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ABSTRACT

This paper presents SPOWL, which uses Spark to perform
OWL reasoning over large ontologies. SPOWL acts as a
compiler, which maps axioms in the T-Box of an ontology
to Spark programmes, which will be executed iteratively to
compute and materialise a closure of reasoning results en-
tailed by the ontology. Such a closure is then available to
queries which retrieve information from the ontology. Com-
pared to MapReduce, adopting Spark enables SPOWL to
cache data in the distributed memory, to reduce the amount
of I/O used, and to also parallelise jobs in a more flexible
manner. We further analyse the dependencies among the
Spark programmes, and propose an optimised order follow-
ing the T-Box hierarchy, which makes the materialising pro-
cess terminate with minimum iterations. Moreover, SPOWL
uses a tableaux reasoner to classify the T-Box, and the clas-
sified axioms are complied into Spark programmes which
are directly related to the ontological data under reasoning.
This not only makes the reasoning by SPOWL more com-
plete, but also avoids processing unnecessary rules, as com-
pared to evaluating certain rulesets adopted by most state-
of-the-art reasoners. Finally, since SPOWL materialises the
reasoning closure for large ontologies, it processes queries
retrieving ontology information faster than computing the
query answers in real time.

CCS Concepts

e¢Computing methodologies — Ontology engineering;
Distributed computing methodologies;
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1. INTRODUCTION

Approaches to reasoning over large-scale ontologies (e.g.
Freebase [9], UniProt [5] and DBpedia [2]) have been re-
searched over the recent years. In order to efficiently pro-
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cess queries over ontologies, reasoners such as Oracle RDF
Store [32], SQOWL2 [18] and WebPIE [31] often adopt a
materialised approach, which computes and stores a closure
of derivations entailed by the ontologies. Such a closure is
ready to be read by queries, which often results in faster
query processing compared to using the query-rewriting ap-
proach adopted by reasoners such as Stardog [25] and On-
top [4]. This is due to query rewriting requires answers be
computed at the time of each query execution.
Materialisation-based reasoners usually compute and ma-
terialise the reasoning closure by evaluating a set of entail-
ment rules. Well-known rulesets include RDFS entailment
rules [23] and OWL ter Horst rules [30], both of which cover
some features of OWL 2 RL. The recent OWL 2 standard
also releases the OWL 2 RL/RDF rules [22], which cover
more complex reasoning than the former two rulesets. To
illustrate the evaluating process, we consider a fragment of
the Lehigh University Benchmark (LUBM) [11] com-
posed of the following T-Box axioms':
Student C Person (1)

Student C JtakesCourse.Course (2)

where (1) expresses that every Student is a Person, and (2)

specifies a Student takes at least one Course. We may fur-

ther assert some A-Box facts that John and Tom are two

individuals of the class Student by (3) and (4), and Lewis
and Mary are individuals of Person by (5) and (6):

Student(John) (3) Person(Lewis) (5)

Student(Tom) (4) Person(Mary) (6)
We may start the evaluation process over the LUBM frag-
ment (1)—(6) by considering the below entailment rule in the
format of if (antecedent) then (consequent):
if C C D,C(x) then D(x)
which specifies that individuals = of C' will be inferred as
instances of D if C' is a subclass of D. Evaluating this
rule checks as to whether there are some ontological state-
ments matching the (antecedent); if so, statements defined
in (consequent) are obtained as new derivations. Obviously,
the T-Box axiom (1) and A-Box facts (3) and (4) match the
(antecedent) of the above entailment rule; therefore, two ad-
ditional A-Box facts Person(John) and Person(Tom) can be
derived by instantiating the above rule, i.e.:
if Student C Person, Student(z) then Person(x)
Therefore, the class Person will not only explicitly include
Lewis and Mary, but also implicitly contain John and Tom.
However, the rule evaluation process suffers some draw-

We adopt the syntax of DL in this paper for a neat repre-
sentation.



backs. First, the process usually avoids the use of tableaux
reasoning [3], even the T-Box of ontologies is small enough
for tableaux reasoners (e.g. Pellet [29] and Hermit [28]) to
handle. Tableaux reasoners are known to provide complete
T-Box reasoning w.r.t. the T-Box, and totally avoiding them
might result in less complete reasoning [21]. For example,
for two given T-Box axioms, CC DUFE and CMDE 1, a
tableaux reasoner is able to infer the subsumption of C' C FE,
which cannot be derived via evaluating the RDF'S entailment
rules, OWL ter Horst rules, or even the OWL 2 RL/RDF
rules.

Second, reasoning via the rule evaluation process totally
relies on which set of entailment rules is chosen, and they
often sacrifice too much reasoning completeness for the sake
of scalable materialisation. For example, no rules in the
three aforementioned rulesets handle the T-Box axiom (2),
because it brings non-deterministic reasoning, as the expres-
sion JtakesCourse.Course is used as a superclass expression.
From (2), if an individual z is asserted to be a Student, we
only know the property takesCourse relates = to at least one
individual y of Course but unable to determine which one.
Indeed, the RL profile [22] of OWL 2 does not allow this case
to avoid non-determinism. However, results of retrieving in-
dividuals which are related by takesCourse (i.e. the subjects
of takesCourse) will be incomplete.

Third, the evaluating process often considers large ontolo-
gies as whole sets of RDF triples [6], and statements match-
ing the (antecedent) of an entailment rule need to be filtered
out every time when evaluating this rule. This filtering pro-
cess often leads to an issue of inefficient rule matching [14],
which slows down the performance of reasoning materialisa-
tion, and even query processing (as the materialised results
are often subject to queries, which retrieve fragments of the
materialisation).

