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Abstract

This paper shows how system call traces can be obtained with minimal interference to the
system being characterised, and used as realistic, repeatable workloads for experiments to
evaluate operating system and file system designs and configuration alternatives.

Our system call trace mechanism, called ULTra, captures a complete trace of each UNIX
process’s calls to the operating system. The performance impact is normally small, and it
runs in user mode without special privileges.

Traces can be rerun in two ways: the operating system activity can be reproduced by
simply replaying the system calls interspersed with appropriate delays. More interestingly,
we also show how the resulting traces can be used to drive full, repeatable reexecution of the
captured behaviour.

The paper concludes with an evaluation and comparison of the usefulness and accuracy of
these techniques for predicting the performance impact of system configuration altenatives.
We present two case studies, examining the effect of file system caching on a Www server’s

performance, and the performance benefit of using a local disk instead of an NFS fileserver.

1 Introduction

Our aim in this work is to develop a tool for a system performance consultant to use to characterize

a customer’s workload. The consultant would install the trace capture tool on the customer’s UNIX



server, enable tracing, and would monitor the customer’s system as it performs its normal duties.
The consultant would then use the resulting trace to experiment with system tuning parameters,
hardware upgrades, workload redistribution, etc., off-line using analytical models, simulation, and
perhaps also test hardware. Such traces could also be used for benchmarking and also in the OS
and file system research community.

In order for this scenario to be realistic, trace capture must:

e incur minimum risk and interference to the target system

e provide enough information for the performance tuning mechanisms to be exercised properly
e lead to results having adequate predictive accuracy

This paper, which is an extended version of [8], presents a methodology which characterizes a
workload by the trace of its system calls !. By rerunning the sequence of system calls in a trace
under different conditions, it becomes possible to compare, evaluate or predict the performance
of the workload under different system configurations. The term rerun is used to describe this
process. We distinguish two modes of rerunning traces: trace replay and trace reexzecution. These

are described below.

1.1 Trace Replay

Here, we use a trace of system calls, their parameters, and fine-grain timing of the user-mode CpPU
times between returning from a call and issuing the next.

The trace 1s used to exercise a system under test using a “spinner” program. The spinner
issues each call in the trace in turn, and simulates CpPU time used by the application between
system calls by looping for the appropriate period as recorded in the trace. The actual time taken
to complete trace replay depends on the system call service times achieved by the system under

test.

1.2 Trace Reexecution

In some applications, the spinner leads to inaccurate results because the application can interact

with the operating system in ways other than through explicit system calls, for example, by causing

1This paper extends the conference version in giving results for additional benchmarks, adds an additional
experiment addressing the tool’s predictive power (NFS), and expands on many details and directions for further
work.



TLB misses or page faults, or by flushing OS data from hardware caches. We can reproduce this
behaviour by rerunning the application code.

In order to get reproducible results, we make sure all the results returned from system calls
are recorded in the trace. The application should behave in a precisely reproducible way since it
is fed precisely the same inputs.

The trace needed here is simpler; no timestamps are needed. System call results must be
recorded, but the parameters need not.

Unfortunately, certain behaviours cannot be reproduced at reasonable cost. There are problems
with asynchronous signals, and pre-emptively—scheduled threads, which can be solved in principle
by modifying the application’s code (see Section 8.1). Parallel threads, and processes which

interact via shared memory, are probably not reexecutable.

1.3 Time Measurements

In the description above, timestamps are used to account for CPU time used by the application.
There 1s another role for timestamps, namely, to account for external stimuli which occur at
specific wall-clock times or intervals.

To reproduce real workloads properly, it is vital to distinguish such workload-determined timing
from the implementation-determined timing which is expected to vary when the configuration of
the system under test is modified.

In our experiments, we assume no external stimuli with workload-determined timing. For a
network server, for example, the effect of this is that the number of transactions per second 1is
increased in proportion to the system’s performance. It is reasonable, but more difficult, to keep

the transaction processing rate constant and to optimise the response time.

