
S
of

tw
ar

e
P

er
fo

rm
an

ce

O
pt

im
is

at
io

n
G

ro
up

°

p ; q
p | q

p(q) p<q>
p || q

f gGenerative and
adaptive methods in
performance
programming

Paul H J Kelly
Imperial College London

Joint work with Olav
Beckmann
Including contributions from Tony
Field and numerous students

Where we’re coming from…
I lead the Software
Performance Optimisation
group at Imperial College,
London
Stuff I’d love to talk about
another time:

Run-time code-motion
optimisations across network
boundaries in Java RMI
Bounds-checking for C, links
with unchecked code
Is Morton-order layout for 2D
arrays competitive?
Domain-specific optimisation
frameworks
Domain-specific profiling
Proxying in CC-NUMA cache-
coherence protocols –
adaptive randomisation and
combining

Hyde Park

Albert Hall

Imperial College

Science Museum

V & A

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 3Generative and adaptive methods in performance programming

Performance programming

Performance programming is the discipline
of software engineering in its application to
achieving performance goals

This talk aims to review a selection of
performance programming techniques we
have been exploring

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 4Construction
What is the role of constructive methods in
performance programming?

“by construction”

“by design”

How can we build performance into a
software project?
How can we build-in the means to detect and
correct performance problems?
As early as possible
With minimal disruption to the software’s
long-term value?

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 5

“In constructive logic, we can synthesize
correct programs by expressing the
specification as a formula, and proving
it. We call this style of programming
constructive”

(Sato Masahiko／Kameya Yukiyoshi, Constructive Programming
based on SST/Λ, IPSJ SIGNotes Software Foundation Abstract
No.031 - 006)

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 6Abstraction
Most performance
improvement
opportunities come from
adapting components to
their context

So the art of
performance
programming is to
figure out how to design
and compose
components so this
doesn’t happen

Most performance
improvement measures break
abstraction boundaries

This talk is about two ideas
which can help:

Run-time program generation
(and manipulation)
Metadata, characterising data
structures, components, and
their dependence relationships

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 7Abstraction
Most performance
improvement
opportunities come from
adapting components to
their context

So the art of
performance
programming is to
figure out how to design
and compose
components so this
doesn’t happen

Most performance
improvement measures break
abstraction boundaries

This talk is about two ideas
which can help:

Run-time program generation
(and manipulation)
Metadata, characterising data
structures, components, and
their dependence relationships

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 8Abstraction
Most performance
improvement
opportunities come from
adapting components to
their context

So the art of
performance
programming is to
figure out how to design
and compose
components so this
doesn’t happen

Most performance
improvement measures break
abstraction boundaries

This talk is about two ideas
which can help:

Run-time program generation
(and manipulation)
Metadata, characterising data
structures, components, and
their dependence relationships

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 9Abstraction
Most performance
improvement
opportunities come from
adapting components to
their context

So the art of
performance
programming is to
figure out how to design
and compose
components so this
doesn’t happen

Most performance
improvement measures break
abstraction boundaries

This talk is about two ideas
which can help:

Run-time program generation
(and manipulation)
Metadata, characterising data
structures, components, and
their dependence relationships

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 10Abstraction

This talk:
Communication fusion
Alignment in parallel BLAS
Partial evaluation/specialisation
Adapting to platform/resources
Cross-component loop fusion

Adapting to context

Dependence metadata

Performance
metadata

Component model to
support composition-
time adaptation

double s1, s2;

void sum(double& data) {

double r = 0.0 ; …

for (j=jmin;j<=jmax;j++) {

r += data[j] ;

}

MPI_Allreduce(&r,&s1,1,MPI_SUM,...);

}

void sumsq(double& data) {

double r = 0.0 ; …

for (j=jmin;j<=jmax;j++) {

r += data[j]*data[j] ;

}

MPI_Allreduce(&r,&s2,1,...);

}

double a[…][…],var[…] ;

for(i=0; i<N; i++) {

sum(a[i]) ;

sumSq(a[i]) ;

var[i] = (s2-s1*s1/N)/(N-1);

}

Component #1

Component #2

Component composition

Adaptation #1: Communication fusion
Example: calculating
variance of distributed
vector “data”

double rVec[2];

void sum(double& data) {

double r = 0.0 ; …

for (j=jmin;j<=jmax;j++) {

r += data[j] ;

}

rVec[0] = r;

