
SQL Programming

P.J. McBrien

Imperial College London

P.J. McBrien (Imperial College London) SQL Programming 1

Extensions to RA select, project and join

Topic 10: SQL Extensions to RA Select, Project and Join

P.J. McBrien

Imperial College London

P.J. McBrien (Imperial College London) 10: SQL Extensions to RA Select, Project and Join 1

Extensions to RA select, project and join

Bank Branch Database

branch
sortcode bname cash

56 ’Wimbledon’ 94340.45
34 ’Goodge St’ 8900.67
67 ’Strand’ 34005.00

movement
mid no amount tdate
1000 100 2300.00 5/1/1999
1001 101 4000.00 5/1/1999
1002 100 -223.45 8/1/1999
1004 107 -100.00 11/1/1999
1005 103 145.50 12/1/1999
1006 100 10.23 15/1/1999
1007 107 345.56 15/1/1999
1008 101 1230.00 15/1/1999
1009 119 5600.00 18/1/1999

account
no type cname rate? sortcode
100 ’current’ ’McBrien, P.’ NULL 67
101 ’deposit’ ’McBrien, P.’ 5.25 67
103 ’current’ ’Boyd, M.’ NULL 34
107 ’current’ ’Poulovassilis, A.’ NULL 56
119 ’deposit’ ’Poulovassilis, A.’ 5.50 56
125 ’current’ ’Bailey, J.’ NULL 56

key branch(sortcode)
key branch(bname)
key movement(mid)
key account(no)

movement(no)
fk
⇒ account(no)

account(sortcode)
fk
⇒ branch(sortcode)

P.J. McBrien (Imperial College London) 10: SQL Extensions to RA Select, Project and Join 2

Extensions to RA select, project and join

SQL Pattern Matching

Testing Strings against a Pattern in ANSI SQL

WHERE column LIKE pa t t e r n ESCAPE e s c ap e ch a r

Will return TRUE where pattern matches column. The escape char may be used
before any of the special characters below to allow them to be treated as normal text.

to match a single character

% to match any number (including zero) of characters

Testing Strings against a Pattern in Transact SQL

In addition to ANSI SQL patterns:

TransactSQL: [A−Z] to match a character between A and Z

TransactSQL: [ABC] to match a characters A, B and C

List customers whose first initial is P, and have one more initial (ANSI SQL)

SELECT DISTINCT cname
FROM account
WHERE cname LIKE ’%, P . . ’

P.J. McBrien (Imperial College London) 10: SQL Extensions to RA Select, Project and Join 3

Extensions to RA select, project and join

SQL Pattern Matching

Testing Strings against a Pattern in ANSI SQL

WHERE column LIKE pa t t e r n ESCAPE e s c ap e ch a r

Will return TRUE where pattern matches column. The escape char may be used
before any of the special characters below to allow them to be treated as normal text.

to match a single character

% to match any number (including zero) of characters

Testing Strings against a Pattern in Transact SQL

In addition to ANSI SQL patterns:

TransactSQL: [A−Z] to match a character between A and Z

TransactSQL: [ABC] to match a characters A, B and C

List customers whose first initial is between A and L (Transact SQL)

SELECT DISTINCT cname
FROM account
WHERE cname LIKE ’%, [A−L] .% ’

P.J. McBrien (Imperial College London) 10: SQL Extensions to RA Select, Project and Join 3

Extensions to RA select, project and join Returning processed data results

SQL Functions to Process Data Results

Modifications to data in ANSI SQL

Many functions proposed in ANSI SQL.

Any processing of data to appear in a result set must be placed in the SELECT
clause.

Any processing of data to filter data must be placed in the WHERE clause.

SQL general functions
function semantics
COALESCE(val1,val2,...) first non-NULL value from val1, val2, . . .
GREATEST(val1,val2,...) greatest value from val1, val2, . . . , or null if one is NULL
LEAST(val1,val2 ,...) least value from val1, val2, . . . , or null if one is NULL
CAST(val AS type) converts a value to specified datatype

SQL functions

SELECT no ,
COALESCE(ra t e , 0 . 0 0)

AS c u r r e n t r a t e ,
GREATEST(COALESCE(ra t e , 0 . 0 0) , 5 . 3 0)

AS new rat e
FROM account

nocurrent ratenew rate
100 0.00 5.30
101 5.25 5.30
103 0.00 5.30
107 0.00 5.30
119 5.50 5.50
125 0.00 5.30

P.J. McBrien (Imperial College London) 10: SQL Extensions to RA Select, Project and Join 4

Extensions to RA select, project and join Returning processed data results

SQL String Processing

SQL string functions
function semantics
CHAR LENGTH(str) returns the number of characters in a string
TRIM(LEADING pattern FROM str) Removes the leading characters in pattern

from a string
TRIM(TRAILING pattern FROM str) Removes the trailing characters in pattern

from a string
TRIM(str) Removes leading and trailing spaces from a

string
POSITION(substr IN str) Finds the position (counting from 1) of the

substr in the str
SUBSTRING(str FROM start FOR no) Extract from str no characaters, starting from

position start
str1 || str2 Concatenate two strings together
UPPER(str) returns the string converted to all capitals
LOWER(str) returns the string converted to all small letters

Non-ANSI SQL Functions

String functions tend to be an aspect of SQL implementations that is not ANSI SQL
compliant, e.g. for ANSI CHAR LENGTH

Postgres: LENGTH(str), but also supports CHAR LENGTH

TrasnsactSQL: LEN(str)

P.J. McBrien (Imperial College London) 10: SQL Extensions to RA Select, Project and Join 5

Extensions to RA select, project and join Returning processed data results

SQL String Processing

SQL string functions
function semantics
CHAR LENGTH(str) returns the number of characters in a string
TRIM(LEADING pattern FROM str) Removes the leading characters in pattern

from a string
TRIM(TRAILING pattern FROM str) Removes the trailing characters in pattern

from a string
TRIM(str) Removes leading and trailing spaces from a

string
POSITION(substr IN str) Finds the position (counting from 1) of the

substr in the str
SUBSTRING(str FROM start FOR no) Extract from str no characaters, starting from

position start
str1 || str2 Concatenate two strings together
UPPER(str) returns the string converted to all capitals
LOWER(str) returns the string converted to all small letters

Display accounts with just surnames and rounded rates (ANSI SQL)

SELECT no ,
ROUND(ra te , 1) AS ra te 1dp ,
SUBSTRING(cname FROM 1 FOR POSITION (’ , ’ IN cname)−1) AS surname

FROM account

P.J. McBrien (Imperial College London) 10: SQL Extensions to RA Select, Project and Join 5

Extensions to RA select, project and join Returning processed data results

SQL Maths Functions

SQL maths functions
function semantics
SIN(num) the sine of angle num (measured in radians)
ASIN(num) an angle between −π

2
and π

2
radians that has sine value num

COS(num) the cosine of angle num (measured in radians)
ACOS(num) an angle between 0 and π radians that has cosine value num
TAN(num) the tangent of angle num (measured in radians)
ATAN(num) an angle between −π