1.4 Overview of the Paper

The next section reviews some earlier contributions in the area. Section 3 describes the design of
ULTra, our trace capture tool, showing how efficiency is achieved and how replay and reexecution
are organized. Section 4 describes various subtleties of our implementation. The overheads of
trace capture are evaluated in Section 5. Section 6 shows how accurately replay and reexecution
track the application’s original execution time. Section 7 presents two case studies demonstrating

the accuracy of the tool in predicting the performance impact of configuration changes.



2 Related Work

Trace capture has been used for many years for performance evaluation. The critical aspect of our
work lies in capturing just enough information—in this case, system calls—to be able to reconstruct
the complete computation by reexecution. Rather than supplanting lower-level trace capture and
analysis, for example, by hardware monitoring or modifying microcode, this facilitates it by making
a reproducible record of the original workload. We therefore focus our literature review on trace
capture and reexecution.

Intercepting system calls. The ptrace() system call and /proc file system are examples
of mechanisms provided to allow one process to monitor the system call activity of another. The
tracing process is able to examine or modify the arguments to, and the results from, each system
call issued by the traced process. However, as is noted later in Section 5.2, this approach incurs
large overheads.

Jones [11, 12] describes a general technique for interposing agents between an application and
the OS. One example considered is tracing system calls. Jones’ reported work relied on an OS
facility to redirect system calls to a specified handler. Jones does not report any work on using
buffering to reduce the overheads incurred by writing the trace file at each call.

Ashton and Penny [1] developed INMON| an “interaction network monitor”. INMON is de-
signed to trace the activity in the kernel caused by individual user actions. Tools of this nature
complement our work in that they provide an insight to activity within the kernel caused by a
workload, whereas we report trace capture in order to characterize the workload.

File access trace studies. Traces have been used extensively to study file system activity by
Ousterhout et. al [14] and Baker et. al [3] in the analysis of the 4.2BSD, and Sprite distributed
file systems, respectively. Bozman et. al [6] modified a CMS monitor, CMON, to gather traces of
file reference patterns. Of more interest is DFSTrace, used by Mummert and Satyanarayanan [17]
in the evaluation of the Coda file system, since they also replayed the traces using the timing
information given by the trace. Instead of modifying the OS kernel, Tourigny [20] and Blaze [5]
exploited a remote file system architecture to obtain traces of file system activity by monitoring
the interactions between clients and server. This has the virtue of being entirely non-intrusive,
though includes only remote file accesses, and also requires privileged access to the network.

By contrast, we aim in this paper to capture the entire system call trace, and to use it to study

the overall system performance by using it to reexecute the application.



Logging reexecution for fault-tolerance. Logging for reexecution or rollback has long
been used for recovery from faults, and 1s common in transaction processing systems. Closer to
our work are attempts to do this via a standard UNix-like API; an interesting example is the
QuickSilver system [19]. When concurrent processes are involved, techniques from checkpointing
in distributed systems (e.g., see Johnson and Zwaenepoel [10]) will also be relevant.

Replay for debugging. The problem of reexecution of parallel UNTX processes is similar to
that of replaying parallel programs (e.g., see LeBlanc and Mellor-Crummey [15]) for debugging
purposes. Note, though, that we need to be able to reproduce the original execution time as
accurately as possible.

Finally, Bitar [4] gives a useful review of the validity issues in trace-driven simulation of con-

current systems.

3 Design of UrTra

ULTra intercepts system calls, and writes trace information to a trace file. Its performance depends

upon two key factors:
1. an efficient mechanism for intercepting system calls
2. buffering of trace output to reduce the number of additional write operations incurred

To be easy to use, we need a simple mechanism for controlling tracing. Having considered var-
ious alternatives, we chose to substitute the dynamically-linked standard shared library providing
UnNiIX system calls. In the ULTra version, the system call stubs are extended with modifications
for trace capture and reexecution. The advantage of this is that trace capture is confined to the
library, and is therefore transparent to applications. It should be noted that although applications
do not need to be recompiled, they must be relinked; however, as in modern systems the final
binding between an application and a library does not occur until runtime, most applications can
be traced as they are. Exceptions include rare, statically-linked applications.