}

void sumsq(double& data) {

double r = 0.0 ; …

for (j=jmin;j<=jmax;j++) {

r += data[j]*data[j] ;

}

rVec[1]= r;

}

double a[…][…],var[…] ;

for(i=0; i<N; i++) {

sum(a[i]) ;

sumSq(a[i]) ;

MPI_Allreduce(&rVec,&s,2,

MPI_SUM,..) ;

var[i] = (s2-s1*s1/N)/(N-1);

}

Component #1

Component #2

Component composition

Adaptation #1: Communication fusion

For N=3000 fusing MPI
Allreduces improved
performance on linux
cluster by 48.7%

Example: calculating
variance of distributed
vector “data”

CFL_Double s1(0), s2(0) ;

void sum(double& data) {

s1 = 0.0 ; …

for (j=jmin;j<=jmax;j++) {

s1 += data[j] ;

}

}

void sumsq(double& data) {

s2 = 0.0 ; …

for (j=jmin;j<=jmax;j++) {

s2 += data[j]*data[j] ;

}

}

double a[…][…],var[…] ;

for(i=0; i<N; i++) {

sum(a[i]) ;

sumSq(a[i]) ;

var[i] = (s2-s1*s1/N)/(N-1);

}

Shared variable declaration

Global reduction

Assignment to local
force point

Global reduction

Component #1

Component #2

Component composition

Adaptation #1: Communication fusion

For N=3000 our CFL
library improved
performance on linux
cluster by 44.5%

Carbon Evolve

Stats

Zoo

Phyto

Physics
Move

Nutrient

Energy

Total Biomass
computed here

Used here

Cell Nitrogen
computed here
Used here

And so on…

…

Nz
Az
Iz
CO2z

…

Ocean
surface

Application:
ocean
plankton
ecology
model

27 reduction
operations in total
3 communications
actually required!
60% speedup for 32-
processor AP3000

A.J. Field, P.H.J. Kelly and T.L. Hansen, "Optimizing Shared Reduction Variables in MPI Programs". In Euro-Par 2002

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 15Adaptation #2: alignment in parallel BLAS

This is a generic conjugate-
gradient solver algorithm, part
of Dongarra et al’s IML++
library
It is parameterised by the
Matrix and Vector types
Our DESOBLAS library
implements this API for dense
matrices
In parallel using MPI

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 16Adaptation #2: alignment in parallel BLAS

x:=αp+x

Execution is delayed until output
or conditional forces computation
BLAS functions return opaque
handles

A r x

p:=r

q:=A.p θ:=r.r

χ:=q.p

α:= θ/χ

Library builds up
data flow graph
“recipe”
representing
delayed
computation
This allows
optimization to
exploit
foreknowledge
of how results
will be used

Example:
conjugate
gradient

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 17Adaptation #2: alignment in parallel BLAS
For parallel dense BLAS, main issue is avoiding
unnecessary data redistributions
Consider just the first iteration:

Conflict
q and p have
incompatible
distributions

x:=αp+x

A r x

p:=r

q:=A.p θ:=r.r

χ:=q.p

α:= θ/χ

A: blocked row-major x: blocked row-wiser: blocked row-wise

Choose default
distributions
when variables
initialised.
Vectors are
usually
replicatedp:

q:Result of
matrix-
vector
multiply is
aligned with
the matrix
columns
(because result column vector is
formed from dot-products across
each row)

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 18Adaptation #2: alignment in parallel BLAS

We are forced to insert a transpose:

r: blocked row-wiseA: blocked row-major x: blocked row-wise

x:=αp+x

A r x

p:=r

q:=A.p θ:=r.r

χ:=q.p

α:= θ/χ

p:

q: transpose

p: Conflict

x and p have
incompatible
distributions

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 19Adaptation #2: alignment in parallel BLAS

We are forced to insert another
transpose:

x:=αp+x

A r x

p:=r

q:=A.p θ:=r.r

χ:=q.p

α:= θ/χ

p:

q: transpose

p:

We can transpose either
p or x

(or we could have kept
an untransposed copy of
p – if we’d known it
would be needed)

transpose

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 20Adaptation #2: alignment in parallel BLAS

Delayed execution allows us to see how
values will be used and choose better:

x:=αp+x

A r x

p:=r

q:=A.p θ:=r.r

χ:=q.p

α:= θ/χ

p:

q: transpose

p:transpose

If we can foresee how p
will be used, we can see
it’s the wrong thing to
transpose…