2
and π

2
radians that has tangant value num

LN(num) the natural logarithm of num
LOG10(num) log to base ten of num
SQRT(num) square root of num
POWER(num,exp) num raised to the power of exp
EXP(num) num raised to the power of e
ABS(num) absolute value of num
ROUND(num,dp) rounds num to dp decimal places

P.J. McBrien (Imperial College London) 10: SQL Extensions to RA Select, Project and Join 6

Extensions to RA select, project and join Returning processed data results

Quiz 10.1: Transact SQL extensions to RA Select and Project

customer
cname phone address joined salary
’McBrien, P.’ ’02077651234’ ’123 Strand, London WC1A’ 1999-01-03 30000
’Boyd, M.’ ’02077656666’ ’33 Aldwych, London’ 1999-01-05 NULL
’Poulovassilis, A.’ ’02089474321’ ’13 Haydons Rd, London SW19’ 1999-01-05 40000
’Bailey, J.’ ’02089461111’ ’22 Queens Rd, London SW19’ 1999-01-07 45000

SELECT cname ,
SUBSTRING(add res s ,CHARINDEX(’ , ’ , a d d r e s s)+2 ,LEN(a dd r e s s)) AS a rea

FROM customer
WHERE phone LIKE ’ 02089[4−7]% ’ ;

What is the result of the TransactSQL query?

A

cname area
Bailey, J. London SW19
Poulovassilis, A. London SW19

B

cname area
Bailey, J. 22 Queens Rd
Poulovassilis, A. 13 Haydons Rd

C

cname area
Poulovassilis, A. London SW19

D

cname area
Poulovassilis, A. 13 Haydons Rd

P.J. McBrien (Imperial College London) 10: SQL Extensions to RA Select, Project and Join 7

Extensions to RA select, project and join Returning processed data results

Processing the result of project: CASE statements

account
no type cname rate? sortcode

100 ’current’ ’McBrien, P.’ NULL 67
101 ’deposit’ ’McBrien, P.’ 5.25 67
103 ’current’ ’Boyd, M.’ NULL 34
107 ’current’ ’Poulovassilis, A.’ NULL 56
119 ’deposit’ ’Poulovassilis, A.’ 5.50 56
125 ’current’ ’Bailey, J.’ NULL 56

A CASE statement may be used to return
alternative values depending on condition. Two
forms

CASE expr WHEN v1 THEN ... WHEN v2 THEN ... END

Chooses which statement to return based on
value of expr

CASE WHEN cond1 THEN ... WHEN cond2 THEN ... END

Choose which statement to return based on which
cond1, cond2 is first TRUE

SELECT no ,
COALESCE(ra t e , 0 . 0 0) AS ra t e ,
CASE
WHEN rate>0 AND rate <5.5
THEN ’ low r a t e ’
WHEN rat e >=5.5
THEN ’ h i gh r a t e ’
ELSE ’ z e ro r a t e ’
END AS i n t e r e s t c l a s s

FROM account

no rate interest class
100 0.00 zero rate
101 5.25 low rate
103 0.00 zero rate
107 0.00 zero rate
119 5.50 high rate
125 0.00 zero rate

P.J. McBrien (Imperial College London) 10: SQL Extensions to RA Select, Project and Join 8

Extensions to RA select, project and join Left and Right Joins

Need for yet another type of Join?

account
no type cname rate? sortcode

100 ’current’ ’McBrien, P.’ NULL 67
101 ’deposit’ ’McBrien, P.’ 5.25 67
103 ’current’ ’Boyd, M.’ NULL 34
107 ’current’ ’Poulovassilis, A.’ NULL 56
119 ’deposit’ ’Poulovassilis, A.’ 5.50 56
125 ’current’ ’Bailey, J.’ NULL 56

movement
mid no amount tdate
1000 100 2300.00 5/1/1999
1001 101 4000.00 5/1/1999
1002 100 -223.45 8/1/1999
1004 107 -100.00 11/1/1999
1005 103 145.50 12/1/1999
1006 100 10.23 15/1/1999
1007 107 345.56 15/1/1999
1008 101 1230.00 15/1/1999
1009 119 5600.00 18/1/1999

Listing of movement mid for all customers with movements

SELECT cname ,
mid

FROM account NATURAL JOIN
movement

cname mid
McBrien, P. 1000
McBrien, P. 1001
McBrien, P. 1002
Poulovassilis, A. 1004
Boyd, M. 1005
McBrien, P. 1006
Poulovassilis, A. 1007
McBrien, P. 1008
Poulovassilis, A. 1009

P.J. McBrien (Imperial College London) 10: SQL Extensions to RA Select, Project and Join 9

Extensions to RA select, project and join Left and Right Joins

Need for yet another type of Join?

account
no type cname rate? sortcode

100 ’current’ ’McBrien, P.’ NULL 67
101 ’deposit’ ’McBrien, P.’ 5.25 67
103 ’current’ ’Boyd, M.’ NULL 34
107 ’current’ ’Poulovassilis, A.’ NULL 56
119 ’deposit’ ’Poulovassilis, A.’ 5.50 56
125 ’current’ ’Bailey, J.’ NULL 56

movement
mid no amount tdate
1000 100 2300.00 5/1/1999
1001 101 4000.00 5/1/1999
1002 100 -223.45 8/1/1999
1004 107 -100.00 11/1/1999
1005 103 145.50 12/1/1999
1006 100 10.23 15/1/1999
1007 107 345.56 15/1/1999
1008 101 1230.00 15/1/1999
1009 119 5600.00 18/1/1999

Listing any movements for all customers

SELECT cname ,
mid

FROM account NATURAL LEFT JOIN
movement

cname mid
McBrien, P. 1000
McBrien, P. 1001
McBrien, P. 1002
Poulovassilis, A. 1004
Boyd, M. 1005
McBrien, P. 1006
Poulovassilis, A. 1007
McBrien, P. 1008
Poulovassilis, A. 1009
Bailey, J. NULL

P.J. McBrien (Imperial College London) 10: SQL Extensions to RA Select, Project and Join 9

Extensions to RA select, project and join Left and Right Joins

Left and Right Joins

Left Join

A left join R
L
⊲⊳ S returns every row in R, even if no rows in S match. In such cases

where no row in S matches a row from R, the columns of S are filled with NULL
values.

Right Join

A right join R
R
⊲⊳ S returns every row in S, even if no rows in R match. In such cases

where no row in R matches a row from S, the columns of R are filled with NULL
values.

Outer Join

An outer join R
O
⊲⊳ S returns every row in R, even if no rows in S match, and also

returns every row in S even if no row in R matches.

R
O
⊲⊳ S ≡ (R

L
⊲⊳ S) ∪ (R

R
⊲⊳ S)

P.J. McBrien (Imperial College London) 10: SQL Extensions to RA Select, Project and Join 10

Extensions to RA select, project and join Left and Right Joins

RA equivalent of LEFT JOIN

SELECT A1, ...,An

FROM R1 LEFT JOIN R2 ON O1 AND ... AND Oi

WHERE P1

AND ...
AND Pk

πA1,...,AnσP1∧...∧Pk
(σO1∧...∧Oi(R1 × R2) ∪ (R1 − σO1∧...∧Oi(R1 ⋉ R2)× ω(R2)))

ω(R2) returns a row of NULLs with the same number of columns as R2

P.J. McBrien (Imperial College London) 10: SQL Extensions to RA Select, Project and Join 11

Extensions to RA select, project and join Left and Right Joins

Quiz 10.2: SQL LEFT JOIN ... ON

SELECT account . no ,
movement . amount

FROM account LEFT JOIN movement
ON account . no=movement . no
AND movement . amount<0

What is the result of the above query?