In this paper, we provide our approach named SPOWL,
which resolves the above three issues by extending the pre-
vious work [17, 20], which handles OWL 2 reasoning in an
RDBMS, to now perform OWL 2 reasoning materialisation
in a Big Data system. Taking the assumption that the ontol-
ogy under reasoning has a small T-Box and large A-Boxes,
our approach has the following features:

e SPOWL combines a tableaux reasoner for T-Box clas-
sification, and generates a set of entailment rules from
the classified T-Box. Using a tableaux reasoner not
only gives us a complete T-Box reasoning w.r.t. a given
T-Box, but also ensures that the entailment rules are
only relevant to axioms contained in the T-Box. This
completely avoids evaluating entailment rules unrelated
to a given large ontology.

e The SPOWL ruleset not only covers OWL 2 RL/RDF
rules (except where the Unique Name Assumption
(UNA) conflicts, as SPOWL adopts the UNA), but
also contains extra rules for handling some cases which
surpass OWL 2 RL. SPOWL is conjectured to be a
sound and complete implementation of the OWL 2
RL/RDF rules for OWL 2 RL ontologies [16]. These
extra rules result in a more complete materialisation
of reasoning; for example, SPOWL handles the case
of setting an existential quantification as a superclass
expression.

e SPOWL compiles the entailment rules to programmes
written in Spark [13]. These programmes are executed

iteratively over ontological data to compute and ma-
terialise the reasoning results, until no further deriva-
tion can be inferred. We also analyse the dependencies
among these programmes, and determine an optimised
order of executing them, in order to minimise the num-
ber of iterations until Spark programme execution can
terminate (i.e. when no further reasoning results can
be derived).

e In order to avoid repeated filtering, SPOWL inher-
its the schema used by previous work for representing
class and property facts, i.e. we separate instances re-
lated to each class or property, and stores them indi-
vidually. Consequently, when computing reasoning or
querying information over a fragment of the ontology,
less filtering effort is required.

The remainder of this paper is organised as follows. Sec-
tion 2 provides an overview of how SPOWL translates a clas-
sified T-Box into Spark programmes. Section 3 describes an
optimised order for executing these Spark programmes, so
that the iteration times of executing them can be minimised,
alongside with some tuning strategies to further optimise the
reasoning performance. Section 4 evaluates the performance
of our approach on the LUBM benchmark. Finally, Section 5
summarises this paper.

2. SPOWL OVERVIEW

The section outlines SPOWL. We illustrate how Spark
programmes are generated from a classified T-Box and then
applied to the loaded data, so that the results of reasoning
can be computed and materialised.

2.1 SPOWL Architecture

Distributed Data Storage
(e.g. HDFS)

o

Figure 1: SPOWL Architecture

Figure 1 shows the architecture of SPOWL, which per-
forms reasoning materialisation in three steps:

1. After performing classification using some tableaux rea-
soners, SPOWL transforms the classified T-Box into a
set of entailment rules, which are compiled into Spark
programmes.

2. Explicit A-Box facts are loaded into a distributed stor-
age system. The current SPOWL prototype only sup-
ports Hadoop Distributed File System (HDFS)
for storing data, but this can be extended to any other
distributed storage systems supported by Spark.



3. SPOWL iteratively executes the Spark programmes
over the loaded data until no new reasoning can be
made, and the results of reasoning are computed and
persisted in the HDFS. In particular, the order of ex-
ecuting Spark programmes follows the bottom-up hi-
erarchy of the T-Box, minimising the number of itera-
tions required.

2.2 Outline of the Approach

In order to illustrate the above three steps, we extend the
fragmental LUBM ontology (1)—(6) used in Section 1 by the
following extra T-Box axioms:

GraduateStudent C Person (7)
GraduateCourse C Course (8)
GraduateStudent C JtakesCourse.GraduateCourse 9)
Person M 3takesCourse.Course T Student (10)

subOrganisationOf o subOrganisationOf C subOrganisationOf

(11)
Note that Axiom (9) specifies that a GraduateStudent takes
at least one GraduateCourse. Axiom (10) expresses that a
Person who takes at least one Course is a Student. Axiom
(11) states that subOrganisationOf is transitive. We also
extend the ontology with the following A-Box data:

GraduateStudent(Jack)

Course(Database)
GraduateCourse(Algorithm)

12
13
14
15
16
17
18
19

takesCourse(Tom, Database)
takesCourse(John, Algorithm)
subOrganisationOf (Group, Department)
subOrganisationOf (Department, College)

(
(
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(
(
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subOrganisationOf (College, University)

2.2.1 T-Box Classification by Tableaux Reasoner

SPOWL applies a tableaux reasoner for the T-Box clas-
sification, in order to obtain a more complete set of sub-
sumption relations. For example, by classifying axioms (7) —
(10), a new subsumption relationship from GraduateStudent
to Student can be derived:

GraduateStudent C Student (20)
It is worth mentioning that because axiom (9) (which uses
JtakesCourse.GraduateCourse as a superclass expression) does
not meet the OWL 2 RL restrictions, it is not handled by
the OWL 2 RL/RDF rules. Consequently, evaluating the
OWL 2 RL/RDF rules over the above fragmental LUBM
ontology cannot infer (20). Moreover, axioms in the classi-
fied T-Box form the schema which is specially for the A-Box
of data, and therefore, SPOWL only consider those axioms
for reasoning materialisation, rather than evaluating every
entailment rule in a ruleset even if some rules are irrelevant.

2.2.2 Classes & Properties to Spark RDDs

Spark treats collections of data as Resilient Distributed
Datasets (RDDs). We assume individuals of a class C' are
stored in an unary RDD C,44(id); and pairs of individu-
als connected by a property P are stored in a binary RDD
P.qq(domain,range). All RDDs will be initialised to in-
clude instances explicitly asserted to the classes or properties
which they represent, and they will be eventually built up
with implicit instances computed from Spark programmes.
For instance, the A-Box facts we have asserted so far for the

fragmental LUBM (i.e. (3)—(6) and (12)—(16)) will lead to
the initialisation of the following RDDs:
Student,qq = {John, Tom}

Person,.qq = {Lewis, Mary}

GraduateStudent,qq = {Jack}

Course,qq = {Database}

GraduateCourse,qq = {Algorithm}

takesCourse,qq = {(Tom, Database), (John, Algorithm)}
subOrganisationOf, ;;, = {(Group.Department),

(Department, College), (College, University) }

As we have mentioned earlier, when storing the A-Box
in a Distributed File System (DFS), many reasoning
systems, such as WebPIE, Cichlid [10], SHARD [26] and
PigSPARQL [27], simply load ontology files into the DFS
and leave the task of partitioning data to applications or
users. Our approach (which can be viewed as a variant of
the vertical partitioning model used by HadoopRDF [12])
has the advantage that when computing reasoning involving
only some classes and properties, only those partitions which
store the relevant data need to be accessed. For example,
in order to create Student,qq, SPOWL only needs to access
the partition which stores instances of the class Student. By
contrast, if the data is not partitioned, the whole ontology
should be read and a fragment of it should be filtered out.

