
SPOWL: Spark-based OWL 2 Reasoning Materialisation

Yu Liu
Department of Computing
Imperial College London

yu.liu11@imperial.ac.uk

Peter McBrien
Department of Computing
Imperial College London

p.mcbrien@imperial.ac.uk

ABSTRACT
This paper presents SPOWL, which uses Spark to perform
OWL reasoning over large ontologies. SPOWL acts as a
compiler, which maps axioms in the T-Box of an ontology
to Spark programmes, which will be executed iteratively to
compute and materialise a closure of reasoning results en-
tailed by the ontology. Such a closure is then available to
queries which retrieve information from the ontology. Com-
pared to MapReduce, adopting Spark enables SPOWL to
cache data in the distributed memory, to reduce the amount
of I/O used, and to also parallelise jobs in a more flexible
manner. We further analyse the dependencies among the
Spark programmes, and propose an optimised order follow-
ing the T-Box hierarchy, which makes the materialising pro-
cess terminate with minimum iterations. Moreover, SPOWL
uses a tableaux reasoner to classify the T-Box, and the clas-
sified axioms are complied into Spark programmes which
are directly related to the ontological data under reasoning.
This not only makes the reasoning by SPOWL more com-
plete, but also avoids processing unnecessary rules, as com-
pared to evaluating certain rulesets adopted by most state-
of-the-art reasoners. Finally, since SPOWL materialises the
reasoning closure for large ontologies, it processes queries
retrieving ontology information faster than computing the
query answers in real time.

CCS Concepts
•Computing methodologies→Ontology engineering;
Distributed computing methodologies;

Keywords
Spark, OWL 2 Reasoning, Scalability, Completeness

1. INTRODUCTION
Approaches to reasoning over large-scale ontologies (e.g.

Freebase [9], UniProt [5] and DBpedia [2]) have been re-
searched over the recent years. In order to efficiently pro-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

BeyondMR’17, May 19, 2017, Chicago, IL, USA
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-5019-8/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3070607.3070609

cess queries over ontologies, reasoners such as Oracle RDF
Store [32], SQOWL2 [18] and WebPIE [31] often adopt a
materialised approach, which computes and stores a closure
of derivations entailed by the ontologies. Such a closure is
ready to be read by queries, which often results in faster
query processing compared to using the query-rewriting ap-
proach adopted by reasoners such as Stardog [25] and On-
top [4]. This is due to query rewriting requires answers be
computed at the time of each query execution.

Materialisation-based reasoners usually compute and ma-
terialise the reasoning closure by evaluating a set of entail-
ment rules. Well-known rulesets include RDFS entailment
rules [23] and OWL ter Horst rules [30], both of which cover
some features of OWL 2 RL. The recent OWL 2 standard
also releases the OWL 2 RL/RDF rules [22], which cover
more complex reasoning than the former two rulesets. To
illustrate the evaluating process, we consider a fragment of
the Lehigh University Benchmark (LUBM) [11] com-
posed of the following T-Box axioms1:

Student v Person (1)

Student v ∃takesCourse.Course (2)
where (1) expresses that every Student is a Person, and (2)
specifies a Student takes at least one Course. We may fur-
ther assert some A-Box facts that John and Tom are two
individuals of the class Student by (3) and (4), and Lewis
and Mary are individuals of Person by (5) and (6):

Student(John) (3)

Student(Tom) (4)

Person(Lewis) (5)

Person(Mary) (6)
We may start the evaluation process over the LUBM frag-

ment (1)–(6) by considering the below entailment rule in the
format of if 〈antecedent〉 then 〈consequent〉:

if C v D,C(x) then D(x)
which specifies that individuals x of C will be inferred as
instances of D if C is a subclass of D. Evaluating this
rule checks as to whether there are some ontological state-
ments matching the 〈antecedent〉; if so, statements defined
in 〈consequent〉 are obtained as new derivations. Obviously,
the T-Box axiom (1) and A-Box facts (3) and (4) match the
〈antecedent〉 of the above entailment rule; therefore, two ad-
ditional A-Box facts Person(John) and Person(Tom) can be
derived by instantiating the above rule, i.e.:

if Student v Person, Student(x) then Person(x)
Therefore, the class Person will not only explicitly include
Lewis and Mary, but also implicitly contain John and Tom.

However, the rule evaluation process suffers some draw-

1We adopt the syntax of DL in this paper for a neat repre-
sentation.

backs. First, the process usually avoids the use of tableaux
reasoning [3], even the T-Box of ontologies is small enough
for tableaux reasoners (e.g. Pellet [29] and Hermit [28]) to
handle. Tableaux reasoners are known to provide complete
T-Box reasoning w.r.t. the T-Box, and totally avoiding them
might result in less complete reasoning [21]. For example,
for two given T-Box axioms, C v D t E and C uD v ⊥, a
tableaux reasoner is able to infer the subsumption of C v E,
which cannot be derived via evaluating the RDFS entailment
rules, OWL ter Horst rules, or even the OWL 2 RL/RDF
rules.

Second, reasoning via the rule evaluation process totally
relies on which set of entailment rules is chosen, and they
often sacrifice too much reasoning completeness for the sake
of scalable materialisation. For example, no rules in the
three aforementioned rulesets handle the T-Box axiom (2),
because it brings non-deterministic reasoning, as the expres-
sion ∃takesCourse.Course is used as a superclass expression.
From (2), if an individual x is asserted to be a Student, we
only know the property takesCourse relates x to at least one
individual y of Course but unable to determine which one.
Indeed, the RL profile [22] of OWL 2 does not allow this case
to avoid non-determinism. However, results of retrieving in-
dividuals which are related by takesCourse (i.e. the subjects
of takesCourse) will be incomplete.

Third, the evaluating process often considers large ontolo-
gies as whole sets of RDF triples [6], and statements match-
ing the 〈antecedent〉 of an entailment rule need to be filtered
out every time when evaluating this rule. This filtering pro-
cess often leads to an issue of inefficient rule matching [14],
which slows down the performance of reasoning materialisa-
tion, and even query processing (as the materialised results
are often subject to queries, which retrieve fragments of the
materialisation).

In this paper, we provide our approach named SPOWL,
which resolves the above three issues by extending the pre-
vious work [17, 20], which handles OWL 2 reasoning in an
RDBMS, to now perform OWL 2 reasoning materialisation
in a Big Data system. Taking the assumption that the ontol-
ogy under reasoning has a small T-Box and large A-Boxes,
our approach has the following features:

• SPOWL combines a tableaux reasoner for T-Box clas-
sification, and generates a set of entailment rules from
the classified T-Box. Using a tableaux reasoner not
only gives us a complete T-Box reasoning w.r.t. a given
T-Box, but also ensures that the entailment rules are
only relevant to axioms contained in the T-Box. This
completely avoids evaluating entailment rules unrelated
to a given large ontology.