For trace reexecution, we can choose how much information is included in the trace itself, and
how much is accessed via the filesystem during reexecution. It is unattractive to have to include
all the data the process reads, although sometimes this is unavoidable. For example, data from
terminals or sockets are not available at reexecution time. Similarly, data which are overwritten

later must be saved. At present, we do not log socket contents, relying instead on reexecution of



the correspondent process. Nor are copies of file data included in the traces. This 1s adequate for

our purposes.

3.1 Rerunning System Calls

On rerun the actions taken in response to a system call are determined by the captured trace, and

also by the type of the system call. These fall into the following categories:

e Simple calls. In this case the responses are completely determined from the trace. Although
the call need not be reexecuted to ensure the application’s original behaviour is preserved,
sometimes this may be necessary so as to account for the time spent servicing the call.

Examples of this type of call include getpid() and gettimeofday().

e Calls that may be rerun as before. An example of this type of call 1s dup(), which modifies
the process’s file descriptor table. Clearly, as this effect must be reproduced, the call must
be repeated. The new return value should be identical to that in the trace. In general, the

calls that fall into this category are those that modify the process’s kernel state.

e Calls that must be reexecuted for their effects, but where the returned value from a replayed
call may differ from that in the trace. This can occur where a system call returns a kernel-
created identifier or handle for some resource that is used in later calls to identify that
resource. Both trace replay and reexecution are affected, since there is no way of ensuring
that the repeated call returns the same value. This problem is solved with the use of a table
mapping capture-time identifiers to those of trace rerun. An example of a call of this type

1s wait ().

3.2 Measuring Time

It is important when a trace is rerun that the system calls are reissued at the correct rate. This
happens naturally in the case of trace reexecution. However, in the case of trace replay the time
spent by the application executing between system calls must be simulated by the “spinner”.
Consequently, the trace must include the time spent executing at user level between system calls.
In selecting or designing a mechanism for capturing these times the following issues must be

consldered:



1. the time taken to read the clock. This should be small in order to reduce the overhead of

trace capture.

2. the resolution of the times reported. These should be sufficiently high to reflect the appli-

cation’s behaviour accurately.
3. the means by which user level execution time is identified.
4. the efficiency of the method used to communicate the times from the kernel to ULTra.

An obvious candidate for collecting these times i1s the resource utilization information main-
tained by the kernel for purposes of management or accounting (e.g., as reported by the getrusage()
or times() system calls). However, on LINUX and many other operating systems, the resolution
of these times is that of the clock interrupt interval, typically 10-20ms, which is too coarse for our
purposes.

Another alternative is to approximate the user level execution time between system calls by
elapsed, ‘wall-clock’, time, for example, as reported by the gettimeofday() system call. The
resolution of this time is hardware dependent, though it is often genuinely of microsecond gran-
ularity. This, like getrusage() above, requires two additional system calls for each call made
by the application. This represents a considerable overhead. A more important weakness is that
the measured time will include time spent on other activities, for example, system activity on
behalf of the process, or executing other processes. Thus, this approach can be used only where
the principal activity in the system is the application being traced. Nonetheless, where this is
the case, and where pre-emption is not a concern, this method can provide useful results (see, for

example, [8] for results based on gettimeofday()).

3.3 Accounting for Pre-emption

We account for user-level execution time of a process in the presence of other processes by modi-
fying the kernel to update a timer in the process’s process table entry on each context switch to,
or from, user mode. To keep this overhead to a minimum, the cost of reading the clock should
be low. We describe how this is achieved in our implementation in Section 4. This provides
accounting for user-mode execution time at clock-cycle resolution. The clock-cycle counter could
be accessed via a system call, but we improve performance by avoiding this. Instead, immediately

prior to returning from a system call the kernel writes the times to an area of the process’s user



level address space reserved for this purpose. When the system call returns, these times can be
read from the region by ULTra, and recorded in the trace. The location of this region is carefully
chosen (for example, at the base of the stack) so that its presence is transparent to both traced

and untraced applications.

