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Housekeeping

Using the ODB query language
You are very much encouraged to use it for the first task

I it is C++ after all

Not using it could result in a very slow program



Purpose of this lecture

You should
Understand the different kinds of join semantics and when to apply
which
Understand the different nested subquery constructs and when to
apply which
Understand and know the basic join algorithms: nested loop (with
variants), hash, sort-merge
Be able to select an appropriate join implementation for a given
situation



Joins



Why care?

Joins are everywhere
In part due to to whole normalization business

I These are mostly Foreign-Key joins (we’ll talk about those in the
context of indexing)

In part because combining (joining) data produces value
I These are more complicated (and interesting)

Examples
Find users that have bought the same products
Find the shortest route visting 5 of London’s best sights
Find advertisements that worked

I (lead to users searching for a specific term within a timeframe)



Revision

We spoke about joins last week
Joins are basically cross products with selections on top

I select R.r, S.s from R,S where R.id = S.id

Quick quiz: join or cross product
select R.r, S.s from R,S where R.r = R.id

Quick quiz: join or cross product
select R.r from R,S where R.r = "something"

Quick quiz: join or cross product
select R.r from R,S where R.r = S.s
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Join formulation in SQL

Customer
CustomerID Name ShippingAddress

1 Holger 180 Queens Gate
2 Sam 32 Vassar Street
3 Peter 180 Queens Gate

Order
OrderID CustomerID

1 1
2 2
3 3



Join formulations

Classic Join Syntax

select Name , OrderID from Customer , Order where Customer.CustomerID
= Order.CustomerID

Explicit Join Syntax

select Name , OrderID from Customer JOIN Order on Customer.
CustomerID = Order.CustomerID

"Natural" Join Syntax

select Name , OrderID from Customer NATURAL JOIN Order

Attribute-specific "Natural" Join Syntax

select Name , OrderID from Customer JOIN Order USING (CustomerID)



Inner joins

All of these have one thing in common
They are Inner Joins

Inner Joins
Every matching pair produces an output
Not always what we want
Introducing Outer Joins



Outer Joins



Why outer joins?

Customer
CustomerID Name ShippingAddress

1 Holger 180 Queens Gate
2 Sam 32 Vassar Street
3 Peter 180 Queens Gate
4 Daniel 180 Queens Gate

Order
ID CustomerID
1 1
2 2
3 3
4 2

The question
Who issued how many orders

A first shot at an SQL query
select name, count(*) from customer, [order]
where customer.id = [order].CustomerID group by name

Holger 1
Sam 2
Peter 1



Why outer joins?

A second shot

select name , count (*) from customer full outer join [order]
on (customer.CustomerID = [order]. CustomerID) group by name

Holger 1
Sam 2
Peter 1
Daniel 1

What went wrong here?



Why outer joins?

A third shot

select name , count([ order].id) from customer full outer join [order
]

on (customer.CustomerID = [order]. CustomerID) group by name

Holger 1
Sam 2
Peter 1
Daniel 0

Success!!!



Left and Right Outer Joins

Left Join

A left join R
L
1 S returns every row in R , even if no rows in S match. In

such cases where no row in S matches a row from R , the columns of S are
filled with NULL values.

Right Join

A right join R
R
1 S returns every row in S , even if no rows in R match. In

such cases where no row in R matches a row from S , the columns of R are
filled with NULL values.

Outer Join

An outer join R
O
1 S returns every row in R , even if no rows in S match,

and also returns every row in S even if no row in R matches.

R
O
1 S ≡ (R

L
1 S) ∪ (R

R
1 S)



Quiz

What are the bounds of for the size of the output (O) of this query
select * from R full outer join S on (R.r = S.s)

Answers
A |R| ≤ |O| ≤ |R| × |S |
B max(|R|, |S |) ≤ |O| ≤ max(|R|, |S |, |R| × |S |)
C |R|+ |S | ≤ |O| ≤ max(|R|+ |S |, |R| × |S |)
D |S | ≤ |O| ≤ |R| × |S |



On matching criteria

The matching function
select * from R full outer join S on (R.r = S.s)