A

no amount

B

no amount
100 -223.45
107 -100.00

C

no amount
100 -223.45
101 NULL
103 NULL
107 -100.00
119 NULL
125 NULL

D

no amount
100 -223.45
101 0.00
103 0.00
107 -100.00
119 0.00
125 0.00

P.J. McBrien (Imperial College London) 10: SQL Extensions to RA Select, Project and Join 12

Extensions to RA select, project and join Left and Right Joins

Quiz 10.3: SQL LEFT JOIN ... ON ... WHERE

SELECT account . no ,
movement . amount

FROM account LEFT JOIN movement
ON account . no=movement . no

WHERE movement . amount<0

What is the result of the above query?

A

no amount

B

no amount
100 -223.45
107 -100.00

C

no amount
100 -223.45
101 NULL
103 NULL
107 -100.00
119 NULL
125 NULL

D

no amount
100 -223.45
101 0.00
103 0.00
107 -100.00
119 0.00
125 0.00

P.J. McBrien (Imperial College London) 10: SQL Extensions to RA Select, Project and Join 13

Extensions to RA select, project and join Left and Right Joins

Worksheet: Left, Right and Outer Joins

bank branch null database

movement
mid no? amount? tdate?
0999 119 45.00 null
1000 100 2300.00 5/1/1999
1001 101 4000.00 5/1/1999
1002 100 -223.45 8/1/1999
1004 107 -100.00 11/1/1999
1005 103 145.50 12/1/1999
1006 100 10.23 15/1/1999
1008 101 1230.00 15/1/1999
1009 119 5600.00 18/1/1999
1010 100 null 20/1/1999
1011 null null 20/1/1999
1012 null 600.00 20/1/1999
1013 null -46.00 20/1/1999

account
no type cname rate? sortcode

100 ’current’ ’McBrien, P.’ null 67
101 ’deposit’ ’McBrien, P.’ 5.25 67
119 ’deposit’ ’Poulovassilis, A.’ 5.50 56
125 ’current’ ’Bailey, J.’ null 56

P.J. McBrien (Imperial College London) 10: SQL Extensions to RA Select, Project and Join 14

OLAP

Topic 11: SQL OLAP

P.J. McBrien

Imperial College London

P.J. McBrien (Imperial College London) 11: SQL OLAP 1

OLAP OLTP v OLAP

OLTP and OLAP

OLTP

online transactional processing

reads and writes to a few rows

‘standard’ data processing

BEGIN TRANSACTION T1
UPDATE branch
SET cash=cash −10000.00
WHERE so r t c od e=56

UPDATE branch
SET cash=cash+10000.00
WHERE so r t c od e=34

COMMIT TRANSACTION T1

OLAP

online analytical processing

reads many rows

management information

BEGIN TRANSACTION T4
SELECT SUM(cash)
FROM branch

COMMIT TRANSACTION T4

P.J. McBrien (Imperial College London) 11: SQL OLAP 2

OLAP ORDER BY

SQL OLAP features: Ordering Rows

movement
mid no amount tdate
1000 100 2300.00 5/1/1999
1001 101 4000.00 5/1/1999
1002 100 -223.45 8/1/1999
1004 107 -100.00 11/1/1999
1005 103 145.50 12/1/1999
1006 100 10.23 15/1/1999
1007 107 345.56 15/1/1999
1008 101 1230.00 15/1/1999
1009 119 5600.00 18/1/1999

ORDER BY presents data to a user in
specified order, but data is not changed

Default is ASCending order

Can specify DESCending order

To limit the number of rows returned, use
FETCH FIRST or FETCH NEXT

SELECT mid ,
tdate ,
amount

FROM movement
ORDER BY amount DESC

mid tdate amount
1009 1999-01-18 5600.00
1001 1999-01-05 4000.00
1000 1999-01-05 2300.00
1008 1999-01-15 1230.00
1007 1999-01-15 345.56
1005 1999-01-12 145.50
1006 1999-01-15 10.23
1004 1999-01-11 -100.00
1002 1999-01-08 -223.45

P.J. McBrien (Imperial College London) 11: SQL OLAP 3

OLAP ORDER BY

SQL OLAP features: Ordering Rows

movement
mid no amount tdate
1000 100 2300.00 5/1/1999
1001 101 4000.00 5/1/1999
1002 100 -223.45 8/1/1999
1004 107 -100.00 11/1/1999
1005 103 145.50 12/1/1999
1006 100 10.23 15/1/1999
1007 107 345.56 15/1/1999
1008 101 1230.00 15/1/1999
1009 119 5600.00 18/1/1999

ORDER BY presents data to a user in
specified order, but data is not changed

Default is ASCending order

Can specify DESCending order

To limit the number of rows returned, use
FETCH FIRST or FETCH NEXT

SELECT mid ,
tdate ,
amount

FROM movement
ORDER BY amount DESC
OFFSET 3
FETCH NEXT 4 ROWS ONLY

mid tdate amount
1008 1999-01-15 1230.00
1007 1999-01-15 345.56
1005 1999-01-12 145.50
1006 1999-01-15 10.23

P.J. McBrien (Imperial College London) 11: SQL OLAP 3

OLAP GROUP BY

SQL OLAP features: GROUP BY

movement
mid no amount tdate
1000 100 2300.00 5/1/1999
1001 101 4000.00 5/1/1999
1002 100 -223.45 8/1/1999
1004 107 -100.00 11/1/1999
1005 103 145.50 12/1/1999
1006 100 10.23 15/1/1999
1007 107 345.56 15/1/1999
1008 101 1230.00 15/1/1999
1009 119 5600.00 18/1/1999

.

.

.
FROM movement

.

.

.
GROUP BY no

movement
mid no amount tdate
1000 100 2300.00 5/1/1999
1002 -223.45 8/1/1999
1006 10.23 15/1/1999
1001 101 4000.00 5/1/1999
1008 1230.00 15/1/1999
1004 107 -100.00 11/1/1999
1007 345.56 15/1/1999
1005 103 145.50 12/1/1999
1009 119 5600.00 18/1/1999

Aggregate Functions

Aggregate Semantics
SUM Sum the values of all rows in the group
COUNT Count the number of non-NULL rows in the group
AVG Average of the non-NULL values in the group
MIN Minimum value in the group
MAX Maximum value in the group
ANY VALUE A random non-NULL value from the group (new in SQL:2023)
ARRAY AGG Generate an array containing all the values of the group
STDDEV POP Calculated the population standard deviation

GROUP BY rules

Only one row output per group

ANSI SQL says must apply aggregate function to non grouped columns

P.J. McBrien (Imperial College London) 11: SQL OLAP 4

OLAP GROUP BY

SQL OLAP features: GROUP BY

movement
mid no amount tdate
1000 100 2300.00 5/1/1999
1001 101 4000.00 5/1/1999
1002 100 -223.45 8/1/1999
1004 107 -100.00 11/1/1999
1005 103 145.50 12/1/1999
1006 100 10.23 15/1/1999
1007 107 345.56 15/1/1999
1008 101 1230.00 15/1/1999
1009 119 5600.00 18/1/1999

.

