
Secondary Storage

Holger Pirk

Holger Pirk Secondary Storage 1 / 32



Context

Secondary Storage is about replicating data
The opposite of normalization

I But in a controlled manner
I The DBMS is in charge of replicas
I They can be created and destroyed without breaking the system
I They are semantically invisible to the user
I They can be enormously beneficial for performance

However,
They occupy space
They need to be maintained under updates
They stress the query optimizer
They can only be used for certain operations



Purpose of this lecture

By the end, you should
Understand the concept of secondary storage

I Indices
I Have heard of Materialized Views

Be able to select the right secondary storage structure for a
query/workload
Understand why secondary storage is not always a good idea



Some Nomenclature

Definition
Clustered or Primary Index An index that is used to store the tuples of a

table
You can have (at max) one of these

Unclustered or Secondary Index An index that is used to store pointers to
the tuples of a table

Context
This class is about unclustered indices, all of the presented techniques
can be used as clustered indices
Focus is on concepts and data structures, not the SQL to create them



Maintaining indices in SQL

Creating them

CREATE INDEX index_name ON table_name (column1 , column2 , ...);

Dropping them

DROP INDEX index_name;

This isn’t particularly useful
Unclear what kind of index is created
No control over parameters
Virtually all systems provide much finer control (look at the
documentation)



Hash-Indexing



Hash-Indexing

Remember Hash-joins?
Step one was building a hash-table
A hash-index is the same thing but persistent

Visualisation

7

5

1

3

3

1

4

2

Key Pos
5

3

7

1

HashTable Relation



Ephemeral hash-tables

For hash-joins, we were assuming a "stop-the-world" implementation
there are no new tuples added during query evaluation

I We knew (roughly) how many tuples are going to end up in the table

The hash-table was discarded after the join
we did not have to worry about updating it
If the hash-table is persistent, all of that changes



Persistent hash-tables

The hashtable may grow arbitrarily large
Overallocate by a lot
If fill-factor grows beyond x percent (e.g., 50 percent), rebuild

I Rebuilds can be very expensive (even with consistent hashing)
I This leads to nasty load spikes

Tuples may need to be deleted
Remember: we used empty slots as markers for the end of probe-chains
On delete, we have to put a value in the slot

I A forward marker, the next or the last value in the probe chain



Hash-Indices

Usefulness
Remember: we said, hashjoins are good for equi-joins

I Because hash-tables allow the quick lookup of a specific key
Not useful for inequality-joins

I Because hash-tables do not allow to find the, w.l.o.g., next greatest
value

The same applies here:
I Persistent Hash-tables are great for hash-joins and aggregations (duh!)
I The also help a lot to evaluate equality conditions:

F select * from customer where name = "holger"
I Not great for anything else

F select * from customer where id between 5 and 8



Foreign-Key Indices



Foreign-Key Indices

In SQL

ALTER TABLE Orders
ADD FOREIGN KEY (BookID_index) REFERENCES Book(ID);

Idea
Foreign Key (FK) constraints specify that

I for every value that occurs in an attribute of a table
I there is exactly one value in the Primary Key (PK) column of another

table
The DBMS needs to ensure that the constraint holds

I On insert/update, the DBMS needs to look up the primary key value
I Instead of storing the value, the DBMS could store a pointer to the

referenced Primary Key or tuple
I Is this a universally good idea?



Foreign-Key Indices

Example

0

2

0

3

2

2

1

3

1

partkey

.80

.93

.10

.75

price

.1
.01
.06
.07
.5
.25
.0
.15
.03

discount



Foreign-Key Indices

Usefulness
The PK/FK constraint implies the number of join partners for every
tuple: 1
Resolving the FK reference column directly yields the join partner
tuples
Not of much use for anything else

I However, many joins are PK/FK joins (because they stem from
normalization)

Foreign-Key Indices have very few downsides
I Maintain insignificantly extra work under updates
I They do not cost significant space (a pointer per tuple)
I No extra query optimization effort: if they can be used, they should be

SQL-Server does not implement them



B-Trees



B-Trees

Basic Idea
Databases are I/O bound

I → Minimize the number of page replacements

There are many equality lookups
There are also many updates

I Hash-tables have nasty load-spikes on update

Solution: Use a tree

Context
In the DBMS context a Key/Value pair is the value of the attribute
and a pointer to/id of the tuple



B-Trees

Definition
A balanced tree with out-degree n (i.e., every node has n − 1 keys)
and the following property
Each non-root node contains at least

⌊n−1
2

⌋
key/value pairs

The root has at least one element

Example

6: 8 15: 6

1: 4 3: 2 4: 1 9: 3 10: 5 19: 9 20: 7



Maintaining balanced B-Trees

Under insert
Find the right node to insert (walk the tree) and insert the value
If the node overflows, split the node in two halves
Insert a new split element (say, the one in the middle of the
split-node) in the parent
If the parent overflows, repeat the procedure on the parent node