2.2.3 Classified T-Box to Spark Programmes

SPOWL compiles axioms in the classified T-Box to a set of
entailment rules (in the format of if...then...) which will
be further implemented as Spark programmes®. The Spark
programmes will be executed over RDDs of data iteratively
to compute new reasoning results, which will build up the
RDDs. The iterative execution will terminate when there is
no new derivation that can be inferred.

We start from axioms (1), (7), (8) and (20) to illustrate the
compiling process from OWL axioms to Spark programmes.
Each of these axioms specifies a subsumption relationship
from one class to another, which is generally expressed by
C C D in DL. The semantics of C' C D implies that in-
dividuals contained in the subsumed class C' should be in-
ferred as individuals in the subsumer class D, and SPOWL
captures these semantics by mapping in an entailment rule,
where Ruziom denotes the entailment rule mapped from an
ariom:

RCQD = lf C’Tdd(a:) then D,«dd(x)
The rule states that data in Crqq (representing class C)
should be included in D,4q4 (representing class D). This
entailment rule can be implemented in Spark by calling a
union function over D;q44 to merge D,qq with Crqq (We use
Paziom to denote the Spark programme generated for an
axiom):

Pccp = Draa = Drqq.union(Craq)
Note that Spark currently supports three programming lan-
guages, namely Scala, Java and Python. In this paper, we
adopt a Python-like format to illustrate Spark programmes.

If we follow this process for handling C' C D, axioms
(1), (7), (8) and (20) are first mapped into respectively

2Besides Spark, the set of entailment rules can also be im-
plemented in other programming languages; for example,
our previous work [20, 18] supports the implementation as
SQL triggers, which compute and materialise reasoning in a
relational database.



7?«StudentgPerson, RGraduateStudentgPerson, RGraduateCoursegCourse and
RGraduateStudentEStudent as follows:

if Student,qq(x) then Person,qq(x)
if GraduateStudent,qq(x) then Person,qq(x)
if GraduateCourse,qq(x) then Course,qq(x)

if GraduateStudent,qq(z) then Student,qq(x)
which are Compﬂed by PStudent;Persony PGraduateStudentEPersom
PGraduateCourseECourse and PGraduateStudentEStudent to:
Person,qq = Person,qq.union(Student,qq)

Person,q4 = Person,qq.union(GraduateStudent,qq)
Course,qq = Courserqq.union(GraduateCourse;,qq)

Student,qq = Student,qq.union(GraduateStudent;44)
Executing the above will cause Person,qsq will be merged
with data stored in both Student,4q and GraduateStudent,.qq4.
Similarly, Course,qq will be merged with GraduateCourse,.q4q,
and Student;q4q will be merged with GraduateStudent,.4q4. Thus,
the RDDs are updated to:

Student,qq = {John, Tom, Jack}

Person,.q4q = {Lewis, Mary, John, Tom, Jack}
Course,qq = {Database, Algorithm}

2.2.4 Beyond OWL 2 RL axioms

Besides subsumptions, OWL 2 provides a SomeValuesFrom
constructor (denoted as 3P.D in DL) to specify some exis-
tential restrictions. FIP.D specifies a set of individuals =
such that each x is related by P to at least one individual y
in D. SomeValuesFrom is used by axioms (2) and (9), each
of which expresses a subsumption relationship from a class
to a SomeValuesFrom expression (i.e. C' C 3P.D), which ex-
presses that every z in C' is related by P to at least one y
in D. Axioms of C' C dP.D might lead to non-deterministic
reasoning, because if D contains more than one individual,
we only know that P relates every individual of C' to at least
one of D’s individuals, but we cannot determine which one
of them.

OWL 2 RL eliminates the case of C C 3P.D to avoid
the non-determinism. However, this elimination might make
the reasoning incomplete; for example, when querying for
all individuals that are related by P, individuals of C' which
should be included as the answer might be missed. However,
in SPOWL we specify the following Rcc3p.p to solve this
incompleteness.

Reccap.p w= if Craa(z), 7 Praa(z, y) then Prgq(x,null) (a)

if Crga(z), Praa(z,y), 7Draa(y) then — (D)
As can be seen, Recap.p has two parts: (a) handles the
set of x which is recorded in Crqq but no such pairs (z,y)
are recorded P,qq, for which we add pairs (z, null) into Prqq
(i.e. null denotes some unknown y of D,qq which Pqq re-
lates x to); (b) handles the case that in Prqq there is a pair
(z,y) for  in Crq4, but such y is not in D,qq4. However, for
this case, we do not perform any action (i.e. then —), be-
cause querying for all individuals that are related by P will
obtain complete answers in this case. Therefore, Rccap.p
can be simplified to only contain part (a), which will be
implemented as the following Spark programme Pccap.p:

Pcocap.p = Piunp, = Praa-map(lambda (z,y) : z)
Pimp, = Craq-subtract(Pimp, )
Pirmps = Pimp,.map(lambda z : (z, null))

P’r‘dd = I'rdd- union(Ptmm )

Considering axiom (2), SPOWL generates the following
RStudentEHtakeSCourse.Course:
if Student,qq(x), "takesCourserqq(z,y)

then takesCourserqq(z, null)
which results in the following PstudentItakesCourse. Course:
takesCoursesmp, = takesCourse,qq.map(lambda (z,y) : =)

takesCourseymp, = Student,qq.subtract(takesCoursemp, )
takesCoursesmp, = takesCourseimp,.map(lambda x : (z, null))

takesCourse,qqs = takesCourse,qq.union(takesCourseimps)

