
Concurrency Control

Peter Mc.Brien

Dept. of Computing, Imperial College London

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 1 / 78



Transactions ACID properties

Transactions: ACID properties

ACID properties

database management systems (DBMS) implements indivisible tasks called
transactions

Atomicity all or nothing
Consistency consistent before → consistent after
Isolation independent of any other transaction
Durability completed transaction are durable

BEGIN TRANSACTION
UPDATE branch
SET cash=cash −10000.00
WHERE so r t code =56

UPDATE branch
SET cash=cash +10000.00
WHERE so r t code =34

COMMIT TRANSACTION

Note that if total cash is £137,246.12
before the transaction, then it will be
the same after the transaction.

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 2 / 78



Transactions ACID properties

Example Data

branch
sortcode bname cash

56 ’Wimbledon’ 94340.45
34 ’Goodge St’ 8900.67
67 ’Strand’ 34005.00

movement
mid no amount tdate
1000 100 2300.00 5/1/1999
1001 101 4000.00 5/1/1999
1002 100 -223.45 8/1/1999
1004 107 -100.00 11/1/1999
1005 103 145.50 12/1/1999
1006 100 10.23 15/1/1999
1007 107 345.56 15/1/1999
1008 101 1230.00 15/1/1999
1009 119 5600.00 18/1/1999

account
no type cname rate? sortcode

100 ’current’ ’McBrien, P.’ NULL 67
101 ’deposit’ ’McBrien, P.’ 5.25 67
103 ’current’ ’Boyd, M.’ NULL 34
107 ’current’ ’Poulovassilis, A.’ NULL 56
119 ’deposit’ ’Poulovassilis, A.’ 5.50 56
125 ’current’ ’Bailey, J.’ NULL 56

key branch(sortcode)
key branch(bname)
key movement(mid)
key account(no)

movement(no)
fk
⇒ account(no)

account(sortcode)
fk
⇒ branch(sortcode)

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 3 / 78



Transactions ACID properties

Transaction Properties: Atomicity

BEGIN TRANSACTION
UPDATE branch
SET cash=cash −10000.00
WHERE so r t c od e=56

CRASH

Suppose that the system crashes half way through processing a cash transfer, and the
first part of the transfer has been written to disc

The database on disc is left in an inconsistent state, with £10,000 ‘missing’

A DBMS implementing Atomicity of transactions would on restart UNDO the
change to branch 56

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 4 / 78



Transactions ACID properties

Transaction Properties: Consistency

BEGIN TRANSACTION
DELETE FROM branch
WHERE so r t c od e=56

INSERT INTO account
VALUES (100 , ’ Smith , J ’ , ’ d e p o s i t ’ , 5 . 0 0 , 34 )

END TRANSACTION

Suppose that a user deletes branch with sortcode 56, and inserts a deposit account
number 100 for John Smith at branch sortcode 34

The database is left in an inconsistent state for two reasons

it has three accounts recorded for a branch that appears not to exist, and
it has two records for account number 100, with different details for the account

A DBMS implementing Consistency of transactions would forbid both of these
changes to the database

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 5 / 78



Transactions ACID properties

Transaction Properties: Isolation

BEGIN TRANSACTION
UPDATE branch
SET cash=cash −10000.00
WHERE so r t c od e=56

UPDATE branch
SET cash=cash +10000.00
WHERE so r t c od e=34

END TRANSACTION

BEGIN TRANSACTION

SELECT SUM( cash ) AS n e t c a sh
FROM branch

END TRANSACTION

Suppose that the system sums the cash in the bank in one transaction, half way
through processing a cash transfer in another transaction

The result of the summation of cash in the bank erroneously reports that
£10,000 is missing

A DBMS implementing Isolation of transactions ensures that transactions
always report results based on the values of committed transactions

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 6 / 78



Transactions ACID properties

Transaction Properties: Durability

BEGIN TRANSACTION
UPDATE branch
SET cash=cash −10000.00
WHERE so r t c od e=56

UPDATE branch
SET cash=cash+10000.00
WHERE so r t c od e=34

END TRANSACTION

CRASH

Suppose that the system crashes after informing the user that it has committed the
transfer of cash, but has not yet written to disc the update to branch 34

The database on disc is left in an inconsistent state, with £10,000 ‘missing’

A DBMS implementing Durability of transactions would on restart complete
the change to branch 34 (or alternatively never inform a user of commitment
with writing the results to disc).

