
Query Processing Models

Holger Pirk

Holger Pirk Query Processing Models 1 / 43

Purpose of this lecture

By the end, you should
Understand the principles of the different Query Processing Models
Be able to implement queries according to them
Understand their tradeoffs

Context

When does the right processing model matter?
When the storage backend is fast
Today, we are talking about main-memory databases
It is going to become clear why this is important to keep in mind

In-memory Data Processing

No more buffer management
I told you, disk-based systems have their own buffer manager

I remember:
readTupleFromPage("relationName", tupleID)[attributeID]

Many In-memory systems do not
I (By the end of the lecture, you should understand why)
I the new interface is relationName[tupleID][attributeID]
I There are exceptions (of course)

But First: Let’s look at some more operators

Single Selections

The Plan

σstatus=“pending”

Order

…

Implementation

for (size_t i = 0; i < orderSize; i++) {
if(order[i]. status == "pending")
// here is where things get interesting:
processTupleInNextOperator(inputRelation[i]);

}

Single Selections

The Plan

σstatus=“pending”

Order

…

Implementation

for (size_t i = 0; i < orderSize; i++) {
if(order[i]. status == "pending")
// here is where things get interesting:
processTupleInNextOperator(inputRelation[i]);

}

Selections in a Plan

The Plan

σstatus=“pending”

Order

σpriority=“urgent”

Implementation

for (size_t i = 0; i < orderSize; i++) {
if(order[i]. status == "pending")
if(order[i]. priority == "urgent")
writeToOutput(inputRelation[i]);

}

Group Bys (hash-based)

Implementation

// grouping by nation
// calculating count (*)
// we assume hashTable is initialized with zeroes & no zeroes in

input

extern struct {int group; int value ;}* hashTable;
for (size_t i = 0; i < inputSize; i++) {
auto hashValue = hash(customer[i]. nation);
while (hashTable[hashValue].group &&

hashTable[hashValue].group != customer.nation)
hashValue = nextSlot(hashValue);

hashTable[hashValue].group = customer[i]. nation;
hashTable[hashValue].count ++;
}

Pipeline Breakers

Definition
A pipeline breaker is an operator that produces the first (correct)
output tuple only after all input tuples have been processed

Quiz: Which of the relational operators are Pipeline Breakers
Selections
Projects
Hash-Joins
Sort-Merge-Joins
Group By
Order By
Union
Difference

Processing Models

What we know
How to implement a join
How to implement a selection
How to implement a group by
. . .

What we don’t know
How to implement an entire query

I With joins and selections and group by and them all

The processing model is the strategy to combine operators

Volcano Processing - Your grandfather’s processing model

Volcano Processing

Goals
Flexibility
Clean Design
Maintainability
Developer Prductivity

Function Objects

Call them Lambdas, Function pointers, etc.
They are pieces of code that are treated like data

I They are basically pointers to an instruction

You can assign them to variables. . .
. . . you can pass them as parameters to other functions. . .
. . . and you can evaluate/invoke/call them with arguments. . .
. . . and they will return a value

C++ Syntax

std::function <int(int , Tuple)> aggregate = [](auto x, auto y){
return x+y;};

Python Syntax

aggregate = lambda x, y : x + y

Volcano Processing

The query

σstatus=“pending”

Order

σpriority=“urgent”

Framework

#include <functional >
class Tuple{
//...

};
class Operator {
public:
virtual Tuple next();

};

Operators

class Relation {
std::vector <Tuple > r;
int i = 0;

public:
Tuple next(){
return r[i++];

};
};

class Select : public Operator{
public:
Operator input;
std::function <bool(Tuple)>

predicate;
Tuple next(){
auto candidate = input.next();
while (! predicate(candidate))
candidate = input.next();

return candidate;
};

};

Volcano Processing Plan Creation

The query

σstatus=“pending”

Order

σpriority=“urgent”

Plans

Select ({
.predicate = [](Tuple a){ return a.status = "

urgent"},
.input = Select ({

.predicate = [](Tuple a){ return a.status =
"pending"},

.input = Relation ({.r = loadRelation("
Order")})})})

Volcano Processing

Group By

class GroupBy : public Operator{
public:
Operator child;
std::function <int(int , Tuple)> aggregate;
std::function <int(Tuple)> getGroupValue;
Tuple* hashTable;
int outputCursor = 0;

void open(){
auto inputTuple = child.next();
while(inputTuple){
auto hashValue = hash(getGroupValue(inputTuple));
auto group = getGroupValue(inputTuple);
while (hashTable[hashValue].group &&

hashTable[hashValue].group != group)
hashValue = nextSlot(hashValue);

hashTable[hashValue].group = group;
hashTable[hashValue].count = aggregate(hashTable[hashValue].

count , inputTuple);
inputTuple = child.next();