4 Implementing ULTra

UrTra is currently implemented as a substitute for the 1ibc (version 5.3.12) shared library under

LiNnux 2.0.25. We have also developed a statically-linked implementation for SUNOS 4.3.1.

4.1 Measuring Time

The LINUX system call mechanism was modified to include the extensions described in Section 3.3.
To measure time with high resolution and low overheads, we exploit the PENTIUM processor’s
64 bit Time Stamp Counter. This i1s incremented on every clock cycle, and can be read in a
single instruction (rdtsc). This allows us to obtain fine-grained times very efficiently. We use this

feature to determine the number of clock cycles a process spends executing at user level.

4.2 Buffering

In a naive implementation, trace records would be written out immediately. Doing so would
double the number of real system calls made by an application, leading to poor performance, and
consequently buffering is used to reduce the overhead. Surprisingly, buffering is ULTra’s main
source of complexity.

The problems affect process creation, where the actions of the new process and its parent
must be coordinated to prevent corruption of the buffer or loss of trace information. Program
invocation, in which the process’s user-level context is completely repalced, is also affected, since
the contents of the buffer are overwritten and lost. Trace capture, reexecution, and replay are all

affected, but there is insufficient space to explain the details here.

5 Performance of ULTra

The overheads incurred by trace capture must be minimal if ULTra is to be used as we intend. In

this section we present an estimate of the maximum overhead likely to be experienced (a program



loops calling a lightweight system call which itself takes very little time), and also the overhead
likely to be seen in more realistic applications.

All times reported in this section were obtained using a statically linked instance of version 1.7
of the GNU standard UNIX timing utility, /usr/bin/time. The tests were run on an unloaded
IBM-compatible PC with a 166 MHz Intel PENTIUM CpU, 32MB EDO RaAM and 512KB pipeline
burst-mod secondary cache, running LiNUX 2.0.25. All application file input and output was to a
local disk, with UrTra traffic directed to a second, local disk.

The experiments described in this section used the following applications:

e getpid. This is a simple program that loops calling the getpid() system call 1,000,000

times.
o INTEX. INTEX(version 2¢) is used to format a 168 page thesis.

e apache. The apache HTTP server (version 1.2b6) was configured to manage a copy of
the 11,110 files (approximately 175MB) managed by our Www server. In each run the
server processed 25,000 HTTP requests, delivering approximately 238MB of data. The HTTP
requests were derived from the access logs of our Www server. In order to make the
experiment repeatable for the purposes of this paper, the GET requests were issued by a

simple process running on the same CPU. (We return to this example in Section 7.)

e make. In this experiment make was used to recompile one version of the ULTra library. This

consists of approximately 100 small files, and about 400 separate processes were involved.

e mSqL. This experiment involved running part of the AS3AP[21] SQL benchmark on mSqQL[9],
a lightweight database engine. As mSQL implements only a subset of SQL, the ASIAP

benchmark suite was modified accordingly. Version 2.0.3 of mSQL was used.

For the experiments involving this benchmark, each of the four major relations specified by
AS3AP included 10,000 tuples, averaging approximately 100 bytes each. Including manage-
ment overheads, this amounted to approximately 8MB. In addition, during the course of the

experiment, mSQL manipulated at least 15 index files, each averaging at least 0.5MB.

In the experiments, the SQL requests were issued to the server over a UNIX domain connection
by the interactive monitor distributed with mSQL. The replay and reexecution cases were

handled slightly differently:



reexecution: in this case, only the server was traced. On reexecution, the monitor was

reexecuted to reproduce the requests for the server.

replay: it was quickly noticed that the behaviour of the monitor depended on the responses
it received from the server. On replay, although the communication link and sequence of
messages could be reproduced easily, the contents of the messages could not. As a result,
the monitor interpreted the replies it received from the replaying server as invalid, and
attempted to recover from the ‘error’ condition by, e.g.; resending the request. This
had the effect of changing the pattern of communication between the monitor and the
server, and as a consequence, the new interactions did not match those in the server’s

trace.