.

.
FROM movement

.

.

.
GROUP BY no

movement
mid no amount tdate
1000 100 2300.00 5/1/1999
1002 -223.45 8/1/1999
1006 10.23 15/1/1999
1001 101 4000.00 5/1/1999
1008 1230.00 15/1/1999
1004 107 -100.00 11/1/1999
1007 345.56 15/1/1999
1005 103 145.50 12/1/1999
1009 119 5600.00 18/1/1999

Example of Aggregate Functions

SELECT no ,
SUM(amount) AS balance ,
COUNT(amount) AS t r a n s

FROM movement
GROUP BY no

no balance trans
101 5230.00 2
103 145.50 1
119 5600.00 1
107 245.56 2
100 2086.78 3

GROUP BY rules

Only one row output per group

ANSI SQL says must apply aggregate function to non grouped columns

P.J. McBrien (Imperial College London) 11: SQL OLAP 4

OLAP GROUP BY

Quiz 11.1: GROUP BY in ANSI SQL

account
no type cname rate? sortcode
100 ’current’ ’McBrien, P.’ NULL 67
101 ’deposit’ ’McBrien, P.’ 5.25 67
103 ’current’ ’Boyd, M.’ NULL 34
107 ’current’ ’Poulovassilis, A.’ NULL 56
119 ’deposit’ ’Poulovassilis, A.’ 5.50 56
125 ’current’ ’Bailey, J.’ NULL 56

Which SQL query is not permitted in ANSI SQL?

A

SELECT no ,
cname ,
AVG(r a t e)

FROM account
GROUP BY no

B

SELECT no ,
MIN(cname) ,
AVG(r a t e)

FROM account
GROUP BY no

C

SELECT no ,
MIN(r a t e) ,
MAX(r a t e)

FROM account
GROUP BY no

D

SELECT AVG(r a t e)
FROM account

P.J. McBrien (Imperial College London) 11: SQL OLAP 5

OLAP GROUP BY

SQL OLAP features: Aggregate operators

Use GROUP BY on all non aggregated columns

SELECT no ,
SUM(amount) AS balance ,
COUNT(amount) AS t r a n s

FROM movement
GROUP BY no

no balancetrans
1015230.00 2
103 145.50 1
1195600.00 1
107 245.56 2
1002086.78 3

Choose bag or set semantics for COUNT

SELECT COUNT(DISTINCT no)
AS ac t i v e a c c oun t s ,

COUNT(no) AS no movements
FROM movement

active accountsno movements
5 9

NULL attributes don’t count!

SELECT COUNT(r a t e) AS no r a t e s
FROM account

no rates
2

P.J. McBrien (Imperial College London) 11: SQL OLAP 6

OLAP GROUP BY

Quiz 11.2: GROUP BY over NULL values (1)

movement
mid no amount tdate
0999 119 45.00 NULL
1000 100 2300.00 5/1/1999
1001 101 4000.00 5/1/1999
1002 100 -223.45 8/1/1999
1006 100 10.23 15/1/1999
1008 101 1230.00 15/1/1999
1009 119 5600.00 18/1/1999
1010 100 NULL 20/1/1999
1011 NULL NULL 20/1/1999
1012 NULL 600.00 20/1/1999
1013 NULL -46.00 20/1/1999

account
no type cname rate sortcode

100 ’current’ ’McBrien, P.’ NULL 67
101 ’deposit’ ’McBrien, P.’ 5.25 67
119 ’deposit’ ’Poulovassilis, A.’ 5.50 56
125 ’current’ ’Bailey, J.’ NULL 56

SELECT movement . no ,
COUNT(movement . amount) AS no t ran s ,
MIN(movement . amount) AS min va l ue

FROM movement NATURAL JOIN account
GROUP BY movement . no

What is the result of the above query?

A

no no trans min value
101 2 1230.00
100 3 NULL
119 1 45.00

B

no no trans min value
101 2 1230.00
100 4 -223.45
119 2 45.00

C

no no trans min value
101 2 1230.00
100 4 NULL
119 2 45.00

D

no no trans min value
101 2 1230.00
100 3 -223.45
119 2 45.00

P.J. McBrien (Imperial College London) 11: SQL OLAP 7

OLAP GROUP BY

Quiz 11.3: GROUP BY over NULL values (2)

movement
mid no amount tdate
0999 119 45.00 NULL
1000 100 2300.00 5/1/1999
1001 101 4000.00 5/1/1999
1002 100 -223.45 8/1/1999
1006 100 10.23 15/1/1999
1008 101 1230.00 15/1/1999
1009 119 5600.00 18/1/1999
1010 100 NULL 20/1/1999
1011 NULL NULL 20/1/1999
1012 NULL 600.00 20/1/1999
1013 NULL -46.00 20/1/1999

account
no type cname rate sortcode

100 ’current’ ’McBrien, P.’ NULL 67
101 ’deposit’ ’McBrien, P.’ 5.25 67
119 ’deposit’ ’Poulovassilis, A.’ 5.50 56
125 ’current’ ’Bailey, J.’ NULL 56

SELECT movement . no ,
SUM(movement . amount) AS ba l ance

FROM movement
GROUP BY movement . no

What is the result of the above query?

A

no balance
NULL NULL
NULL 600.00
NULL -46.00

119 5645.00
101 5230.00
100 2086.78

B

no balance
NULL 600.00
NULL -46.00

119 5645.00
101 5230.00
100 2086.78

C

no balance
NULL 554.00

119 5645.00
101 5230.00
100 2086.78

D

no balance
119 5645.00
101 5230.00
100 2086.78

P.J. McBrien (Imperial College London) 11: SQL OLAP 8

OLAP HAVING

Selecting results from aggregates: HAVING

GROUP BY in the RA

An extension to the RA includes a group by operator

In SQL, the GROUP BY operator is applied outside the σP (. . .× . . .)

To execute a σP outside the GROUP BY, you must place the predicates P in a
HAVING clause

Transaction analysis of bank branch

SELECT no ,
SUM(amount) AS ba lance ,
COUNT(amount) AS no t r a n s

FROM movement
GROUP BY no
HAVING SUM(amount)>2000

no balance no trans
100 2086.78 3
101 5230.00 2
119 5600.00 1

Ordering of SQL clauses

HAVING is executed after GROUP BY, but before SELECT

Can be used to avoid divide by zero errors
SELECT no ,

MAX(amount)/MIN(amount) AS v a r i a n c e r a t i o
FROM movement
GROUP BY movement . no
HAVING MIN(amount)<>0

P.J. McBrien (Imperial College London) 11: SQL OLAP 9

OLAP HAVING

Quiz 11.4: HAVING

movement
mid no amount tdate
1000 100 2300.00 5/1/1999
1001 101 4000.00 5/1/1999
1002 100 -223.45 8/1/1999
1004 107 -100.00 11/1/1999
1005 103 145.50 12/1/1999
1006 100 10.23 15/1/1999
1007 107 345.56 15/1/1999
1008 101 1230.00 15/1/1999
1009 119 5600.00 18/1/1999

account
no type cname rate? sortcode

100 ’current’ ’McBrien, P.’ NULL 67
101 ’deposit’ ’McBrien, P.’ 5.25 67
103 ’current’ ’Boyd, M.’ NULL 34
107 ’current’ ’Poulovassilis, A.’ NULL 56
119 ’deposit’ ’Poulovassilis, A.’ 5.50 56
125 ’current’ ’Bailey, J.’ NULL 56

SELECT account . no ,
account . cname ,
SUM(movement . amount) AS ba l ance

FROM account NATURAL JOIN movement
WHERE movement . amount>200
GROUP BY account . no ,

account . cname
HAVING COUNT(movement . no)>1
AND SUM(movement . amount)>1000

What is the result of the above query?