• The SPOWL ruleset not only covers OWL 2 RL/RDF
rules (except where the Unique Name Assumption
(UNA) conflicts, as SPOWL adopts the UNA), but
also contains extra rules for handling some cases which
surpass OWL 2 RL. SPOWL is conjectured to be a
sound and complete implementation of the OWL 2
RL/RDF rules for OWL 2 RL ontologies [16]. These
extra rules result in a more complete materialisation
of reasoning; for example, SPOWL handles the case
of setting an existential quantification as a superclass
expression.

• SPOWL compiles the entailment rules to programmes
written in Spark [13]. These programmes are executed

iteratively over ontological data to compute and ma-
terialise the reasoning results, until no further deriva-
tion can be inferred. We also analyse the dependencies
among these programmes, and determine an optimised
order of executing them, in order to minimise the num-
ber of iterations until Spark programme execution can
terminate (i.e. when no further reasoning results can
be derived).

• In order to avoid repeated filtering, SPOWL inher-
its the schema used by previous work for representing
class and property facts, i.e. we separate instances re-
lated to each class or property, and stores them indi-
vidually. Consequently, when computing reasoning or
querying information over a fragment of the ontology,
less filtering effort is required.

The remainder of this paper is organised as follows. Sec-
tion 2 provides an overview of how SPOWL translates a clas-
sified T-Box into Spark programmes. Section 3 describes an
optimised order for executing these Spark programmes, so
that the iteration times of executing them can be minimised,
alongside with some tuning strategies to further optimise the
reasoning performance. Section 4 evaluates the performance
of our approach on the LUBM benchmark. Finally, Section 5
summarises this paper.

2. SPOWL OVERVIEW
The section outlines SPOWL. We illustrate how Spark

programmes are generated from a classified T-Box and then
applied to the loaded data, so that the results of reasoning
can be computed and materialised.

2.1 SPOWL Architecture

Distributed	Data	Storage
(e.g.	HDFS)

T-BoxOWL
Documents

Classified
T-Box

① Spark Programme Generation

② Initial Load

③ Programme Execution

A-Box1

A-Boxn

•••

Figure 1: SPOWL Architecture

Figure 1 shows the architecture of SPOWL, which per-
forms reasoning materialisation in three steps:

1. After performing classification using some tableaux rea-
soners, SPOWL transforms the classified T-Box into a
set of entailment rules, which are compiled into Spark
programmes.

2. Explicit A-Box facts are loaded into a distributed stor-
age system. The current SPOWL prototype only sup-
ports Hadoop Distributed File System (HDFS)
for storing data, but this can be extended to any other
distributed storage systems supported by Spark.

3. SPOWL iteratively executes the Spark programmes
over the loaded data until no new reasoning can be
made, and the results of reasoning are computed and
persisted in the HDFS. In particular, the order of ex-
ecuting Spark programmes follows the bottom-up hi-
erarchy of the T-Box, minimising the number of itera-
tions required.

2.2 Outline of the Approach
In order to illustrate the above three steps, we extend the

fragmental LUBM ontology (1)–(6) used in Section 1 by the
following extra T-Box axioms:

GraduateStudent v Person (7)

GraduateCourse v Course (8)

GraduateStudent v ∃takesCourse.GraduateCourse (9)

Person u ∃takesCourse.Course v Student (10)

subOrganisationOf ◦ subOrganisationOf v subOrganisationOf
(11)

Note that Axiom (9) specifies that a GraduateStudent takes
at least one GraduateCourse. Axiom (10) expresses that a
Person who takes at least one Course is a Student. Axiom
(11) states that subOrganisationOf is transitive. We also
extend the ontology with the following A-Box data:

GraduateStudent(Jack) (12)

Course(Database) (13)

GraduateCourse(Algorithm) (14)

takesCourse(Tom,Database) (15)

takesCourse(John,Algorithm) (16)

subOrganisationOf(Group,Department) (17)

subOrganisationOf(Department,College) (18)

subOrganisationOf(College,University) (19)

2.2.1 T-Box Classification by Tableaux Reasoner
SPOWL applies a tableaux reasoner for the T-Box clas-

sification, in order to obtain a more complete set of sub-
sumption relations. For example, by classifying axioms (7) –
(10), a new subsumption relationship from GraduateStudent
to Student can be derived:

GraduateStudent v Student (20)
It is worth mentioning that because axiom (9) (which uses
∃takesCourse.GraduateCourse as a superclass expression) does
not meet the OWL 2 RL restrictions, it is not handled by
the OWL 2 RL/RDF rules. Consequently, evaluating the
OWL 2 RL/RDF rules over the above fragmental LUBM
ontology cannot infer (20). Moreover, axioms in the classi-
fied T-Box form the schema which is specially for the A-Box
of data, and therefore, SPOWL only consider those axioms
for reasoning materialisation, rather than evaluating every
entailment rule in a ruleset even if some rules are irrelevant.

2.2.2 Classes & Properties to Spark RDDs
Spark treats collections of data as Resilient Distributed

Datasets (RDDs). We assume individuals of a class C are
stored in an unary RDD Crdd(id); and pairs of individu-
als connected by a property P are stored in a binary RDD
Prdd(domain, range). All RDDs will be initialised to in-
clude instances explicitly asserted to the classes or properties
which they represent, and they will be eventually built up
with implicit instances computed from Spark programmes.
For instance, the A-Box facts we have asserted so far for the

fragmental LUBM (i.e. (3)–(6) and (12)–(16)) will lead to
the initialisation of the following RDDs:

Studentrdd = {John,Tom}
Personrdd = {Lewis,Mary}
GraduateStudentrdd = {Jack}
Courserdd = {Database}
GraduateCourserdd = {Algorithm}
takesCourserdd = {(Tom,Database), (John,Algorithm)}
subOrganisationOfrdd = {(Group.Department),

(Department,College), (College,University)}
As we have mentioned earlier, when storing the A-Box

in a Distributed File System (DFS), many reasoning
systems, such as WebPIE, Cichlid [10], SHARD [26] and
PigSPARQL [27], simply load ontology files into the DFS
and leave the task of partitioning data to applications or
users. Our approach (which can be viewed as a variant of
the vertical partitioning model used by HadoopRDF [12])
has the advantage that when computing reasoning involving
only some classes and properties, only those partitions which
store the relevant data need to be accessed. For example,
in order to create Studentrdd, SPOWL only needs to access
the partition which stores instances of the class Student. By
contrast, if the data is not partitioned, the whole ontology
should be read and a fragment of it should be filtered out.