The above PStudentEEItakesCourse.Course first COIDPUEQS a tempo‘
rary RDD takesCourse;mp, including the individuals recorded
as related by takesCourse by using a Spark map function,
which projects the field of z from (z,y) pairs contained in
takesCourse,qq (where lambda is a Python construct for cre-
ating anonymous functions at runtime). As we have illus-
trated, (Tom, Database) and (John, Algorithm) are included
in takesCourse,qq; therefore, Tom from (Tom, Database), and
John in (John, Algorithm) will be included in takesCoursepp, :

takesCourse¢mp, = {Tom, John}

Next, PstudentC ItakesCourse.Course cOmputes the data items that
are in Student,qq but not in takesCoursemp, by using a Spark
subtract function. Obviously, Jack in Student,qq is the only
one which is not in takesCourse;mp, , and it will be included
in the second temporary RDD takesCoursesmp,:

takesCourseymp, = {Jack}

Then, PstudentTItakesCourse.Course Calls another map function,
which forms (z, null) for each x in takesCourse¢mp, and in-
cludes the (z,null) pairs in takesCoursetmps:

takesCourseimp, = {(Jack, null)}

Finally, after merging with (Jack, null) in takesCoursesmp,,
takesCourse,qq becomes:

takesCourse,qq =

{(Tom, Database), (John, Algorithm), (Jack, null)}
Thus, if a query asks for individuals related by takesCourse,
SPOWL not only returns Tom and John but also Jack as a
complete answer to the query.
Note that Pccap.p can be alternatively written as:

Prdd = Prdd.union(
C'raq.subtract(Prqq4.map(lambda (z,y) : z))

.map(lambda z : (z, null)))
and we will use this more compact representation for the
remaining examples of Spark programs where we do not need
to detail the intermediate results during execution.

2.2.5 DAG for Parallelising Reasoning

Spark uses its DAG scheduler to provide a more flexible
and parallelised job scheduling than MapReduce, which fol-
lows a sequential job planing. To illustrate how a more par-
allelised job scheduling can be used for computing the rea-
soning materialisation, we consider the axiom (10), which in-
volves another OWL constructor IntersectionOf (symbolised
by M). The constructor constructs an IntersectionOf expres-
sion Person3takesCourse.Course, which specifies a set of in-
dividuals 2 that are both members of Person and are related
by takesCourse to at least one individual of Course. Addition-
ally, by setting the IntersectionOf expression as a subclass of
Student, the set of x should be included in Student.

Therefore7 SPOWL SpeCiﬁeS 7—\)»PersonﬁEIt:akesCourse.CourseEStudent
for axiom (10) as:



if Person,qq(x), takesCourserqqa(z,y), Courserqa(y)

then Student,qq(x)
which means that any = appearing in both Person,.q4(x) and
takesCourse,qq(x,y), where y appears in Course,qq, should
be merged into Student,qq. As shown in Figure 2, comput-
ing the set of x that should be included in Student,.qq4 requires
three RDDs (i.e. Person,q4q4, takesCourse,q4q and Course,qq),
and by using the DAG scheduler, SPOWL is able to sched-
ule the computations of the three RDDs to three parallelised
jobs (i.e. job, for computing Person,qq, job, for computing
takesCourse,qq4 and job, for computing Course,qq4). By con-
trast, in MapReduce job,, job, and job,_ have to be scheduled
sequentially.
job

a

7?'StudentEPerscm
RGraduateStudentEPerson

1

Person;.qq
job, \ job,

RStudentEHtakesCourse.Course

1

takesCourse,qq

|
job,. /

7aGraduateCourseECourse

1

Course,qq

RPerson!’BtakesCourse.CourseEStudent

1

Student,qq

Figure 2: DAG Scheduling for RPerson!—\HtakesCourseACourse;Student

When Person,.44, takesCourse, g4 and Course,qq have been
computed, job, can start to handle the axiom (10) by im-
plementing the entailment rule RPersonﬂEItakesCourse.CourseEStudent
into Spark programmes Ppersonmi3takesCourse. CourseCStudent -
Studentmp, = takesCourse,qq.map(lambda (z¢, yi) : (ye, x¢))

Jjoin(Course,qq4.map(lambda ye : (ye, yc)))
'map(lambda (Z/kv (xt7y6)) : xt))
Studentymp, = Studentyy,y, .intersection(Person;q4q)

Student,qq = Student,qq4.union(Studentmp, )

The Spark programme first computes Studentyy,,, includ-
ing the individuals which belong to JtakesCourse.Course by
using join and map functions. In Spark, joins should be
performed between two RDDs containing key-value pairs,
so for (zt,y:) pairs in takesCourserqq, a map function on
takesCourse,qq is applied to create a set of key-value pairs
(y¢, x¢), and for data items y. in Course,qq, another map on
Course,qq is specified to generate a set of key-value pairs
(Ye, ye). Continuing with the LUBM fragment, the (y:,z+)
pairs for takesCourse,q4q will be:

{(Database, Tom), (Algorithm, John)}
and the (yc, yc) pairs for Course,qq will be:
{(Database, Database), (Algorithm, Algorithm)}

Next, the join function will look for the case of y: = y.
from the two sets of key-value pairs, and return for each
key a set of (yk, (x¢,yc)) pairs, where x; (which belongs to
JtakesCourse.Course) will be projected by a map. Based on
the LUBM fragment, (yx, (z:,y:)) pairs below will be gen-
erated after processing the join function:

{(Database, (Tom, Database)), (Algorithm, (John, Algorithm))}
Consequently, Tom and John will be selected as members of
takesCoursesmyp, , which is shown as follows:

takesCourse¢mp, = {Tom, John}

Then, an intersection function is performed to select com-
mon data items in both Studenttmp, and Person,qq (contain-
ing Lewis, Mary, John, Tom and Jack). Obviously, {Tom,
John} will be computed as common individuals, and they
should be merged into Student,qq by a union function.