This problem was solved by tracing both the server and the monitor, and driving both
sides of the communication from the traces.

It should be noted that in a more comprehensive implementation this problem would
not arise, as the network input to the server would have been recorded by a network
snooper, and replayed from an external source. The problem described above is simply

a consequence of using the monitor to replay the network inputs to the server.

The application binaries were either those distributed with LINUX, or were built from source
using the default configuration and make options. Where necessary, the applications were compiled
using version 2.7.2 of the GNU C compiler, gcc and linked to version 5.3.12 of the GNU standard
library, glibc.

In this section we consider two variants of UrLTra:

1. Urrra (for reexecution): the traces captured include system call results only. This is suffi-

clent for reexecution.

2. Urtra (for replay): the traces captured include system call parameters and the user level
inter-system call execution times needed by the “spinner”. User level inter-system call exe-

cution time was measured using the modified kernel and rdtsc.

5.1 Overheads of the Kernel Modifications

Section 4 described the modifications to the kernel that are needed to support ULTra. Some of

these modifications affect all processes in the system, whether or not they are being traced. These
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Application || Method Elapsed time % of untraced
(secs) time
getpid untraced 1.4
ULTra—reexecution 4.4 314%
ULTra—replay 7.5 536%
gtrace 198.5 14179%
TEX untraced 7.7
ULTra—reexecution 8.0 104%
ULTra—replay 7.8 101%
gtrace 9.2 119%
make untraced 92.7
ULTra—reexecution 100.6 109%
ULTra—replay 101.6 110%
gtrace 169.4 183%
mSQL untraced 92.4
ULTra—reexecution 112.2 121%
ULTra—replay 125.0 135%
gtrace 220.0 238%
apache untraced 416.2
ULTra—reexecution 446.8 107%
ULTra—replay 490.4 118%
gtrace 898.1 216%

Table 1: Trace Capture Overheads

modifications include those to the kernel entry and exit points needed to measure user-level inter-
system call execution time accurately. Although this information is written to the user process’s
address space for only those processes that are being traced, internally this instrumentation is
always active, and therefore all processes, traced or untraced, experience the overhead introduced
by these modifications.

The performance overhead the kernel modifications for untraced processes has been measured
for all the benchmarks presented here. For the worst case, getpid, execution times are increased
by 7% with the kernel needed for reexecution, and 50% for the kernel needed for replay. The

overheads on the realistic benchmarks are small, all under 3% [7].

5.2 Trace Capture Overheads

Table 1 shows the execution times without tracing, and with tracing for replay and for reexecution.
It is unlikely that any useful application would suffer the overheads seen with the getpid program.
The additional time is much larger for replay because of the need to gather and record timing
information.

The increase in execution times reflect, firstly, the time taken by the kernel to copy any

information to the user process’s address space, and secondly, the time taken by the ULTra runtime
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to copy the trace information to the trace buffer, and periodically, when the buffer fills, call write()
to dump the buffer contents to the trace file. It can be seen that in general the overheads for trace
capture for trace replay are larger than those for trace reexecution. This is for two related reasons:
firstly, the trace records are larger because they must include the inter-system call execution times
necessary for replay. Thus more I/O is required. Secondly, as the trace records must include
user-level execution times, information must be copied to user space after each system call. This
component of the overhead is dominated by the need to check the validity of the destination
before the data may be copied. Copying the data, on the other hand, is relatively lightweight. In
contrast, the overheads for reexecution are much smaller, reflecting only the cost of managing the
trace buffer and the associated I/0. This effect is most obviously seen in the getpid case, in which
the application simply loops 1ssuing system calls, and in which ULTra accounts for a significant
proportion of the application’s overall execution time.