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 7 / 78



Transactions ACID properties

DBMS Architecture

disc

data manager

buffer
manager

memory

recovery manager

scheduler

transaction manager

read✲

write
✛

write✲

read
✛

read ✻ write
❄

flush
fetch ❄

read
write

begin

abort
commit❄

execute

❄

result
reject

delay

✻

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 8 / 78



Transactions ACID properties

SQL Conversion to Histories

branch
sortcode bname cash

56 ’Wimbledon’ 94340.45
34 ’Goodge St’ 8900.67
67 ’Strand’ 34005.00

BEGIN TRANSACTION T1
UPDATE branch
SET cash=cash-10000.00
WHERE sortcode=56

UPDATE branch
SET cash=cash+10000.00
WHERE sortcode=34

COMMIT TRANSACTION T1

H1 = r1[b56] , cash=94340.45,

w1[b56] , cash=84340.45,

r1[b34] , cash=8900.67,

w1[b34] , cash=18900.67, c1

history of transaction Tn

1 Begin transaction bn (only given if necessary for discussion)

2 Various read operations on objects rn[oj ] and write operations wn[oj ]

3 Either cn for the commitment of the transaction, or an for the abort of the
transaction

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 9 / 78



Transactions ACID properties

SQL Conversion to Histories

branch
sortcode bname cash

56 ’Wimbledon’ 84340.45
34 ’Goodge St’ 18900.67
67 ’Strand’ 34005.00

BEGIN TRANSACTION T2
UPDATE branch
SET cash=cash-2000.00
WHERE sortcode=34

UPDATE branch
SET cash=cash+2000.00
WHERE sortcode=67

COMMIT TRANSACTION T2

H2 = r2[b34] , cash=18900.67,

w2[b34] , cash=16900.67,

r2[b67] , cash=34005.00,

w2[b67] , cash=36005.00, c2

history of transaction Tn

1 Begin transaction bn (only given if necessary for discussion)

2 Various read operations on objects rn[oj ] and write operations wn[oj ]

3 Either cn for the commitment of the transaction, or an for the abort of the
transaction

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 10 / 78



Concurrency Definition

Concurrent Execution

Concurrent Execution of Transactions

Interleaving of several transaction histories

Order of operations within each history preserved

H1 = r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1

H2 = r2[b34] , w2[b34] , r2[b67] , w2[b67] , c2

Some possible concurrent executions are

Hx = r2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , w2[b34] , r2[b67] , w2[b67] , c2

Hy = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , r2[b67] , w2[b67] , c2 , c1

Hz = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , r2[b67] , w2[b67] , c2

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 11 / 78



Concurrency Definition

Which concurrent executions should be allowed?

Concurrency control → controlling interaction

serialisability

A concurrent execution of transactions should always has the same end result as
some serial execution of those same transactions

recoverability

No transaction commits depending on data that has been produced by another
transaction that has yet to commit

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 12 / 78



Concurrency Definition

Quiz 1: Serialisability and Recoverability (1)

Hx = r2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , w2[b34] , r2[b67] , w2[b67] , c2

Is Hx

A

Not Serialisable, Not Recoverable

B

Not Serialisable, Recoverable

C

Serialisable, Not Recoverable

D

Serialisable, Recoverable

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 13 / 78



Concurrency Definition

Quiz 2: Serialisability and Recoverability (2)

Hy = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , r2[b67] , w2[b67] , c2 , c1

Is Hy

A

Not Serialisable, Not Recoverable

B

Not Serialisable, Recoverable

C

Serialisable, Not Recoverable

D

Serialisable, Recoverable

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 14 / 78



Concurrency Definition

Quiz 3: Serialisability and Recoverability (3)

Hz = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , r2[b67] , w2[b67] , c2

Is Hz

A

Not Serialisable, Not Recoverable

B

Not Serialisable, Recoverable

C

Serialisable, Not Recoverable

D

Serialisable, Recoverable

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 15 / 78



Concurrency Anomalies

Anomaly 1: Lost Update

BEGIN TRANSACTION T1
EXEC move cash(56,34,10000.00)

COMMIT TRANSACTION T1

r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1

BEGIN TRANSACTION T2
EXEC move cash(34,67,2000.00)

COMMIT TRANSACTION T2

r2[b34] , w2[b34] , r2[b67] , w2[b67] , c2

r1[b56] , cash=94340.45, w1[b56] , cash=84340.45, r1[b34] , cash=8900.67,

r2[b34] , cash=8900.67, w1[b34] , cash=18900.67, c1 , w2[b34] , cash=6900.42,

r2[b67] , cash=34005.00, w2[b67] , cash=36005.25, c2

− serialisable + recoverable

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 16 / 78



Concurrency Anomalies

Anomaly 1: Lost Update

BEGIN TRANSACTION T1
EXEC move cash(56,34,10000.00)

COMMIT TRANSACTION T1

r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1

BEGIN TRANSACTION T2
EXEC move cash(34,67,2000.00)

COMMIT TRANSACTION T2

r2[b34] , w2[b34] , r2[b67] , w2[b67] , c2

r1[b56] , cash=94340.45, w1[b56] , cash=84340.45, r1[b34] , cash=8900.67,

r2[b34] , cash=8900.67, lostupdate, c1 , w2[b34] , cash=6900.42,

r2[b67] , cash=34005.00, w2[b67] , cash=36005.25, c2

− serialisable + recoverable

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 16 / 78



Concurrency Anomalies

Anomaly 2: Inconsistent analysis

BEGIN TRANSACTION T1
EXEC move cash(56,34,10000.00)

COMMIT TRANSACTION T1

r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1

BEGIN TRANSACTION T4
SELECT SUM(cash) FROM branch

COMMIT TRANSACTION T4

H4 = r4[b56] , r4[b34] , r4[b67] , c4

r1[b56] , cash=94340.45, w1[b56] , cash=84340.45, r4[b56] , cash=84340.45,

r4[b34] , cash=8900.67, r4[b67] , cash=34005.00, r1[b34] , cash=8900.67,

w1[b34] , cash=18900.67, c1 , c4

− serialisable + recoverable

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 17 / 78



Concurrency Anomalies

Anomaly 3: Dirty Reads

BEGIN TRANSACTION T1
EXEC move cash(56,34,10000.00)

COMMIT TRANSACTION T1

r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1

BEGIN TRANSACTION T2
EXEC move cash(34,67,2000.00)

COMMIT TRANSACTION T2

r2[b34] , w2[b34] , r2[b67] , w2[b67] , c2

r1[b56] , cash=94340.45, w1[b56] , cash=84340.45, r2[b34] , cash=8900.67,

w2[b34] , cash=6900.42, r1[b34] , cash=6900.67, w1[b34] , cash=16900.67, c1 ,

r2[b67] , cash=34005.00, w2[b67] , cash=36005.25, a2

+ serialisable − recoverable

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 18 / 78



Concurrency Anomalies

Quiz 4: Anomalies (1)

Hx = r2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , w2[b34] , r2[b67] , w2[b67] , c2

Which anomaly does Hx suffer?