2.2.6  Data Caching in Distributed Memory

Another important feature of Spark is the capability of
caching RDDs in the distributed memory in a cluster of ma-
chines. By contrast, MapReduce requires to write/read data
to/from the disk, which often leads to a high I/O overhead.
We may illustrate the benefits of this by using the axiom
(11), which specifies a TransitiveProperty subOrganisationOf,
and three A-Box facts (17)—(19) of subOrganisationOf.

When a property P is defined as a TransitiveProperty, the
semantics of transitivity specifies that if (x,y) and (y, z) are
both instances of P, then (z, z) is an instance of P. SPOWL
translates this into an entailment rule Rpopcp:

if Praa(z,y), Prad(y, z) then Prgq(z, 2)
Therefore, the transitivity of subOrganisationOf is handled
by RsubOrganisationOfosubOrganisationOfEsubOrganisationOf:

if subOrganisationOf _;,(x,y), subOrganisationOf ., (y, z)

then subOrganisationOf, ;,(x, z)
Materialising the reasoning results for a TransitiveProperty
P is also known as the problem of computing its transitive
closure, which has been researched by many studies, such
as [7] and [24]. In SPOWL, we adopt a simple recursive-
doubling method described in [15] for compiling R poprcp to
the Spark programmes Ppopcp:

while True do
Ptmp = PTdd~map(|ambda ($P7 yp) :
(Yp, Tp))-join(Praa)
.map(lambda (yx, (zp, 2p)) : (zp, 2p))
if Pipp.isEmpty() then break
Prdd = Prdd.union(Ptmp)
end

As can be seen, Ppopcp contains a while loop, which
computes the transitive closure for P iteratively. In each
iteration, a self join on Prqq¢ (which initially contains ex-
plicit instances of P) is performed to see whether new tran-
sitive pairs (zp, zp) can be computed (from pairs (xp, yp) and
(Yp, 2p)). If so, the new pairs are stored in Pimp (i.e. Pimp
is not empty), which is merged into P,qq at the end of this
iteration, and the updated P,.qq will be used for the next
iteration. Otherwise, if no transitive pairs can be calculated
(i.e. Pimp is empty), the computation of transitive closure
terminates.

Since Spark is able to cache RDDs in the distributed mem-
ory, at the end of each computation iteration of Ppopcpr we
can call a Spark function cache (or persist) to cache Pr4q in
memory without needing to write the intermediate results
to disk. Thus, during the next iteration, P,4q can be read
directly from the memory without data exchange with the
disk.

To determine the number of iterations required for com-
puting a transitive closure, we interpret P as a graph, where
each vertex x represents an individual z, an arc from z to
y, denoted as Arc(z,y), represents x is explicitly related to



y by P, and a path from z to y, Path(z,y), denotes that
x is explicitly or implicitly related to y by P (i.e. through
one or more arcs y is reachable from z in the graph). Thus,
computing the transitive closure for P can be interpreted as
the problem of computing all Path(z,y) in the graph of this
property.

The number of iterations required to terminate the com-
putation depends on the longest path in a graph of P. If the
length of an arc Arc(z,y) is set as 1, the length of Path(z,y)
is the number of arcs from z to y. For example, in the graph
of P, if there are arcs Arc(z, a), Arc(a, by and Arc(b,y), then
y is reachable from z via a and b, and such a path Path(z,y)
is of the length 3. Note that for the case that y is reachable
from = by more than one path, we consider the shortest one
as its length. Continuing with the example, if the graph
further contains arcs Arc(z,c) and Arc{c,y), then y is also
reachable from x via ¢, and the length Path(z,y) should be
2, which is shorter than 3. If the longest path in a graph
is of length d, a simple recursive-doubling method requires
log, d iterations at most to finish computation of the transi-
tive closure. However, unless d of a graph is pre-known, an
extra iteration (i.e. totally log, d+1 iterations) is necessarily
required to check as to whether P, is empty.

Using cache not only helps iterative computation (such as
handling transitive properties), but also benefits the situa-
tions in which certain RDDs are used repeatedly.

job,,

RGraduateStudentEPerson

!

Person;.qq

7

joby,

RGraduateStudentEEItakesCourse.GraduateCourse
GraduateStudent,.qq— +
takesCourse,qq

job,

RGraduateStudentEStudent

1

Student, 44

Figure 3: Caching GraduateStudent,qq for Repeated Usage

As illustrated in Figure 3, because axioms (7), (9) and (20)
all specify GraduateStudent as their subclass expressions,
GraduateStudent, 44 will be used by job,, job, and job,, which
respectively handle axioms (7), (9) and (20). By caching
GraduateStudent,4q4 in memory, Spark can read it directly
from the memory for repeated use without needing to write
and then read intermediate results to and from disk, which
is often required by MapReduce. Note that as Spark adopts
a DAG scheduler, job,, job, and job, can also be parallelised.

2.2.7 Optimising Programme Execution Order

We have provided an overview of how SPOWL specifies
for an OWL axiom an entailment rule Rayziom, which will be
further implemented as a Spark programme Paziom. These
Spark programmes will be executed iteratively until no new
data is produced, which implies the termination of the rea-
soning materialisation. In distributed computing, because
scheduling, starting and terminating distributed computa-
tion jobs often has a large overhead, even one more iteration
will significantly affect the total performance. Therefore, in

SPOWL we wish that the reasoning materialisation termi-
nates with as fewer iterations as possible.

Take Figure 2 for handling the axiom (10) as an example
again: since job, takes Person;,qq from job,, takesCourse,qq
from job, and Course,44 from job_ as inputs, executing job,,
job, and job_ before job, is the best order. Otherwise, if job,
is executed before any of job,, job, and job,, then job, still
should be executed again to ensure that the new derivations
from job,, job, and job, are considered. Thus, we now con-
sider a general method for optimising the execution order of
our Spark programmes.

3. OPTIMISATION IN SPOWL

As we have illustrated in Section 2, SPOWL translates
axioms in a classified T-Box into Spark programmes, which
are specific to the ontology being reasoned over. Spark pro-
grammes are then launched to execute iteratively to calcu-
late and materialise the reasoning closure. In order to opti-
mise SPOWL for terminating the reasoning materialisation
with minimum iterations, we further analyse the dependen-
cies of Spark programmes, and execute them in an order
following the bottom-up hierarchy of the T-Box. In addi-
tion, we apply some tuning techniques provided by Spark to
further improve the performance of SPOWL.

