
Query Planing & Optimization

Holger Pirk

Holger Pirk Query Planing & Optimization 1 / 19



Query Optimization



Motivation

A step back
Secondary goal: Performance

I some kind of numeric value
Primary goal: Correctness

I a boolean

Query Optimization
Start with a correct plan
Create a better plan

I maintain correctness
I a better plan is often much more complicated



Plan Correctness

Expectation Management
Correctness is hard to prove when semantics are fuzzy
Query optimizers settle for equivalence
This puts the burden of correctness on the initial compiler

Visualisation

SQL

Plan

Compiler

Optimizer



Plan equivalence

Relational Algebra
is closed, i.e., every operator takes relations as input and produces
relations
Operators are easily composable
Syntactically correct plans: easy
Semantically correct plans: harder
Semantically equivalent plans: very tricky

Semantic equivalence
Plans are (semantically) equivalent if they (provably) produce the
same output on any database
Plan equivalence is quite hard to prove

Idea
Divide and Conquer



Transformations (a.k.a. Plan Rewriting)

Rationale
An equivalent transformation of a subplan is an equivalent
transformation of the entire plan
For example: adjacent selections can be reordered

Before

⨝order.customer_id = customer.id

σpriority=“urgent” Customer

σstatus=“pending”

Order

Γnation, min(order.date)

After

⨝order.customer_id = customer.id

σstatus=“pending” Customer

σpriority=“urgent”

Order

Γnation, min(order.date)



Operator Reordering

Many operators are commutative
Two-way Joins
Selections
Unions
Differences

This allows us to swap their order
The question is: why would we want that?



Cost Metric

What constitutes a "better" plan
Not an easy question to answer
We define some numeric cost metric

Examples for Numeric Cost Metrics
Sum of all produced Tuples (intermediate and final)
Number if Page Faults (I/O)
Number of volcano function calls
CPU costs
max(I/O, CPU)
Total Intermediate Size



Rule-Based Query Optimization

Idea
Create localized transformation rules in the form
Pattern => Rewrite

I For example
Select(Select(input, condition1), condition2) =>

Select(Select(input, condition2), condition1)

Application
Traverse the plan tree from the root on (in any order)
For every traversed node, see if the pattern matches
If so, replace it with the rewrite and start again from the root
If the pattern never matched, you are done

The problem
How do you decide when to reorder



Rule-Based Query Optimization

The solution: guards
Make sure that a produced rewrite does not match the same rule again
Place guard conditions on the rules

I An easy example
I Select(Select(input, condition1), condition2)

if condition1.cmp = ’>’ and condition2.cmp = ’==’
=> Select(Select(input, condition2), condition1)

Context
Rule-based Query Optimization is the standard in "simple" DBMSs

I MonetDB, Spark
Often wrong

I Does not take data into account



Rule-Based Query Optimization in Action

Before Optimization

⨝order.customer_id = customer.id

σstatus=“pending” Customer

σpriority=“urgent”

Order

Γnation, min(order.date)

Customer
id nation
1 UK
2 USA
3 China
4 Uk

Order
status priority cid date
x x 1 17
x x 2 12
x x 1 5
x x 3 93
x x 3 21
x x 3 42
x x 1 31
x x 2 8
x x 3 74
x x 2 44
x x 1 94
x x 2 88

. . . and four million more



Cost-Based Query Optimization

Idea
Cost are data dependent. . .
. . . but we don’t know the data (before running the query). . .
. . . so, let’s estimate it!

A simple approach
Let’s Estimate the number of tuples produced by an equality select

I (remember, joins are cross products with selects on top)
We are selecting one value out of all values in the database

I Assuming uniform distribution: 1
distinctvaluesincolumn

Let’s keep the number of distinct values as a "statistic"
Selectivity of priority=="urgent" predicate: 50%
In practice: only very few orders are urgent, say 2%



Statistics

Histograms
keep a tuple count for every unique value for every column
Equality predicate selectivity is simply occurences of a value

total tuple count

General predicate estimates basically evaluate the query on the
histogram first

Status Histogram

pendingshippingshipped fulfilled
0

20

40

60

80

Priority Histogram

urgent normal
0

20

40

60

80

100



Complicating Factors



Attribute Correllation

The question
What is the selectivity of the second selection (status=="pending" )
Assume we have a histogram
well, it is 2%
(assuming attribute independence)

Now, assume the following
The median time to fulfill an order is a week
Some orders take more than two weeks
Someone gets upset about this and tries to fix it
The person sets all order that are pending for more than a week, to
priority urgent
That means, that 50% of the pending orders are now urgent



Physical Plans

Counting tuples is easy, counting costs is hard
Physical plans are more complicated: they don’t only contain the
relational operator but the algorithm
Different algorithms have different costs

I In terms of intermediate sizes
I In terms of CPU (i.e., function calls)

For example: Nested Loop Joins
I require less space (no need for overallocation)
I and don’t require hash calculation
I But induce more comparisons

State of the art: physical plan optimization is rule based
I Remember the rules for join algorithms? Yeah, that!

Cost based optimization of physical plans is a research topic
(incidentally, one of my topics)



Access Path Selection

Data can be read from multiple sources
The base table
A column-store index
A tree index
Bitmaps

Indices usually don’t contain all the necessary data
They are mainly used for tuple selection

I not attribute projection

They may need to be combined with base table data



Access Path Selection

Example
A customer has six attributes:
id, name, address, nation, phone, accountNumber

Suppose you have a column-index on nation

The query is select * from customer where nation = "UK"



The End


	Query Optimization
	Complicating Factors
	The End