A

None

B

Lost Update

C

Inconsistent Analysis

D

Dirty Read

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 19 / 78



Concurrency Anomalies

Quiz 5: Anomalies (2)

Hy = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , r2[b67] , w2[b67] , c2 , c1

Which anomaly does Hy suffer?

A

None

B

Lost Update

C

Inconsistent Analysis

D

Dirty Read

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 20 / 78



Concurrency Anomalies

Quiz 6: Anomalies (3)

Hz = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , r2[b67] , w2[b67] , c2

Which anomaly does Hz suffer?

A

None

B

Lost Update

C

Inconsistent Analysis

D

Dirty Read

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 21 / 78



Concurrency Anomalies

Account Table

account
no type cname rate? sortcode
100 ’current’ ’McBrien, P.’ NULL 67
101 ’deposit’ ’McBrien, P.’ 5.25 67
103 ’current’ ’Boyd, M.’ NULL 34
107 ’current’ ’Poulovassilis, A.’ NULL 56
119 ’deposit’ ’Poulovassilis, A.’ 5.50 56
125 ’current’ ’Bailey, J.’ NULL 56

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 22 / 78



Concurrency Anomalies

Anomaly 4: Dirty Writes

BEGIN TRANSACTION T5
UPDATE account
SET rate=5.5
WHERE type=’deposit’

COMMIT TRANSACTION T5

H5 = w5[a101] , rate=5.5,

w5[a119] , rate=5.5, c5

BEGIN TRANSACTION T6
UPDATE account
SET rate=6.0
WHERE type=’deposit’

COMMIT TRANSACTION T6

H6 = w6[a101] , rate=6.0,

w6[a119] , rate=6.0, c6

w6[a101] , rate=6.0, w5[a101] , rate=5.5, w5[a119] , rate=5.5,

w6[a119] , rate=6.0, c5 , c6

− serialisable + recoverable

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 23 / 78



Concurrency Anomalies

Patterns of operations associated with Anomalies

Anomaly Pattern
Dirty Write w1[o] ≺ w2[o] ≺ e1
Dirty Read w1[o] ≺ r2[o] ≺ e1
Inconsistent Analysis r1[oa] ≺ w2[oa], w2[ob] ≺ r1[ob]
Lost Update r1[o] ≺ w2[o] ≺ w1[o]

Notation

ei means either ci or ai occurring

opa ≺ opb mean opa occurs before opb in a history

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 24 / 78



Concurrency Anomalies

Anomaly 5: Phantom reads

BEGIN TRANSACTION T7
UPDATE account
SET rate=rate+0.25
WHERE type=’deposit’
AND rate<5.5

UPDATE account
SET rate=rate+0.25
WHERE type=’deposit’

COMMIT TRANSACTION T7

BEGIN TRANSACTION T8
INSERT INTO account
VALUES (126,’deposit’,’Boyd,M.’,5.25,34)

COMMIT TRANSACTION T8

r7[a101] , rate=5.25, w7[a101] , rate=5.50, r7[a119] , rate=5.50,

ins8[a126] , rate=5.25, c8 , r7[a101] , rate=5.50, w7[a101] , rate=5.75,

r7[a119] , rate=5.50, w7[a119] , rate=5.75, r7[a126] , rate=5.25,

w7[a126] , rate=5.50, c7

− serialisable + recoverable

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 25 / 78



Concurrency Anomalies

Movement and Account Tables

movement
mid no amount tdate
1000 100 2300.00 5/1/1999
1001 101 4000.00 5/1/1999
1002 100 -223.45 8/1/1999
1004 107 -100.00 11/1/1999
1005 103 145.50 12/1/1999
1006 100 10.23 15/1/1999
1007 107 345.56 15/1/1999
1008 101 1230.00 15/1/1999
1009 119 5600.00 18/1/1999

account
no type cname rate? sortcode

100 ’current’ ’McBrien, P.’ NULL 67
101 ’deposit’ ’McBrien, P.’ 5.25 67
103 ’current’ ’Boyd, M.’ NULL 34
107 ’current’ ’Poulovassilis, A.’ NULL 56
119 ’deposit’ ’Poulovassilis, A.’ 5.50 56
125 ’current’ ’Bailey, J.’ NULL 56

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 26 / 78



Concurrency Anomalies

Anomaly 6: Write Skew

BEGIN TRANSACTION T11
UPDATE account
SET rate=max rate
FROM (SELECT MAX(rate) AS max rate

FROM account) AS max data
WHERE rate<max rate

COMMIT TRANSACTION T11

BEGIN TRANSACTION T12
UPDATE account
SET rate=min rate
FROM (SELECT MIN(rate) AS min rate

FROM account) AS min data
WHERE rate>min rate

COMMIT TRANSACTION T12

r11[a101] , r11[a119] , r12[a101] , r12[a119] , w11[a101] , w12[a119] , c11 , c12

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 27 / 78



Concurrency Anomalies

Worksheet: Anomalies

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 28 / 78



Serialisability

Serialisable Transaction Execution

Solve anomalies → H ≡ serial execution

Only interested in the committed projection

Hc =

r1[b56] , r2[b34] , w2[b34] ,

r3[m1000] , r3[m1001] , r3[m1002] ,

w1[b56] , r4[b56] ,

r3[m1003] , r3[m1004] , r3[m1005] ,

r1[b34] , a3 , w1[b34] , c1 , r4[b34] ,

r2[b67] , w2[b67] , c2 , r4[b67] , c4

C(Hc) =

r1[b56] , r2[b34] , w2[b34] ,

w1[b56] , r4[b56] ,

r1[b34] , w1[b34] , c1 , r4[b34] ,

r2[b67] , w2[b67] , c2 , r4[b67] , c4

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 29 / 78



Serialisability

Possible Serial Equivalents

Hcp = r1[b56] , r2[b34] , w2[b34] , w1[b56] , r4[b56] , r1[b34] , w1[b34] , c1 , r4[b34] , r2[b67] ,

w2[b67] , c2 , r4[b67] , c4

H1 , H2 , H4 H1 , H4 , H2 H2 , H1 , H4 H2 , H4 , H1 H4 , H1 , H2 H4 , H2 , H1

how to determine that histories are equivalent?

how to check this during execution?

