
Storage

Holger Pirk

Holger Pirk Storage 1 / 32



Purpose of this lecture

We are going down the rabbit hole now

We are crossing the threshold into the system

No more rules without exceptions

Understand storage alternatives

N-ary vs. decomposed storage

in-memory vs. disk

slotted pages

Holger Pirk Storage 2 / 32



Connection

Holger Pirk Storage 3 / 32



Using an ORM to insert data

Example C++ code using ODB

transaction t(db.begin ());

Employee me;

me.payrollNumber = 4;

me.name = "holger";

me.salary = 100*1000;

me.joiningDate = 43429342;

db.persist(me);

t.commit ();

In SQL

INSERT INTO "Employee" VALUES(4,'holger ' ,100000 ,43429342);

Holger Pirk Storage 4 / 32



Recall:

Database
Architecture

Insert processing

Inserts are usually not optimized

Arrive at the storage layer as intact

tuples

Holger Pirk Storage 5 / 32



Processing tuples

Where can we put them?

Disk

Memory

technically, there are many alternatives

Let's talk about memory �rst

Mostly because it is less involved

Holger Pirk Storage 6 / 32



N-ary vs. Decomposed Storage

Holger Pirk Storage 7 / 32



How to store tuples

Another mismatch

Relations are two-dimensional

Memory is one-dimensional

Tuples need to be linearized

There are two mainstream strategies
I (and research on hybrids)

Holger Pirk Storage 8 / 32



The N-ary Storage Model (NSM)

Example

(4,'holger ' ,100000 ,43429342);

(5,'sam' ,750000 ,23429342);

(6,'daniel ' ,600000 ,13429342);

Linearization in N-ary format

In marketing they call this a row store

Holger Pirk Storage 9 / 32



When N-ary storage works well

Linearization in N-ary format

Insert a new tuple

(2,'peter ' ,200000 ,33429342);

Simply append the tuple

Holger Pirk Storage 10 / 32



When N-ary storage is suboptimal

The database

They query

calculate the sum of all salaries

In SQL select sum(salary) from employee

Holger Pirk Storage 11 / 32



The Decomposed Storage Model (DSM)

Example

(4,'holger ' ,100000 ,43429342);

(5,'sam' ,750000 ,23429342);

(6,'daniel ' ,600000 ,13429342);

Linearization in Decomposed format

In marketing they call this a column store

Holger Pirk Storage 12 / 32



When decomposed storage works well

The database

They query

calculate the sum of all salaries

In SQL select sum(salary) from employee

Holger Pirk Storage 13 / 32



When decomposed storage is supoptimal

Linearization in Decomposed format

Insert a new tuple

(2,'peter ' ,200000 ,33429342);

Tuples need to be decomposed before insertion

Holger Pirk Storage 14 / 32



When decomposed storage is supoptimal

Tuples are decomposed in database

Access a single tuple

select * from employee where tuple_id = 3; -- assume index access

tuple needs to be reconstructed

Holger Pirk Storage 15 / 32



Impact of NSM vs. DSM

Locality is king

But why? Aren't we talking about in-memory databases?

Doesn't RAM have constant access latency?

How much locality is necessary

1

10

100

1000

8 64 512 4K 32K 256K

P
ro

c
e
s
s
in

g
 T

im
e

 p
e
r 

V
a
lu

e
 i
n

 C
P

U
 C

y
c
le

s

Stride in Bytes

cycles

for (size_t i = 0; i < N; i++)

sum += input[i*stride ];

Holger Pirk Storage 16 / 32



Impact of NSM vs. DSM

Locality is king

But why? Aren't we talking about in-memory databases?

Doesn't RAM have constant access latency?

How much locality is necessary

1

10

100

1000

8 64 512 4K 32K 256K

P
ro

c
e
s
s
in

g
 T

im
e

 p
e
r 

V
a
lu

e
 i
n

 C
P

U
 C

y
c
le

s

Stride in Bytes

cycles

for (size_t i = 0; i < N; i++)

sum += input[i*stride ];

Holger Pirk Storage 16 / 32



Impact of NSM vs. DSM

Locality is king

But why? Aren't we talking about in-memory databases?