2.2.3 Classified T-Box to Spark Programmes
SPOWL compiles axioms in the classified T-Box to a set of

entailment rules (in the format of if . . . then . . .) which will
be further implemented as Spark programmes2. The Spark
programmes will be executed over RDDs of data iteratively
to compute new reasoning results, which will build up the
RDDs. The iterative execution will terminate when there is
no new derivation that can be inferred.

We start from axioms (1), (7), (8) and (20) to illustrate the
compiling process from OWL axioms to Spark programmes.
Each of these axioms specifies a subsumption relationship
from one class to another, which is generally expressed by
C v D in DL. The semantics of C v D implies that in-
dividuals contained in the subsumed class C should be in-
ferred as individuals in the subsumer class D, and SPOWL
captures these semantics by mapping in an entailment rule,
where Raxiom denotes the entailment rule mapped from an
axiom:

RCvD ::= if Crdd(x) then Drdd(x)
The rule states that data in Crdd (representing class C)
should be included in Drdd (representing class D). This
entailment rule can be implemented in Spark by calling a
union function over Drdd to merge Drdd with Crdd (we use
Paxiom to denote the Spark programme generated for an
axiom):

PCvD ::= Drdd = Drdd.union(Crdd)
Note that Spark currently supports three programming lan-
guages, namely Scala, Java and Python. In this paper, we
adopt a Python-like format to illustrate Spark programmes.

If we follow this process for handling C v D, axioms
(1), (7), (8) and (20) are first mapped into respectively

2Besides Spark, the set of entailment rules can also be im-
plemented in other programming languages; for example,
our previous work [20, 18] supports the implementation as
SQL triggers, which compute and materialise reasoning in a
relational database.

RStudentvPerson, RGraduateStudentvPerson, RGraduateCoursevCourse and
RGraduateStudentvStudent as follows:

if Studentrdd(x) then Personrdd(x)

if GraduateStudentrdd(x) then Personrdd(x)

if GraduateCourserdd(x) then Courserdd(x)

if GraduateStudentrdd(x) then Studentrdd(x)
which are compiled by PStudentvPerson, PGraduateStudentvPerson,
PGraduateCoursevCourse and PGraduateStudentvStudent to:

Personrdd = Personrdd.union(Studentrdd)

Personrdd = Personrdd.union(GraduateStudentrdd)

Courserdd = Courserdd.union(GraduateCourserdd)

Studentrdd = Studentrdd.union(GraduateStudentrdd)
Executing the above will cause Personrdd will be merged
with data stored in both Studentrdd and GraduateStudentrdd.
Similarly, Courserdd will be merged with GraduateCourserdd,
and Studentrdd will be merged with GraduateStudentrdd. Thus,
the RDDs are updated to:

Studentrdd = {John,Tom, Jack}
Personrdd = {Lewis,Mary, John,Tom, Jack}
Courserdd = {Database,Algorithm}

2.2.4 Beyond OWL 2 RL axioms
Besides subsumptions, OWL 2 provides a SomeValuesFrom

constructor (denoted as ∃P .D in DL) to specify some exis-
tential restrictions. ∃P .D specifies a set of individuals x
such that each x is related by P to at least one individual y
in D. SomeValuesFrom is used by axioms (2) and (9), each
of which expresses a subsumption relationship from a class
to a SomeValuesFrom expression (i.e. C v ∃P .D), which ex-
presses that every x in C is related by P to at least one y
in D. Axioms of C v ∃P .D might lead to non-deterministic
reasoning, because if D contains more than one individual,
we only know that P relates every individual of C to at least
one of D’s individuals, but we cannot determine which one
of them.

OWL 2 RL eliminates the case of C v ∃P .D to avoid
the non-determinism. However, this elimination might make
the reasoning incomplete; for example, when querying for
all individuals that are related by P , individuals of C which
should be included as the answer might be missed. However,
in SPOWL we specify the following RCv∃P.D to solve this
incompleteness.

RCv∃P.D ::= if Crdd(x),¬Prdd(x, y) then Prdd(x, null) (a)

if Crdd(x), Prdd(x, y),¬Drdd(y) then − (b)
As can be seen, RCv∃P.D has two parts: (a) handles the
set of x which is recorded in Crdd but no such pairs (x, y)
are recorded Prdd, for which we add pairs (x, null) into Prdd

(i.e. null denotes some unknown y of Drdd which Prdd re-
lates x to); (b) handles the case that in Prdd there is a pair
(x, y) for x in Crdd, but such y is not in Drdd. However, for
this case, we do not perform any action (i.e. then −), be-
cause querying for all individuals that are related by P will
obtain complete answers in this case. Therefore, RCv∃P.D

can be simplified to only contain part (a), which will be
implemented as the following Spark programme PCv∃P.D:

PCv∃P.D ::= Ptmp1 = Prdd.map(lambda (x, y) : x)

Ptmp2 = Crdd.subtract(Ptmp1)

Ptmp3 = Ptmp2 .map(lambda x : (x, null))

Prdd = Prdd.union(Ptmp3)

Considering axiom (2), SPOWL generates the following
RStudentv∃takesCourse.Course:

if Studentrdd(x),¬takesCourserdd(x, y)

then takesCourserdd(x, null)
which results in the following PStudentv∃takesCourse.Course:

takesCoursetmp1 = takesCourserdd.map(lambda (x, y) : x)

takesCoursetmp2 = Studentrdd.subtract(takesCoursetmp1)

takesCoursetmp3 = takesCoursetmp2 .map(lambda x : (x, null))

takesCourserdd = takesCourserdd.union(takesCoursetmp3)
The above PStudentv∃takesCourse.Course first computes a tempo-

rary RDD takesCoursetmp1 including the individuals recorded
as related by takesCourse by using a Spark map function,
which projects the field of x from (x, y) pairs contained in
takesCourserdd (where lambda is a Python construct for cre-
ating anonymous functions at runtime). As we have illus-
trated, (Tom,Database) and (John,Algorithm) are included
in takesCourserdd; therefore, Tom from (Tom,Database), and
John in (John,Algorithm) will be included in takesCoursetmp1 :

takesCoursetmp1 = {Tom, John}
Next, PStudentv∃takesCourse.Course computes the data items that

are in Studentrdd but not in takesCoursetmp1 by using a Spark
subtract function. Obviously, Jack in Studentrdd is the only
one which is not in takesCoursetmp1 , and it will be included
in the second temporary RDD takesCoursetmp2 :

takesCoursetmp2 = {Jack}
Then, PStudentv∃takesCourse.Course calls another map function,

which forms (x, null) for each x in takesCoursetmp2 and in-
cludes the (x, null) pairs in takesCoursetmp3 :

takesCoursetmp3 = {(Jack, null)}
Finally, after merging with (Jack, null) in takesCoursetmp3 ,

takesCourserdd becomes:

takesCourserdd =

{(Tom,Database), (John,Algorithm), (Jack, null)}
Thus, if a query asks for individuals related by takesCourse,
SPOWL not only returns Tom and John but also Jack as a
complete answer to the query.