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 21Adaptation #2: alignment in parallel BLAS
Delayed execution allows us to see how
values will be used and choose better:

x:=αp+x

A r x

p:=r

q:=A.p θ:=r.r

χ:=q.p

α:= θ/χ

A: blocked row-major x: blocked row-wiser: blocked row-wise

Conflict

If we can foresee how p
will be used, we can see
it’s the wrong thing to
transpose…

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 22Adaptation #2: alignment in parallel BLAS

Delayed execution allows us to see how
values will be used and choose better:

x:=αp+x

A r x

q:=A.p θ:=r.r

χ:=q.p

α:= θ/χ

A: blocked row-major x: blocked row-wiser: blocked row-wise

transpose

p:=r
If we can foresee how p
will be used, we can see
it’s the wrong thing to
transpose…

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 23Avoiding redistributions: performance

Cluster of 2GHz P4, 500 MB RAM, running Linux 2.4.20 and gcc 2.95.3, using
C/Fortran bindings (not C++ overloading)

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 24Metadata in DESOBLAS
Each DESOBLAS library
operator carries metadata,
which is used at run-time to find
an optimized execution plan
For optimizing data placement,
metadata is set of affine
functions relating operator’s
output data placement to the
placement of each input
Network of invertible linear
relationships allows optimizer to
shift redistributions around
dataflow graph to minimise
communication cost

((broadcasts and reductions
involve singular placement
relationships - see Beckmann
and Kelly, LCPC’99 for how to
make this idea still work))

Metadata:
affine
relationship
between
operand
alignments
and result
alignment

Composition: metadata is assembled
according to arcs of data flow graph to define
system of alignment constraints:

Peter Liniker, Olav Beckmann and Paul H J Kelly, Delayed Evaluation, Self-Optimizing Software Components as a Programming Model. In Euro-Par 2002

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 25Adaptation #3:
specialisation #include <TaskGraph>

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

using namespace tg;

int main(int argc, char argv[]) {
TaskGraph T;
int b = 1, c = 1;

taskgraph (T) {
tParameter (tVar (int, a));

a = a + c;
}

T.compile (TaskGraph::GCC);
T.execute ("a", &b, NULL);

printf("b = %d\n", b);
}

The TaskGraph
library is a portable
C++ package for
building and
optimising code on-
the-fly
Compare:

`C (tcc) (Dawson
Engler)
MetaOCaml (Walid
Taha et al)
Jak (Batory, Lofaso,
Smaragdakis)

Multi-stage
programming:
“runtime code
generation as a first-
class language
feature”

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 26Adaptation #3:
specialisation #include <TaskGraph>

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

using namespace tg;

int main(int argc, char argv[]) {
TaskGraph T;
int b = 1, c = 1;

taskgraph (T) {
tParameter (tVar (int, a));

a = a + c;
}

T.compile (TaskGraph::GCC);
T.execute (“a", &b, NULL);

printf("b = %d\n", b);
}

A taskgraph is an
abstract syntax
tree for a piece of
executable code
Syntactic sugar
makes it easy to
construct
Defines a
simplified sub-
language

With first-class
multidimensional
arrays, no
alliasing

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 27Adaptation #3:
specialisation

Binding time is
determined by types
In this example

c is static
a is dynamic

built using value of
c at construction
time

#include <TaskGraph>
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

using namespace tg;

int main(int argc, char argv[]) {
TaskGraph T;
int b = 1, c = 1;

taskgraph (T) {
tParameter (tVar (int, a));

a = a + c;
}

T.compile (TaskGraph::GCC);
T.execute (“a", &b, NULL);

printf("b = %d\n", b);
}

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 28Adaptation #3:
specialisation

Better example:
Applying a
convolution
filter to a 2D
image
Each pixel is
averaged
with
neighbouring
pixels
weighted by
a stencil
matrix

void filter (float *mask, unsigned n, unsigned m,
const float *input, float *output,
unsigned p, unsigned q)

{
unsigned i, j;
int k, l;
float sum;
int half_n = (n/2);
int half_m = (m/2);

for (i = half_n; i < p - half_n; i++) {
for (j = half_m; j < q - half_m; j++) {

sum = 0;

for (k = -half_n; k <= half_n; k++)
for (l = -half_m; l <= half_m; l++)

sum += input[(i + k) * q + (j + l)]
* mask[k * n + l];

output[i * q + j] = sum;
}

}
}

Mask

Image

// Loop bounds unknown at compile-time
// Trip count 3, does not fill vector registers

