &t ,

TaskLoopIdentifier *loop) {
taskgraph ( t ) {
tParameter ( tArray ( float, a, 2, sizes ) );
tParameter ( tArray ( float, b, 2, sizes ) );
tParameter ( tArray ( float, c, 2, sizes ) );
tVar ( int, i );
tVar ( int, j );
tVar ( int, k );

tGetId ( loop[0] ); // label
tFor ( i, 0, MATRIXSIZE - 1 ) {
tGetId ( loop[1] ); // label
tFor ( j, 0, MATRIXSIZE - 1 ) {
tGetId ( loop[2] ); // label
tFor ( k, 0, MATRIXSIZE - 1 ) {
c[i][j] += a[i][k] * b[k][j];

}
}

}
}

} int main ( int argc, char **argv ) {
TaskGraph mm;
TaskLoopIdentifier loop[3];

// Build TaskGraph for ijk multiply

taskMatrixMult ( loop, mm );

// Interchange the j and k loops

interchangeLoops ( loop[1], loop[2] );

int trip[] = { 64, 64 };

// Tile the j and k loops into 64x64 tiles

tileLoop ( 2, &loop[1], trip );

mm.compile ( TaskGraph::GCC );
mm.execute ( "a", a, "b", b, "c", c, NULL );

}

extern void taskGraph_1(void **params)
{

float (*a)[512];
float (*b)[512];
float (*c)[512];
int i;
int j;
int k;
int j_tile;
int k_tile;

a = *params;
b = params[1];
c = params[2];
for (i = 0; i <= 511; i++)

for (j_tile = 0; j_tile <= 511; j_tile += 64)
for (k_tile = 0; k_tile <= 511; k_tile += 64)

for (j = j_tile; 
j <= min(511, 63 + j_tile); j++)

for (k = max(0, k_tile); 
k <= min(511, 63 + k_tile); k++)

c[i][k] = c[i][k] + a[i][j] * b[j][k];
}

Original TaskGraph
for matrix multiply

Code to interchange and tile

Generated code
(Slightly tidied)



On Pentium 4-M, 1.8 GHz, 512KB L2 cache, 256 MB, running Linux 2.4 and icc 7.1.

Adaptation #4: 
Adapting to platform/resources

We can program a 
search for the best 
implementation for 
our particular 
problem size, on our 
particular hardware
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Programmer controls application of 
sophisticated transformations
Performance benefits can be large – in this 
example >8x
Different target architectures and problem 
sizes need different combinations of 
optimisations

ijk or ikj?
Hierarchical tiling
2d or 3d?
Copy reused submatrix into contiguous memory?

Matrix multiply is a simple example
Olav Beckmann, Alastair Houghton, Paul H J Kelly and Michael Mellor, Run-time code generation in C++ as a 

foundation for domain-specific optimisation. Domain-Specific Program Generation, Springer (2004). 
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Image processing 
example
Blur, edge-detection 
filters then sum with 
original image

Final two additions using Intel 
Performance Programming Library:
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After loop fusion:
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After loop fusion:

Simple fusion leads to small 
improvement
Beats Intel library only on large images
Further fusion opportunities require 
skewing/retiming
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Dependence metadata
Components should carry a 
description of their 
dependence structure
That is based on an 
abstraction of the 
component’s Iteration Space 
Graph (ISG)

U

Jacobi1D(U,V):

Jacobi1D(V,W):

V

W

For (i=1; i<N; i++)
V[i] = (U[i-1] + U[i+1])/2

For (i=1; i<N; i++)
W[i] = (V[i-1] + V[i+1])/2
Fusion invalid: iteration i of second loop reads
value generated at iteration i of first loop

Eg to allow simple check for 
validity of loop and 
communication fusion
Eg to determine dependence 
constraints on distribution
Eg so we can align data 
distributions to minimise 
communication
To predict communication 
volumes
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Dependence metadata
Components should carry a 
description of their 
dependence structure
That is based on an 
abstraction of the 
component’s Iteration Space 
Graph (ISG)

U

Jacobi1D(U,V):

Jacobi1D(V,W):

V

W

For (i=1; i<N; i++)
V[i] = (U[i-1] + U[i+1])/2

For (i=1; i<N; i++)
W[i] = (V[i-1] + V[i+1])/2

Eg to allow simple check for 
validity of loop and 
communication fusion
Eg to determine dependence 
constraints on distribution
Eg so we can align data 
distributions to minimise 
communication
To predict communication 
volumes

Fusion valid: iteration i of second loop reads 
value generated at iteration i of first loop
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Performance metadata
Components should carry a 
model of how execution time 
depends on parameters and 
configuration
That is based on an 
abstraction of the 
component’s Iteration Space 
Graph (ISG)

Eg to allow scheduling 
and load balancing
Eg to determine 
communication-
computation-
recomputation tradeoffs

N: 
Number 

of 
iterations

M: Inner loop bounds

Compute volume: N.(M-1)
Input volume: M

for (it=0; it<N; it++) 
for (i=1; i<M; i++)

V[i] = (U[i-1] + U[i+1])/2

Output volume: M-1
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Performance metadata
Components should carry a 
model of how execution time 
depends on parameters and 
configuration
That is based on an 
abstraction of the 
component’s Iteration Space 
Graph (ISG)

Eg to allow scheduling 
and load balancing
Eg to determine 
communication-
computation-
recomputation tradeoffs

N: 
Number 

of 
iterations

M: Inner loop bounds

Compute volume: N.(M-1)
Input volume: M Output volume: M-1

for (it=0; it<N; it++) 
for (i=1; i<M; i++)

V[i] = (U[i-1] + U[i+1])/2
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We want to adapt to shape of data
But in interesting applications, data shape is not 
regular

Shape description/metadata depends on data values
Metadata size is significant 
Metadata generation/manipulation is significant part of 
computational effort

The problem:
Cost of organising and analysing the data may be large 
compared to the computation itself
Size of metadata may be large compared with size of the 
data itself

What does this mean?
Some kind of reflective programming
Arguably, metaprogramming

Programs that make runtime decisions about how 
much work to do to optimise future execution

Paul H J Kelly, Olav Beckmann, Tony Field and Scott Baden, "Themis: Component dependence metadata in adaptive parallel applications". Parallel 
Processing Letters, Vol. 11, No. 4 (2001)
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Performance programming as a software 
engineering discipline
The challenge of preserving abstractions
The need to design-in the means to solve 
performance problems
Adaptation to data-flow context
Adaptation to platform/resources
Adaptation to data values, sizes, shapes
Making component composition explicit: 
build a plan, optimise it, execute it
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