3.1 Ordering Spark Programmes

We define that an entailment rule Roziom, is higher than
another one Razioms (0r Rawziom, is lower than Raziom, ),
if Raziom, takes data inferred from Raziom, as its input.
For example, if we have a T-Box hierarchy composed of
two axioms C; C C3 and C3 C (3, the entailment rule
Rcico, is lower than Re,ce,, as the new data inferred be-
cause of C; C (' contributes to the reasoning of Co C Cj.
To minimise the materialising iterations, we should execute
the Spark programmes generated from the lowest entailment
rules to the highest one. Thus, executing Pc,cc, (com-
piled from R¢, e, ) before Pe,co, (compiled from Re,cey)
should terminate the materialisation with only one itera-
tion; however, executing Pc,cc, before Po,cc, might re-
quire two iterations.

Depending on the types of OWL 2 axioms, the entailment
rules specified by SPOWL can be divided into three groups
and the dependencies among the rules are illustrated in Fig-

ure 4.
Class RDDs

Figure 4: Dependence among entailment rules

Group3(a)

Property RDDs

Group3(b)

Group oup2

1. The first group contains entailment rules which infer
new data items to class RDDs from class RDDs, tak-
ing no property RDDs as input. Entailment rules fall
into this group are Recp, Re=p, Re,u...uc,cp and
Rein..nc,ED-

2. The second group of entailment rules infer new data
to property RDDs from property RDDs, taking no



class RDDs as input. Such entailment rules are Rpcq,
RPEQ, RPEP— N RPEQ— s RPOPEP and RP1 o...0oP,CP-

3. Entailment rules in the third group compute new data
items to class RDDs from property RDDs, or infer new
data items to property RDDs from class RDDs:

(a) Entailment rules which take some class RDDs as
input (or part of the input) and generate new data
to property RDDs are Rocsp.{a), Recar.p and
Recap seif-

(b) Entailment rules which compute new data to class
RDDs from some property RDDs are Recvre.p,
Rap.pcc, Rap.qaycos Rap.sdico, Ren pce (and
Rxnp.oco), Rrove-.c and Rrove.p.

Note that some of the above entailment rules considered
by SPOWL are not included in the OWL 2 RL/RDF rules,
such as Rap.saicc and Rxynp.pce. By constrast, most
materialisation-based systems such as WebPIE, Cichlid and
RORS [19] only analyse dependencies of RDFS entailment
rules and OWL ter Horst rules. Entailment rules in the first
group (inferring data to class RDDs from class RDDs) are
independent of those in the second group (inferring data to
property RDDs from property RDDs). Therefore, in each of
the first two groups, we follow the bottom-up class hierarchy
or property hierarchy as the optimised order of executing
Spark programmes. We illustrate this by taking property
axioms P; C P>, Poo Po C P, and P> C Ps as an example,
the property hierarchy is displayed in Figure 5.

Figure 5: Acyclic property hierarchy

As can be seen, the property hierarchy is acyclic, we can
easily obtain the dependencies among the entailment rules
Rpe.cpr,, Rryor,cp, and Rp,cry: Rp,or,Cp, is higher than
Rp.cr, and is lower than Rp,cp,. In other words, Spark
programmes should be executed as the order of Pp,cp, fol-
lowed by Pp,.p,cp, followed by Pp,cp,. Indeed, by Pp,cp,,
new data items are inferred to P, _,, (representing P») from
P, ., (representing Pr). Next, the transitive closure of P»,
is computed by executing Pp,or,cpr,, and will be merged
into Ps_,, (representing Ps) by processing Pp,cp;.

Figure 6: Cyclic property hierarchy

However, if we consider an extra property axiom P; =
P17, the property hierarchy in Figure 5 becomes cyclic as
shown in Figure 6. For a cyclic hierarchy, we cannot de-
termine which entailment rule is the lowest nor which one
is the highest; therefore, we could randomly select one of
them as the first one to process. Suppose we choose Rp, cp,

as the first entailment rule again, we should thereafter se-
quentially consider Rp,or,cr, and Rp,cp,. Here, due to
the extra axiom P; = P;~, which might infer new data
to P1,,,, Rp,cp, might need to be considered again, and
so does Rp,or,cr, and Rp,cp,. In essence, the execution
should terminate whenever there is no new reasoning to the
input RDDs taken by all entailment rules.

Entailment rules in the third group bring the reasoning
from class RDDs to property RDDs and vice versa, which
makes it difficult for SPOWL to determine an optimised
order. However, since PropertyDomain axioms (i.e. T C
VP~.C) and PropertyRange axioms (i.e. T C VP.D), which
lead to data reasoning from property RDDs to class RDDs,
are frequently used in most ontologies, we tend to consider
entailment rules in the first group are higher than those
in the second group. Therefore, in general, our approach
adopts an optimised order of considering entailment rules
as:

1. Spark programmes compiled from the second group of
entailment rules are executed to infer new data from
property RDDs to property RDDs following the prop-
erty hierarchy.

2. Spark programmes compiled from group 3(b) deriving
reasoning from property RDDs to class RDDs are ex-
ecuted. Note that since entailment rules involved in
this step might depend on each other, we also process
them from lower entailment rules to higher rules.

3. Spark programmes generated from the first group of
entailment rules are processed to derive new data from
class RDDs to class RDDs following the class hierarchy.

4. Whenever the ontology has axioms which could derive
new reasoning from class RDDs to property RDDs (i.e.
entailment rules in group 3(a)), we check whether new
data items are inferred because of them; if so we re-
conduct the previous three steps until the input taken
by higher-level entailment rules contains no newly in-
ferred data.