First without TaskGraph

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 29Adaptation #3:
specialisation

void taskFilter (TaskGraph &t,
float *mask, unsigned n, unsigned m,
unsigned p, unsigned q)

{
taskgraph (t) {

unsigned img_size[] = { IMG_SIZE, IMG_SIZE };
tParameter(tArray(float, input, 2, img_size));
tParameter(tArray(float, output, 2, img_size));
unsigned k, l;
unsigned half_n = (n/2);
unsigned half_m = (m/2);

tVar (float, sum);
tVar (int, i);
tVar (int, j);

tFor (i, half_n, p - half_n - 1) {
tFor (j, half_m, q - half_m - 1) {

sum = 0;

for (k = 0; k < n; ++k)
for (l = 0; l < m; ++l)

sum += input[(i + k - half_n)][(j + l - half_m)]
* mask[k * m + l];

output[i][j] = sum;
}

}
}

}

// Inner loops fully unrolled
// j loop is now vectorisable

Now with TaskGraph

TaskGraph
representation of
this loop nest
Inner loops are
static – executed
at construction
time
Outer loops are
dynamic
Uses of mask
array are entirely
static

This is deduced
from the types of
mask, k, m and l.

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 30

Image convolution
using
TaskGraphs:
performance

We use a 3x3 averaging filter as
convolution matrix
Images are square arrays of single-
precision floats ranging in size up to
4096x4096
Measurements taken on a 1.8GHz
Pentium 4-M running Linux 2.4.17, using
gcc 2.95.3 and icc 7.0
Measurements were taken for one pass
over the image

(Used an earlier release of the TaskGraph library)

Generalised Image Filtering Performance (1 Pass)

0

0.2

0.4

0.6

0.8

1

1.2

0 512 1024 1536 2048 2560 3072 3584 4096
Image Size (512 means image size is 512x512 floats)

R
un

tim
e

in
 S

ec
on

ds

Generic C++ compiled with gcc

Generic C++ compiled with icc

TaskGraph gcc

TaskGraph icc

Generalised Image Filtering - Timing Breakdown

0

0.1

0.2

0.3

Generic gcc
1024

Generic icc
1024

TaskGraph
gcc 1024

TaskGraph
icc 1024

Generic gcc
2048

Generic icc
2048

TaskGraph
gcc 2048

TaskGraph
icc 2048

Ti
m

e
in

 S
ec

on
ds

Code Runtime

Compile Time

1024x1024 too small

2048x2048 big
enough

Adaptation #3:
specialisation

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 31Adaptation #3:
specialisation

Application: Sobel filters in image processing (8-bit RGB data) –
compared with Intel’s Performance Programming Library

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 32Adaptation #4: Adapting to platform/resources

The TaskGraph library is a tool for dynamic
code generation and optimisation
Large performance benefits can be gained
from specialisation alone

But there’s more:
TaskGraph library builds SUIF intermediate
representation
Provides access to SUIF analysis and
transformation passes

SUIF (Stanford University Intermediate Form)
Detect and characterise dependences between
statements in loop nests
Restructure – tiling, loop fusion, skewing,
parallelisation etc

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 33Tiling
Example: matrix
multiply

void taskMatrixMult (TaskGraph &t ,
TaskLoopIdentifier *loop) {

taskgraph (t) {
tParameter (tArray (float, a, 2, sizes));
tParameter (tArray (float, b, 2, sizes));
tParameter (tArray (float, c, 2, sizes));
tVar (int, i);
tVar (int, j);
tVar (int, k);

tGetId (loop[0]); // label
tFor (i, 0, MATRIXSIZE - 1) {

tGetId (loop[1]); // label
tFor (j, 0, MATRIXSIZE - 1) {

tGetId (loop[2]); // label
tFor (k, 0, MATRIXSIZE - 1) {

c[i][j] += a[i][k] * b[k][j];
}

}
}

}
}

int main (int argc, char **argv) {
TaskGraph mm;
TaskLoopIdentifier loop[3];

// Build TaskGraph for ijk multiply
taskMatrixMult (loop, mm);

// Interchange the j and k loops
interchangeLoops (loop[1], loop[2]);

int trip[] = { 64, 64 };

// Tile the j and k loops into 64x64 tiles
tileLoop (2, &loop[1], trip);

mm.compile (TaskGraph::GCC);
mm.execute ("a", a, "b", b, "c", c, NULL);