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 30 / 78



Serialisability

Conflicts: Potential For Problems

conflict

A conflict occurs when there is an interaction between two transactions

rx[o] and wy[o] are in H where x 6= y

or

wx[o] and wy [o] are in H where x 6= y

Only consider pairs where there is

no third operation rwz[o] between

the pair of operations that conflicts

with both

conflicts

Hx = r2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , w2[b34] , r2[b67] , w2[b67] , c2

Hy = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , r2[b67] , w2[b67] , c2 , c1

Hz = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , r2[b67] , w2[b67] , c2

Conflicts

w2[b34] → r1[b34] T1 reads from T2 in Hy,Hz

w1[b34] → w2[b34] T2 writes over T1 in Hx

r2[b34] → w1[b34] T1 writes after T2 reads in Hx

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 31 / 78



Serialisability

Quiz 7: Conflicts

Hw =

r2[a100] , w2[a100] , r2[a107] , r1[a119] , w1[a119] , r1[a107] , w1[a107] , c1 , w2[a107] , c2

Which of the following is not a conflict in Hw?

A

r2[a107] → r1[a107]

B

r2[a107] → w1[a107]

C

r1[a107] → w2[a107]

D

w1[a107] → w2[a107]

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 32 / 78



Serialisability

Conflict Equivalence and Conflict Serialisable

Conflict Equivalence

Two histories Hi and Hj are conflict equivalent if:

1 Contain the same set of operations

2 Order conflicts (of non-aborted transactions) in the same way.

Conflict Serialisable

a history H is conflict serialisable (CSR) if C(H) ≡CE a serial history

Failure to be conflict serialisable

Hx = r2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , w2[b34] , r2[b67] , w2[b67] , c2

Contains conflicts r2[b34] → w1[b34] and w1[b34] → w2[b34] and so is not conflict

equivalence to H1,H2 nor H2,H1, and hence is not conflict serialisable.

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 33 / 78



Serialisability

Serialisation Graph

Serialisation Graph

A serialisation graph SG(H) contains a node for each transaction in H , and an
edge Ti → Tj if there is some object o for which a conflict rwi[o] → rwj [o] exists in H .
If SG(H) is acyclic, then H is conflict serialisable.

Demonstrating that a History is CSR

Given Hcp= r1[b56] , r2[b34] , w2[b34] , w1[b56] , r4[b56] , r1[b34] , w1[b34] ,

c1 , r4[b34] , r2[b67] , w2[b67] , c2 , r4[b67] , c4

Conflicts are w2[b34] → r1[b34] , w1[b56] → r4[b56] , w1[b34] → r4[b34] ,

w2[b67] → r4[b67]

SG(Hcp)

T2 T1 T4

SG(Hcp) is acyclic, therefore Hcp is CSR. Serialisation order T2, T1, T4
P.J. Mc.Brien (Computing, Imperial) Concurrency Control 34 / 78



Recoverability Definition

Recoverability

Serialisability necessary for isolation and consistency of committed transactions

Recoverability necessary for isolation and consistency when there are also
aborted transactions

Recoverable execution

A recoverable (RC) history H has no transaction committing before another
transaction from which it read

Execution avoiding cascading aborts

A history which avoids cascading aborts (ACA) does not read from a
non-committed transaction

Strict execution

A strict (ST) history does not read from a non-committed transaction nor write
over a non-committed transaction

ST ⊂ ACA ⊂ RC

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 35 / 78



Recoverability Types of Recoverability

Non-recoverable executions

BEGIN TRANSACTION T1
UPDATE branch
SET cash=cash-10000.00
WHERE sortcode=56
UPDATE branch
SET cash=cash+10000.00
WHERE sortcode=34

COMMIT TRANSACTION T1

H1 = r1[b56] , w1[b56] , a1

BEGIN TRANSACTION T4
SELECT SUM(cash) FROM branch

COMMIT TRANSACTION T4

H4 = r4[b56] , r4[b34] , r4[b67] , c4

Hc = r1[b56] , cash=94340.45, w1[b56] , cash=84340.45, r4[b56] , cash=84340.45,

r4[b34] , cash=8900.67, r4[b67] , cash=34005.00, c4 , a1
Hc 6∈ RC

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 36 / 78



Recoverability Types of Recoverability

Cascading Aborts

BEGIN TRANSACTION T1
UPDATE branch
SET cash=cash-10000.00
WHERE sortcode=56
UPDATE branch
SET cash=cash+10000.00
WHERE sortcode=34

COMMIT TRANSACTION T1

H1 = r1[b56] , w1[b56] , a1

BEGIN TRANSACTION T4
SELECT SUM(cash) FROM branch

COMMIT TRANSACTION T4

H4 = r4[b56] , r4[b34] , r4[b67] , c4

Hc = r1[b56] , cash=94340.45, w1[b56] , cash=84340.45, r4[b56] , cash=84340.45,

r4[b34] , cash=8900.67, r4[b67] , cash=34005.00, a1 , a4

Hc ∈ RC

Hc 6∈ ACA

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 37 / 78



Recoverability Types of Recoverability

Strict Execution

BEGIN TRANSACTION T5
UPDATE account
SET rate=5.5
WHERE type=’deposit’

COMMIT TRANSACTION T5

H5 = w5[a101] , rate=5.5,

w5[a119] , rate=5.5, a5

BEGIN TRANSACTION T6
UPDATE account
SET rate=6.0
WHERE type=’deposit’

COMMIT TRANSACTION T6

H6 = w6[a101] , rate=6.0,

w6[a119] , rate=6.0, c6

Hc = w6[a101] , rate=6.0, w5[a101] , rate=5.5,

w5[a119] , rate=5.5, w6[a119] , rate=6.0, a5 , c6

Hc ∈ ACA
Hc 6∈ ST

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 38 / 78



Recoverability Types of Recoverability

Quiz 8: Recoverability

Hz = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , r2[b67] , w2[b67] , c2

Which describes the recoverability of Hz?