I If the parent is the root, introduce a new root

Example

6: 8 15: 6

1: 4 3: 2 4: 1 9: 3 10: 5 19: 9 20: 7



Maintaining balanced B-Trees

Under delete
Find the value to delete

I if it is in a leaf node, delete it
I if it is in an internal node, replace it with the maximum leaf-node value

from the left child
If the affected leaf node underflows, rebalance the tree bottom up

I Try to obtain an element from a neighbouring node (be done on
success)

I On failure, the neighbouring node is only half-full and can be merged
with this one

I merge and remove the parent spliting key
I If parent underflows, rebalance from that one (bottom up)



Maintaining balanced B-Trees under delete

Example

6: 8 15: 6

1: 4 3: 2 4: 1 9: 3 10: 5 19: 9 20: 7



Problems with B-trees

Access properties
They can support range (between 5 and 17) scans but

I it is complicated (need to go up and down the tree)
I it causes many node traversals
I Node sizes are usually co-designed with page sizes
I Node traversals translate into page faults - we want to keep those to a

minimum

Implementation complexity
Two kinds of node layouts or space waste

I Leaf pointers aren’t used
I Most of the data lives in leaf nodes



B+-Trees



B+-Trees

Idea
Make range scans fast by

I keeping data only in the leafs (no up and down)
I linking one leaf to the next
I inner-node split values are replicas of leaf-node values

Only have a single kind of node layout



B+-Trees

Example

6 15

1: 4 3: 2 4: 1 6: 8 9: 3 10: 5 15: 6 19: 9 20: 7



B+-Trees

Balancing
Largely the same
Deletes of inner-node split values imply replacement with new value
from leaf node



Bitmap Indexing



Bitmap Indexing

Idea
If there are few distinct values in a column

I create a bitvector for each distinct value in that column

Bitvectors
A sequence of 1-bit values indicating a boolean condition holding for
the elements of a sequence of values

I E.g., BV==7 ([4, 7, 11, 7, 7, 11, 4, 7]) = [0, 1, 0, 1, 1, 0, 0, 1]
I CPUs don’t deal with individual bits – let’s assume they deal with bytes

(they do not)
I BV==7 ([4, 7, 11, 7, 7, 11, 4, 7]) =

128 ∗ 0+ 64 ∗ 1+ 32 ∗ 0+ 16 ∗ 1+ 8 ∗ 1+ 4 ∗ 0+ 2 ∗ 0+ 1 ∗ 1 = 89
I Shoutout quiz: what does BV==7 == 0 mean?
I Shoutout quiz: what does BV==7 == 255 mean?

Bitmap Indices
A collection of bitvectors on a column



Bitmap Indexing

Usefulness
Bitmaps reduce bandwidth need for scanning a column

I in the order of the length of the type of the column
I can be improved even further using simple compression (like

run-length-encoding))

Predicates can be combined using logical operators on bitvectors
Arbitrary (boolean) conditions can be indexed by some systems

I BV>7,<12 ([4, 7, 11, 7, 7, 11, 4, 7]) =
128 ∗ 0+ 64 ∗ 1+ 32 ∗ 1+ 16 ∗ 1+ 8 ∗ 1+ 4 ∗ 1+ 2 ∗ 0+ 1 ∗ 1 = 125

Special form: binned bitmaps
I Have n bitvectors
I Make sure the conditions span the entire value domain

F In every position, exactly one value is set to one



Run-Length-Encoding

Visualisation

0

1

1

1

1

1

0

1

0

1

0

1

1

5

1

1

RLE

Description
Sequentially traverse the vector
Replace every run of consecutive
equal values with

I a tuple containing the value
(Run) and the number of
tuples (length)

Works really well on high-locality
data
Requires sequential scan to find
value at a specific position



Materialized Views



Materialized Views

A very quick note
SQL allows "saving" queries as "views": create view oids as
(select Name, OrderID from Customer NATURAL JOIN Order)

I views can be used like relations
F select * from oids

I However, that makes no performance difference (the view name is nice
syntax for a nested query)

Some systems allow the creation of Materialized Views
I These are actually stored (and maintained under updates)

Some systems are very smart about using these internally even when
users don’t query them directly

I see Answering queries using views: A survey by Alon Halevy

SQL Server
Is weird about materialized views

I You need to create a non-materialzed view first
I and create an index on that



The End


	Hash-Indexing
	Foreign-Key Indices
	B-Trees
	B+-Trees
	Bitmap Indexing
	Materialized Views
	The End