}

Original TaskGraph
for matrix multiply

Code to interchange and tile

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 34Loop interchange and tiling
void taskMatrixMult (TaskGraph &t ,

TaskLoopIdentifier *loop) {
taskgraph (t) {
tParameter (tArray (float, a, 2, sizes));
tParameter (tArray (float, b, 2, sizes));
tParameter (tArray (float, c, 2, sizes));
tVar (int, i);
tVar (int, j);
tVar (int, k);

tGetId (loop[0]); // label
tFor (i, 0, MATRIXSIZE - 1) {
tGetId (loop[1]); // label
tFor (j, 0, MATRIXSIZE - 1) {
tGetId (loop[2]); // label
tFor (k, 0, MATRIXSIZE - 1) {
c[i][j] += a[i][k] * b[k][j];

}
}

}
}

} int main (int argc, char **argv) {
TaskGraph mm;
TaskLoopIdentifier loop[3];

// Build TaskGraph for ijk multiply

taskMatrixMult (loop, mm);

// Interchange the j and k loops

interchangeLoops (loop[1], loop[2]);

int trip[] = { 64, 64 };

// Tile the j and k loops into 64x64 tiles

tileLoop (2, &loop[1], trip);

mm.compile (TaskGraph::GCC);
mm.execute ("a", a, "b", b, "c", c, NULL);

}

extern void taskGraph_1(void **params)
{

float (*a)[512];
float (*b)[512];
float (*c)[512];
int i;
int j;
int k;
int j_tile;
int k_tile;

a = *params;
b = params[1];
c = params[2];
for (i = 0; i <= 511; i++)

for (j_tile = 0; j_tile <= 511; j_tile += 64)
for (k_tile = 0; k_tile <= 511; k_tile += 64)

for (j = j_tile;
j <= min(511, 63 + j_tile); j++)

for (k = max(0, k_tile);
k <= min(511, 63 + k_tile); k++)

c[i][k] = c[i][k] + a[i][j] * b[j][k];
}

Original TaskGraph
for matrix multiply

Code to interchange and tile

Generated code
(Slightly tidied)

On Pentium 4-M, 1.8 GHz, 512KB L2 cache, 256 MB, running Linux 2.4 and icc 7.1.

Adaptation #4:
Adapting to platform/resources

We can program a
search for the best
implementation for
our particular
problem size, on our
particular hardware

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 36Adaptation #4:
Adapting to platform/resources

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 37Adaptation #4:
Adapting to platform/resources

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 38Potential for user-directed restructuring

Programmer controls application of
sophisticated transformations
Performance benefits can be large – in this
example >8x
Different target architectures and problem
sizes need different combinations of
optimisations

ijk or ikj?
Hierarchical tiling
2d or 3d?
Copy reused submatrix into contiguous memory?

Matrix multiply is a simple example
Olav Beckmann, Alastair Houghton, Paul H J Kelly and Michael Mellor, Run-time code generation in C++ as a

foundation for domain-specific optimisation. Domain-Specific Program Generation, Springer (2004).

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 39Cross-component loop fusion

Image processing
example
Blur, edge-detection
filters then sum with
original image

Final two additions using Intel
Performance Programming Library:

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 40Cross-component loop fusion

After loop fusion:

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 41Cross-component loop fusion

After loop fusion:

Simple fusion leads to small
improvement
Beats Intel library only on large images
Further fusion opportunities require
skewing/retiming

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 42Performance-programming Component model

Dependence metadata
Components should carry a
description of their
dependence structure
That is based on an
abstraction of the
component’s Iteration Space
Graph (ISG)

U

Jacobi1D(U,V):

Jacobi1D(V,W):

V

W

For (i=1; i<N; i++)
V[i] = (U[i-1] + U[i+1])/2

For (i=1; i<N; i++)
W[i] = (V[i-1] + V[i+1])/2
Fusion invalid: iteration i of second loop reads
value generated at iteration i of first loop

Eg to allow simple check for
validity of loop and
communication fusion
Eg to determine dependence
constraints on distribution
Eg so we can align data
distributions to minimise
communication
To predict communication
volumes

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 43Performance-programming Component model

Dependence metadata
Components should carry a
description of their
dependence structure
That is based on an
abstraction of the
component’s Iteration Space
Graph (ISG)

U

Jacobi1D(U,V):

Jacobi1D(V,W):