Note that PCv∃P.D can be alternatively written as:

Prdd = Prdd.union(

Crdd.subtract(Prdd.map(lambda (x, y) : x))

.map(lambda x : (x, null)))
and we will use this more compact representation for the
remaining examples of Spark programs where we do not need
to detail the intermediate results during execution.

2.2.5 DAG for Parallelising Reasoning
Spark uses its DAG scheduler to provide a more flexible

and parallelised job scheduling than MapReduce, which fol-
lows a sequential job planing. To illustrate how a more par-
allelised job scheduling can be used for computing the rea-
soning materialisation, we consider the axiom (10), which in-
volves another OWL constructor IntersectionOf (symbolised
by u). The constructor constructs an IntersectionOf expres-
sion Personu∃takesCourse.Course, which specifies a set of in-
dividuals x that are both members of Person and are related
by takesCourse to at least one individual of Course. Addition-
ally, by setting the IntersectionOf expression as a subclass of
Student, the set of x should be included in Student.

Therefore, SPOWL specifies RPersonu∃takesCourse.CoursevStudent

for axiom (10) as:

if Personrdd(x), takesCourserdd(x, y), Courserdd(y)

then Studentrdd(x)
which means that any x appearing in both Personrdd(x) and
takesCourserdd(x, y), where y appears in Courserdd, should
be merged into Studentrdd. As shown in Figure 2, comput-
ing the set of x that should be included in Studentrdd requires
three RDDs (i.e. Personrdd, takesCourserdd and Courserdd),
and by using the DAG scheduler, SPOWL is able to sched-
ule the computations of the three RDDs to three parallelised
jobs (i.e. joba for computing Personrdd, jobb for computing
takesCourserdd and jobc for computing Courserdd). By con-
trast, in MapReduce joba, jobb and jobc have to be scheduled
sequentially.

RStudentvPerson

RGraduateStudentvPerson

↓
Personrdd

joba

RStudentv∃takesCourse.Course
↓

takesCourserdd

jobb

RPersonu∃takesCourse.CoursevStudent

↓
Studentrdd

jobd

RGraduateCoursevCourse

↓
Courserdd

jobc

Figure 2: DAG Scheduling for RPersonu∃takesCourse.CoursevStudent

When Personrdd, takesCourserdd and Courserdd have been
computed, jobd can start to handle the axiom (10) by im-
plementing the entailment rule RPersonu∃takesCourse.CoursevStudent

into Spark programmes PPersonu∃takesCourse.CoursevStudent:

Studenttmp1 = takesCourserdd.map(lambda (xt, yt) : (yt, xt))

.join(Courserdd.map(lambda yc : (yc, yc)))

.map(lambda (yk, (xt, yc)) : xt))

Studenttmp2 = Studenttmp1 .intersection(Personrdd)

Studentrdd = Studentrdd.union(Studenttmp2)
The Spark programme first computes Studenttmp1 includ-

ing the individuals which belong to ∃takesCourse.Course by
using join and map functions. In Spark, joins should be
performed between two RDDs containing key-value pairs,
so for (xt, yt) pairs in takesCourserdd, a map function on
takesCourserdd is applied to create a set of key-value pairs
(yt, xt), and for data items yc in Courserdd, another map on
Courserdd is specified to generate a set of key-value pairs
(yc, yc). Continuing with the LUBM fragment, the (yt, xt)
pairs for takesCourserdd will be:

{(Database,Tom), (Algorithm, John)}
and the (yc, yc) pairs for Courserdd will be:

{(Database,Database), (Algorithm,Algorithm)}
Next, the join function will look for the case of yt = yc

from the two sets of key-value pairs, and return for each
key a set of (yk, (xt, yc)) pairs, where xt (which belongs to
∃takesCourse.Course) will be projected by a map. Based on
the LUBM fragment, (yk, (xt, yc)) pairs below will be gen-
erated after processing the join function:

{(Database, (Tom,Database)), (Algorithm, (John,Algorithm))}
Consequently, Tom and John will be selected as members of
takesCoursetmp1 , which is shown as follows:

takesCoursetmp1 = {Tom, John}
Then, an intersection function is performed to select com-

mon data items in both Studenttmp1 and Personrdd (contain-
ing Lewis, Mary, John, Tom and Jack). Obviously, {Tom,
John} will be computed as common individuals, and they
should be merged into Studentrdd by a union function.

2.2.6 Data Caching in Distributed Memory
Another important feature of Spark is the capability of

caching RDDs in the distributed memory in a cluster of ma-
chines. By contrast, MapReduce requires to write/read data
to/from the disk, which often leads to a high I/O overhead.
We may illustrate the benefits of this by using the axiom
(11), which specifies a TransitiveProperty subOrganisationOf,
and three A-Box facts (17)–(19) of subOrganisationOf.

When a property P is defined as a TransitiveProperty, the
semantics of transitivity specifies that if (x, y) and (y, z) are
both instances of P , then (x, z) is an instance of P . SPOWL
translates this into an entailment rule RP◦PvP :

if Prdd(x, y), Prdd(y, z) then Prdd(x, z)
Therefore, the transitivity of subOrganisationOf is handled
by RsubOrganisationOf◦subOrganisationOfvsubOrganisationOf :

if subOrganisationOfrdd(x, y), subOrganisationOfrdd(y, z)

then subOrganisationOfrdd(x, z)
Materialising the reasoning results for a TransitiveProperty
P is also known as the problem of computing its transitive
closure, which has been researched by many studies, such
as [7] and [24]. In SPOWL, we adopt a simple recursive-
doubling method described in [15] for compiling RP◦PvP to
the Spark programmes PP◦PvP :

while True do
Ptmp = Prdd.map(lambda (xp, yp) :
(yp, xp)).join(Prdd)

.map(lambda (yk, (xp, zp)) : (xp, zp))
if Ptmp.isEmpty() then break
Prdd = Prdd.union(Ptmp)

end

As can be seen, PP◦PvP contains a while loop, which
computes the transitive closure for P iteratively. In each
iteration, a self join on Prdd (which initially contains ex-
plicit instances of P) is performed to see whether new tran-
sitive pairs (xp, zp) can be computed (from pairs (xp, yp) and
(yp, zp)). If so, the new pairs are stored in Ptmp (i.e. Ptmp

is not empty), which is merged into Prdd at the end of this
iteration, and the updated Prdd will be used for the next
iteration. Otherwise, if no transitive pairs can be calculated
(i.e. Ptmp is empty), the computation of transitive closure
terminates.