Doesn't RAM have constant access latency?

How much locality is necessary

1

10

100

1000

8 64 512 4K 32K 256K

P
ro

c
e
s
s
in

g
 T

im
e

 p
e
r 

V
a
lu

e
 i
n

 C
P

U
 C

y
c
le

s

Stride in Bytes

cycles

for (size_t i = 0; i < N; i++)

sum += input[i*stride ];

Holger Pirk Storage 16 / 32



Variable Sized Datatypes

Holger Pirk Storage 17 / 32



Let's think back to our example

Linearization in Decomposed format

Names have di�erent sizes

→ they occupy variable space in memory

We'd like to maintain �xed tuple sizes,
I allows randomly access to tuples by their position
I e.g., when reconstructing decomposed tuples

Two choices
I overallocate space for varchars (many systems need a size parameter:

e.g., varchar(128))
I store them out of place

Holger Pirk Storage 18 / 32



In place storage

Our example database stored in in place DSM (name length <= 6)

Properties

Good for locality

Simple

Wastes space
I particularly bad for in-memory databases

Holger Pirk Storage 19 / 32



Out of place storage

Our example database stored in out of place DSM

Properties

Space conservative

Bad for locality

Complicated
I Harder to implement
I Garbage-collection is tricky

Holger Pirk Storage 20 / 32



Worksheet

Assume the following

Query Find the names of all employees with a salary above 700.000

Costs Each (random) access to a value costs 3, each access to an

imediately following value costs 1, accessing a value again is

free

On the following database

(4,'holger ' ,100000 ,43429342);

(5,'sam' ,750000 ,23429342);

(6,'daniel ' ,600000 ,13429342);

(2,'peter ' ,200000 ,33429342);

Calculate the data access costs on
these storage strategies! Which is
the least expensive?

Out-of-place N-ary storage

In-place N-ary storage

Out-of-place Decomposed storage

In-place Decomposed storage

Holger Pirk Storage 21 / 32



Nifty out of place storage: dictionary compression

Our example database stored in out of place DSM

Dictionary compression

Before every insert to the dictionary, check if the value is already
present

I If so, elide the insert and use the address of the existing value
I Otherwise, insert the value

Holger Pirk Storage 22 / 32



Worksheet

Assume the following

Query Find the names of all employees with a salary above 700.000

Costs Each (random) access to a value costs 3, each access to an

imediately following value costs 1, accessing a value again is

free

On the following database

(4,'holger ' ,100000 ,43429342);

(5,'sam' ,750000 ,23429342);

(6,'daniel ' ,600000 ,13429342);

(2,'peter ' ,200000 ,33429342);

(9,'sam' ,920000 ,13919390);

Calculate the data access costs on
these storage strategies! Which is
the least expensive?

Out-of-place N-ary storage with

duplicate elimination

In-place N-ary storage

Out-of-place Decomposed storage

with duplicate elimination

In-place Decomposed storage
Holger Pirk Storage 23 / 32



Data storage on disk

Holger Pirk Storage 24 / 32



What changes

How are disks di�erent?

Larger pages (Kilobytes instead of bytes)

Much higher latency (ms instead of nanoseconds)

Much lower throughput (hundreds of megabytes instead of tens of
gigabytes per second)

I This is why you think of DBMSs as I/O bound

The operating system gets in the way
I Filesize is limited → DBMS needs to map tuple_ids to �les and

o�sets

Goals shift

Disks are dominating costs by far
I Complicated I/O management strategies pay o�

Pages are large
I Each page behaves like a mini-database
I (in the case of N-ary storage)
Holger Pirk Storage 25 / 32



Pages like mini-databases: Unspanned Pages

Goals

Simplicity

Random access performance (assuming known page �ll-factors)
I Given a tuple_id, �nd the record with a single page lookup

Example

DBMS Architecture Pages

Pages

Databases normally deal with data in fixed sized blocks called pages

Unspanned

reading one record only requires reading one page

efficient when size of record is much smaller than size of page

Pi

a100

a101

Pi+1

a103

a119

Pi+2

a107

a125

P.J. Mc.Brien (Imperial College London) Storage & Indexing 7 / 33

Disadvantage:
I Space waste
I Cannot deal with large records
I No in-page random access for variable-sized records

