P.J. McBrien

Imperial College London

P.J. McBrien

Imperial College London

Transactions ACID properties.

Transactions: ACID properties

ACID properties

database management systems (DBMS) implements indivisible tasks called
transactions

Atomicity all or nothing

Consistency consistent before — consistent after
Isolation independent of any other transaction
Durability completed transaction are durable

BEGIN TRANSACTION
UPDATE branch
SET cash=cash —10000.00
WHERE sortcode =56 Note that if total cash is £137,246.12
before the transaction, then it will be

UPDATE branch the same after the transaction.

SET cash=cash +10000.00
WHERE sortcode =34
COMMIT TRANSACTION

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 2

Example Data

branch
sortcode bname
56 'Wimbledon’
34 'Goodge St’
67 'Strand’

cash
94340.45
8900.67
34005.00

movement
mid no amount
1000 100 2300.00
1001 101 4000.00
1002 100 -223.45
1004 107 -100.00
1005 103 145.50
1006 100 10.23
1007 107 345.56
1008 101 1230.00
1009 119 5600.00

tdate
5/1/1999
5/1/1999
8/1/1999
11/1/1999
12/1/1999
15/1/1999
15/1/1999
15/1/1999
18/1/1999

P.J. McBrien (Imperial College London)

Transactions

no
100
101
103
107
119
125

ACID properties

account

type chame

‘current’ 'McBrien, P’ NULL
'deposit’ 'McBrien, P.’ 5.25
‘current’ 'Boyd, M.’ NULL
'current’ 'Poulovassilis, A." NULL
'deposit’ 'Poulovassilis, A." 5.50
'current’ 'Bailey, J. NULL

key branch(bname)

movement(no) L account(no)

account(sortcode) L branch(sortcode)

21: Serialisability and Recoverability

rate? sortcode

67
67
34
56
56
56

Transactions ACID properties.

Transaction Properties: Atomicity

BEGIN TRANSACTION
UPDATE branch
SET cash=cash —10000.00
WHERE sortcode=56

Suppose that the system crashes half way through processing a cash transfer, and the
first part of the transfer has been written to disc

m The database on disc is left in an inconsistent state, with £10,000 ‘missing’

= A DBMS implementing Atomicity of transactions would on restart UNDO the
change to branch 56

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability

Transactions ACID properties.

Transaction Properties: Consistency

BEGIN TRANSACTION
DELETE FROM branch
WHERE sortcode=56

INSERT INTO account
VALUES (100, 'Smith, J', deposit’',5.00,34)
END TRANSACTION

Suppose that a user deletes branch with sortcode 56, and inserts a deposit account
number 100 for John Smith at branch sortcode 34

m The database is left in an inconsistent state for two reasons

m it has three accounts recorded for a branch that appears not to exist, and
m it has two records for account number 100, with different details for the account

m A DBMS implementing Consistency of transactions would forbid both of these
changes to the database

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability

Transactions ACID properties.

Transaction Properties: Isolation

BEGIN TRANSACTION BEGIN TRANSACTION
UPDATE branch
SET cash=cash —10000.00
WHERE sortcode=56

SELECT SUM(cash) AS net_cash
FROM branch

UPDATE branch
SET cash=cash+10000.00
WHERE sortcode=34
END TRANSACTION END TRANSACTION

Suppose that the system sums the cash in the bank in one transaction, half way
through processing a cash transfer in another transaction

m The result of the summation of cash in the bank erroneously reports that
£10,000 is missing

= A DBMS implementing Isolation of transactions ensures that transactions
always report results based on the values of committed transactions

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability

Transactions ACID properties.

Transaction Properties: Durability

BEGIN TRANSACTION
UPDATE branch
SET cash=cash —10000.00
WHERE sortcode=56

UPDATE branch
SET cash=cash+10000.00
WHERE sortcode=34

END TRANSACTION

Suppose that the system crashes after informing the user that it has committed the
transfer of cash, but has not yet written to disc the update to branch 34

m The database on disc is left in an inconsistent state, with £10,000 ‘missing’

= A DBMS implementing Durability of transactions would on restart complete
the change to branch 34 (or alternatively never inform a user of commitment
with writing the results to disc).

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability

Transactions ACID properties.