A

Non-recoverable

B

Recoverable

C

Avoids Cascading Aborts

D

Strict

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 39 / 78



Recoverability Types of Recoverability

Worksheet: Serialisability and Recoverability

H1 = r1[o1] , w1[o1] , w1[o2] , w1[o3] , c1

H2 = r2[o2] , w2[o2] , w2[o1] , c2

H3 = r3[o1] , w3[o1] , w3[o2] , c3

Hx = r1[o1] , w1[o1] , r2[o2] , w2[o2] , w2[o1] , c2 , w1[o2] ,

r3[o1] , w3[o1] , w3[o2] , c3 , w1[o3] , c1

Hy = r3[o1] , w3[o1] , r1[o1] , w1[o1] , w3[o2] , c3 , w1[o2] ,

r2[o2] , w2[o2] , w2[o1] , c2 , w1[o3] , c1

Hz = r3[o1] , w3[o1] , r1[o1] , w3[o2] , w1[o1] , w1[o2] ,

r2[o2] , w2[o2] , w1[o3] , w2[o1] , c3 , c1 , c2

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 40 / 78



Recoverability Types of Recoverability

Maintaining Serialisability and Recoverability

two-phase locking (2PL)

conflict based
uses locks to prevent problems
common technique

time-stamping

add a timestamp to each object
write sets timestamp to that of transaction
may only read or write objects with earlier timestamp
abort when object has new timestamp
common technique

optimistic concurrency control

do nothing until commit
at commit, inspect history for problems
good if few conflicts

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 41 / 78



2PL Basic 2PL

The 2PL Protocol

1 read locks rl[o], . . . , r[o], . . . , ru[o]

2 write locks wl[o], . . . , w[o], . . . , wu[o]

3 Two phases

i growing phase

ii shrinking phase

4 refuse rli[o] if wlj [o] already held
refuse wli[o] if rlj [o] or wlj [o] already held

5 rli[o] or wli[o] refused → delay Ti

✲
time

✻

no.
locks
in Hi

bi ei

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 42 / 78



2PL Basic 2PL

Quiz 9: Two Phase Locking (2PL)

Which history is not valid in 2PL?

A

rl1[a107] , r1[a107] , wl1[a107] , w1[a107] , wu1[a107] , ru1[a107]

B

wl1[a107] , wl1[a100] , r1[a107] , w1[a107] , r1[a100] , w1[a100] , wu1[a100] , wu1[a107]

C

wl1[a107] , r1[a107] , w1[a107] , wu1[a107] , wl1[a100] , r1[a100] , w1[a100] , wu1[a100]

D

wl1[a107] , r1[a107] , w1[a107] , wl1[a100] , r1[a100] , wu1[a107] , w1[a100] , wu1[a100]

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 43 / 78



2PL Basic 2PL

Why does 2PL Work?

✲
time

✻
no. locks

bi eibj ej

Hi Hj

two-phase rule → maximum lock period

can re-time history so all operations take place during maximum lock period

CSR since all conflicts prevented during maximum lock period

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 44 / 78



2PL Inserts in 2PL

Anomaly 5: Phantom reads

BEGIN TRANSACTION T7
UPDATE account
SET rate=rate+0.25
WHERE type=’deposit’
AND rate<5.5

UPDATE account
SET rate=rate+0.25
WHERE type=’deposit’

COMMIT TRANSACTION T7

BEGIN TRANSACTION T8
INSERT INTO account
VALUES (126,’deposit’,’Boyd,M.’,5.25,34)

COMMIT TRANSACTION T8

r7[a101] , rate=5.25, w7[a101] , rate=5.50, r7[a119] , rate=5.50,

ins8[a126] , rate=5.25, c8 , r7[a101] , rate=5.50, w7[a101] , rate=5.75,

r7[a119] , rate=5.50, w7[a119] , rate=5.75, r7[a126] , rate=5.25,

w7[a126] , rate=5.50, c7

− serialisable + recoverable

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 45 / 78



2PL Inserts in 2PL

Naive 2PL of Insert

b7, r7[a101], w7[a101], r7[a119], b8, ins8[a126], c8, . . .

. . . r7[a101], w7[a101], r7[a119], w7[a119], r7[a126], w7[a126], c7

rl7[a101]
⇓

wl7[a101]
⇓

rl7[a119]
wl7[a101]

⇓

rl7[a119]
wl7[a101]

⇓

wl8[a126]
rl7[a119]
wl7[a101]

⇓

wl8[a126]
rl7[a119]
wl7[a101]

⇓

rl7[a119]
wl7[a101]

⇓

rl7[a119]
wl7[a101]

⇓

rl7[a119]
wl7[a101]

⇓

wl7[a119]
wl7[a101]

⇓

rl7[a126]
wl7[a119]
wl7[a101]

⇓

wl7[a126]
wl7[a119]
wl7[a101]

⇓

wl7[a126]
wl7[a119]
wl7[a101]

⇓
∅
⇓

What is being locked?

