Query Processing Models

Holger Pirk

By the end, you should

- Understand the principles of the different Query Processing Models
- Be able to implement queries according to them
- Understand their tradeoffs

When does the right processing model matter?

- When the storage backend is fast
- Today, we are talking about main-memory databases
- It is going to become clear why this is important to keep in mind

No more buffer management

- I told you, disk-based systems have their own buffer manager
 - remember:
 - readTupleFromPage("relationName", tupleID)[attributeID]
- Many In-memory systems do not
 - (By the end of the lecture, you should understand why)
 - the new interface is relationName[tupleID] [attributeID]
 - There are exceptions (of course)

But First: Let's look at some more operators

Single Selections

Selections in a Plan

Group Bys (hash-based)

Implementation

```
// grouping by nation
// calculating count(*)
// we assume hashTable is initialized with zeroes & no zeroes in
input
```

```
extern struct {int group; int value;}* hashTable;
for (size_t i = 0; i < inputSize; i++) {
  auto hashValue = hash(customer[i].nation);
  while (hashTable[hashValue].group &&
      hashTable[hashValue].group != customer.nation)
  hashValue = nextSlot(hashValue);
  hashTable[hashValue].group = customer[i].nation;
  hashTable[hashValue].count++;
  }
```

Pipeline Breakers

Definition

• A pipeline breaker is an operator that produces the first (correct) output tuple only after all input tuples have been processed

Quiz: Which of the relational operators are Pipeline Breakers

- Selections
- Projects
- Hash-Joins
- Sort-Merge-Joins
- Group By
- Order By
- Union
- Difference

Processing Models

What we know

- How to implement a join
- How to implement a selection
- How to implement a group by

• . . .

What we don't know

- How to implement an entire query
 - With joins and selections and group by and them all
- The processing model is the strategy to combine operators

Volcano Processing - Your grandfather's processing model

Volcano Processing

Goals

- Flexibility
- Clean Design
- Maintainability
- Developer Prductivity

Function Objects

Call them Lambdas, Function pointers, etc.

- They are pieces of code that are treated like data
 They are basically pointers to an instruction
- You can assign them to variables...
- ... you can pass them as parameters to other functions...
- ... and you can evaluate/invoke/call them with arguments...
- ... and they will return a value

C++ Syntax

```
std::function<int(int, Tuple)> aggregate = [](auto x, auto y){
    return x+y;};
```

Python Syntax

aggregate = lambda x, y : x + y

Volcano Processing

Framework

```
#include <functional>
class Tuple{
   //...
};
class Operator {
   public:
    virtual Tuple next();
};
```

Operators

```
class Relation {
 std::vector<Tuple> r;
int i = 0;
public:
Tuple next(){
 return r[i++];
};
};
class Select : public Operator{
public:
Operator input;
 std::function<bool(Tuple)>
     predicate;
Tuple next(){
  auto candidate = input.next();
  while(!predicate(candidate))
   candidate = input.next();
 return candidate:
};
};
```

Volcano Processing Plan Creation

Plans

```
Select({
  .predicate = [](Tuple a){ return a.status = "
      urgent"},
   .input = Select({
     .predicate = [](Tuple a){ return a.status =
          "pending"},
      .input = Relation({.r = loadRelation("
          Order")})})})
```

Volcano Processing

Group By

```
class GroupBy : public Operator{
public:
 Operator child;
 std::function<int(int, Tuple)> aggregate;
 std::function<int(Tuple)> getGroupValue;
 Tuple* hashTable;
 int outputCursor = 0;
 void open(){
  auto inputTuple = child.next();
  while(inputTuple){
   auto hashValue = hash(getGroupValue(inputTuple));
   auto group = getGroupValue(inputTuple);
   while (hashTable[hashValue].group &&
       hashTable[hashValue].group != group)
    hashValue = nextSlot(hashValue);
   hashTable[hashValue].group = group;
   hashTable[hashValue].count = aggregate(hashTable[hashValue].
       count, inputTuple);
   inputTuple = child.next();
  }
 };
```

Calculating Buffer Pool I/O in Volcano

Scans

• Sequential I/O like we calculated in the Storage session

Pipeline Breakers: Input

- If buffer fits in memory: No I/O
- Otherwise: one page replacement per accessed tuple

Pipeline Breakers: Output

- If buffer fits in memory: No I/O
- Otherwise: sequential I/O over output tuples

All others

Cause no I/O

Worksheet: Volcano Processing

Customers

- 10.000 Tuples
- attributes: id, name, address, nation, phone, accountNumber
- strings are dictionary-compressed

Orders

- 5 Million Tuples
- attributes: date, status, priority, discount
- strings are dictionary-compressed

Buffer Pool

- Is the Level 2 CPU Cache
 - 512 KB, LRU
 - organized in 64 Byte Pages (called cache lines)

Worksheet: Volcano Processing

Task

- Calculate the number of Page Faults/Cache Misses
 - Selectivities: 50% each
 - N-ary, spanned pages, 10K Customers, 5M Orders, 193 Countries
 - \sim 512 KB Cache, 64 Byte Pages, 2 imes overallocated hashtables

What is the cost of a (sequential) memory access

- Back of the envelope calculation
 - My MacBook has 37.5 GB/s memory bandwidth and 4 cores @ 2.9 GHz
 - 9.375 GB/s per core
 - 3.23 Bytes per cycle (let's say about one integer)

• We better make sure we can process one integer per cycle

How they are evaluated by a CPU (roughly)

- The CPU stores the current instruction pointer (the call)
- The arguments are put on the execution stack
- The CPU instruction pointer is set to the address of the first instruction of the function code

This is called a Jump (JMP)

- The function is executed until it returns (there is a special return instruction)
- The instruction pointer is set to the instruction after the call

CPU execution pipelining (simplified)

Modern CPUs...