SQL Conversion to Histories

branch
sortcode bname cash
56 'Wimbledon' 94340.45
34 'Goodge St’ 8900.67
67 'Strand’ 34005.00

BEGIN TRANSACTION T1
UPDATE branch
SET cash=cash —10000.00
WHERE sortcode =56

UPDATE branch

SET cash=cash +10000.00

WHERE sortcode=34
COMMIT TRANSACTION T1

history of transaction T,

Begin transaction b, (only given if necessary for discussion)
Various read operations on objects r,[0;] and write operations wx, [05]

Either ¢, for the commitment of the transaction, or a, for the abort of the
transaction

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 8

SQL Conversion to Histories

sortcode

BEGIN TRANSACTION
UPDATE branch
SET
WHERE sortcode=34
UPDATE branch
SET
WHERE sortcode=67

COMMIT TRANSACTION

history of transaction T,

cash=cash —2000.00

cash=cash +2000.00

Transactions ACID properties.

branch
bname cash
'Wimbledon' 84340.45
'Goodge St’ 18900.67
'Strand’ 34005.00

, cash=18900.67,
L, cash=16900.67,
(A2dH, cash=34005.00,
)l cash=36005.00, &

m Same pattern of transaction code gives same pattern of operations

P.J. McBrien (Imperial College London)

21: Serialisability and Recoverability 9

Concurrency Definition

Serial Execution

Serial Execution of Transactions

m Executing one transaction at a time

m Provided updates are recorded in stable storage at the time of c;, must maintain
the ACID properties

Possible Serial Executions

. 7‘1[b56 N wi[bse] B Tl[b34 N wi[b34] B
FE o] e

The only t possible serial executions are
Hs12 = [6] N wilbse] § r1[b3a] § wilbsa] ,7 r2[b34] N w2 ([b34] § 2[b67] B walbe7] ,

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 10

Concurrency Definition

Concurrent Execution

Concurrent Execution of Transactions

m Interleaving of several transaction histories

m Order of operations within each history preserved

bS-I] 3

7]] 1

Some possible concurrent executions are

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 11

Concurrency Definition

Which concurrent executions should be allowed?

Concurrency control — controlling interaction

A concurrent execution of transactions No transaction commits depending on data
should always have the same final result as that has been produced by another
some serial execution of those same transaction that has yet to commit
transactions

H

H set of all possible histories
SR RC SR set of serialisable histories

RC set of recoverable histories

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 12

Concurrency Definition

Quiz 21.1: Serialisability and Recoverability (1)

Is H,

|

Not Serialisable, Not Recoverable

Not Serialisable, Recoverable

|

Serialisable, Not Recoverable

Serialisable, Recoverable

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability

[b67]

Concurrency Definition

Quiz 21.2: Serialisability and Recoverability (2)

Is H,

I‘

Not Serialisable, Not Recoverable

Not Serialisable, Recoverable

|

Serialisable, Not Recoverable

Serialisable, Recoverable

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 14

Concurrency Definition

Quiz 21.3: Serialisability and Recoverability (3)

H, = , w2 [b34]

Is H,

|

Not Serialisable, Not Recoverable

Not Serialisable, Recoverable

|

Serialisable, Not Recoverable

Serialisable, Recoverable

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability

P.J. McBrien

Imperial College London

Anomalies

Anomaly 1: Lost Update

BEGIN TRANSACTION T1 BEGIN TRANSACTION T2
EXEC move_cash(56,34,10000.00) EXEC move_cash(34,67,2000.00)
COMMIT TRANSACTION T1 COMMIT TRANSACTION T2

r1[bse] | wilbse] i 71[b34] |} wilbsd] | 1 12[b3a] B wa[bsa] §f 72[bs7] § walbe7]

71 [b34]
C1 w2 [1)3.1]

C2

LU = set of histories with a lost update

|]
SRNLU =0

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution

c2

Anomalies

Anomaly 1: Lost Update

BEGIN TRANSACTION T1 BEGIN TRANSACTION T2
EXEC move_cash(56,34,10000.00) EXEC move_cash(34,67,2000.00)
COMMIT TRANSACTION T1 COMMIT TRANSACTION T2