V

W

For (i=1; i<N; i++)
V[i] = (U[i-1] + U[i+1])/2

For (i=1; i<N; i++)
W[i] = (V[i-1] + V[i+1])/2

Eg to allow simple check for
validity of loop and
communication fusion
Eg to determine dependence
constraints on distribution
Eg so we can align data
distributions to minimise
communication
To predict communication
volumes

Fusion valid: iteration i of second loop reads
value generated at iteration i of first loop

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 44Performance-programming Component model

Performance metadata
Components should carry a
model of how execution time
depends on parameters and
configuration
That is based on an
abstraction of the
component’s Iteration Space
Graph (ISG)

Eg to allow scheduling
and load balancing
Eg to determine
communication-
computation-
recomputation tradeoffs

N:
Number

of
iterations

M: Inner loop bounds

Compute volume: N.(M-1)
Input volume: M

for (it=0; it<N; it++)
for (i=1; i<M; i++)

V[i] = (U[i-1] + U[i+1])/2

Output volume: M-1

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 45Performance-programming Component model

Performance metadata
Components should carry a
model of how execution time
depends on parameters and
configuration
That is based on an
abstraction of the
component’s Iteration Space
Graph (ISG)

Eg to allow scheduling
and load balancing
Eg to determine
communication-
computation-
recomputation tradeoffs

N:
Number

of
iterations

M: Inner loop bounds

Compute volume: N.(M-1)
Input volume: M Output volume: M-1

for (it=0; it<N; it++)
for (i=1; i<M; i++)

V[i] = (U[i-1] + U[i+1])/2

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 46Component metadata research agenda
We want to adapt to shape of data
But in interesting applications, data shape is not
regular

Shape description/metadata depends on data values
Metadata size is significant
Metadata generation/manipulation is significant part of
computational effort

The problem:
Cost of organising and analysing the data may be large
compared to the computation itself
Size of metadata may be large compared with size of the
data itself

What does this mean?
Some kind of reflective programming
Arguably, metaprogramming

Programs that make runtime decisions about how
much work to do to optimise future execution

Paul H J Kelly, Olav Beckmann, Tony Field and Scott Baden, "Themis: Component dependence metadata in adaptive parallel applications". Parallel
Processing Letters, Vol. 11, No. 4 (2001)

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 47Conclusions

Performance programming as a software
engineering discipline
The challenge of preserving abstractions
The need to design-in the means to solve
performance problems
Adaptation to data-flow context
Adaptation to platform/resources
Adaptation to data values, sizes, shapes
Making component composition explicit:
build a plan, optimise it, execute it

S
of

tw
ar

e
P

er
fo

rm
an

ce
 O

pt
im

is
at

io
n

G
ro

up 48Acknowledgements

This work was funded by EPSRC
Much of the work was done by
colleagues and members of my
research group, in particular

Olav Beckmann
Tony Field

Students:
Alastair Houghton, Michael Mellor, Peter
Fordham, Peter Liniker, Thomas Hansen

	Generative and adaptive methods in performance programming
	Where we’re coming from…
	Generative and adaptive methods in performance programming
	Construction
	
	Abstraction
	Abstraction
	Abstraction
	Abstraction
	Abstraction
	Adaptation #2: alignment in parallel BLAS
	Adaptation #2: alignment in parallel BLAS
	Adaptation #2: alignment in parallel BLAS
	Adaptation #2: alignment in parallel BLAS
	Adaptation #2: alignment in parallel BLAS
	Adaptation #2: alignment in parallel BLAS
	Adaptation #2: alignment in parallel BLAS
	Adaptation #2: alignment in parallel BLAS
	Avoiding redistributions: performance
	Metadata in DESOBLAS
	Adaptation #3: specialisation
	Adaptation #3: specialisation
	Adaptation #3: specialisation
	Adaptation #3: specialisation
	Adaptation #3: specialisation
	Image convolution using TaskGraphs: performance
	Adaptation #3: specialisation
	Adaptation #4: Adapting to platform/resources
	Tiling
	Loop interchange and tiling
	
	Adaptation #4: Adapting to platform/resources
	Adaptation #4: Adapting to platform/resources
	Potential for user-directed restructuring
	Cross-component loop fusion
	Cross-component loop fusion
	Cross-component loop fusion
	Performance-programming Component model
	Performance-programming Component model
	Performance-programming Component model
	Performance-programming Component model
	Component metadata research agenda
	Conclusions
	Acknowledgements

