Holger Pirk

Purpose of this lecture

By the end, you should
@ Understand the principles of the different Query Processing Models
@ Be able to implement queries according to them
@ Understand their tradeoffs

Context

When does the right processing model matter?
@ When the storage backend is fast
@ Today, we are talking about main-memory databases

@ It is going to become clear why this is important to keep in mind

In-memory Data Processing

No more buffer management

@ | told you, disk-based systems have their own buffer manager
remember:
readTupleFromPage ("relationName", tuplelID) [attributeID]
@ Many In-memory systems do not

(By the end of the lecture, you should understand why)
the new interface is relationName [tupleID] [attributeID]
There are exceptions (of course)

But First: Let's look at some more operators

Ostatus="pending”

Single Selections

The Plan Implementation

: for (size_t i = 0; i < orderSize; i++) {
if (order[i].status == "pending")
// here tis where things get interesting:
processTupleInNextOperator (inputRelation[i]);

}

Selections in a Plan

The Plan

opriori!y:“u rgent”
csta!us:“pending"

Implementation

for (size_t i = 0; i < orderSize; i++) {
if (order[i].status == "pending")
if (order[i].priority == "urgent")

writeToOutput (inputRelation[i]);
¥

Group Bys (hash-based)

Implementation

// grouping by nation

// calculating count (*)

// we assume hashTable %is initialized with zeroes & no zeroes 1in
input

extern struct {int group; int value;}* hashTable;

for (size_t i = 0; i < inputSize; i++) {
auto hashValue = hash(customer[i].nation);
while (hashTable[hashValuel].group &&
hashTable [hashValue].group != customer.nation)
hashValue = nextSlot (hashValue) ;
hashTable [hashValue].group = customer[i].nation;

hashTable [hashValue].count++;
}

Pipeline Breakers

Definition
@ A pipeline breaker is an operator that produces the first (correct)
output tuple only after all input tuples have been processed

Quiz: Which of the relational operators are Pipeline Breakers

o Selections

Projects
Hash-Joins
Sort-Merge-Joins

Order By

°
°

e Group By
°

@ Union

°

Difference

Processing Models

What we know
@ How to implement a join
How to implement a selection

o
@ How to implement a group by
o

What we don't know

@ How to implement an entire query
With joins and selections and group by and them all

@ The processing model is the strategy to combine operators

Volcano Processing - Your grandfather's processing model J

Volcano Processing

Goals
@ Flexibility
@ Clean Design
o Maintainability
@ Developer Prductivity

Function Objects

Call them Lambdas, Function pointers, etc.

@ They are pieces of code that are treated like data
They are basically pointers to an instruction

@ You can assign them to variables. ..
@ ...you can pass them as parameters to other functions. ..
@ ...and you can evaluate/invoke/call them with arguments. ..

@ ...and they will return a value

C++ Syntax

std::function<int (int, Tuple)> aggregate = [](auto x, auto y){
return x+y;l;

Python Syntax

aggregate = lambda x, y : x + y

Volcano Processing

The query

Spriority="urgent”

c’status:“pending”

Framework

#include <functional>
class Tuple{

DY oo
3

class Operator {
public:
virtual Tuple next();

3

Operators

class Relation {
std::vector<Tuple> r;
int i = 0;
public:
Tuple next (){
return rl[i++];
bE
e

class Select : public Operator{
public:
Operator input;
std::function<bool (Tuple)>
predicate;
Tuple next (){
auto candidate = input.next();
while (! predicate (candidate))
candidate = input.next();
return candidate;
B
};

Volcano Processing Plan Creation

The query

Opriority=“urgent”

Ostatus=“pending”

Plans
Select ({
.predicate = [](Tuple a){ return a.status =
urgent"},
.input = Select ({
.predicate = []J](Tuple a){ return a.status
"pending"},

.input = Relation({.r = loadRelation ("
Order")}) 1 })

"

Volcano Processing

Group By

class GroupBy : public Operator{

public:

Operator child;

std::function<int (int, Tuple)> aggregate;
std::function<int (Tuple)> getGroupValue;
Tuple* hashTable;
int outputCursor = 0;

void open(){
auto inputTuple = child.next();
while (inputTuple) {
auto hashValue = hash(getGroupValue (inputTuple)) ;
auto group = getGroupValue (inputTuple) ;
while (hashTable[hashValuel.group &&
hashTable [hashValue].group != group)
hashValue = nextSlot (hashValue) ;
hashTable [hashValue].group = group;
hashTable [hashValue].count = aggregate (hashTable[hashValue].
count , inputTuple);
inputTuple = child.next();
}
};