objects a101 and a119?
predicate type=’deposit’ AND rate<5.5

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 46 / 78



2PL Inserts in 2PL

Solution 1: Table Locks

Problem with phantom reads is due to changing data matching query

Read lock table when performing a ‘scan’ of the table

✗ Can produce needless conflicts

✓ Can be efficient if large parts of the table are being updated

Query Requiring Table Lock

BEGIN TRANSACTION T7
UPDATE account
SET r a t e=r a t e +0.25
WHERE type=’ d e p o s i t ’
AND ra t e <5.5

UPDATE account
SET r a t e=r a t e +0.25
WHERE type=’ d e p o s i t ’

COMMIT TRANSACTION T7

H7 uses wl7[a] instead of

wl7[a101] , wl7[a119]

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 47 / 78



2PL Inserts in 2PL

Solution 2: Predicate Locking

P1 : σtype=deposit∧rate≤5.50(account)

P2 : σno=126∧type=deposit∧cname=Boyd,M.∧rate=5.25∧branch=34(account)

P3 : σtype=deposit(account)

b7, r7[a101], w7[a101], r7[a119], b8, r7[a101], w7[a101], . . .

. . . r7[a119], w7[a119], c7, ins8[a126], c8

rl7[P1]
⇓

wl7[a101]
rl7[P1]

⇓

wl7[a101]
rl7[P1]

⇓

wl7[a101]
rl7[P1]

⇓

wl8[P2] denied
wl7 [a101]
rl7[P3]

⇓

wl7[a101]
rl7[P3]

⇓

wl7 [a101]
rl7[P3]

⇓

wl7[a119]
wl7[a101]
rl7[P3]

⇓

wl7[a119]
wl7[a101]
rl7[P3]

⇓
wl8[P2]

⇓
wl8 [P2]

⇓
∅
⇓

lock the predicate that the transaction uses

difficult to implement

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 48 / 78



2PL Inserts in 2PL

Quiz 10: Predicate Locks

branch
sortcode bname cash

56 ’Wimbledon’ 94340.45
34 ’Goodge St’ 8900.67
67 ’Strand’ 34005.00

account
no type cname rate? sortcode

100 ’current’ ’McBrien, P.’ NULL 67
101 ’deposit’ ’McBrien, P.’ 5.25 67
103 ’current’ ’Boyd, M.’ NULL 34
107 ’current’ ’Poulovassilis, A.’ NULL 56
119 ’deposit’ ’Poulovassilis, A.’ 5.50 56
125 ’current’ ’Bailey, J.’ NULL 56

key branch(sortcode)
key branch(bname)
key account(no)

account(sortcode)
fk
⇒

branch(sortcode)

Which SQL query requires a predicate lock in order to prevent phantom reads

by any transaction in which it is placed?

A

SELECT ∗
FROM account
WHERE no=101

B

SELECT ∗
FROM branch
WHERE name=’Wimbledon ’

C

SELECT ∗
FROM branch

JOIN account
USING ( so r t code )

WHERE branch . s o r t c ode =56

D

SELECT ∗
FROM branch

JOIN account
USING ( so r t code )

WHERE no=101

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 49 / 78



2PL Deadlock Detection

Deadlock Detection: WFG with Cycle = Deadlock

Hd b1 r1[b56] w1[b56] r1[b34] b2 r2[b34]
dead-
lock

rl1[b56]

⇓

wl1[b56]

⇓

rl1[b34]

wl1[b56]

⇓

rl1[b34]

wl1[b56]

⇓

rl2[b34]

rl1[b34]

wl1[b56]

⇓

rl2[b34]

rl1[b34]

wl1[b56]

⇓

WFG(Hd)

T1 T2

wl1[b34]

wl2[b34]

Cycle in WFG means DB in a deadlock state, must abort either H1 or H2

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 50 / 78



2PL Deadlock Detection

Conservative Locking

✲
time

✻
no. locks

in Hi

bi ei

Conservative Locking

prevents deadlock

when to release locks problem

not recoverable

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 51 / 78



2PL Deadlock Detection

Strict Locking

✲
time

✻

no.
locks
in Hi

bi ei

❄

only release read
locks before ei

strict locking

✲
time

✻

no.
locks
in Hi

bi eistrong strict locking

Strict Locking

prevents write locks being released before transaction end

allows deadlocks

no dirty reads/writes → recoverable

Strong Strict Locking

In addition to strict locking properties

prevents read locks being released before transaction end

simple to implement

suitable for distributed transactions (using atomic commit)
P.J. Mc.Brien (Computing, Imperial) Concurrency Control 52 / 78



2PL Deadlock Detection

2PL and the Prevention of Anomalies

Define ei to mean either ci or ai occurring

Define opa ≺ opb to mean opa occurs before opb in a history

Anomaly Pattern Prevented by
Dirty Write w1[o] ≺ w2[o], w2[o] ≺ e1 Strict 2PL
Dirty Read w1[o] ≺ r2[o], r2[o] ≺ e1 Strict 2PL
Inconsistent Analysis r1[oa] ≺ w2[oa], w2[ob] ≺ r1[ob] 2PL
Lost Update r1[o] ≺ w2[o], w2[o] ≺ w1[o] 2PL
Simple Write Skew r1[oa] ≺ w2[ob], r1[ob] ≺ w2[oa] 2PL
Write Skew r1[P1] ≺ w2[x ∈ P2], r2[P2] ≺ w1[y ∈ P1] 2PL with Predicate Locks

Phantom Read r1[P1] ≺ w2[x ∈ P1], w2[y ∈ P2] ≺ r1[P2] 2PL with Predicate Locks

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 53 / 78



Isolation Levels Need for Serialisability?

Transaction Isolation Levels

Do we always need ACID properties?