N N

Tl[bss] ,cash=94340.45, wl[bss] ,cash=84340.45, 7‘1[b34] ,cash=8900.67,
e, cash=8900.67, lost update N c 11)2 [z, cash=6900.67,
(2l cash=34005.00, B, cash=36005.25, (&)

H serialisable I Il recoverable I LU = set of histories with a lost update

SRNLU =0

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution 2

Anomalies

Anomaly 2: Inconsistent analysis

BEGIN TRANSACTION T1
EXEC move_cash(56,34,10000.00)
COMMIT TRANSACTION T1

U

71[bse] o w1lbse] | 71[b34] o w1[bsa] | c1

T1 [l)5(,] w1 [b56]

T4 [l)n} T4 [bfﬁ]

w1 [b34] c1 i ca

BEGIN TRANSACTION T4

SELECT SUM(cash) FROM branch

COMMIT TRANSACTION T4

H,

U

T4[bse] B 74[bsa] i Ta[be7] § ca

T4 [1)56}

71[b34]

_ I A = set of histories with an inconsistent analysis

SRNIA=0

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution

Anomalies

Anomaly 3: Dirty Reads

BEGIN TRANSACTION T1
EXEC move_cash(56,34,10000.00)
COMMIT TRANSACTION T1

U

71[bse] o wilbse] | 71[b34] o w1[bsa] | c1

71[bs6) w1 [bse]
wa[bs4] 71[b34]

7r2[be7] wa[be7]

BEGIN TRANSACTION T2
EXEC move_cash(34,67,2000.00)
COMMIT TRANSACTION T2

U

72[b3a] J| wa[bsa] § 72[be7] f| wa[be7] | c2

I

P.J. McBrien (Imperial College London)

DR = set of histories with a dirty read
RCNDR#0

22: Anomalies in Transaction Execution 4

Anomalies

Quiz 22.1: Anomalies (1)

Which anomaly does H, suffer?

||

None Lost Update
R L
Inconsistent Analysis Dirty Read

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution 5

Anomalies

Quiz 22.2: Anomalies (2)

Which anomaly does H, suffer?

Hy = E®] [/)3,1}

||

None Lost Update
R
Inconsistent Analysis Dirty Read

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution 6

Anomalies

Quiz 22.3: Anomalies (3)

Which anomaly does H, suffer?

e

||

None Lost Update
R L
Inconsistent Analysis Dirty Read

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution 7

Account Table

no type
100 'current’
101 'deposit’

103 'current’
107 'current’
119 'deposit’
125 ’current’

P.J. McBrien (Imperial College London)

Anomalies

account
chame rate?
'"McBrien, P’ NULL
'"McBrien, P.’ 5.25
'Boyd, M.’ NULL
'Poulovassilis, A." NULL
"Poulovassilis, A.’ 5.50
'Bailey, J.’ NULL

22: Anomalies in Transaction Execution

sortcode
67
67
34
56
56
56

Anomalies

Anomaly 3: Dirty Reads (Recoverable Example)

BEGIN TRANSACTION T1 BEGIN TRANSACTION T2
EXEC move_cash(56,34,10000.00) EXEC move_cash(34,67,2000.00)
COMMIT TRANSACTION T1 COMMIT TRANSACTION T2

U

r1[bse] |} w1 [bse] ; r2[b3a] B w2[bsa] § T2[be7] B w2[bs7] Hf c2

71 [bs6] w1 [bse) 12[b34]
wa[b34] 71[b34] wi [ba4]

72 [bGT} w2 [bGT} C2 C1

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution

DR = set of histories with a dirty read
RCNDR#ODANRCUDR=H

Anomaly 4: Dirty Writes

BEGIN TRANSACTION T5 BEGIN TRANSACTION T6

UPDATE account UPDATE account
SET rate=5.5 SET rate=6.0
WHERE type="deposit’ WHERE type='"deposit’

COMMIT TRANSACTION T5 COMMIT TRANSACTION T6

Hs ws[a101] Hg we[a101]

ws [a119] : we[a119]

We [a'IOI]

We [arng]