Calculating Buffer Pool I/O in Volcano

Scans

@ Sequential /O like we calculated in the Storage session

Pipeline Breakers: Input
o If buffer fits in memory: No 1/O

@ Otherwise: one page replacement per accessed tuple

Pipeline Breakers: Output
o If buffer fits in memory: No /O

@ Otherwise: sequential I/O over output tuples

All others
e Cause no I/0O

Worksheet: Volcano Processing

Customers
@ 10.000 Tuples
@ attributes: id, name, address, nation, phone, accountNumber

@ strings are dictionary-compressed

Orders
@ 5 Million Tuples
@ attributes: date, status, priority, discount

@ strings are dictionary-compressed

Buffer Pool
o Is the Level 2 CPU Cache
512 KB, LRU

organized in 64 Byte Pages (called cache lines)

Worksheet: Volcano Processing

Consider the following query

select nation, min(order.date)
from orders join customer

using (orders.customer_id = customer.id)
where order.status = "pending"
and order.priority = "urgent"

group by nation

Query Plan

I—naﬁon, min(order.data)

Morder.customer_id = customer.id

probe ‘bui\d

@priori!y:“urgen@ (Customer (10 KD

Task

Order (5 Million)

o Calculate the number of Page Faults/Cache Misses

Selectivities: 50% each

N-ary, spanned pages, 10K Customers, 5M Orders, 193 Countries
512 KB Cache, 64 Byte Pages, 2 x overallocated hashtables

CPU Efficiency

What is the cost of a (sequential) memory access

@ Back of the envelope calculation

My MacBook has 37.5 GB/s memory bandwidth and 4 cores @ 2.9 GHz
9.375 GB/s per core
3.23 Bytes per cycle (let's say about one integer)

@ We better make sure we can process one integer per cycle

Function pointers

How they are evaluated by a CPU (roughly)
@ The CPU stores the current instruction pointer (the call)

@ The arguments are put on the execution stack

@ The CPU instruction pointer is set to the address of the first
instruction of the function code

This is called a Jump (JMP)

@ The function is executed until it returns (there is a special return
instruction)

@ The instruction pointer is set to the instruction after the call

CPU execution pipelining (simplified)

Modern CPUs. ..
@ ...execute instructions in stages. . .
@ ...like fetch, decode, execute, memory read, write result.
@ Instructions spend one cycle in each stage. ..

@ ...and move on to the next stage after every cycle.

CPU execution pipelining (simplified)

An Empty CPU Pipeline

Fetch Decode Exec Mem Write

CPU execution pipelining (simplified)

A Filled CPU Pipeline

Fetch Decode Exec Mem Write

Y Y Y
CMP | MUL | ADD | ADD | AND

NN NN /

JMP

Function Pointers cause Pipeline Bubbles

Pipeline Bubbles (the technical term is Control Hazard)
@ Remember: a Jump sets the instruction pointer to an arbitrary address
@ The CPU needs to read the next instruction from this address

@ Ergo: the next instruction can only be read once the jump is complete

A Control Hazard

Fetch Decode Exec Mem Write

)
JMP

N

The cost of a pipeline bubble

Impact

@ Dependent on the length of the pipeline
My Macbook’'s CPU has around 15 stages

How many Function calls are there?

Per-tuple. ..

Selections One to read the input, one to apply the predicate
Hash-Join Build One to read the input
Hash-Join Probe One to read the input

Group-By One to read the input, one to extract the group key, one to
calculate the new aggregate

Worksheet: CPU Costs

Consider the following query

select nation, min(order.date)
from orders join customer

using (orders.customer_id = customer.id)
where order.status = "pending"
and order.priority = "urgent"

group by nation

Query Plan

I—nalion, min(order.data)

Morder.customer_id = customer.id

probe ‘bui\d

@priority:“urgena @ustomer (10 KD

Task

o Calculate the number of function calls
Selectivities: 50% each

Order (5 Million)

N-ary, spanned pages, 10K Customers, 5M Orders, 193 Countries
512 KB Cache, 64 Byte Pages, 2 x overallocated hashtables

The Bottom Line

What factor is bounding performance?

Bulk Processing

The problem
o If CPU is the bottleneck. . .
@ ...and function calls dominate CPU costs. ..