BEGIN TRANSACTION T3
SELECT DISTINCT no
FROM movement
WHERE amount>=1000.00

COMMIT TRANSACTION T3

Some transactions only need ‘approximate’ results
e.g. Management overview
e.g. Estimates

May execute these transactions at a ‘lower’ level of concurrency control
SQL allows you to vary the level of concurrency control

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 54 / 78



Isolation Levels SQL Isolation Levels

SQL: READ UNCOMMITTED

Set by executing SET TRANSACTION ISOLATION LEVEL READ
UNCOMMITTED

The weakest level, only prevents dirty writes

Allows transactions to read uncommitted data
Hence allows Dirty reads

Anomaly Possible

Dirty Write N

Dirty Read Y

Lost Update Y

Inconsistent Analysis Y

Phantom Y

Write Skew Y

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 55 / 78



Isolation Levels SQL Isolation Levels

SQL: READ COMMITTED

Allows transactions to only read committed data

Recoverable; but may suffer inconsistent analysis

Anomaly Possible

Dirty Write N

Dirty Read N

Lost Update Y

Inconsistent Analysis Y

Phantom Y

Write Skew Y

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 56 / 78



Isolation Levels SQL Isolation Levels

SQL: SNAPSHOT

Transactions behave as if read committed version of data at start of transaction,
and write all data at end of transaction

Not standard SQL. Available in SQL-Server 2005

Pre Postgres 9.1 and Oracle SERIALIZABLE is infact SNAPSHOT

Anomaly Possible

Dirty Write N

Dirty Read N

Lost Update N

Inconsistent Analysis N

Phantom N

Write Skew Y

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 57 / 78



Isolation Levels SQL Isolation Levels

SQL: REPEATABLE READ

Allows inserts to tables already read

Allows phantom reads

Prevents write skew

Anomaly Possible

Dirty Write N

Dirty Read N

Lost Update N

Inconsistent Analysis N

Phantom Y

Write Skew N

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 58 / 78



Isolation Levels SQL Isolation Levels

SQL: SERIALIZABLE

Execution equivalent to a serial execution

no anomalies of any kind (not just those listed)

Anomaly Possible

Dirty Write N

Dirty Read N

Lost Update N

Inconsistent Analysis N

Phantom N

Write Skew N

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 59 / 78



Distributed Transactions

Distributed Concurrency Control

S1

DB1
LDM1

LS1

LTM1

GTM1

✲✛

✻❄

✻❄

✻❄ ✻

S2

DB2

GTM2

LDM2

LS2

LTM2

❄

✻❄

✻❄

✲✛

Distributed 2PL

Fragmentation and replication imply coordination of transaction commit

Fragmentation implies locks go to relevant fragments

Replication implies replication of locks

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 60 / 78



Distributed Transactions Deadlock Detection

Deadlock in Centralised DBMS

BEGIN TRANSACTION T1
EXEC move cash(56,34,10000.00)

COMMIT TRANSACTION T1

BEGIN TRANSACTION T9
EXEC move cash(34,56,2000.00)

COMMIT TRANSACTION T9

H1 = r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 H9 = r9[b34] , w9[b34] , r9[b56] , w9[b56] , c9

Hc = r1[b56] , w1[b56] , r9[b34] , w9[b34] , deadlock

rl9[b56]

rl1[b34]

H1 H9

■

❘

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 61 / 78



Distributed Transactions Deadlock Detection

Distribution of Histories

BEGIN TRANSACTION T1
EXEC move cash(56,34,10000.00)

COMMIT TRANSACTION T1

BEGIN TRANSACTION T9
EXEC move cash(34,56,2000.00)

COMMIT TRANSACTION T9

H1 = r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 H9 = r9[b34] , w9[b34] , r9[b56] , w9[b56]

S1

H1.1 = r1[b34] , w1[b34] , c1

H9.1 = r9[b34] , w9[b34] , c9
S2

H1.2 = r1[b56] , w1[b56] , c1

H9.2 = r9[b56] , w9[b56] , c9

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 62 / 78



Distributed Transactions Deadlock Detection

Local WFG → Sub-Transactions

rl9[b56]

rl1[b34]

H1 H9

■

❘

spawn ✲✛

spawn
✲✛

rl1[b34]

❄

spawn
✻

❄

spawn
✻

❄

rl9[b56]
✻

H9.1

H1

H1.1 H9.2

H9

H1.2

Hc = r1[b56] , w1[b56] , w9[b34] , w9[b34] ,deadlock

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 63 / 78



Distributed Transactions Deadlock Detection

Sub-transactions → EXT nodes+DWFG

spawn✲✛

spawn
✲✛

rl1[b34]

❄

spawn✻

❄

spawn ✻

❄

rl9[b56]
✻

H9.1

H1

H1.1 H9.2

H9

H1.2

T1

T9

rl1[b34] EXT1

spawn2

S1

spawn2

T1

T9

rl9[b56]EXT2

spawn1

S2

spawn1

When local cycle appears, fetch remote WFG

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 64 / 78



Distributed Transactions Deadlock Detection

Quiz 11: Deadlock detection in DWFGs

Which of the following is correct?

A

Deadlock has occurred once a cycle has appeared at any node executing a
distributed transaction.

B

Deadlock might have occurred once a cycle has appeared at any node executing a
distributed transaction.

C

Deadlock has occurred once a cycle has appeared at all nodes executing a
distributed transaction.

D

Deadlock has occurred once a cycle has appeared at all nodes in the distributed
database.

