Query Planing & Optimization J

Holger Pirk

Holger Pirk Query Planing & Optimization 1/19

Motivation

A step back
@ Secondary goal: Performance
some kind of numeric value

@ Primary goal: Correctness
a boolean

Query Optimization
@ Start with a correct plan

@ Create a better plan

maintain correctness
a better plan is often much more complicated

Plan Correctness

Expectation Management
o Correctness is hard to prove when semantics are fuzzy
@ Query optimizers settle for equivalence

@ This puts the burden of correctness on the initial compiler

Visualisation

SQL

4

Plan equivalence

Relational Algebra

@ is closed, i.e., every operator takes relations as input and produces
relations

Operators are easily composable
Syntactically correct plans: easy

Semantically correct plans: harder

Semantically equivalent plans: very tricky

Semantic equivalence

@ Plans are (semantically) equivalent if they (provably) produce the
same output on any database

@ Plan equivalence is quite hard to prove

Idea

@ Divide and Conquer

Transformations (a.k.a. Plan Rewriting)

Rationale

@ An equivalent transformation of a subplan is an equivalent
transformation of the entire plan

@ For example: adjacent selections can be reordered

Before After

r I

nation, min(order.date)

@order.customer_id = customer.@ @order.customer_id = customer.@

nation, min(order.date)

@priority:“urgen@ C Customer) Gstatus:“pendingD C Customer)

cstatus:“pending" 0priority=“urgent”

Order Order

Operator Reordering

Many operators are commutative
@ Two-way Joins
@ Selections
@ Unions

@ Differences

This allows us to swap their order

@ The question is: why would we want that?

Cost Metric

What constitutes a "better" plan
@ Not an easy question to answer

@ We define some numeric cost metric

Examples for Numeric Cost Metrics

Sum of all produced Tuples (intermediate and final)
Number if Page Faults (1/0)

Number of volcano function calls

CPU costs

max(1/0, CPU)

Total Intermediate Size

Rule-Based Query Optimization

Idea

o Create localized transformation rules in the form
Pattern => Rewrite
For example
Select(Select(input, conditionl), condition2) =>
Select(Select (input, condition2), conditionl)

Application
@ Traverse the plan tree from the root on (in any order)
@ For every traversed node, see if the pattern matches
@ If so, replace it with the rewrite and start again from the root

@ If the pattern never matched, you are done

The problem

@ How do you decide when to reorder

Rule-Based Query Optimization

The solution: guards

@ Make sure that a produced rewrite does not match the same rule again
@ Place guard conditions on the rules
An easy example
Select(Select (input, conditionl), condition2)
if conditionl.cmp = ’>’ and condition2.cmp = ’==’
=> Select(Select(input, condition2), conditionl)

Context
@ Rule-based Query Optimization is the standard in "simple" DBMSs
MonetDB, Spark
e Often wrong
Does not take data into account

Rule-Based Query Optimization in Action

Before Optimization

r-nation, min(order.date)

Morder.customer_id = customer.id

G’status:“pendingD (Customer)
Opriority="urgent”

Order

Customer

id nation
UK
USA
China
Uk

E-NCO RN R

Order

status priority ¢;

date

X X X X X X X X X X X X

17
12

5
93
21
42
31

8
74
44
94
88

N FEFNWNDFEWWWRFEDNHo

X X X X X X X X X X X X

. and four million more

Cost-Based Query Optimization

ldea
o Cost are data dependent. . .
@ ...but we don’t know the data (before running the query). ..

@ ...so, let's estimate it!

A simple approach

@ Let's Estimate the number of tuples produced by an equality select
(remember, joins are cross products with selects on top)

@ We are selecting one value out of all values in the database
Assuming uniform distribution:

distinctvaluesincolumn

@ Let's keep the number of distinct values as a "statistic"
@ Selectivity of priority=="urgent" predicate: 50%

@ In practice: only very few orders are urgent, say 2%

Statistics

Histograms
@ keep a tuple count for every unique value for every column

occurences of a value
total tuple count

@ Equality predicate selectivity is simply

o General predicate estimates basically evaluate the query on the
histogram first

Status Histogram Priority Histogram
100 |
801
801
60 sol
40 a0l
20 20F
LT N 0 | T
bendlngshlpplngshlpped fulfilled urgent normal

Attribute Correllation

The question
e What is the selectivity of the second selection (status=="pending")
@ Assume we have a histogram
o well, it is 2%

@ (assuming attribute independence)

Now, assume the following
The median time to fulfill an order is a week
Some orders take more than two weeks

Someone gets upset about this and tries to fix it

The person sets all order that are pending for more than a week, to
priority urgent

@ That means, that 50% of the pending orders are now urgent

Physical Plans

Counting tuples is easy, counting costs is hard
@ Physical plans are more complicated: they don't only contain the
relational operator but the algorithm

o Different algorithms have different costs

In terms of intermediate sizes
In terms of CPU (i.e., function calls)

For example: Nested Loop Joins
require less space (no need for overallocation)
and don't require hash calculation
But induce more comparisons

State of the art: physical plan optimization is rule based
Remember the rules for join algorithms? Yeah, that!

Cost based optimization of physical plans is a research topic
(incidentally, one of my topics)

Access Path Selection

Data can be read from multiple sources
@ The base table
@ A column-store index
@ A tree index

@ Bitmaps

Indices usually don't contain all the necessary data

@ They are mainly used for tuple selection
not attribute projection

@ They may need to be combined with base table data

Access Path Selection

Example

@ A customer has six attributes:
id, name, address, nation, phone, accountNumber

@ Suppose you have a column-index on nation

@ The query is select * from customer where nation = "UK"

	Query Optimization
	Complicating Factors
	The End