- ... execute instructions in stages...
- ... like fetch, decode, execute, memory read, write result.
- Instructions spend one cycle in each stage...
- ... and move on to the next stage after every cycle.

CPU execution pipelining (simplified)

CPU execution pipelining (simplified)

Function Pointers cause Pipeline Bubbles

Pipeline Bubbles (the technical term is Control Hazard)

- Remember: a Jump sets the instruction pointer to an arbitrary address
- The CPU needs to read the next instruction from this address
- Ergo: the next instruction can only be read once the jump is complete

Impact

• Dependent on the length of the pipeline

My Macbook's CPU has around 15 stages

Bulk Processing

Per-tuple...

Selections One to read the input, one to apply the predicate Hash-Join Build One to read the input Hash-Join Probe One to read the input Group-By One to read the input, one to extract the group key, one to calculate the new aggregate

Worksheet: CPU Costs

Task

- Calculate the number of function calls
 - Selectivities: 50% each
 - N-ary, spanned pages, 10K Customers, 5M Orders, 193 Countries
 - 512 KB Cache, 64 Byte Pages, 2 \times overallocated hashtables

What factor is bounding performance?

Bulk Processing

The problem

- If CPU is the bottleneck...
- ... and function calls dominate CPU costs...
- ... can we process queries without any function calls
 - (or at least as few as possible)

The idea

- Turn Control Dependencies into Data Dependencies:
 - Instead of processing tuples right away, buffer them
 - Fill the buffer with lots of tuples
 - Pass the buffer to the next operator

What Bulk Processing looks like

A Bulk Processing Program

```
class Tuple{};
int orderSize:
Tuple* order, buffer1, buffer2;
int selectStringCompare(Tuple* outputBuffer, Tuple* inputBuffer,
    int inputSize, string predicate, int attributeOffset){
 auto outputCursor = 0;
 for (size_t i = 0; i < inputSize; i++) {</pre>
  if(*((string*)inputBuffer[i] + attributeOffset) == predicate)
   outputBuffer[outputCursor++] = inputBuffer[i];
}
return outputCursor;
}:
auto buffer1Size = selectStringCompare(buffer1, order, orderSize, "
    pending", 1);
auto buffer2Size = selectStringCompare(buffer2, buffer1,buffer1Size
    , "urgent", 2);
```

Bulk Processing means tight loops

- No function calls, no jumps
- Very CPU efficient
- Free Insight: Bulk Processing is like making every operator a pipeline breaker

However,

- We are materializing intermediate results...
 - ... and aren't databases I/O bound?
 - ... well, are they?

Worksheet: Bulk Processing

Task

- Calculate the number of Page Faults/Cache Misses
 - Selectivities: 50% each
 - N-ary, spanned pages, 10K Customers, 5M Orders, 193 Countries
 - \sim 512 KB Cache, 64 Byte Pages, 2 imes overallocated hashtables

Bulk Processing and Decomposed Storage

Saving Bandwidth

- We are copying a lot of data around
 - This is a classic computing problem with a classic solution:
 - Call by reference
- Instead of producing tuples, we produce their IDs (positions in their buffer)
- When processing a tuple, we always use the ID to look up the actual value
 - Lookup costs are the same as they are for a hashtable without conflicts

By-Reference Bulk Processing

Code

```
class Tuple{};
int orderSize;
Tuple* order;
int* buffer1, buffer2;
int selectStringCompare(Tuple* outputBuffer, int* inputBuffer, int
    inputSize,
            string predicate, int attributeOffset, Tuple*
                underlyingRelation) {
  auto outputCursor = 0;
  if(!inputBuffer){
   for (size_t i = 0; i < inputSize; i++) {</pre>
    if (*((string*)underlyingRelation[i] + attributeOffset) ==
        predicate)
     outputBuffer[outputCursor++] = i;
   }
  } else {
  for (size_t i = 0; i < inputSize; i++) {</pre>
    if(*((string*)underlyingRelation[inputBuffer[i]] +
        attributeOffset) == predicate)
     outputBuffer[outputCursor++] = inputBuffer[i];
   }
```

Worksheet: By-Reference Bulk Processing

Task

- Calculate the number of Page Faults/Cache Misses
 - Selectivities: 50% each
 - N-ary, spanned pages, 10K Customers, 5M Orders, 193 Countries
 - 512 KB Cache, 64 Byte Pages, 2 \times overallocated hashtables

How to do it

- Selectivity s is the percentage of tuples being touched
- Assume uniformly distributed values
- Assume *n* tuples on a page
- What is the probability of any one of them being touched?

$$1 - (1 - p)^n$$

Saving even more bandwidth

- Every operator processes exactly one column of a tuple
- In N-ary, storage, values of a tuple are co-located on a page
 - i.e., you always pay for all values on a page (even if you only process one)
 - these useless values also occupy space in the buffer pool/cache
- DSM fixes both of these problems
 - DSM was introduced to databases as a consequence of Bulk Processing
 - Not the other way around
 - Trust me, I know!

Worksheet: By-Reference Bulk Processing of DSM Data

Task

- Calculate the number of Page Faults/Cache Misses
 - Selectivities: 50% each
 - DSM, spanned pages, 10K Customers, 5M Orders, 193 Countries
 - 512 KB Cache, 64 Byte Pages, 2 \times overallocated hashtables

The End