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 65 / 78



Distributed Transactions Deadlock Detection

Worksheet: Distributed WFG

T1 = r1[b56] , w1[b56] , r1[b34] , w1[b34]

T2 = r2[b34] , w2[b34] , r2[b67] , w2[b67]

T4 = r4[b67] , r4[b56] , r4[b34]

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 66 / 78



Distributed Transactions Deadlock Detection

Worksheet: Distributed WFG

Consider the conflicts w1[b56] → r4[b56] , w2[b34] → r1[b34] , r4[b67] → w2[b67]

These can give a deadlock state:

Ha = r1[b56] , w1[b56] , r2[b34] , w2[b34] , r2[b67] , r4[b67] , deadlock

T2 T4

T1

rl1[b34]

Ha wl2[b67]

rl4[b56]

T2

T1

rl1[b34]

EXT1

spawn2

T4

rl4[b56]

S1

spawn2

T2

EXT2

spawn1

T4

T

S2

spawn1

wl2[b67]

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 67 / 78



Distributed Transactions Global 2PL

Incorrect Global 2PL

✲

time

✻
no. locks

in Hi

b1 e1b2 e2

S1✲ S2✛

S1 + S2✛

Can not just execute 2PL at each site

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 68 / 78



Distributed Transactions Global 2PL

Correct Global 2PL with Strong Strict Locking

✲

time

✻
no. locks

in Hi

b1 b2 e

S1✲ S2✛

S1 + S2✛

Execute Strong Strict 2PL at each site

Use global atomic commit to end transaction

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 69 / 78



Distributed Transactions Global 2PL

Two-Phase Commit (2PC)

service element source semantics
C-PREPARE coordinator get ready to commit
C-READY server ready to commit
C-REFUSE server not ready to commit
C-COMMIT coordinator commit the transaction
C-ROLLBACK server rollback the transaction
C-RESTART either try to return to start of transaction

OSI model application layer commitment, concurrency, and recovery

(CCR) service

.NET System.Transactions namespace, Java Transaction API (JTA)

Commonly available for commercial DBMSs

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 70 / 78



Distributed Transactions Global 2PL

2PC: Normal Commit

Server1 Coordinator Server2

C-PREPARE.request

C-PREPARE.indication ✙ C-PREPARE.indication❥

C-READY.request

C-READY.indication❥ C-READY.request

C-READY.indication ✙

C-COMMIT.request

C-COMMIT.indication ✙ C-COMMIT.indication❥

C-COMMIT.response

C-COMMIT.confirm❥ C-COMMIT.response

C-COMMIT.confirm ✙

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 71 / 78



Distributed Transactions Global 2PL

2PC: Normal Abort

Server1 Coordinator Server2

C-PREPARE.request

C-PREPARE.indication ✙ C-PREPARE.indication❥

C-READY.request

C-READY.indication❥ C-REFUSE.request

C-REFUSE.indication ✙

C-ROLLBACK.request

C-ROLLBACK.indication✙ C-ROLLBACK.indication❥

C-ROLLBACK.response

C-ROLLBACK.confirm❥

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 72 / 78



Distributed Transactions Global 2PL

2PC: Blocking

Server1 Coordinator Server2

C-PREPARE.request

C-PREPARE.indication ✙ C-PREPARE.indication❥

C-READY.request

C-READY.indication❥ C-READY.request

C-READY.indication ✙

C-COMMIT.request

C-COMMIT.indication ✙

failed

failed

✻

❄

blocked

Blocked State of Server2

The server has to wait for the recovery of Server1 in order to
determine if it should perform a COMMIT or ROLLBACK

Why Does 2PC Block?

Once server has sent C-READY

Must be ready to commit
Must commit if sent C-COMMIT
Must abort if sent C-ROLLBACK

Can prevent problem by separating voting decision from
commit command

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 73 / 78



Distributed Transactions Locks on Replicated Data

Where to send the write locks?

S1 S2 S3

wl1[o], w1[o]

✠ ❄ ❘

■ ✻ ✒

wl2[o], w2[o]

must send wx[o] to all hosts

could send wlx[o] to all hosts

conflict detected at all hosts

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 74 / 78



Distributed Transactions Locks on Replicated Data

Write-Write conflicts

write-write conflict missed

H1 H2 H3 H4 H5

j = 2 write locks

wlx[o]

wly [o]

write-write conflict detected

H1 H2 H3 H4 H5

j = 3 write locks

j ≥ ⌈n+1
2

⌉

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 75 / 78



Distributed Transactions Locks on Replicated Data

Read-Write conflicts

read-write conflict missed

H1 H2 H3 H4 H5

k = 4 read locks, n− k = 1 write locks

wlx[o]

rly[o]

read-write conflict detected

H1 H2 H3 H4 H5

k = 4 read locks, n− k + 1 = 2 write locks

j ≥ n− k + 1

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 76 / 78



Distributed Transactions Locks on Replicated Data

Detecting all conflicts

Must detect both types of conflict

n hosts

each read lock sent to k hosts

each write lock sent to j hosts

To detect write-write conflicts:
j ≥ ⌈n+1

2
⌉

To detect read-write conflicts:
j ≥ n− k + 1

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 77 / 78



Distributed Transactions Locks on Replicated Data

Quiz 12: Distributed Locking

Consider a distributed database with data replicated to six sites.
|rlx[o]| indicates the number of sites to which any read lock is sent.
|wlx[o]| indicates the number of sites to which any write lock is sent.

Which distributed locking strategy is invalid?

A

|rlx[o]| = 1, |wlx[o]| = 6

B

|rlx[o]| = 2, |wlx[o]| = 5

C

|rlx[o]| = 3, |wlx[o]| = 4

D

|rlx[o]| = 4, |wlx[o]| = 3

P.J. Mc.Brien (Computing, Imperial) Concurrency Control 78 / 78


	Transactions
	ACID properties

	Concurrency
	Definition
	Anomalies

	Serialisability
	Recoverability
	Definition
	Types of Recoverability

	2PL
	Basic 2PL
	Inserts in 2PL
	Scheduling
	Deadlock Detection

	Isolation Levels
	Need for Serialisability?
	SQL Isolation Levels

	Distributed Transactions
	Deadlock Detection
	Global 2PL
	Locks on Replicated Data