A

no cname balance
101 McBrien, P. 5230.00

B

no cname balance
101 McBrien, P. 5230.00
119 Poulovassilis, A. 5600.00

C

no cname balance
100 McBrien, P. 2086.78
101 McBrien, P. 5230.00

D

no cname balance
100 McBrien, P. 2086.78
101 McBrien, P. 5230.00
119 Poulovassilis, A. 5600.00

P.J. McBrien (Imperial College London) 11: SQL OLAP 10

OLAP HAVING

Quiz 11.5: Logical Order of SQL clauses

SELECT
FROM
WHERE
GROUP BY
HAVING
ORDER BY

What is the logical order that SQL clauses considered in?

A

SELECT
FROM
WHERE
GROUP BY
HAVING
ORDER BY

B

FROM
WHERE
SELECT
GROUP BY
HAVING
ORDER BY

C

FROM
WHERE
GROUP BY
HAVING
SELECT
ORDER BY

D

ORDER BY
HAVING
GROUP BY
WHERE
FROM
SELECT

P.J. McBrien (Imperial College London) 11: SQL OLAP 11

Relational Completeness Relational Completeness

Relationally Complete SQL

movement
mid no amount tdate
1000 100 2300.00 5/1/1999
1001 101 4000.00 5/1/1999
1002 100 -223.45 8/1/1999
1004 107 -100.00 11/1/1999
1005 103 145.50 12/1/1999
1006 100 10.23 15/1/1999
1007 107 345.56 15/1/1999
1008 101 1230.00 15/1/1999
1009 119 5600.00 18/1/1999

relational completeness in SQL means being
able to fully support the RA in SQL

the five primitive operators of the RA can
be fully supported by SQL

SQL Aggregates require relationally

complete SQL: allow SELECT statements
in FROM clause

SELECT no ,
SUM(amount) AS balance ,
ROUND(100∗SUM(amount)/ t o t a l , 1) AS pc

FROM movement CROSS JOIN
(SELECT SUM(amount) AS t o t a l
FROM movement) AS t o t a l b a l a n c e

GROUP BY no ,
t o t a l

ORDER BY no

no balance pc
100 2086.78 15.7
101 5230.00 39.3
103 145.50 1.1
107 245.56 1.8
119 5600.00 42.1

P.J. McBrien (Imperial College London) 11: SQL OLAP 12

Window Functions

SQL OLAP features: Windows and PARTITION BY

movement
mid no amount tdate
1000 100 2300.00 5/1/1999
1001 101 4000.00 5/1/1999
1002 100 -223.45 8/1/1999
1004 107 -100.00 11/1/1999
1005 103 145.50 12/1/1999
1006 100 10.23 15/1/1999
1007 107 345.56 15/1/1999
1008 101 1230.00 15/1/1999
1009 119 5600.00 18/1/1999

.

.

.
OVER (PARTITION BY no)
FROM movement

.

.

.

movement
mid no amount tdate
1000 100 2300.00 5/1/1999
1002 100 -223.45 8/1/1999
1006 100 10.23 15/1/1999
1001 101 4000.00 5/1/1999
1008 101 1230.00 15/1/1999
1004 107 -100.00 11/1/1999
1007 107 345.56 15/1/1999
1005 103 145.50 12/1/1999
1009 119 5600.00 18/1/1999

PARTITION BY

One row output per input row

Aggregates apply to window defined by PARTITION BY

P.J. McBrien (Imperial College London) 11: SQL OLAP 13

Window Functions

Window Functions Replacing Subquery in FROM clause

movement
mid no amount tdate
1000 100 2300.00 5/1/1999
1001 101 4000.00 5/1/1999
1002 100 -223.45 8/1/1999
1004 107 -100.00 11/1/1999
1005 103 145.50 12/1/1999
1006 100 10.23 15/1/1999
1007 107 345.56 15/1/1999
1008 101 1230.00 15/1/1999
1009 119 5600.00 18/1/1999

some cases using subqueries in
FROM clause may be replaced by
window queries

SELECT DISTINCT no ,
SUM(amount) OVER (PARTITION BY no) AS balance ,
ROUND(100∗SUM(amount) OVER (PARTITION BY no)/

SUM(amount) OVER () , 1) AS pc
FROM movement
ORDER BY no

no balance pc
100 2086.78 15.7
101 5230.00 39.3
103 145.50 1.1
107 245.56 1.8
119 5600.00 42.1

P.J. McBrien (Imperial College London) 11: SQL OLAP 14

Window Functions

SQL OLAP features: Window Functions

OVER

The SQL OVER operator produces a window which may have an ORDER BY applied to
each window.
By default (without PARTITION BY), entire dataset in window

SQL functions dealing with ORDER BY B
function semantics
LEAD(A) The next value of column A in the window when data ordered by

column B
LAG(A) The previous value of column A in the window when data ordered by

column B
RANK() The rank position of the row in the window when data ordered by

column B, tied values receive same rank, and next rank position(s)
skipped

DENSE RANK() The dense rank position of the row in the window when data order
by column B (like rank, but no numbers are skipped)

ROW NUMBER() The position of row when ordered by B, numbering rows sequentially
(with tied rows given different numbers)

FIRST VALUE(A) The first value of A in the window when data ordered by column B
LAST VALUE(A) The first value of A in the window when data ordered by column B

P.J. McBrien (Imperial College London) 11: SQL OLAP 15

Window Functions Ranking

SQL OLAP features: Ranking Rows

movement
mid no amount tdate
1000 100 2300.00 5/1/1999
1001 101 4000.00 5/1/1999
1002 100 -223.45 8/1/1999
1004 107 -100.00 11/1/1999
1005 103 145.50 12/1/1999
1006 100 10.23 15/1/1999
1007 107 345.56 15/1/1999
1008 101 1230.00 15/1/1999
1009 119 5600.00 18/1/1999

SELECT mid ,
tdate ,
amount ,
RANK() OVER

(ORDER BY tda t e) ,
DENSE RANK() OVER

(ORDER BY tda t e) ,
ROWNUMBER() OVER

(ORDER BY tda t e)
FROM movement

mid tdate amount rank dense rank row number
1000 1999-01-05 2300.00 1 1 1
1001 1999-01-05 4000.00 1 1 2
1002 1999-01-08 -223.45 3 2 3
1004 1999-01-11 -100.00 4 3 4
1005 1999-01-12 145.50 5 4 5
1006 1999-01-15 10.23 6 5 6
1007 1999-01-15 345.56 6 5 7
1008 1999-01-15 1230.00 6 5 8
1009 1999-01-18 5600.00 9 6 9