Anomalies

Patterns of operations associated with Anomalies

Anomaly Set Pattern Problem
Dirty Write DW wio] < walo] < e1 Sometimes not SR
Dirty Read DR wio] < r2f0] < e1 Sometimes not RC
Inconsistent Analysis A r1[0a] < w2[0a], w2los] < r1los] Not SR
Lost Update LU rifo] < walo] < wio] Not SR

Notation

m e; means either ¢; or a; occurring

B 0pq < opp mean op, occurs before opy in a history

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution 11

Anomalies

Worksheet: Anomalies

rental_charge

transfer_charge

total_charge

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution

P.J. McBrien

Imperial College London

Serialisable Execution

Serialisable Transaction Execution

m Solve anomalies — H = serial execution

m Only interested in the committed projection

r1[bs6] B 72[b34] § w2[b34]

r3 [7711000} r3 [’771 1001] r3 [’771 1002] 1 [bSG]

w1 [bs6] | 74[bs6] w1 [bs6)

r3[mioos] | T3[mico4] § T3[m1005]
71[b34] }f az § wi[bsa] | c1) 74[b34]

w2 [bGT} (65) T4 [bGT} C4

P.J. McBrien (Imperial College London) 23: Serialisable Execution

w3 [baa]

74[b34]

r4]be7]

C4

Serialisable Execution

Possible Serial Equivalents

r1[b56] | m2[b3 wa[b3q] f wi[bsel B ralbse] [ra1lb3al Bl wilb3a]l B c1 B r4lb34]

w3 [bg7]

m how to determine that histories are equivalent?

m how to check this during execution?

P.J. McBrien (Imperial College London) 23: Serialisable Execution

7

2

[bg7]

Serialisable Execution

Conflicts: Potential For Problems

conflict

A conflict occurs when there is an interaction between two transactions

m 7[o0] and wy[o] are in H where z # y Only consider pairs where there is
or no third operation rw;[o] between
B Wy [o] and wy [o] are in H where z # y the pair of operations that conflicts
with both

conflicts

Conflicts
m JOBZEAN — PN T1 reads from T2 in Hy, H.

(W w1 [ba4] T2 writes over T1 in H,

n — T1 writes after T2 reads in H,

P.J. McBrien (Imperial College London) 23: Serialisable Execution 4

Serialisable Execution

Quiz 23.1: Conflicts

Hy =

Which of the following is not a conflict in H,,?

r2]a107] el 1 [@107] _>
R CI——

1 [(1107] =

’wl[(tlm] — K% [(1‘107]

P.J. McBrien (Imperial College London) 23: Serialisable Execution 5

Serialisable Execution

Conflict Equivalence and Conflict Serialisable

Conflict Equivalence

Two histories H; and H; are conflict equivalent if:
Contain the same set of operations

Order conflicts (of non-aborted transactions) in the same way.

Conflict Seriali

a history H is conflict serialisable (CSR) if C'(H) =cE a serial history

be conflict serialisable

H, = , w1 [b34] 7, wa[b34] ,, w3 [be7] 7
Contains conflicts and EOMIZYIN — and so is not conflict

equivalence to Hi, H2 nor Ha, Hi, and hence is not conflict serialisable.

P.J. McBrien (Imperial College London) 23: Serialisable Execution 6

Serialisable Execution

Serialisation Graph

Serialisation Graph

A serialisation graph SG(H) contains a node for each transaction in H, and an
edge T; — Tj if there is some object o for which a conflict rw;[o] — rw;[o] exists in H.
If SG(H) is acyclic, then H is conflict serialisable.

Demonstrating that a History is CSR

Conflicts are ’L»z[b34] = T‘1[b34] wl[b56] = 7’4[b56] wl[b34] = 74[[)34]

[- [

Y
Y

SG(Hgp) is acyclic, therefore He, is CSR. Serialisation order T, Th, T4

P.J. McBrien (Imperial College London) 23: Serialisable Execution 7

Serialisable Execution

Worksheet: Serialisability

.- . (O (N OO O)
=3 O O B

P.J. McBrien (Imperial College London) 23: Serialisable Execution

RC recoverable

DW dirty write

SR serialisable

CSR conflict serialisable

LU lost update
IA inconsistent analysis

P.J. McBrien

Imperial College London

Recoverable Execution

Recoverability

m Serialisability necessary for isolation and consistency of committed transactions

m Recoverability necessary for isolation and consistency when there are also
aborted transactions

able execution

A recoverable (RC) history H has no transaction committing before another
transaction from which it read