3.2 Tuning Spark Programmes

Spark provides numerous tuning techniques®. In this sec-
tion, we discuss those techniques which have used to improve
SPOWL’s performance of reasoning materialisation.

e Caching Data in Distributed Memory

In the physical Spark programmes, we cache an RDD
which is repeatedly used to avoid re-computation of
this RDD. For instance, for an IntersectionOf axiom
C' C CqM...NC,, because a tableaux reasoner classifies
it to n subsumption relationships (i.e. C C C4,...,C C
C), the data in Crqq (representing C') will be used n
times; therefore, caching C,q44 by the Spark function
cache or persist in the distributed memory will improve
the performance of reasoning this axiom. Moreover, if
an entailment rule requires iterative computation (e.g.
handling a TransitiveProperty), we tend to cache the
intermediate result after each iteration, so that they
can be quickly accessed by the next iteration.

Note that, because of the in-memory nature of Spark,
the amount of the distributed memory in a cluster

3https://spark.apache.org/docs/latest /tuning.html



could become a bottleneck. When the memory is not
enough for caching all items of data, Spark will write
some old data to disk (which in a way, may be re-
garded as reverting to MapReduce), and consequently
SPOWL will benefit less from the memory caching. In
order to use the distributed memory more efficiently,
we also adopt the Kryo library® to serialise RDDs,
which will use less memory than without serialisation.

e Partitioning before Join

In Spark, a normal join between two sets of key-value
pairs will shuffle the pairs whose keys are the same to
the same executor, so that join pairs can be computed.
However, in the case of one set of key-value pairs be-
ing very large while the other set is quite small, this
normal join might result in a slow shuffle process be-
cause of shuffling the large set. Instead, we partition
the large set of key-value pairs by their keys, and copy
the small set to the node where each partition of the
large set is stored. Since this reduces the amount of
data transferred through the network of a cluster, the
join can be performed much faster. Partitioning an
RDD can be achieved by a Spark function partitionBy.

4. EVALUATION OF SPOWL

In this section, we evaluate SPOWL on its performance
of materialising the reasoning closure. All experiments were
performed on a cluster of 9 machines running on a private
cloud environment®. The cluster contains a master node and
8 slave nodes (each with CPU @ 2.5GHz, 4 Cores, and 16 GB
of Memory). It ran Hadoop version 2.6.0-cdh5.5.0 (with 2.08
TB configured capacity), and Apache Spark 1.6.0. SPOWL
used OWL API v3.4.3 for T-Box loading, and supports the
use of Pellet v2.3.1 or Hermit v1.3.8 for T-Box classification.

In this evaluation, we use the well-known LUBM bench-
mark, which consists of a T-Box, a data generator, and 14
queries. The T-Box contains 43 classes, 32 properties, and
approximately 200 axioms (as we have illustrated previously,
some axioms are beyond OWL 2 RL). The data generator
is used to produce LUBM A-Boxes with different sizes. We
use LUBM-n to denote a dataset that contains n universities
of A-Box facts. Each university of data has about 100,000
class and property facts; for instance, LUBM-2000 has ap-
proximately 270 million A-Box facts and is about 44GB in
size. Each experiment was repeated 10 times, of which the
average value is reported.

The time used by SPOWL for initial data loading and ma-
terialising the reasoning closure is reported in Section 4.1.
Although the performance results are rather preliminary,
we compare them to another materialisation-based system,
WebPIE v1.1.1, and the comparison is discussed in Sec-
tion 4.2. Note that the reasoning materialisation is stored
in the HDFS, which can be read by any HDFS-supported
query languages such as Pig® and Hive”. SPOWL current
supports LUBM queries in Spark®, and its performance of
query processing is not included in this evaluation because
of space restrictions, but can be found in [16].

“https://github.com/EsotericSoftware/kryo
https://www.doc.ic.ac.uk/csg/services/cloud
Shttps://pig.apache.org/

"https:/ /hive.apache.org/
Shttps://github.com/yl12510/thesis/blob/master /lubm

4.1 Performance of Reasoning Materialisation

4.1.1 Initial Load

We used SPOWL to load the original A-Boxes for LUBM-
400, LUBM-800, LUBM-1200, LUBM-1600 and LUBM-2000.
During the stage of initial loading, instances of every class
or property were filtered out and materialised in separate
folders in the HDFS. We recorded the time which SPOWL
used for loading each dataset in Table 1.

Table 1: Reasoning Materialisation by SPOWL (Total
Caching)

SPOWL [LUBM-400|LUBM-800|LUBM-1200|LUBM-1600(LUBM-2000
Initial Load 9mO08s 20m30s 27m50s 41m20s 54m10s
Reasoning 10m19s 16m28s 33m20s 38mb58s 58m08s
Total Time 19m27s 36m58s| 1h01m10s| 1h20m18s| 1h52m18s

As can be seen, the time used by SPOWL increased almost
linearly when loading datasets from LUBM-400 to LUBM-
2000. In particular, SPOWL was able to initially load LUBM-
2000 in 55 minutes (i.e. the loading speed was at about
81,818 facts/s). We may highlight this linear increase by
translating the results in Table 1 into a line chart in Fig-
ure 7. Larger LUBM sizes resulted in out of memory errors.
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Figure 7: Reasoning Materialisation by SPOWL (Total
Caching)

4.1.2 Reasoning Materialisation

Over the loaded data, we used SPOWL to perform reason-
ing by launching a Spark application which executed Spark
programmes generated from T-Box axioms. The results of
reasoning were computed and materialised in the HDFS. In
this stage, we tuned SPOWL to cache as many datasets
as possible in the distributed memory. The time used by
SPOWL for the five datasets is also shown in Table 1, and is
available in the line chart shown in Figure 7. Again, the time
used for reasoning grew almost linearly from LUBM-400 to
LUBM-2000. Furthermore, for the largest dataset LUBM-
2000, SPOWL materialised about 246 million implicit facts
in 59 minutes (i.e. at the speed of 70,690 facts/s).