Since Spark is able to cache RDDs in the distributed mem-
ory, at the end of each computation iteration of PP◦PvP we
can call a Spark function cache (or persist) to cache Prdd in
memory without needing to write the intermediate results
to disk. Thus, during the next iteration, Prdd can be read
directly from the memory without data exchange with the
disk.

To determine the number of iterations required for com-
puting a transitive closure, we interpret P as a graph, where
each vertex x represents an individual x, an arc from x to
y, denoted as Arc〈x, y〉, represents x is explicitly related to

y by P , and a path from x to y, Path〈x, y〉, denotes that
x is explicitly or implicitly related to y by P (i.e. through
one or more arcs y is reachable from x in the graph). Thus,
computing the transitive closure for P can be interpreted as
the problem of computing all Path〈x, y〉 in the graph of this
property.

The number of iterations required to terminate the com-
putation depends on the longest path in a graph of P . If the
length of an arc Arc〈x, y〉 is set as 1, the length of Path〈x, y〉
is the number of arcs from x to y. For example, in the graph
of P , if there are arcs Arc〈x, a〉, Arc〈a, b〉 and Arc〈b, y〉, then
y is reachable from x via a and b, and such a path Path〈x, y〉
is of the length 3. Note that for the case that y is reachable
from x by more than one path, we consider the shortest one
as its length. Continuing with the example, if the graph
further contains arcs Arc〈x, c〉 and Arc〈c, y〉, then y is also
reachable from x via c, and the length Path〈x, y〉 should be
2, which is shorter than 3. If the longest path in a graph
is of length d, a simple recursive-doubling method requires
log2 d iterations at most to finish computation of the transi-
tive closure. However, unless d of a graph is pre-known, an
extra iteration (i.e. totally log2 d+1 iterations) is necessarily
required to check as to whether Ptmp is empty.

Using cache not only helps iterative computation (such as
handling transitive properties), but also benefits the situa-
tions in which certain RDDs are used repeatedly.

RGraduateStudentvPerson

↓
Personrdd

joba

GraduateStudentrdd

RGraduateStudentv∃takesCourse.GraduateCourse
↓

takesCourserdd

jobb

RGraduateStudentvStudent

↓
Studentrdd

jobc

Figure 3: Caching GraduateStudentrdd for Repeated Usage

As illustrated in Figure 3, because axioms (7), (9) and (20)
all specify GraduateStudent as their subclass expressions,
GraduateStudentrdd will be used by joba, jobb and jobc, which
respectively handle axioms (7), (9) and (20). By caching
GraduateStudentrdd in memory, Spark can read it directly
from the memory for repeated use without needing to write
and then read intermediate results to and from disk, which
is often required by MapReduce. Note that as Spark adopts
a DAG scheduler, joba, jobb and jobc can also be parallelised.

2.2.7 Optimising Programme Execution Order
We have provided an overview of how SPOWL specifies

for an OWL axiom an entailment rule Raxiom, which will be
further implemented as a Spark programme Paxiom. These
Spark programmes will be executed iteratively until no new
data is produced, which implies the termination of the rea-
soning materialisation. In distributed computing, because
scheduling, starting and terminating distributed computa-
tion jobs often has a large overhead, even one more iteration
will significantly affect the total performance. Therefore, in

SPOWL we wish that the reasoning materialisation termi-
nates with as fewer iterations as possible.

Take Figure 2 for handling the axiom (10) as an example
again: since jobd takes Personrdd from joba, takesCourserdd
from jobb and Courserdd from jobc as inputs, executing joba,
jobb and jobc before jobd is the best order. Otherwise, if jobd
is executed before any of joba, jobb and jobc, then jobd still
should be executed again to ensure that the new derivations
from joba, jobb and jobc are considered. Thus, we now con-
sider a general method for optimising the execution order of
our Spark programmes.

3. OPTIMISATION IN SPOWL
As we have illustrated in Section 2, SPOWL translates

axioms in a classified T-Box into Spark programmes, which
are specific to the ontology being reasoned over. Spark pro-
grammes are then launched to execute iteratively to calcu-
late and materialise the reasoning closure. In order to opti-
mise SPOWL for terminating the reasoning materialisation
with minimum iterations, we further analyse the dependen-
cies of Spark programmes, and execute them in an order
following the bottom-up hierarchy of the T-Box. In addi-
tion, we apply some tuning techniques provided by Spark to
further improve the performance of SPOWL.

3.1 Ordering Spark Programmes
We define that an entailment rule Raxiom1 is higher than

another one Raxiom2 (or Raxiom2 is lower than Raxiom1),
if Raxiom1 takes data inferred from Raxiom2 as its input.
For example, if we have a T-Box hierarchy composed of
two axioms C1 v C2 and C2 v C3, the entailment rule
RC1vC2 is lower than RC2vC3 , as the new data inferred be-
cause of C1 v C2 contributes to the reasoning of C2 v C3.
To minimise the materialising iterations, we should execute
the Spark programmes generated from the lowest entailment
rules to the highest one. Thus, executing PC1vC2 (com-
piled fromRC1vC2) before PC2vC3 (compiled fromRC2vC3)
should terminate the materialisation with only one itera-
tion; however, executing PC2vC3 before PC1vC2 might re-
quire two iterations.

Depending on the types of OWL 2 axioms, the entailment
rules specified by SPOWL can be divided into three groups
and the dependencies among the rules are illustrated in Fig-
ure 4.

Figure 4: Dependence among entailment rules

1. The first group contains entailment rules which infer
new data items to class RDDs from class RDDs, tak-
ing no property RDDs as input. Entailment rules fall
into this group are RCvD, RC≡D, RC1t...tCnvD and
RC1u...uCnvD.