}
};

Tuple next(){
return hashTable(outputCursor);

};
};

Calculating Buffer Pool I/O in Volcano

Scans
Sequential I/O like we calculated in the Storage session

Pipeline Breakers: Input
If buffer fits in memory: No I/O
Otherwise: one page replacement per accessed tuple

Pipeline Breakers: Output
If buffer fits in memory: No I/O
Otherwise: sequential I/O over output tuples

All others
Cause no I/O

Worksheet: Volcano Processing

Customers
10.000 Tuples
attributes: id, name, address, nation, phone, accountNumber

strings are dictionary-compressed

Orders
5 Million Tuples
attributes: date, status, priority, discount

strings are dictionary-compressed

Buffer Pool
Is the Level 2 CPU Cache

I 512 KB, LRU
I organized in 64 Byte Pages (called cache lines)

Worksheet: Volcano Processing

Consider the following query

select nation , min(order.date)
from orders join customer
using (orders.customer_id = customer.id)
where order.status = "pending"
and order.priority = "urgent"
group by nation

Query Plan

⨝order.customer_id = customer.id

σpriority=“urgent” Customer (10 K)

σstatus=“pending”

Order (5 Million)

buildprobe

Γnation, min(order.data)

Task
Calculate the number of Page Faults/Cache Misses

I Selectivities: 50% each
I N-ary, spanned pages, 10K Customers, 5M Orders, 193 Countries
I 512 KB Cache, 64 Byte Pages, 2 × overallocated hashtables

CPU Efficiency

What is the cost of a (sequential) memory access
Back of the envelope calculation

I My MacBook has 37.5 GB/s memory bandwidth and 4 cores @ 2.9 GHz
I 9.375 GB/s per core
I 3.23 Bytes per cycle (let’s say about one integer)

We better make sure we can process one integer per cycle

Function pointers

How they are evaluated by a CPU (roughly)
The CPU stores the current instruction pointer (the call)
The arguments are put on the execution stack
The CPU instruction pointer is set to the address of the first
instruction of the function code

I This is called a Jump (JMP)

The function is executed until it returns (there is a special return
instruction)
The instruction pointer is set to the instruction after the call

CPU execution pipelining (simplified)

Modern CPUs. . .
. . . execute instructions in stages. . .
. . . like fetch, decode, execute, memory read, write result.
Instructions spend one cycle in each stage. . .
. . . and move on to the next stage after every cycle.

CPU execution pipelining (simplified)

An Empty CPU Pipeline

JMPCMPMULADDADD

Fetch Decode Exec Mem Write

AND

CPU execution pipelining (simplified)

A Filled CPU Pipeline

Fetch Decode Exec Mem Write

JMP

CMP MUL ADD ANDADD

Function Pointers cause Pipeline Bubbles

Pipeline Bubbles (the technical term is Control Hazard)
Remember: a Jump sets the instruction pointer to an arbitrary address
The CPU needs to read the next instruction from this address
Ergo: the next instruction can only be read once the jump is complete

A Control Hazard

Fetch Decode Exec Mem Write

???

JMP

The cost of a pipeline bubble

Impact
Dependent on the length of the pipeline

I My Macbook’s CPU has around 15 stages

Bulk Processing

How many Function calls are there?

Per-tuple. . .
Selections One to read the input, one to apply the predicate

Hash-Join Build One to read the input
Hash-Join Probe One to read the input

Group-By One to read the input, one to extract the group key, one to
calculate the new aggregate

Worksheet: CPU Costs

Consider the following query

select nation , min(order.date)
from orders join customer
using (orders.customer_id = customer.id)
where order.status = "pending"
and order.priority = "urgent"
group by nation

Query Plan

⨝order.customer_id = customer.id

σpriority=“urgent” Customer (10 K)

σstatus=“pending”

Order (5 Million)

buildprobe

Γnation, min(order.data)

Task
Calculate the number of function calls

I Selectivities: 50% each
I N-ary, spanned pages, 10K Customers, 5M Orders, 193 Countries
I 512 KB Cache, 64 Byte Pages, 2 × overallocated hashtables

The Bottom Line

What factor is bounding performance?