Execution avoiding cascading aborts

A history which avoids cascading aborts (ACA) does not read from a
non-committed transaction

Strict execution

A strict (ST) history does not read from a non-committed transaction nor write
over a non-committed transaction

ST c ACAC RC

P.J. McBrien (Imperial College London) 24: Recoverable Execution 2

Recoverable Execution

Non-recoverable executions

BEGIN TRANSACTION T1

UPDATE branch

SET cash=cash-10000.00

WHERE sortcode=56

UPDATE branch

SET cash=cash+10000.00 BEGIN TRANSACTION T4

WHERE sortcode=34 SELECT SUM(cash) FROM branch
COMMIT TRANSACTION T1 COMMIT TRANSACTION T4

H, r1[bse] 1| wi[bse] || a1 H, T4[bse] § r4[bs4] § r4lber] ff 4

wi [bse)

r4[be7]

P.J. McBrien (Imperial College London) 24: Recoverable Execution 3

Recoverable Execution

Cascading Aborts

BEGIN TRANSACTION T1

UPDATE branch

SET cash=cash-10000.00

WHERE sortcode=56

UPDATE branch

SET cash=cash+10000.00 BEGIN TRANSACTION T4

WHERE sortcode=34 SELECT SUM(cash) FROM branch
COMMIT TRANSACTION T1 COMMIT TRANSACTION T4

H, r1[bse] 1| wi[bse] || a1 H, T4[bse] § r4[bs4] § r4lber] ff 4

wi [bse)

r4[be7]

P.J. McBrien (Imperial College London) 24: Recoverable Execution 4

Recoverable Execution

Strict Execution

BEGIN TRANSACTION T5
UPDATE account
SET rate=5.5

BEGIN TRANSACTION T6
UPDATE account
SET rate=6.0

WHERE type='deposit’ WHERE type='deposit’
COMMIT TRANSACTION T5 COMMIT TRANSACTION T6

Hs ws[aio01]

ws [a119]

We [a'IOI]

ws[a119]

P.J. McBrien (Imperial College London)

Hs we[aio1]

We [arng]

ws [aqol] HI_CI EgASCC'TA
we|ai1g] ‘

24: Recoverable Execution

Recoverable Execution

Quiz 24.1: Recoverability (1)

Which describes the recoverability of H,?

Non-recoverable Recoverable
c . [b
Avoids Cascading Aborts Strict

P.J. McBrien (Imperial College London) 24: Recoverable Execution 6

Recoverable Execution

Quiz 24.2: Recoverability (2)

Which describes the recoverability of H,?

||

Non-recoverable Recoverable
c_ o
Avoids Cascading Aborts Strict

P.J. McBrien (Imperial College London) 24: Recoverable Execution 7

Recoverable Execution

Quiz 24.3: Recoverability (3)

Which describes the recoverability of H,?

Non-recoverable Recoverable
c . [b
Avoids Cascading Aborts Strict

P.J. McBrien (Imperial College London) 24: Recoverable Execution 8

Recoverable Execution

Quiz 24.4: Recoverability (4)

Which describes the recoverability of H,,?

Non-recoverable Recoverable
c . [b
Avoids Cascading Aborts Strict

P.J. McBrien (Imperial College London) 24: Recoverable Execution 9

Recoverable Execution

Worksheet: Recoverability

P.J. McBrien (Imperial College London) 24: Recoverable Execution 10

Recoverable Execution

Review of Recoverable Histories

For a history to be non-recoverable, it must contain a dirty read DR
Thus H = RCU DR
However, a dirty read does not imply a history is non-recoverable

No Dirty Read — Recoverable

A history that contains no dirty read must be recoverable, and avoids cascading
aborts (ACA) at the commit of a transaction.
Thus ACA = RC — DR and ACA C RC

DR
Q . . RC recov
A dirty writes and recoverabilty do not
imply anything about each other
However, dirty writes make executing
recovery complex, and can lead to g S‘V SZ? :

non-serialisable executions. A strict
(ST) history has no dirty reads or dirty
writes.