2. The second group of entailment rules infer new data
to property RDDs from property RDDs, taking no

class RDDs as input. Such entailment rules are RPvQ,
RP≡Q, RP≡P− , RP≡Q− , RP◦PvP and RP1◦...◦PnvP .

3. Entailment rules in the third group compute new data
items to class RDDs from property RDDs, or infer new
data items to property RDDs from class RDDs:

(a) Entailment rules which take some class RDDs as
input (or part of the input) and generate new data
to property RDDs are RCv∃P.{a}, RCv∃P.D and
RCv∃P.Self .

(b) Entailment rules which compute new data to class
RDDs from some property RDDs are RCv∀P.D,
R∃P.DvC , R∃P.{a}vC , R∃P.SelfvC , R>nPvC (and
R>nP.DvC), R>v∀P−.C and R>v∀P.D.

Note that some of the above entailment rules considered
by SPOWL are not included in the OWL 2 RL/RDF rules,
such as R∃P.SelfvC and R>nP.DvC . By constrast, most
materialisation-based systems such as WebPIE, Cichlid and
RORS [19] only analyse dependencies of RDFS entailment
rules and OWL ter Horst rules. Entailment rules in the first
group (inferring data to class RDDs from class RDDs) are
independent of those in the second group (inferring data to
property RDDs from property RDDs). Therefore, in each of
the first two groups, we follow the bottom-up class hierarchy
or property hierarchy as the optimised order of executing
Spark programmes. We illustrate this by taking property
axioms P1 v P2, P2 ◦ P2 v P2 and P2 v P3 as an example,
the property hierarchy is displayed in Figure 5.

Figure 5: Acyclic property hierarchy

As can be seen, the property hierarchy is acyclic, we can
easily obtain the dependencies among the entailment rules
RP1vP2 , RP2◦P2vP2 and RP2vP3 : RP2◦P2vP2 is higher than
RP1vP2 and is lower than RP2vP3 . In other words, Spark
programmes should be executed as the order of PP1vP2 fol-
lowed by PP2◦P2vP2 followed by PP2vP3 . Indeed, by PP1vP2 ,
new data items are inferred to P2rdd (representing P2) from
P1rdd (representing P1). Next, the transitive closure of P2rdd

is computed by executing PP2◦P2vP2 , and will be merged
into P3rdd (representing P3) by processing PP2vP3 .

Figure 6: Cyclic property hierarchy

However, if we consider an extra property axiom P3 ≡
P1
−, the property hierarchy in Figure 5 becomes cyclic as

shown in Figure 6. For a cyclic hierarchy, we cannot de-
termine which entailment rule is the lowest nor which one
is the highest; therefore, we could randomly select one of
them as the first one to process. Suppose we choose RP1vP2

as the first entailment rule again, we should thereafter se-
quentially consider RP2◦P2vP2 and RP2vP3 . Here, due to
the extra axiom P3 ≡ P1

−, which might infer new data
to P1rdd , RP1vP2 might need to be considered again, and
so does RP2◦P2vP2 and RP2vP3 . In essence, the execution
should terminate whenever there is no new reasoning to the
input RDDs taken by all entailment rules.

Entailment rules in the third group bring the reasoning
from class RDDs to property RDDs and vice versa, which
makes it difficult for SPOWL to determine an optimised
order. However, since PropertyDomain axioms (i.e. > v
∀P−.C) and PropertyRange axioms (i.e. > v ∀P .D), which
lead to data reasoning from property RDDs to class RDDs,
are frequently used in most ontologies, we tend to consider
entailment rules in the first group are higher than those
in the second group. Therefore, in general, our approach
adopts an optimised order of considering entailment rules
as:

1. Spark programmes compiled from the second group of
entailment rules are executed to infer new data from
property RDDs to property RDDs following the prop-
erty hierarchy.

2. Spark programmes compiled from group 3(b) deriving
reasoning from property RDDs to class RDDs are ex-
ecuted. Note that since entailment rules involved in
this step might depend on each other, we also process
them from lower entailment rules to higher rules.

3. Spark programmes generated from the first group of
entailment rules are processed to derive new data from
class RDDs to class RDDs following the class hierarchy.

4. Whenever the ontology has axioms which could derive
new reasoning from class RDDs to property RDDs (i.e.
entailment rules in group 3(a)), we check whether new
data items are inferred because of them; if so we re-
conduct the previous three steps until the input taken
by higher-level entailment rules contains no newly in-
ferred data.

3.2 Tuning Spark Programmes
Spark provides numerous tuning techniques3. In this sec-

tion, we discuss those techniques which have used to improve
SPOWL’s performance of reasoning materialisation.

• Caching Data in Distributed Memory

In the physical Spark programmes, we cache an RDD
which is repeatedly used to avoid re-computation of
this RDD. For instance, for an IntersectionOf axiom
C v C1u. . .uCn, because a tableaux reasoner classifies
it to n subsumption relationships (i.e. C v C1, . . . , C v
Cn), the data in Crdd (representing C) will be used n
times; therefore, caching Crdd by the Spark function
cache or persist in the distributed memory will improve
the performance of reasoning this axiom. Moreover, if
an entailment rule requires iterative computation (e.g.
handling a TransitiveProperty), we tend to cache the
intermediate result after each iteration, so that they
can be quickly accessed by the next iteration.

Note that, because of the in-memory nature of Spark,
the amount of the distributed memory in a cluster

3https://spark.apache.org/docs/latest/tuning.html

could become a bottleneck. When the memory is not
enough for caching all items of data, Spark will write
some old data to disk (which in a way, may be re-
garded as reverting to MapReduce), and consequently
SPOWL will benefit less from the memory caching. In
order to use the distributed memory more efficiently,
we also adopt the Kryo library4 to serialise RDDs,
which will use less memory than without serialisation.

• Partitioning before Join

In Spark, a normal join between two sets of key-value
pairs will shuffle the pairs whose keys are the same to
the same executor, so that join pairs can be computed.
However, in the case of one set of key-value pairs be-
ing very large while the other set is quite small, this
normal join might result in a slow shuffle process be-
cause of shuffling the large set. Instead, we partition
the large set of key-value pairs by their keys, and copy
the small set to the node where each partition of the
large set is stored. Since this reduces the amount of
data transferred through the network of a cluster, the
join can be performed much faster. Partitioning an
RDD can be achieved by a Spark function partitionBy.