For comparison, the strace utility, which uses UNIX’s ptrace() mechanism, took just un-
der 200 seconds for getpid (an over 140-fold slowdown), and 9.2 seconds for the IWTpX benchmark
(119% of the untraced execution time). On the make, mSQL, and apache benchmarks, the strace
overheads are larger, at 183%), 238%, and 216% of the untraced time, respectively.

mSQL shows very different trace capture times for reexecution and replay. The reason for this
is that, as noted above, for replay it was necessary to trace both the server and the client, whereas

for reexecution only the server was traced.

5.3 Buffering

We measured the effect of buffering on ULTra’s performance using the getpid application. The
unbuffered versions executed in 13.9 seconds (reexecution) and 21.7 seconds (replay), whilst with
buffering this improved to 4.2 seconds, and 11.4 seconds. Much of ULTra’s complexity is due to

buffering, and this is clearly worthwhile.

6 Replay and Reexecution

Table 2 shows how replay and reexecution times compare with the original execution time for
each benchmark. The replay time for the IATX experiment is extremely similar, indicating that
paging and cache effects were negligible in the experiments, that our timing measurements are

sufficiently accurate, and that our timing loops are well-calibrated. The time to replay the getpid
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Application || Method Elapsed time % of untraced
(secs) time
getpid untraced 1.4
ULTra—reexecution 4.2 300%
ULTra—replay 9.2 657%
TEX untraced 7.7
ULTra—reexecution 7.7 100%
ULTra—replay 7.8 101%
make untraced 92.7
ULTra—reexecution 103.7 112%
ULTra—replay 104.7 113%
mSQL untraced 92.4
ULTra—reexecution 116.6 126%
ULTra—replay 103.9 112%
apache untraced 416.2
ULTra—reexecution 454.8 109%
ULTra—replay 477.2 115%

Table 2: Trace replay and re-execution with unchanged configuration

experiment 1s disappointingly high, probably because of the overheads of reading, accessing and
checking the trace. The replay times for the apache and make experiments are reasonably close,
but there is room for improvement. The replay time for mSQL, in which there is considerably more
ULTra activity since both the client and the server are rerun from the traces, is very much lower
than the time for reexecution, where only the server is traced. This is a little unexpected. The
reason for this discrepancy is that as well as making system calls, mSQL causes system activity
as a result of its memory accesses. This is because mSQL uses mmap() to map some of the files
it uses into its address space. Once mapped, the files can be accessed as ordinary memory, and
consequently, reads from, or writes to, this memory can cause real I/O, and therefore system
activity. This activity is hidden from ULTra replay, and therefore when the the trace is replayed,
this component of the workload is omitted.

As expected, overall, reexecution gives better results.

7 Using ULTra Traces to Predict Performance

More interesting is to see how well performance on a different configuration can be predicted. The
experiments described in this section are designed to determine ULTra’s effectiveness in this role.

We evaluated ULTra for predicting the performance of two example scenarios:
1. Using an NFS-mounted file system instead of local disks.

2. Changing the amount of RAM available for caching file accesses.

13



These experiments are described in the following sections.

7.1 Benchmarks for Performance Prediction Experiments

Urtra is designed for workload characterization in situations where an application is interacting
with its environment in complicated ways which make it difficult to redo experiments with precisely
reproducible results. However, for the purposes of these experiments, in order to be able to
determine the accuracy of the predictions made by ULTra, the trace rerun execution time must
be compared with the actual time taken to execute the workload on the alternative configuration.

We chose the benchmarks in order to overcome this problem. For example, the apache WEB
server has the advantage that we can rerun it with a repeated sequence of HTTP “GET” requests,
and get exactly the same behaviour. (A simple illustrative example of a situation where this would
not work would be where apache 1s configured to operate as a Www proxy cache; it is difficult

to get precisely reproducible results because cached data expires as time elapses.)

7.2 Performance Prediction: Using an NFS-mounted File System

The performance of an application can depend very heavily on the type of file system on which
its files reside. In these experiments, ULTra was used to predict the effect storing an application’s
files on a remote machine has on its performance. The aim of these experiments was to determine

how well ULTra is able to predict this effect.