Thus ST = ACA — DW and ST C ACA

P.J. McBrien (Imperial College London) 24: Recoverable Execution 11

DW

RC recoverable

ST strict

DW dirty write

SR serialisable

CSR conflict serialisable

LU lost update
IA inconsistent analysis

P.J. McBrien

Imperial College London

Concurrency Control

Maintaining Serialisability and Recoverability

m two-phase locking (2PL)
m conflict based
m uses locks to prevent problems
m common technique

= time-stamping
m add a timestamp to each object
m write sets timestamp to that of transaction
m may only read or write objects with earlier timestamp
m abort when object has new timestamp
m common technique

m optimistic concurrency control

m do nothing until commit
m at commit, inspect history for problems
m good if few conflicts

P.J. McBrien (Imperial College London) 25: Concurrency Control

2PL Basic 2PL

The 2PL Protocol

no.

read locks rl[o],...,r[o],...,ru[o] ilr(l)(}l__{[?

write locks wl[o], ..., w(o], ..., wulo]

Two phases

H growing phase
M shrinking phase

refuse rl;[o] if wl;[o] already held ' .
refuse wli;[o] if rl;[o] or wl;[o] already held bs ¢ time

rli[o] or wl;[o] refused — delay T;

P.J. McBrien (Imperial College London) 25: Concurrency Control

2PL Basic 2PL

Quiz 25.1: Two Phase Locking (2PL)

Which history is not valid in 2PL?

P.J. McBrien (Imperial College London) 25: Concurrency Control 4

2PL Basic 2PL

Lost Update Anomaly

BEGIN TRANSACTION T1 BEGIN TRANSACTION T2
EXEC move_cash(56,34,10000.00) EXEC move_cash(34,67,2000.00)
COMMIT TRANSACTION T1 COMMIT TRANSACTION T2

T1 [b56] w1 [b5(,] T1 [b34] w1 [b34] C1 T2 [bg 1] w2 [1)31] T2 [bGT] w2 [l')@T]

w1 [b5(,]
w1 [b34]

w3 [ber]

P.J. McBrien (Imperial College London) 25: Concurrency Control

C2

2PL Basic 2PL

Lost Update Anomaly

BEGIN TRANSACTION T1 BEGIN TRANSACTION T2
EXEC move_cash(56,34,10000.00) EXEC move_cash(34,67,2000.00)
COMMIT TRANSACTION T1 COMMIT TRANSACTION T2

r1[bse] |} wi[bse] ; r2[b3a] B w2[bsa] §f T2[be7] B w2[bs7] Hf c2

lost update

wa[ber]

P.J. McBrien (Imperial College London) 25: Concurrency Control 5

2PL Basic 2PL

Lost Update Anomaly with 2PL

BEGIN TRANSACTION T1 BEGIN TRANSACTION T2
EXEC move_cash(56,34,10000.00) EXEC move_cash(34,67,2000.00)
COMMIT TRANSACTION T1 COMMIT TRANSACTION T2

by o wli [bse] | r1[bse] | wi[bse] o wli [baa] ba B wlz[bza] § 72 [b34] § w2 [b3a] § wlz[ber]

71[b34] § wi[bsa] | 1 | wui [bse] | wu [b3a] r2[be7] § wa[ber] i c2 § wuz[bsa] f wus[ber]

b1 |wli[bse] 7T1[bse] wilbse] |wli[bza] 7Ti[bsa] b2 wiz[bzs] 72[bzs] |wilbza] |c1

wuy [bse] [wuilbss] walbza] wlalber] r2lber] walber] c2 wualbsa] wuz[ber]

Lost Update history not permitted by 2PL, since FIBJLEAN not granted

P.J. McBrien (Imperial College London) 25: Concurrency Control

2PL Basic 2PL

Lost Update Anomaly with 2PL

BEGIN TRANSACTION T1 BEGIN TRANSACTION T2
EXEC move_cash(56,34,10000.00) EXEC move_cash(34,67,2000.00)
COMMIT TRANSACTION T1 COMMIT TRANSACTION T2

U

b1 ‘wl1[b5G] ’7‘1[1)5(}] ’wl[b55] 111[1[(734] bg 11’12[1)34] 7’2[[)34} U’Q[b;«;._l] 11112[1)(;7]