4. EVALUATION OF SPOWL
In this section, we evaluate SPOWL on its performance

of materialising the reasoning closure. All experiments were
performed on a cluster of 9 machines running on a private
cloud environment5. The cluster contains a master node and
8 slave nodes (each with CPU @ 2.5GHz, 4 Cores, and 16 GB
of Memory). It ran Hadoop version 2.6.0-cdh5.5.0 (with 2.08
TB configured capacity), and Apache Spark 1.6.0. SPOWL
used OWL API v3.4.3 for T-Box loading, and supports the
use of Pellet v2.3.1 or Hermit v1.3.8 for T-Box classification.

In this evaluation, we use the well-known LUBM bench-
mark, which consists of a T-Box, a data generator, and 14
queries. The T-Box contains 43 classes, 32 properties, and
approximately 200 axioms (as we have illustrated previously,
some axioms are beyond OWL 2 RL). The data generator
is used to produce LUBM A-Boxes with different sizes. We
use LUBM-n to denote a dataset that contains n universities
of A-Box facts. Each university of data has about 100,000
class and property facts; for instance, LUBM-2000 has ap-
proximately 270 million A-Box facts and is about 44GB in
size. Each experiment was repeated 10 times, of which the
average value is reported.

The time used by SPOWL for initial data loading and ma-
terialising the reasoning closure is reported in Section 4.1.
Although the performance results are rather preliminary,
we compare them to another materialisation-based system,
WebPIE v1.1.1, and the comparison is discussed in Sec-
tion 4.2. Note that the reasoning materialisation is stored
in the HDFS, which can be read by any HDFS-supported
query languages such as Pig6 and Hive7. SPOWL current
supports LUBM queries in Spark8, and its performance of
query processing is not included in this evaluation because
of space restrictions, but can be found in [16].

4https://github.com/EsotericSoftware/kryo
5https://www.doc.ic.ac.uk/csg/services/cloud
6https://pig.apache.org/
7https://hive.apache.org/
8https://github.com/yl12510/thesis/blob/master/lubm

4.1 Performance of Reasoning Materialisation

4.1.1 Initial Load
We used SPOWL to load the original A-Boxes for LUBM-

400, LUBM-800, LUBM-1200, LUBM-1600 and LUBM-2000.
During the stage of initial loading, instances of every class
or property were filtered out and materialised in separate
folders in the HDFS. We recorded the time which SPOWL
used for loading each dataset in Table 1.

Table 1: Reasoning Materialisation by SPOWL (Total
Caching)

SPOWL LUBM-400 LUBM-800 LUBM-1200 LUBM-1600 LUBM-2000
Initial Load 9m08s 20m30s 27m50s 41m20s 54m10s
Reasoning 10m19s 16m28s 33m20s 38m58s 58m08s
Total Time 19m27s 36m58s 1h01m10s 1h20m18s 1h52m18s

As can be seen, the time used by SPOWL increased almost
linearly when loading datasets from LUBM-400 to LUBM-
2000. In particular, SPOWL was able to initially load LUBM-
2000 in 55 minutes (i.e. the loading speed was at about
81,818 facts/s). We may highlight this linear increase by
translating the results in Table 1 into a line chart in Fig-
ure 7. Larger LUBM sizes resulted in out of memory errors.

00:00:00

00:10:05

00:20:10

00:30:14

00:40:19

00:50:24

01:00:29

LUBM-400 LUBM-800 LUBM-1200 LUBM-1600 LUBM-2000

Ti
m
e	
(h
h:
m
m
:s
s)

Initial	Load Type	Inference

Figure 7: Reasoning Materialisation by SPOWL (Total
Caching)

4.1.2 Reasoning Materialisation
Over the loaded data, we used SPOWL to perform reason-

ing by launching a Spark application which executed Spark
programmes generated from T-Box axioms. The results of
reasoning were computed and materialised in the HDFS. In
this stage, we tuned SPOWL to cache as many datasets
as possible in the distributed memory. The time used by
SPOWL for the five datasets is also shown in Table 1, and is
available in the line chart shown in Figure 7. Again, the time
used for reasoning grew almost linearly from LUBM-400 to
LUBM-2000. Furthermore, for the largest dataset LUBM-
2000, SPOWL materialised about 246 million implicit facts
in 59 minutes (i.e. at the speed of 70,690 facts/s).

4.1.3 Data Caching Strategies
One key advantage of Spark compared to MapReduce is

the ability to cache data in the distributed memory to im-
prove computation performance. However, the size of the
distributed memory in a cluster often becomes a bottle-
neck, when memory is smaller than the size of data to be

cached, and some data will be written to disk. In such cir-
cumstances, Spark becomes similar to MapReduce. Indeed,
when we used SPOWL to process LUBM-2000, an out of
memory error erratically occurred. This also explains the
reason why SPOWL needed about 22m more for reason-
ing from LUBM-1600 to LUBM-2000, but required only 5m
more from LUBM-1200 to LUBM-1600.

We verified this by adjusting SPOWL to use a partial
caching strategy, as compared to the total caching strategy
reported in Table 1. In partial caching, we only cache the
data used for Spark programmes generated for one axiom,
rather than always caching all data for the whole reason-
ing materialisation. Thus, when SPOWL starts to process
a new set of Spark programmes for an axiom, it needs to
read related data from the disk, and after the programmes
have been finished, SPOWL needs to write newly derived re-
sults back to disk. Performance results of SPOWL after this
change are provided in Table 2, and they show SPOWL now
was able to handle up to LUBM-4000, which is about 90GB
of size (with the total caching strategy, SPOWL was only
able to scale up to LUBM-2000 over the evaluation cluster).

Table 2: Reasoning Materialisation by SPOWL (Partial
Caching)

SPOWL LUBM-2000 LUBM-3000 LUBM-4000
Initial Load 53m05s 1h16m54s 1h54m41s
Reasoning 1h57m56s 3h06m59s 4h41m07s
Total 2h51m00s 4h23m52s 6h35m48s

However, SPOWL required much longer time for reason-
ing (i.e. 1h57m56s) over LUBM-2000 now as compared to
the time (i.e. 58m08s) it needed in Table 1. This is as ex-
pected because now SPOWL spent more time on exchanging
data between memory and disk. Inspired from this finding,
we plan to investigate how a hybrid data caching strategy
might maximise the scalability of SPOWL without slowing
down the reasoning too much.