The matching function need not be equality
If it is, we call the join an equi-join (these are the most important
joins)
If it is an inequality constraint (< or >), we call them inequality joins

I select count(*) from event, marker where
event.time between marker.time and marker.time+60

If it is an <>, we call it an anti-join
All other joins are called Theta joins



Nested Subqueries



Nested Subqueries in from-clauses

Overview
SQL allows queries in the from clause
They behave exactly like base relations

select NH.name , count (*) from (select * from Customer where name <>
"holger") as NH group by NH.name

Variable scoping rules
Follow class programming language scoping

I Nested queries have access to outer relations
If the inner query uses variables of the outer, we call it correlated

I Correlated subqueries can be nasty



Nested Subqueries in where-clauses

This breaks the set-based character of SQL
we’re combining a value of a tuple with a set

There are a couple of value to set comparison operators
In
Exists
Some
All



In

Definition
true if the attribute value is contained in the set
subquery must only return a single column

The simple case: statically defined sets

select * from Customer where name IN ("holger", "sam")

The correlated case

select Name from Customer where CustomerID IN (select CustomerID
from Order)

equivalent to
select distinct Name from Customer , Order where Customer.CustomerID

= Order.CustomerID



In

A more interesting case
Find customers with more than five orders

select Name , OrderID from Customer where CustomerID IN
(select CustomerID from Order group by CustomerID having count (*)

> 5)



Exists

Definition
true if the subquery returns a non-empty relation
no restrictions regarding the schema of the subquery relation

Our join query strikes again

select CustomerID from Customer where exist (select * from Order
where Order.CustomerID = Customer.CustomerID)

equivalent to
select distinct Name from Customer , Order where Customer.CustomerID

= Order.CustomerID

Not exists for maximum calculation
Find the customers with the longest names

select Name from Customer as cout where not exist (select * from
Customer as cin where len(cin.name) > len(cout.name))



Some and All

Defintion
Classic first order logic operators

I Some is ∃
I All is ∀

Example: Find customers that have orders before a threshold

select Name from Customer where customerID =some (select customerID
from order where orderID < 3)

Example: Find customers that have all orders before a threshold

select Name from Customer where 3 >all (select orderID from order
where order.CustomerID = Customer.customeID)



Technicalities

Nested subqueries are fun to write
The are hard to evaluate for a DBMS (if they are correlated)

I Conceptually, they need a re-evaluation of the subquery for every tuple
in the outer query

Queries can be decorrelated, i.e., rewritten into ones without
correlated subqueries

I Expressed in terms of joins
I Decorellation is part of query optimization
I There are efficient algorithms for evaluating joins



Join algorithms



Buffer Management

The memory hierarchy

+--------+
| |
| Cache |
| |
+--------+

+-----------------+
| |
| Memory |
| |
+-----------------+

+----------------------------------+

|

|
| Disk

|
|

|
+----------------------------------+

Intermediate buffering
Computer memory is hierachical
Data usually resides somewhere deep in the memory hiearchy
You would like the speed of the faster layers
Computer systems exploit locality to achieve exactly that



Buffer Management

This is called Buffer Management in Databases
The fast layer is called the Buffer Pool

I This could be your cache or your memory

Disk-based systems manage their own buffer pool
Let’s assume a simple interface:
readTupleFromPage("relationName", tupleID)

Replacement strategy/Eviction policy
The buffer pool has limited capacity (usually measured in pages)

I If the buffer is full and a new page is brought in, which page has to go?
A couple of alternatives

I Least Recently Used (LRU)
I Least Frequently Used (LFU)
I Most Recently Used (MRU)
I Random
I . . .