P.J. McBrien (Imperial College London) 11: SQL OLAP 16

Window Functions Window Views

SQL OLAP features: Looking at rows in the window

movement
mid no amount tdate
1000 100 2300.00 5/1/1999
1001 101 4000.00 5/1/1999
1002 100 -223.45 8/1/1999
1004 107 -100.00 11/1/1999
1005 103 145.50 12/1/1999
1006 100 10.23 15/1/1999
1007 107 345.56 15/1/1999
1008 101 1230.00 15/1/1999
1009 119 5600.00 18/1/1999

SELECT mid ,
amount ,
LEAD(amount) OVER

(ORDER BY amount DESC) AS next ,
LAG(amount) OVER

(ORDER BY amount DESC) AS p r e v i ou s ,
ROUND(AVG(amount) OVER

(ORDER BY amount ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) ,2) AS t r e nd
FROM movement

mid amount next previous trend
1002 -223.45 NULL -100.00 -161.73
1004 -100.00 -223.45 10.23 -104.41
1006 10.23 -100.00 145.50 18.58
1005 145.50 10.23 345.56 167.10
1007 345.56 145.50 1230.00 573.69
1008 1230.00 345.56 2300.00 1291.85
1000 2300.00 1230.00 4000.00 2510.00
1001 4000.00 2300.00 5600.00 3966.67
1009 5600.00 4000.00 NULL 4800.00

P.J. McBrien (Imperial College London) 11: SQL OLAP 17

Window Functions Window Views

Sliding Windows: ORDER BY ... ROWS

Specifying which rows to apply aggregates to

When ORDER BY is used for a window, you may follow it with
ROWS BETWEEN ... AND ... to limit which rows are seen by an aggregate function.

Choosing rows from ORDER BY B
limit semantics
UNBOUNDED PRECEDING The first row of the window
n PRECEDING Count n rows before the current row
CURRENT ROW This row
n FOLLOWING Count n rows after the current row
UNBOUNDED FOLLOWING The last row of the window

Examples of sliding windows

ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING
three rows: the preceeding row, the current row, and the following row

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
rows from the start of the window to the current row

ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
rows from the current row to the end of the window

P.J. McBrien (Imperial College London) 11: SQL OLAP 18

Window Functions Window Views

Bank Branch Database

branch
sortcode bname cash

56 ’Wimbledon’ 94340.45
34 ’Goodge St’ 8900.67
67 ’Strand’ 34005.00

movement
mid no amount tdate
1000 100 2300.00 5/1/1999
1001 101 4000.00 5/1/1999
1002 100 -223.45 8/1/1999
1004 107 -100.00 11/1/1999
1005 103 145.50 12/1/1999
1006 100 10.23 15/1/1999
1007 107 345.56 15/1/1999
1008 101 1230.00 15/1/1999
1009 119 5600.00 18/1/1999

account
no type cname rate? sortcode
100 ’current’ ’McBrien, P.’ NULL 67
101 ’deposit’ ’McBrien, P.’ 5.25 67
103 ’current’ ’Boyd, M.’ NULL 34
107 ’current’ ’Poulovassilis, A.’ NULL 56
119 ’deposit’ ’Poulovassilis, A.’ 5.50 56
125 ’current’ ’Bailey, J.’ NULL 56

key branch(sortcode)
key branch(bname)
key movement(mid)
key account(no)

movement(no)
fk
⇒ account(no)

account(sortcode)
fk
⇒ branch(sortcode)

P.J. McBrien (Imperial College London) 11: SQL OLAP 19

Window Functions Roll Up

SQL OLAP features: Roll Up and Drill Down

Often want to look at data at different levels of detail

rollup or aggregation combines values together into single values

rolldown or drill down breaks single values into multiple values

SELECT cname, account.no, mid, amount
FROM account LEFT JOIN movement

ON account.no=movement.no
ORDER BY cname, account.no, mid

cname no mid amount
Bailey, J. 125 NULL NULL
Boyd, M. 103 1005 145.50
McBrien, P. 100 1000 2300.00
McBrien, P. 100 1002 -223.45
McBrien, P. 100 1006 10.23
McBrien, P. 101 1001 4000.00
McBrien, P. 101 1008 1230.00
Poulovassilis, A. 107 1004 -100.00
Poulovassilis, A. 107 1007 345.56
Poulovassilis, A. 119 1009 5600.00

P.J. McBrien (Imperial College London) 11: SQL OLAP 20

Window Functions Roll Up

OLAP: The concept of Roll Up

cname no mid amount
Bailey, J. 125 NULL NULL
Boyd, M. 103 1005 145.50
McBrien, P. 100 1000 2300.00
McBrien, P. 100 1002 -223.45
McBrien, P. 100 1006 10.23
McBrien, P. 101 1001 4000.00
McBrien, P. 101 1008 1230.00
Poulovassilis, A. 107 1004 -100.00
Poulovassilis, A. 107 1007 345.56
Poulovassilis, A. 119 1009 5600.00

cname no amount
Bailey, J. 125 NULL
Boyd, M. 103 145.50
McBrien, P. 100 2086.78
McBrien, P. 101 5230.00
Poulovassilis, A. 107 245.56
Poulovassilis, A. 119 5600.00

cname amount
Bailey, J. NULL
Boyd, M. 145.50
McBrien, P. 7316.78
Poulovassilis, A. 5845.56

amount
13307.84

P.J. McBrien (Imperial College London) 11: SQL OLAP 21

Window Functions Roll Up

OLAP: The concept of Drill Down

cname no mid amount
Bailey, J. 125 NULL NULL
Boyd, M. 103 1005 145.50
McBrien, P. 100 1000 2300.00
McBrien, P. 100 1002 -223.45
McBrien, P. 100 1006 10.23
McBrien, P. 101 1001 4000.00
McBrien, P. 101 1008 1230.00
Poulovassilis, A. 107 1004 -100.00
Poulovassilis, A. 107 1007 345.56
Poulovassilis, A. 119 1009 5600.00

cname no amount
Bailey, J. 125 NULL
Boyd, M. 103 145.50
McBrien, P. 100 2086.78
McBrien, P. 101 5230.00
Poulovassilis, A. 107 245.56
Poulovassilis, A. 119 5600.00

cname amount
Bailey, J. NULL
Boyd, M. 145.50
McBrien, P. 7316.78
Poulovassilis, A. 5845.56

amount
13307.84

P.J. McBrien (Imperial College London) 11: SQL OLAP 22

Window Functions Roll Up

SQL OLAP features: ROLLUP

SELECT cname ,
account . no ,
mid ,
SUM(amount) AS amount

FROM account LEFT JOIN movement
ON account . no=movement . no

GROUP BY ROLLUP (cname ,
account . no ,
mid)

ORDER BY cname ,
account . no ,
mid

cname no mid amount
Bailey, J. 125 null null
Bailey, J. 125 null null
Bailey, J. null null null
Boyd, M. 103 1005 145.50
Boyd, M. 103 null 145.50
Boyd, M. null null 145.50
McBrien, P. 100 1000 2300.00
McBrien, P. 100 1002 -223.45
McBrien, P. 100 1006 10.23
McBrien, P. 100 null 2086.78
McBrien, P. 101 1001 4000.00
McBrien, P. 101 1008 1230.00
McBrien, P. 101 null 5230.00
McBrien, P. null null 7316.78
Poulovassilis, A. 107 1004 -100.00
Poulovassilis, A. 107 1007 345.56
Poulovassilis, A. 107 null 245.56
Poulovassilis, A. 119 1009 5600.00
Poulovassilis, A. 119 null 5600.00
Poulovassilis, A. null null 5845.56
null null null 13307.84

P.J. McBrien (Imperial College London) 11: SQL OLAP 23

Window Functions Roll Up

OLAP: Multidimensional Cubes

sortcode

❃

cname

✻

type
✲

34

56

67

Poulovassilis, A.