71[b34] § wi[bsa] | 1 | wui [bse] | wu [b3a] r2[be7] § wa[be7] § c2 § wusz[bsa] f wuzlber]

b1 o wli[bse] | 71 [bse] b wi[bse] o wli[bsa] i r1[bsa] b ba | wibsa] § e1 | wua[bse] | wui [bss]

wlz [bsa] J 72[b34] B w2 [bsa] J wia[be7] § r2[be7] § w2[bs7] § c2 § wusz[bsa] f wuslber]

2PL causes T2 to be delayed

P.J. McBrien (Imperial College London) 25: Concurrency Control 6

2PL Basic 2PL

Why does 2PL Work?

no. locks

b; b; €i €j time

m two-phase rule — maximum lock period
m can re-time history so all operations take place during maximum lock period

m CSR since all conflicts prevented during maximum lock period

P.J. McBrien (Imperial College London) 25: Concurrency Control

2PL Deadlock Detection

Deadlock Detection: WFG with No Cycle = No Deadlock

ri2[b34]
11 [bs6]Jwii [bse]lwli [bselfwli [bselfwly [bse]

m waits-for graph (WFG)

m describes which transactions waits for others

P.J. McBrien (Imperial College London) 25: Concurrency Control

2PL Deadlock Detection

Deadlock Detection: WFG with No Cycle = No Deadlock

ri2[b34]
11 [bs6]Jwii [bse]lwli [bselfwli [bselfwly [bse]

H; attempts rl[b34] , but is refused since H2 has a write-lock, and so is put on WFG

m waits-for graph (WFG)

m describes which transactions waits for others

P.J. McBrien (Imperial College London) 25: Concurrency Control

2PL Deadlock Detection

Deadlock Detection: WFG with No Cycle = No Deadlock

ri2 b7]Jwla [berl[wla[ber]]
wlz [bza]lwlz[b34] wl[b3y]
11 [bs6]Jwli [bse]lwli [bselfwly [bselfwly [bselfwly [bseJwly [bsellwly [bsellwly [bse]

WFG(H,)

rily [b34]

@ @

H> can proceed to complete its execution, after which it will have released all its locks

m waits-for graph (WFG)

m describes which transactions waits for others

P.J. McBrien (Imperial College London) 25: Concurrency Control

2PL Deadlock Detection

Deadlock Detection: WFG with No Cycle = No Deadlock

ri2 b7]Jwla [berl[wla[ber]]
wla [baalfwla[bza]]wlz [b3a]lwlz[b34]
iy [bselJwly [bssllwly [bsel|wly [bsellwli [bse]lwli [bselfwli [bselfwly [bselfwly [bse Jwl [bsellwl [bse]

WFG(H.,,)

@ @

Hi may now proceed to completion

m waits-for graph (WFQG)

m describes which transactions waits for others

P.J. McBrien (Imperial College London) 25: Concurrency Control

2PL Deadlock Detection

Deadlock Detection: WFG with Cycle = Deadlock

4 4 4 4 | 4
I N o P O

WFG(H,)

ll’lz [[)34]

Cycle in WFG means DB in a deadlock state, must abort either Hy or Hs

P.J. McBrien (Imperial College London) 25: Concurrency Control

2PL Deadlock Detection

Worksheet: Deadlocks

P.J. McBrien (Imperial College London) 25: Concurrency Control

Isolation Levels Need for Serialisability?

Transaction Isolation Levels

m Do we always need ACID properties?

BEGIN TRANSACTION T3
SELECT DISTINCT no
FROM movement
WHERE amount>=1000.00

COMMIT TRANSACTION T3

m Some transactions only need ‘approximate’ results
e.g. Management overview
e.g. Estimates

m May execute these transactions at a ‘lower’ level of concurrency control
SQL allows you to vary the level of concurrency control

P.J. McBrien (Imperial College London) 25: Concurrency Control

	Transactions
	ACID properties

	Concurrency
	Definition

	Anomalies
	Serialisable Execution
	Recoverable Execution
	Concurrency Control
	2PL
	Basic 2PL
	Scheduling
	Deadlock Detection

	Isolation Levels
	Need for Serialisability?