Holger Pirk Storage 26 / 32



Spanned Pages

Goals

Minimize space waste

Support large records

Example

DBMS Architecture Pages

Pages

Databases normally deal with data in fixed sized blocks called pages

Spanned

supports record sizes greater than one page

more space efficient

Pi

a103

a100

a101

Pi+1

a107

a103

a119

Pi+2

a107

a125

P.J. Mc.Brien (Imperial College London) Storage & Indexing 7 / 33

Disadvantages:
I Complicated
I Random access performance
I No in-page random access for variable-sized records

Holger Pirk Storage 27 / 32



Slotted Pages

Enabling In-page random
access 5

2.1 The N-ary Storage Model

Traditionally, the records of a relation are stored in slotted disk pages [29] obeying an n-ary storage

model (NSM). NSM stores records sequentially on data pages. Figure 1 depicts an example relation R

(left) and the corresponding NSM page after having inserted four records (middle). Each record has a

record header (RH) that contains a null bitmap, offsets to the variable-length values, and other implementa-

tion-specific information [22][32]. Each new record is typically inserted into the first available free space

starting at the beginning of the page. Records may have variable length, therefore a pointer (offset) to the

beginning of the new record is stored in the next available slot from the end of the page. The nth record in a

page is accessed by following the nth pointer from the end of the page.

During predicate evaluation, however, NSM exhibits poor cache performance. Consider the query:

select name
from R
where age < 40;

To evaluate the predicate, the query processor uses a scan operator [15] that retrieves the value of the

attribute age from each record in the relation. Assuming that the NSM page in the middle of Figure 1 is

already in main memory and that the cache block size is smaller than the record size, the scan operator will

incur one cache miss per record. If age is a 4-byte integer, it is smaller than the typical cache block size

(32-128 bytes). Therefore, along with the needed value, each cache miss will bring into the cache the other

values stored next to age (shown on the right in Figure 1), wasting useful cache space to store non-refer-

enced data, and incurring unnecessary accesses to main memory.

RID SSN Name Age

1 0962 Jane 30

2 7658 John 45

3 3859 Jim 20

4 5523 Susan 52

5 9743 Leon 43

6 0618 Dan 37

FIGURE 1: The N-ary Storage Model (NSM) and its cache behavior. Records in R (left) are stored contiguously
into disk pages (middle), with offsets to their starts stored in slots at the end of the page. While scanning age, NSM
typically incurs one cache miss per record and brings useless data into the cache (right).

PAGE HEADER RH1 0962
Jane 30 RH2 7658 John

45 RH3 3589 20 RH4Jim
5523 52Susan

NSM PAGE

5523 52Susan

20 RH4Jim

45 RH3 3589

Jane 30 RH block 1

block 2

block 3

block 4

CACHERELATION R Explained

Store tuples in in-place N-ary format

(spanned or unspanned)

Store tuple count in page header

Store o�sets to every tuple
I O�sets only need to be typed

large enough to address page
F Bytes for pages smaller than

256 Bytes
F Shorts for pages smaller than

65,536 Bytes
F Integers for pages smaller than

4 Gigabytes

Holger Pirk Storage 28 / 32



Quiz

In a particular database, each record occupies 620 bytes, and records
are stored in in-place, spanned pages of 2KB.

How many pages are required to stored 100 records?
I 30
I 31
I 33
I 34

Holger Pirk Storage 29 / 32



Quiz

Assume a database with records of size 17 bytes, stored in unspanned,
slotted 4KB pages. How many tuples can be stored in 10 blocks?

2150

2155

2156

2160

2400

2410

Holger Pirk Storage 30 / 32



In-page dictionaries

Some disk-based database systems keep a dictionary per page

This solves the problem of variable sized records

Also allows duplicate elimination

Question: Why don't they keep a global dictionary

Holger Pirk Storage 31 / 32



The End

Holger Pirk Storage 32 / 32


	Connection
	N-ary vs. Decomposed Storage
	Variable Sized Datatypes
	Data storage on disk
	The End