McBrien, P.

Boyd, M.

Bailey, J.

current savings

1 1

1 1

1 0

1 0

1 0

2 1

1 1

0

2

0
0

0

2
1

0

0
0

1

0

P.J. McBrien (Imperial College London) 11: SQL OLAP 24

Window Functions Roll Up

SQL OLAP features: CUBE

SELECT cname ,
so r t c ode ,
type ,
COUNT(no) AS qty

FROM account
GROUP BY CUBE(cname ,

so r t c ode ,
t ype)

ORDER BY cname ,
so r t c ode ,
t ype

cname sortcode type qty
Bailey, J. 56 current 1
Bailey, J. 56 null 1
Bailey, J. null current 1
Bailey, J. null null 1
Boyd, M. 34 current 1
Boyd, M. 34 null 1
Boyd, M. null current 1
Boyd, M. null null 1
McBrien, P. 67 current 1
McBrien, P. 67 deposit 1
McBrien, P. 67 null 2
McBrien, P. null current 1
McBrien, P. null deposit 1
McBrien, P. null null 2
Poulovassilis, A. 56 current 1
Poulovassilis, A. 56 deposit 1
Poulovassilis, A. 56 null 2
Poulovassilis, A. null current 1
Poulovassilis, A. null deposit 1
Poulovassilis, A. null null 2
null 34 current 1
null 34 null 1
null 56 current 2
null 56 deposit 1
null 56 null 3
null 67 current 1
null 67 deposit 1
null 67 null 2
null null current 4
null null deposit 2
null null null 6

P.J. McBrien (Imperial College London) 11: SQL OLAP 25

Window Functions Pivot

OLAP: Pivot

Pivoting tabular data

for presentation purposes, useful to change layout of table

information spread over rows is instead spread over columns

we can pivot the value of one or more columns on the values of one or more
other columns

SELECT branch . so r t c ode ,
branch . bname ,
account . type ,
COUNT(no) AS qty

FROM account JOIN branch
ON account . s o r t c od e=

branch . s o r t c od e
GROUP BY branch . so r t c ode ,

branch . bname ,
account . t ype

ORDER BY branch . so r t c ode ,
branch . bname

sortcode bname type qty
34 Goodge St current 1
56 Wimbledon current 2
56 Wimbledon deposit 1
67 Strand current 1
67 Strand deposit 1

sortcode bname type qty
34 Goodge St current 1
56 Wimbledon current 2
56 Wimbledon deposit 1
67 Strand current 1
67 Strand deposit 1

pivot qty on type

sortcode bname current deposit
34 Goodge St 1
56 Wimbledon 2 1
67 Strand 1 1

P.J. McBrien (Imperial College London) 11: SQL OLAP 26

Window Functions Pivot

SQL OLAP: Pivot using FILTER statements

SELECT branch . so r t c ode ,
branch . bname ,
COUNT(no) FILTER (WHERE type=’ c u r r e n t ’) AS cu r r e n t ,
COUNT(no) FILTER (WHERE type=’ d e po s i t ’) AS depos i t ,
COUNT(no) FILTER (WHERE (type IN (’ c u r r e n t ’ , ’ d e p o s i t ’)) IS NOT TRUE) AS othe r

FROM account JOIN branch ON account . s o r t c od e=branch . s o r t c od e
GROUP BY branch . so r t c ode , branch . bname
ORDER BY branch . so r t c ode , branch . bname

sortcode bname current deposit other
34 Goodge St 1 0 0
56 Wimbledon 2 1 0
67 Strand 1 1 0

use FILTER statements to filter values
from column being pivoted

generally one FILTER (WHERE A=v) for
each value v that appears in column A

can have a default case for unexpected
values

P.J. McBrien (Imperial College London) 11: SQL OLAP 27

Window Functions Pivot

Worksheet: OLAP Queries in SQL

movement
mid no amount tdate
1000 100 2300.00 5/1/1999
1001 101 4000.00 5/1/1999
1002 100 -223.45 8/1/1999
1004 107 -100.00 11/1/1999
1005 103 145.50 12/1/1999
1006 100 10.23 15/1/1999
1007 107 345.56 15/1/1999
1008 101 1230.00 15/1/1999
1009 119 5600.00 18/1/1999

account
no type cname rate sortcode

100 ’current’ ’McBrien, P.’ NULL 67
101 ’deposit’ ’McBrien, P.’ 5.25 67
103 ’current’ ’Boyd, M.’ NULL 34
107 ’current’ ’Poulovassilis, A.’ NULL 56
119 ’deposit’ ’Poulovassilis, A.’ 5.50 56
125 ’current’ ’Bailey, J.’ NULL 56

movement.no
fk
⇒ account.no

P.J. McBrien (Imperial College London) 11: SQL OLAP 28

Window Functions Pivot

Worksheet: OLAP Queries Questions 3 & 4

3 Write an SQL query returning the scheme
(cname,current balance,deposit balance) that lists one row for each customer
(i.e. each distinct cname), with a column for the net balance of all current
accounts held by the customer, and a column for the net balance of all deposit
accounts held by the customer.

4 Write an SQL query returning the scheme
(no,cname,type,pc cust funds,pc type funds) that lists one row for each account,
and for each account, lists the no, cname and type of the account, and in
pc cust funds the percentage of the customer funds held in the account, and in
pc type funds the percentage of the total funds in this particular type of account.
For the current data this should result in:

no cname type pc cust funds pc type funds
100 McBrien, P. current 28.52 84.22
101 McBrien, P. deposit 71.48 48.29
103 Boyd, M. current 100.00 5.87
107 Poulovassilis, A. current 4.20 9.91
119 Poulovassilis, A. deposit 95.80 51.71
125 Bailey, J. current NULL 0.00

P.J. McBrien (Imperial College London) 11: SQL OLAP 29

Window Functions Pivot

Worksheet: OLAP Queries in SQL (3)

SELECT account . cname ,
COALESCE(SUM(amount) FILTER (WHERE type=’ c u r r e n t ’) , 0 . 0)

AS cu r r e n t b a l a n c e ,
COALESCE(SUM(amount) FILTER (WHERE type=’ d e p o s i t ’) , 0 . 0)

AS d e p o s i t b a l a n c e
FROM account LEFT JOIN movement ON account . no=movement . no
GROUP BY account . cname