7.2.1 Experimental Design

The traces used in the experiments were those captured whilst the system was configured so
that the applications’ file were stored locally. The system was then reconfigured so that the files
required by the applications resided on a remote machine, and were accessed over a local area
network using NFS. The server used for this purpose was another PC (233MHz Intel PENTIUM IT
with 128 MB on a 10Mb/s Ethernet, running LINUX 2.0.30). For the purposes of the experiments,
the server was unloaded, and other network traffic was eliminated by ensuring that only the client
and server were connected to the network. In this experiment, the following applications were

considered, and configured as described:

make in this experiment, the machine was configured so that the source and temporary files needed

for this workload resided on the server. Other files, such as the standard headers included

14



Application || Method Elapsed time % of actual
(secs) time
make actual 137.7
predicted—reexecution 144.4 105%
predicted—replay 148.1 108%
mSQL actual 184.7
predicted—reexecution 196.8 107%
predicted—replay 120.6 65%

Table 3: Predicted execution times when the benchmarks’ files are located on a remote volume,
and must be accessed over a network

by many program source files were held and accessed locally.

mSQL in this case, the database and index files manipulated by this application were stored on

the server.

In all cases, the traces used for the prediction phase of the experiment were those captured for
the experiments to determine the overhead of trace capture (see Section 5.2), and in which all
files were stored locally. In addition, in order to determine the accuracy of the prediction made

by ULTra, the application was also executed on the alternative configuration.

7.2.2 Results

Table 3 shows the actual execution times for these applications on this configuration, as well
as those predicted by trace replay and trace reexecution. In general, the ULTra predictions are
acceptable. However, of note i1s the replay prediction for mSQL. Here, ULTra has significantly
underestimated the execution time achieved by this application. The reason for this discrepancy
is that, as noted earlier, mSQL uses mmap () to map some of its files into its address space. Once
mapped, it accesses the files as ordinary memory, although in doing so it will cause network 1/0
and system activity. However, trace replay is unable to reproduce mSQL’s memory accesses, and

therefore the network I/O that would ensue. We return to this issue in Section 8.1.

7.3 Performance Prediction: Changing the Amount of RAM Available

In this experiment we focus on the apache benchmark program. This is highly file intensive, and
there 1s potential for caching since certain URLs are requested repeatedly during the experiment.
apache relies on the underlying file system to cache repeatedly-used files;, and this depends on

having enough memory. As an illustration of the potential value of our approach, we show here
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that the ULTra trace can be used to predict the performance of the workload on configurations

with a range of RAM sizes.

7.3.1 An Additional apache Benchmark

To illustrate a richer range of behaviours, we include an additional workload for apache with
higher RAM demand. In this variant, the server was configured to manage about 4,900 documents,
amounting to approximately 32MB. A list of queries was constructed such that each document was

accessed twice. This was then randomly permuted and used as the workload for the experiment.

7.3.2 Experimental Design

Once a rerunable ULTra trace has been captured, there are many performance analysis and tuning
opportunities. As a very simple example to demonstrate the principle, we have looked at the
effect of differing amounts of RaM on the effectiveness of file system caching. We booted LINUX
with various amounts of RAM and compared the execution time of the actual workload with the
time taken both to replay an ULTra trace, and also to reexecute a trace. The same traces were
used for each alternative memory size; these were captured from runs with the minimum 8MB

configuration.

7.3.3 Results

Figure 1 shows the actual execution time of the original apache experiment for various amounts
of RaM, compared with the execution time predicted by replay and reexecution of an ULTra trace
captured from an original execution with 8MB RaM. In Figure 2 we show the actual and predicted
execution times for the artificial workload example.

The execution time predicted by replaying the trace (using measured time for user-mode exe-
cution, rather than reexecution) is within 14% for large RAM configurations, but is less accurate
with small amounts of RAM where paging of apache’s code and/or data occurs.