Nested Loop - the naive one



Nested Loop - the naive one

Implementation

for (size_t i = 0; i < leftRelationSize; i++) {
auto leftInput = readTupleFromPage("left", i);
for (size_t j = 0; j < rightRelationSize; j++) {

auto rightInput = readTupleFromPage("right", j);
if(leftInput[leftAttribute] == rightInput[rightAttribute ])

writeToOutput ({leftInput , rightInput });
}

}

Example data
R: 10, 17, 7, 16, 12, 8, 13

S: 8, 16, 12, 1, 17, 2, 7



Nested Loop Join - the naive one

Properties
Simple
Sequential I/O
Trivial to parallelize (no dependent loop iterations)

Effort
Θ(|left| × |right|)
Can be reduced to Θ( |left|×|right|

2 ) if value uniqueness can be assumed

Remember: Databases are I/O bound. . .
. . . well, they are on disk. . .
. . . so, lets see how many pages we need to read



Worksheet

Parameters
Assume a nested loop join of two disk-resident tables in N-ary form
The first table has 500,000 tuples of three integer attributes
The second has 50,000 tuples of two integer attributes
Pages are plain (unslotted) 4KB
The page buffer can hold 10 pages
The replacement strategy of the buffer manager is LRU

How many page replacements need to be performed
48,850,000
49 Million
97,850,000
25 Billion



Blocked Nested Loops - the slightly smarter



Blocked Nested Loops - the slightly smarter

Implementation (assuming all pages are filled)

auto tuplesOnLeftInputPages = 512;
auto tuplesOnRightInputPages = 1024;
for (size_t i = 0; i < leftRelationSize; i+= tuplesOnLeftInputPages

)
for (size_t j = 0; j < rightRelationSize; j+=

tuplesOnRightInputPages)
for (size_t i_page = 0; i_page < tuplesOnLeftInputPages; i_page

++) {
auto leftInput = readTupleFromPage("left", i+i_page);
for (size_t j_page = 0; j_page < tuplesOnRightInputPages;

j_page ++) {
auto rightInput = readTupleFromPage("right", j+j_page);
if(leftInput[leftAttribute] == rightInput[rightAttribute ])

writeToOutput ({leftInput , rightInput });
}

}

Example data
R: 10, 17, 7, 16, 12, 8, 13

S: 8, 16, 12, 1, 17, 2, 7



Blocked Nested Loops - the slightly smarter

Properties
Sequential I/O
Trivial to parallelize (no dependent loop iterations)

Effort
Same number of comparisons as nested loop

I Θ(|left| × |right|)
I Can be reduced to Θ( |left|×|right|

2 ) if value uniqueness can be assumed

Better I/O behaviour



Worksheet

Parameters
Assume a nested loop join of two disk-resident tables in N-ary form
The first table has 500,000 tuples of three integer attributes
The second has 50,000 tuples of two integer attributes
Pages are plain (unslotted) 4KB
The page buffer can hold 10 pages
The replacement strategy of the buffer manager is LRU

How many page replacements need to be performed
95,740
95,746
97,845,924
97,850,000
97,850,142



Indexed Nested Loops - when you know what you’re joining



Indexed Nested Loops - when you know what you’re joining

Assumptions
One side has an index

I Let us, for now, assume it is sorted

The other does not

Idea
Scan the unindexed side (like you would in the nested loops case)
Look up values on the inner side using the appropriate lookup function

I In the case of a sorted relation, that means binary searching
I We’re going to talk about this more when we’re talking about indexing



Indexed Nested Loops - when you know what you’re joining

Properties
Sequential I/O on the unindexed side
Quasi-random on the indexed-side
Parallelizable over the values on the unindexed side

Effort
Θ(|unindexed | × | log indexed |)
O(|left| × |right|)
I/O behaviour on the indexed side is not-quite random

I We’ll talk about this when we talk about indexing



Sort-Merge Joins - a join for special cases



Sort-Merge Joins - a join for special cases

Implementation (assuming values are unique)

auto leftI = 0;
auto rightI = 0;
while (leftI < leftInputSize || rightI < rightInputSize) {

auto leftInput = readTupleFromPage("left", leftI);
auto rightInput = readTupleFromPage("right", rightI);
if(leftInput[leftAttribue] < rightInput[rightAttribue ])

leftI ++;
else if(rightInput[rightAttribue] < leftInput[leftAttribue ])

rightI ++;
else {

writeToOutput ({leftInput , rightInput });
rightI ++;
leftI ++;

}
}

Example data
R: 7, 8, 10, 12, 13, 16, 17

S: ~1, 2, 7, 8, 12, 16, 17, ~



Sort-Merge Joins - a join for special cases

Effort
O(|left| × log |left|+ |right| × log |right|+ |left|+ |right|)