P.J. McBrien (Imperial College London) 11: SQL OLAP 30

Window Functions Pivot

Worksheet: OLAP Queries in SQL (4)

SELECT DISTINCT account . no ,
account . cname ,
account . type ,
ROUND(COALESCE(100.0∗SUM(movement . amount) OVER (PARTITION BY account . no) , 0 . 0) /

SUM(movement . amount) OVER (PARTITION BY account . cname) , 2)
AS pc c u s t f u nd s ,
ROUND(COALESCE(100.0∗SUM(movement . amount) OVER (PARTITION BY account . no) , 0 . 0) /

SUM(movement . amount) OVER (PARTITION BY account . t ype) , 2
AS pc t y p e f u nd s

FROM account LEFT JOIN movement ON account . no=movement . no

P.J. McBrien (Imperial College London) 11: SQL OLAP 31

Window Functions Pivot

SQL OLAP: Un-pivot using UNION statements

Un-pivot the account table to triple format

SELECT no ,
’ cname ’ AS co l ,
cname AS va l u e

FROM account
UNION
SELECT no ,

’ t ype ’ ,
t ype

FROM account
UNION
SELECT no ,

’ r a t e ’ ,
CAST(r a t e AS VARCHAR)

FROM account
WHERE r a t e IS NOT NULL
UNION
SELECT no ,

’ s o r t c o d e ’ ,
CAST(s o r t c o d e AS VARCHAR)

FROM account

no col value
100 cname McBrien, P.
100 sortcode 67
100 type current
101 cname McBrien, P.
101 rate 5.25
101 sortcode 67
101 type deposit
103 cname Boyd, M.
103 sortcode 34
103 type current
107 cname Poulovassilis, A.
107 sortcode 56
107 type current
119 cname Poulovassilis, A.
119 rate 5.50
119 sortcode 56
119 type deposit
125 cname Bailey, J.
125 sortcode 56
125 type current

P.J. McBrien (Imperial College London) 11: SQL OLAP 32

Window Functions Pivot

Triple Stores

Critism of RDBMS: row format

Some say that

Sometimes get tables with many (hundreds) of columns, many of which are null

Adding/removing a column (with ALTER TABLE) is a relatively slow operation,
and can break (badly written) queries.

Solutions

Triple format involves presenting data as key, property, value triples

Adopt triple format in RDBMS: performance can be poor due to multiple joins

Adopt column store RDBMS such as SAP Hana

Adopt a Graph/RDF model database such as StarDog or GraphDB

. . .

P.J. McBrien (Imperial College London) 11: SQL OLAP 33

SQL RECURSIVE CTE

A CTE may be defined recursively using the
syntax

WITH RECURSIVE ... AS ...

The definition of the CTE may make
reference to the CTE.

UNION is executed repeatedly until no further
rows are added to the answer set.

WITH RECURSIVE contac t (sdate , cname , tda t e) AS (
SELECT tdate AS sdate ,

cname ,
tda t e

FROM account
NATURAL JOIN movement

WHERE tdat e=’ 11/ Jan /1999 ’
UNION
SELECT contac t . sdate ,

account . cname ,
movement . tda t e

FROM account
JOIN movement
ON account . no=movement . no
JOIN contac t
ON contac t . cname=account . cname
OR contac t . t da t e=movement . tda t e

)

SELECT ∗

FROM contac t

contact
sdate cname tdate
1999-01-11 Poulovassilis, A. 1999-01-11

Iteration 1

SQL RECURSIVE CTE

A CTE may be defined recursively using the
syntax

WITH RECURSIVE ... AS ...

The definition of the CTE may make
reference to the CTE.

UNION is executed repeatedly until no further
rows are added to the answer set.

WITH RECURSIVE contac t (sdate , cname , tda t e) AS (
SELECT tdate AS sdate ,

cname ,
tda t e

FROM account
NATURAL JOIN movement

WHERE tdat e=’ 11/ Jan /1999 ’
UNION
SELECT contac t . sdate ,

account . cname ,
movement . tda t e

FROM account
JOIN movement
ON account . no=movement . no
JOIN contac t
ON contac t . cname=account . cname
OR contac t . t da t e=movement . tda t e

)

SELECT ∗

FROM contac t

contact
sdate cname tdate
1999-01-11 Poulovassilis, A. 1999-01-18
1999-01-11 Poulovassilis, A. 1999-01-15
1999-01-11 Poulovassilis, A. 1999-01-11

Iteration 2

SQL RECURSIVE CTE

A CTE may be defined recursively using the
syntax

WITH RECURSIVE ... AS ...

The definition of the CTE may make
reference to the CTE.

UNION is executed repeatedly until no further
rows are added to the answer set.

WITH RECURSIVE contac t (sdate , cname , tda t e) AS (
SELECT tdate AS sdate ,

cname ,
tda t e

FROM account
NATURAL JOIN movement

WHERE tdat e=’ 11/ Jan /1999 ’
UNION
SELECT contac t . sdate ,

account . cname ,
movement . tda t e

FROM account
JOIN movement
ON account . no=movement . no
JOIN contac t
ON contac t . cname=account . cname
OR contac t . t da t e=movement . tda t e

)

SELECT ∗

FROM contac t

contact
sdate cname tdate
1999-01-11 Poulovassilis, A. 1999-01-11
1999-01-11 Poulovassilis, A. 1999-01-15
1999-01-11 Poulovassilis, A. 1999-01-18
1999-01-11 McBrien, P. 1999-01-15
1999-01-11 McBrien, P. 1999-01-05
1999-01-11 McBrien, P. 1999-01-08

Iteration 3

SQL RECURSIVE CTE

A CTE may be defined recursively using the
syntax

WITH RECURSIVE ... AS ...

The definition of the CTE may make
reference to the CTE.

UNION is executed repeatedly until no further
rows are added to the answer set.

WITH RECURSIVE contac t (sdate , cname , tda t e) AS (
SELECT tdate AS sdate ,

cname ,
tda t e

FROM account
NATURAL JOIN movement

WHERE tdat e=’ 11/ Jan /1999 ’
UNION
SELECT contac t . sdate ,

account . cname ,
movement . tda t e

FROM account
JOIN movement
ON account . no=movement . no
JOIN contac t
ON contac t . cname=account . cname
OR contac t . t da t e=movement . tda t e

)

SELECT ∗

FROM contac t

contact
sdate cname tdate
1999-01-11 Poulovassilis, A. 1999-01-11
1999-01-11 Poulovassilis, A. 1999-01-15
1999-01-11 Poulovassilis, A. 1999-01-18
1999-01-11 McBrien, P. 1999-01-15
1999-01-11 McBrien, P. 1999-01-05
1999-01-11 McBrien, P. 1999-01-08

Iteration 4 (no change, stop)

Query to find anyone that
transitively came into contact
with any one visiting on the
11/Jan/99

	Extensions to RA select, project and join
	Returning processed data results
	Left and Right Joins

	OLAP
	OLTP v OLAP
	ORDER BY
	GROUP BY
	HAVING

	Relational Completeness
	Relational Completeness

	Window Functions
	Ranking
	Window Views
	Roll Up
	Pivot