@ ...can we process queries without any function calls
(or at least as few as possible)

The idea

@ Turn Control Dependencies into Data Dependencies:

Instead of processing tuples right away, buffer them
Fill the buffer with lots of tuples
Pass the buffer to the next operator

What Bulk Processing looks like

A Bulk Processing Program

class Tuple{};
int orderSize;
Tuple* order, bufferl, buffer2;

int selectStringCompare (Tuple* outputBuffer, Tuple* inputBuffer,
int inputSize, string predicate, int attributeOffset){

auto outputCursor = 0;
for (size_t i = 0; i < inputSize; i++) {
if (*((string#*) inputBuffer[i] + attributeOffset) == predicate)
outputBuffer [outputCursor++] = inputBuffer[il;

}

return outputCursor;
};

auto bufferiSize = selectStringCompare (bufferl, order, orderSize,

pending", 1);

auto buffer2Size = selectStringCompare (buffer2, bufferl,bufferlSize

"urgent", 2);

Bulk Processing

Bulk Processing means tight loops
@ No function calls, no jumps
@ Very CPU efficient

@ Free Insight: Bulk Processing is like making every operator a pipeline
breaker

However,

@ We are materializing intermediate results. . .

...and aren't databases /O bound?
... well, are they?

Worksheet: Bulk Processing

Consider the following query

select nation, min(order.date)
from orders join customer

using (orders.customer_id = customer.id)
where order.status = "pending"
and order.priority = "urgent"

group by nation

Query Plan

I—naﬁon, min(order.data)

Morder.customer_id = customer.id

probe ‘bui\d

@priori!y:“urgen@ (Customer (10 KD

Task

Order (5 Million)

o Calculate the number of Page Faults/Cache Misses

Selectivities: 50% each

N-ary, spanned pages, 10K Customers, 5M Orders, 193 Countries
512 KB Cache, 64 Byte Pages, 2 x overallocated hashtables

Bulk Processing and Decomposed Storage

By-Reference Bulk Processing

Saving Bandwidth

@ We are copying a lot of data around
This is a classic computing problem with a classic solution:
Call by reference
@ Instead of producing tuples, we produce their IDs (positions in their

buffer)

@ When processing a tuple, we always use the ID to look up the actual
value

Lookup costs are the same as they are for a hashtable without conflicts

By-Reference Bulk Processing

Code

class Tupled{};
int orderSize;
Tuple* order;
int* bufferl, buffer2;

int selectStringCompare (Tuple* outputBuffer, int* inputBuffer, int
inputSize,
string predicate, int attributeOffset, Tuplex*
underlyingRelation){

auto outputCursor = 0;
if (! inputBuffer){
for (size_t i = 0; i < inputSize; i++) {

if (*((string*)underlyingRelation[i] + attributeOffset)
predicate)

outputBuffer [outputCursor++] = ij;
}
} else {
for (size_t i = 0; i < inputSize; i++) {
if (*((string*)underlyingRelation[inputBuffer [i]] +
attributeOffset) == predicate)
outputBuffer [outputCursor++] = inputBuffer[i];

}

Worksheet: By-Reference Bulk Processing

Consider the following query

select count (*) from orders

where order.status = "pending"
and order.priority = "urgent"
group by nation

@ Order:

date, status, priority, discount

@ Customer:
id, name, address, nation, phone,

Task

Query Plan

Opriority=“urgent”

Ostatus=“pending”

ac

o Calculate the number of Page Faults/Cache Misses

Selectivities: 50% each

N-ary, spanned pages, 10K Customers, 5M Orders, 193 Countries
512 KB Cache, 64 Byte Pages, 2 x overallocated hashtables

Calculating Page Access probability from selectivity

How to do it
@ Selectivity s is the percentage of tuples being touched
@ Assume uniformly distributed values

@ Assume n tuples on a page
@ What is the probability of any one of them being touched?
1-(1-p)

By-Reference Bulk Processing of Decomposed Data

Saving even more bandwidth

@ Every operator processes exactly one column of a tuple
@ In N-ary, storage, values of a tuple are co-located on a page

i.e., you always pay for all values on a page (even if you only process
one)
these useless values also occupy space in the buffer pool/cache

@ DSM fixes both of these problems

DSM was introduced to databases as a consequence of Bulk Processing
Not the other way around
Trust me, | know!

Worksheet: By-Reference Bulk Processing of DSM Data

Query Plan

Consider the following query

select count (*) from orders
where order.status "pending"
and order.priority "urgent"
group by nation

Opriority=“urgent”
o, _« -
status="pending

Task

o Calculate the number of Page Faults/Cache Misses
Selectivities: 50% each
DSM, spanned pages, 10K Customers, 5M Orders, 193 Countries
512 KB Cache, 64 Byte Pages, 2 x overallocated hashtables

	But First: Let's look at some more operators
	Volcano Processing - Your grandfather's processing model
	Bulk Processing
	Bulk Processing
	Bulk Processing and Decomposed Storage
	The End