I Assuming uniqueness

Properties
Sequential I/O in the merge phase
Tricky to parallelize
Works for inequality joins

I Careful when advancing the cursors



Why Sort-Merge Joins works

Invariants
Assume, w.l.o.g., that the value on the right
is less than the value on the left
All values succeeding the value on the right
are greater than the value on right
⇒ No value beyond the value on the right
can be a join partner
⇒ The value on the left has no join
partners succeeding the value on the right
⇒ The cursor on the left can be advanced

Visualisation

>7>5

5
7

M
erge Direction

Comparison



Worksheet: Sort-Merge Joins

Parameters
You have two sorted relations with a single attribute

I R: 2, 5, 6, 7, 9, 11, 12
I S: 1, 4, 5, 6, 10, 11, 13

Evaluate the query
select r,s from R,S where s between r and r+2

I Assume an inclusive between (i.e., both bounds are included in the
interval)

I Use a sort-merge join
I You can assume the values in each relation are unique

How many comparisons need to be performed
14
15
16
17
19
None of the above



Hash joins - the special case that is so important



Hash joins - the special case that is so important

Implementation

extern int* hashTable;

for (size_t i = 0; i < buildSideSize; i++) {
auto buildInput = readTupleFromPage("build", i);
auto hashValue = hash(buildInput[buildAttribute ]);
while (hashTable[hashValue ])

hashValue = nextSlot(hashValue);
hashTable[hashValue] = buildInput;

}

for (size_t i = 0; i < probeSideSize; i++) {
auto probeInput = readTupleFromPage("probe", i);
auto hashValue = hash(probeInput[probeAttribute ]);
while (hashTable[hashValue] &&

hashTable[hashValue ][ buildAttribute] != probeInput[
probeAttribute ])

hashValue = nextSlot(hashValue);
if(hashTable[hashValue ][ buildAttribute] == probeInput[

probeAttribute ])
writeToOutput ({ hashTable[hashValue], probeInput });

}

Nomenclature
We distinguish build-side and probe-side



Hash join details. . . the hash function

Hash-function requirements
Pure no state

Known output domain we need to know the range of generated values
Contiguous output domain we do not want holes in the output domain

Nice to have
Uniform all values should be equally likely

Typical examples
CRC32
MD5
MurmurHash

I This is one of the fastest "decent" hash-functions
Modulo-Division

I Arguably the simplest function you could have



Conflict Handling

When a slot is already filled but there is space in the table. . .
We need to put the value somewhere. . .
The conflict handling strategy prescribes where

Requirements
Locality (but not too much :-))
No holes (probe all slots)

Many exist - let’s talk about three
Linear probing
Quadratic probing
Rehashing: specifically, cyclic group probing
None of the above



Linear Probing

Description
When a slot is filled, try the next one (distance 1). . .
. . . and the next one (distance 2). . .
. . . continue until you find one that is free (3,4,5,6, etc.)

Advantages
Simple
Good locality

Disadvantages
Leads to long probe-chains for high-locality data
For example, 9,8,7,6,5,4,3,2,2



Hash-join with modulo hashing and linear probing

Implementation

extern int* hashTable;

for (size_t i = 0; i < buildSideSize; i++) {
auto buildInput = readTupleFromPage("build", i);
auto hashValue = buildInput[buildAttribute] % 10;
while (hashTable[hashValue ])

hashValue = hashValue ++;
hashTable[hashValue] = buildInput;

}

for (size_t i = 0; i < probeSideSize; i++) {
auto probeInput = readTupleFromPage("probe", i);
auto hashValue = probeInput[probeAttribute] % 10;
while (hashTable[hashValue] &&

hashTable[hashValue ][ buildAttribute] != probeInput[
probeAttribute ])

hashValue = hashValue ++;
if(hashTable[hashValue ][ buildAttribute] == probeInput[

probeAttribute ])
writeToOutput ({ hashTable[hashValue], probeInput });

}

Example data
R: 1, 5, 6, 7, 9, 11, 12

S: 1, 4, 5, 6, 10, 11, 13



Quadratic Probing

Description
When a slot is filled, try the next one (distance 1). . .
. . . double the distance (distance 2). . .
. . . continue until you find one that is free (4, 8, 16, etc.)