Bulk Processing

Bulk Processing

The problem
If CPU is the bottleneck. . .
. . . and function calls dominate CPU costs. . .
. . . can we process queries without any function calls

I (or at least as few as possible)

The idea
Turn Control Dependencies into Data Dependencies:

I Instead of processing tuples right away, buffer them
I Fill the buffer with lots of tuples
I Pass the buffer to the next operator

What Bulk Processing looks like

A Bulk Processing Program

class Tuple {};
int orderSize;
Tuple* order , buffer1 , buffer2;

int selectStringCompare(Tuple* outputBuffer , Tuple* inputBuffer ,
int inputSize , string predicate , int attributeOffset){

auto outputCursor = 0;
for (size_t i = 0; i < inputSize; i++) {
if(*((string *) inputBuffer[i] + attributeOffset) == predicate)
outputBuffer[outputCursor ++] = inputBuffer[i];

}
return outputCursor;

};

auto buffer1Size = selectStringCompare(buffer1 , order , orderSize , "
pending", 1);

auto buffer2Size = selectStringCompare(buffer2 , buffer1 ,buffer1Size
, "urgent", 2);

Bulk Processing

Bulk Processing means tight loops
No function calls, no jumps
Very CPU efficient
Free Insight: Bulk Processing is like making every operator a pipeline
breaker

However,
We are materializing intermediate results. . .

I . . . and aren’t databases I/O bound?
I . . . well, are they?

Worksheet: Bulk Processing

Consider the following query

select nation , min(order.date)
from orders join customer
using (orders.customer_id = customer.id)
where order.status = "pending"
and order.priority = "urgent"
group by nation

Query Plan

⨝order.customer_id = customer.id

σpriority=“urgent” Customer (10 K)

σstatus=“pending”

Order (5 Million)

buildprobe

Γnation, min(order.data)

Task
Calculate the number of Page Faults/Cache Misses

I Selectivities: 50% each
I N-ary, spanned pages, 10K Customers, 5M Orders, 193 Countries
I 512 KB Cache, 64 Byte Pages, 2 × overallocated hashtables

Bulk Processing and Decomposed Storage

By-Reference Bulk Processing

Saving Bandwidth
We are copying a lot of data around

I This is a classic computing problem with a classic solution:
I Call by reference

Instead of producing tuples, we produce their IDs (positions in their
buffer)
When processing a tuple, we always use the ID to look up the actual
value

I Lookup costs are the same as they are for a hashtable without conflicts

By-Reference Bulk Processing

Code

class Tuple {};
int orderSize;
Tuple* order;
int* buffer1 , buffer2;

int selectStringCompare(Tuple* outputBuffer , int* inputBuffer , int
inputSize ,

string predicate , int attributeOffset , Tuple*
underlyingRelation){

auto outputCursor = 0;
if(! inputBuffer){
for (size_t i = 0; i < inputSize; i++) {
if(*((string *) underlyingRelation[i] + attributeOffset) ==

predicate)
outputBuffer[outputCursor ++] = i;

}
} else {
for (size_t i = 0; i < inputSize; i++) {
if(*((string *) underlyingRelation[inputBuffer[i]] +

attributeOffset) == predicate)
outputBuffer[outputCursor ++] = inputBuffer[i];

}
}
}
return outputCursor;

};

auto buffer1Size = selectStringCompare(buffer1 , NULL , orderSize , "
pending", 1, order);

auto buffer2Size = selectStringCompare(buffer2 , buffer1 ,
buffer1Size , "urgent", 2, order);

Worksheet: By-Reference Bulk Processing

Consider the following query

select count (*) from orders
where order.status = "pending"
and order.priority = "urgent"
group by nation

Order:
date, status, priority, discount

Customer:
id, name, address, nation, phone, accountNumber

Query Plan

σstatus=“pending”

Order

σpriority=“urgent”

Task
Calculate the number of Page Faults/Cache Misses

I Selectivities: 50% each
I N-ary, spanned pages, 10K Customers, 5M Orders, 193 Countries
I 512 KB Cache, 64 Byte Pages, 2 × overallocated hashtables

Calculating Page Access probability from selectivity

How to do it
Selectivity s is the percentage of tuples being touched
Assume uniformly distributed values
Assume n tuples on a page
What is the probability of any one of them being touched?

I 1− (1− p)n

By-Reference Bulk Processing of Decomposed Data

Saving even more bandwidth
Every operator processes exactly one column of a tuple
In N-ary, storage, values of a tuple are co-located on a page

I i.e., you always pay for all values on a page (even if you only process
one)

I these useless values also occupy space in the buffer pool/cache
DSM fixes both of these problems

I DSM was introduced to databases as a consequence of Bulk Processing
I Not the other way around
I Trust me, I know!

Worksheet: By-Reference Bulk Processing of DSM Data

Consider the following query

select count (*) from orders
where order.status = "pending"
and order.priority = "urgent"
group by nation

Query Plan

σstatus=“pending”

Order

σpriority=“urgent”

Task
Calculate the number of Page Faults/Cache Misses

I Selectivities: 50% each
I DSM, spanned pages, 10K Customers, 5M Orders, 193 Countries
I 512 KB Cache, 64 Byte Pages, 2 × overallocated hashtables

The End

	But First: Let's look at some more operators
	Volcano Processing - Your grandfather's processing model
	Bulk Processing
	Bulk Processing
	Bulk Processing and Decomposed Storage
	The End