4.1.3 Data Caching Strategies

One key advantage of Spark compared to MapReduce is
the ability to cache data in the distributed memory to im-
prove computation performance. However, the size of the
distributed memory in a cluster often becomes a bottle-
neck, when memory is smaller than the size of data to be



cached, and some data will be written to disk. In such cir-
cumstances, Spark becomes similar to MapReduce. Indeed,
when we used SPOWL to process LUBM-2000, an out of
memory error erratically occurred. This also explains the
reason why SPOWL needed about 22m more for reason-
ing from LUBM-1600 to LUBM-2000, but required only 5m
more from LUBM-1200 to LUBM-1600.

We verified this by adjusting SPOWL to use a partial
caching strategy, as compared to the total caching strategy
reported in Table 1. In partial caching, we only cache the
data used for Spark programmes generated for one axiom,
rather than always caching all data for the whole reason-
ing materialisation. Thus, when SPOWL starts to process
a new set of Spark programmes for an axiom, it needs to
read related data from the disk, and after the programmes
have been finished, SPOWL needs to write newly derived re-
sults back to disk. Performance results of SPOWL after this
change are provided in Table 2, and they show SPOWL now
was able to handle up to LUBM-4000, which is about 90GB
of size (with the total caching strategy, SPOWL was only
able to scale up to LUBM-2000 over the evaluation cluster).

Table 2: Reasoning Materialisation by SPOWL (Partial
Caching)

SPOWL LUBM-2000 | LUBM-3000 | LUBM-4000
Initial Load 53m05s 1h16mb4s 1h54m4ls
Reasoning 1h57mb56s 3h06m59s 4h41m07s
Total 2h51m00s 4h23mb52s 6h35m48s

However, SPOWL required much longer time for reason-
ing (i.e. 1h57mb56s) over LUBM-2000 now as compared to
the time (i.e. 58m08s) it needed in Table 1. This is as ex-
pected because now SPOWL spent more time on exchanging
data between memory and disk. Inspired from this finding,
we plan to investigate how a hybrid data caching strategy
might maximise the scalability of SPOWL without slowing
down the reasoning too much.

4.2 Comparing SPOWL to WebPIE

The reason we choose WebPIE as a comparison system
is mainly because WebPIE uses MapReduce as a compu-
tational mechanism to materialise reasoning by evaluating
a set of entailment rules, while SPOWL uses Spark, which
has certain advantages over MapReduce. Unlike SPOWL,
WebPIE does not use a tableaux reasoner, and its reasoning
completeness is limited to the evaluated entailment rules.
In particular, it covers the OWL ter Horst rules, but does
not fully handle OWL 2 RL/RDF rules. Moreover, WebPIE
treats ontology data as a single set of RDF triples without
any partitioning, but it compresses ontology data before exe-
cuting MapReduce programmes, which could accelerate the
materialising. Consequently, decompressing the generated
reasoning materialisation is required. In this evaluation, we
recorded the time used by WebPIE for processing LUBM-
1000, LUBM-2000, LUBM-3000 and LUBM-4000, which is
provided in Table 3.

Since WebPIE compresses ontological data under reason-
ing, which could accelerate the reasoning process, it is more
fair to compare the total time used by WebPIE and SPOWL,
than only comparing the reasoning time. When SPOWL
uses the total caching strategy, even without compressing
the data, it required 1h52m18s for materialising reasoning
results of LUBM-2000 as shown in Table 1, and the perfor-

Table 3: Reasoning Materialisation by WebPIE

WebPIE LUBM-1000 | LUBM-2000 | LUBM-3000 | LUBM-4000
compress 29m04s 59m37s 1h31mb2s 2h01m59s
reasoning 30m36s 46m02s 58m27s 70m13s
decompress 14m03s 28m35s 49m16s 1h03m7s
Total 1h13m43s 2h14m1l4s 3h19m35s 4h15m19s

mance is faster than 2h14m14s performed by WebPIE. The
reason for the outperformance is not only because SPOWL
uses Spark’s capability of data caching, but also due to the
fact that SPOWL compiles a classified T-Box to Spark pro-
grammes directly related to the ontology rather than the
simple rule evaluation adopted by WebPIE. Indeed, if we
consider the situation in which SPOWL uses the partial
caching strategy (in Table 2), it needed 2h51m in total for
LUBM-2000, which is just slightly slower than WebPIE. Re-
member that SPOWL does not compress the ontology data,
and we plan to add this to SPOWL in the future. In addi-
tion, SPOWL handles some axioms beyond OWL 2 RL, such
as axioms (2) and (9) in LUBM, and thus is more complete
than WebPIE.

WebPIE stores the reasoning materialisation as a whole
set of RDF triples without considering to partition the on-
tological data. This means when there are queries retrieving
information from the materialisation, WebPIE would require
longer time to process the queries than SPOWL. Moreover,
since it performs reasoning by the way of evaluating a fixed
set of entailment rules, its reasoning completeness is limited
by the choice of the ruleset. However, SPOWL uses the
classified T-Box for generating entailment rules, which are
specially for the ontology under reasoning, and handle some
extra axioms beyond OWL 2 RL, which leads to a more
complete query answering.

S. SUMMARY AND CONCLUSIONS

To summarise, this paper has described how our approach
to compiling OWL T-Boxes into Spark programmes as a sys-
tem named SPOWL, which supports reasoning over large
ontologies in a Big Data system. Unlike most large scale rea-
soners, which simply evaluate a set of entailment rules for
materialising the reasoning closure, SPOWL uses a classi-
fied T-Box for a more complete T-Box reasoning. Moreover,
compared to reasoners using MapReduce, SPOWL benefits
from Spark which uses distributed memory as much as pos-
sible, and schedules jobs in a more flexible and parallelised
manner by the DAG scheduler. In particular, we have di-
vided Spark programmes into three groups, and have intro-
duced an optimised order of executing the three groups of
Spark programmes, which might reduce execution iterations
until the computation of reasoning closure can terminate.

However, our approach restricts itself to consider simple
and small T-Boxes, while ontologies with complex and large
structure (e.g. SNOMED-CT [8] and Gene ontology [1]) are
beyond the scope of SPOWL. Also, if dependencies among
the Spark programmes contain many cycles, an optimised
order of execution is difficult to obtain, but we consider this
is highly unlikely in real-world ontologies.
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