The execution time predicted by reexecuting the trace is more accurate in all cases, and is
within 10% for larger RaM configurations. This higher accuracy is because the same memory

access pattern occurs during reexecution, leading to similar paging and hardware cache effects.
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Figure 1: apache performance with varying RaAM—predicted and actual
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Figure 2: apache performance with an artificial workload and varying RAM—predicted and actual

8 Conclusions and Discussion

We have presented the design of ULTra, an efficient, portable technique for capturing traces of

system call activity of a UNIX process and the processes it forks. ULTra’s efficiency is achieved by
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running at user level as part of the standard libraries linked to applications, and also by buffering
the output of trace information. We describe some implementation issues, which in certain cases
turn out to be surprisingly tricky.

An important area where ULTra may be applied usefully is in the performance evaluation,
tuning and comparison of operating systems and file systems. We present two case in which this
is illustrated. We demonstrate that ULTra can be used to capture a trace of the workload without
substantial interference, which can then be used to give fairly accurate predictions of the effect of
configuration changes on application throughput.

We evaluate two ways of rerunning a workload: replay, and reexecution. For applications
where paging is insignificant, both predict performance well. Reexecution has lower trace capture
overheads, and can be used to study paging, cache effects and other lower-level issues.

In the performance prediction experiments presented here, we were able to compare the be-
haviour with reproducing the workload by other, more straightforward, means. The results in
this paper provide evidence to support the use of ULTra in situations where such validation is not
possible, for example, where the alternative configuration is being simulated, but the simulation

slowdown could lead to a change in user behaviour.

8.1 Further work

Capture paging activity. Trace replay is potentially inaccurate compared with reexecution
because it does not capture paging behaviour (resulting, for example, from mSQL’s use of mmap
as seen in Section 7.2.2). Although it may be possible to intercept and trace paging events, the
behaviour on a different configuration may be very different. We are working on introducing
additional instrumentation to use page protection to track the process’s memory access behaviour
so that we will be able to predict the paging behaviour with various amounts of RAM and with
different virtual memory management policies. Preliminary results are very promising.

Asynchronous signals. Asynchronous signals can be workload-determined or implementation-
determined (see Section 1.3). Workload-determined signals, such as timer interrupts, are prob-
lematic since there is potential for inconsistent results when the trace is replayed on a faster or
slower system.

Implementation-determined signals, such as synchronisation between processes, could easily be
traced. Care is needed during trace replay to ensure that the signalled process blocks until the

event for which it’s waiting occurs. This is necessary to ensure the replayed behaviour is consistent
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with the trace, but is inaccurate since the blocking is an artifact of the replay mechanism. However,
in many applications the process will be sleeping anyway (e.g., when waiting for a timeout).

For reexecution, it is vital for the signal to be delivered at precisely the same instruction
execution point as during trace capture. The only way we know to do this (see [16]) is to modify
the application’s code (by recompiling or post-processing the executable). Code is added to count
backward branches and trap on overflow. The counter is preloaded on reexecution so that the trap
occurs in the basic block where the process was interrupted at trace capture time.

Pre-emptive threads. Pre-emptively scheduled threads can be handled by a similar mecha-
nism as asynchronous signals. Details can be found in [18], where the performance overheads are
reported to be around 10%.

Interaction via shared-memory regions. Perhaps the most intractable problem is to trace
processes which interact via a shared memory region. In principle, UNIX processes on a single
CpU could be dealt with as indicated above for pre-emptive threads, but with a shared-memory
multiprocessor there appears to be no solution with reasonable overheads (though see, for example,
[13, 2]).

Tracing dynamic linking itself. Since we intercept system calls via a substitute dynamically-
linked library, we cannot trace the dynamic linking mechanism itself (nor statically-linked programs
or programs which bypass the library and trap to the OS directly). OS-level tracing (e.g., using
trace) does manage this, and one option is to use trace during reexecution of the UrLTra trace.

Given that it 1s difficult or impossible to create a reexecutable trace for absolutely any appli-
cation, our aim is to be able to detect whether an application behaves in a way which invalidates

the trace.
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