Advantages
Simple
Good locality in the first three probes

I Bad after that (that is the point)

Disadvantages
The first few probes are still likely to incur conflicts
For example, 9,8,7,6,5,4,3,2,2



Rehashing, specifically, cyclic group probing

The challenge:
Randomize the probes
Make them deterministic
Make sure all slots are probed



Cyclic group probing

Hardcore math to the rescue
There is a way to generate a (pseudorandom) sequence of numbers

I while making sure every number in a range is generated
A multiplicate group of integers modulo n

I The equation is f (x) = (x × g) mod n for certaing g and n
How do we determine g and n (n is the size of our hash table)

I n = pk with p an odd prime and k > 0
I There is no easy way to calculate the primitive roots (g) for a given n
I Using Mathematica: PrimitiveRootList@11 = {2,6,7,8}
I group = 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, ...



Worksheet

Parameters
You have two relations with a single attribute

I Probe: 6, 7, 9, 12, 11, 15, 2
I Build: 1, 4, 5, 6, 15, 11, 14

Evaluate the query select r,s from R,S where s = r
I Use a hash-join
I You can assume the values in each relation are unique

The hash function is f (x) = x mod 10 + 1

Which is the best probing strategy in this case
count the comparisons in the build phase

I Linear Probing
I Quadratic Probing
I Rehashing with the cyclic group f (x) = (x × 6) mod 11



Hash joins - the special case that is so important

Properties
Sequential I/O
Parallelizable over the values on the probe side
Parallelizing the build is tricky (Research opportunities!)

Effort
O(|build | × |probe|) in the worst case
Θ(|build |+ |probe|) in the best case



Hash Joins practicalities

Cyclic groups are the theory. . .
The practice is a lot less elegant
People simply rehash using some arbitrary hash-function

I (often the same they used for initial hashing)

Hashing is expensive
Especially good hashing

I Lots of CPU cycles (often more expensive than multiple data accesses)

Slots are often allocated in buckets
Buckets are slots with space for more than one tuple
You will sometimes see people implementing buckets as linked lists

I A horrible idea if you care about lookup performance (inserts are okay)



Hash Joins practicalities

Hashtables are arrays too
They occupy space
They are usually overallocated by at least a factor two
The are probed randomly in the probe phase (a lot)

I You really want to make sure they stay in the buffer pool/cache

For this class, assume that, if the hashtable does not fit, every access
is a page fault
Rule of thumb: use Hash Joins when one relation is much smaller than
the other

How do you make sure of that?
You partition!



Partitioning - when you don’t have enough memory

Fundamental premise:
Sequential access is much cheaper than random access

I Difference grows with the page size
I Random value access cost c
I Sequential value access cost c

pagesize

Assume your hashtable does not fit in the buffer pool
I.e., if the relation is larger than half the buffer pool
It can pay off to invest in an extra pass for partitioning



Partitioning - an example

Assume
Your smaller relation is 4 times the size of the buffer pool
Partitioning it into 8 smaller partitions costs you one scan

I Plus writing output
Now, you join the large relation with each of the 8 smaller relations

I Costs: 8 scans over the larger relation
But: each of the hash lookups is now hitting the buffer pool

I Disk seek latency: 3ms, RAM access latency: 30ns – a factor of 100K

Bonus
You can parallelize the processing of each of the smaller joins

I because they are disjoint
You can partition the larger relation as well. . .

I . . . and only join the overlapping partitions



So, which join algorithm should I use?

My DBMS Professor:
The answer is always sorting of hashing

The truth is more complicated
Sort-Merge join if

I Relations are sorted
I Relations are unsorted but have similar size
I If you are evaluating an inequality-join

Indexed nested loop join if one relation has an index (e.g., is sorted)
Hashjoin if one relation is much smaller than the other (less than 10%)
Nested loop join if one relation is tiny (less than 20 values)
Blocked nested loops join for theta-joins



The end
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