4.2 Comparing SPOWL to WebPIE
The reason we choose WebPIE as a comparison system

is mainly because WebPIE uses MapReduce as a compu-
tational mechanism to materialise reasoning by evaluating
a set of entailment rules, while SPOWL uses Spark, which
has certain advantages over MapReduce. Unlike SPOWL,
WebPIE does not use a tableaux reasoner, and its reasoning
completeness is limited to the evaluated entailment rules.
In particular, it covers the OWL ter Horst rules, but does
not fully handle OWL 2 RL/RDF rules. Moreover, WebPIE
treats ontology data as a single set of RDF triples without
any partitioning, but it compresses ontology data before exe-
cuting MapReduce programmes, which could accelerate the
materialising. Consequently, decompressing the generated
reasoning materialisation is required. In this evaluation, we
recorded the time used by WebPIE for processing LUBM-
1000, LUBM-2000, LUBM-3000 and LUBM-4000, which is
provided in Table 3.

Since WebPIE compresses ontological data under reason-
ing, which could accelerate the reasoning process, it is more
fair to compare the total time used by WebPIE and SPOWL,
than only comparing the reasoning time. When SPOWL
uses the total caching strategy, even without compressing
the data, it required 1h52m18s for materialising reasoning
results of LUBM-2000 as shown in Table 1, and the perfor-

Table 3: Reasoning Materialisation by WebPIE

WebPIE LUBM-1000 LUBM-2000 LUBM-3000 LUBM-4000
compress 29m04s 59m37s 1h31m52s 2h01m59s
reasoning 30m36s 46m02s 58m27s 70m13s
decompress 14m03s 28m35s 49m16s 1h03m7s
Total 1h13m43s 2h14m14s 3h19m35s 4h15m19s

mance is faster than 2h14m14s performed by WebPIE. The
reason for the outperformance is not only because SPOWL
uses Spark’s capability of data caching, but also due to the
fact that SPOWL compiles a classified T-Box to Spark pro-
grammes directly related to the ontology rather than the
simple rule evaluation adopted by WebPIE. Indeed, if we
consider the situation in which SPOWL uses the partial
caching strategy (in Table 2), it needed 2h51m in total for
LUBM-2000, which is just slightly slower than WebPIE. Re-
member that SPOWL does not compress the ontology data,
and we plan to add this to SPOWL in the future. In addi-
tion, SPOWL handles some axioms beyond OWL 2 RL, such
as axioms (2) and (9) in LUBM, and thus is more complete
than WebPIE.

WebPIE stores the reasoning materialisation as a whole
set of RDF triples without considering to partition the on-
tological data. This means when there are queries retrieving
information from the materialisation, WebPIE would require
longer time to process the queries than SPOWL. Moreover,
since it performs reasoning by the way of evaluating a fixed
set of entailment rules, its reasoning completeness is limited
by the choice of the ruleset. However, SPOWL uses the
classified T-Box for generating entailment rules, which are
specially for the ontology under reasoning, and handle some
extra axioms beyond OWL 2 RL, which leads to a more
complete query answering.

5. SUMMARY AND CONCLUSIONS
To summarise, this paper has described how our approach

to compiling OWL T-Boxes into Spark programmes as a sys-
tem named SPOWL, which supports reasoning over large
ontologies in a Big Data system. Unlike most large scale rea-
soners, which simply evaluate a set of entailment rules for
materialising the reasoning closure, SPOWL uses a classi-
fied T-Box for a more complete T-Box reasoning. Moreover,
compared to reasoners using MapReduce, SPOWL benefits
from Spark which uses distributed memory as much as pos-
sible, and schedules jobs in a more flexible and parallelised
manner by the DAG scheduler. In particular, we have di-
vided Spark programmes into three groups, and have intro-
duced an optimised order of executing the three groups of
Spark programmes, which might reduce execution iterations
until the computation of reasoning closure can terminate.

However, our approach restricts itself to consider simple
and small T-Boxes, while ontologies with complex and large
structure (e.g. SNOMED-CT [8] and Gene ontology [1]) are
beyond the scope of SPOWL. Also, if dependencies among
the Spark programmes contain many cycles, an optimised
order of execution is difficult to obtain, but we consider this
is highly unlikely in real-world ontologies.

6. REFERENCES
[1] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein,

H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski,

S. S. Dwight, J. T. Eppig, et al. Gene Ontology: Tool
for the Unification of Biology. Nature genetics,
25(1):25–29, 2000.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,
R. Cyganiak, and Z. G. Ives. DBpedia: A Nucleus for
a Web of Open Data. In ISWC/ASWC, volume 4825,
pages 722–735. Springer, 2007.

[3] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi,
and P. F. Patel-Schneider, editors. The Description
Logic Handbook: Theory, Implementation, and
Applications (Second Edition). Cambridge University
Press, Cambridge, UK, 2010.

[4] T. Bagosi, D. Calvanese, J. Hardi, S. Komla-Ebri,
D. Lanti, M. Rezk, M. Rodŕıguez-Muro, M. Slusnys,
and G. Xiao. The Ontop Framework for Ontology
Based Data Access. In Proceedings of CSWS 2014,
pages 67–77, Wuhan, China, 8–12 Aug. 2014. Springer.

[5] T. U. Consortium. UniProt: a Hub for Protein
Information. Nucleic Acids Research,
43(D1):D204–D212, 2015.

[6] R. Cyganiak, D. Wood, and M. Lanthaler, editors.
RDF 1.1 concepts and abstract syntax. W3C
Recommendation, 2014. Latest version available at
https://www.w3.org/TR/rdf11-concepts/.

[7] G. Dong, L. Libkin, J. Su, and L. Wong. Maintaining
Transitive Closure of Graphs in SQL. International
Journal of Information Technology, 51(1):46, 1999.

[8] K. Donnelly. SNOMED-CT: The advanced
terminology and coding system for eHealth. Studies in
health technology and informatics, 121:279, 2006.

[9] Google. Freebase Data Dumps.
https://developers.google.com/freebase, 2016.

[10] R. Gu, S. Wang, F. Wang, C. Yuan, and Y. Huang.
Cichlid: Efficient Large Scale RDFS/OWL Reasoning
with Spark. In IPDPS, pages 700–709. IEEE, 2015.

[11] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark
for OWL knowledge base systems. J. Web Sem.,
3(2):158–182, 2005.

[12] M. F. Husain, L. Khan, M. Kantarcioglu, and
B. Thuraisingham. Data intensive query processing for
large RDF graphs using cloud computing tools. In
IEEE CLOUD, pages 1–10. IEEE, 2010.

[13] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia.
Learning Spark: Lightning-Fast Big Data Analysis. ”
O’Reilly Media, Inc.”, 2015.

[14] M. Krötzsch. OWL 2 Profiles: An Introduction to
Lightweight Ontology Languages. In Reasoning Web
International Summer School, Vienna, Austria, 2012.
Springer.

[15] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining
of Massive Datasets. Cambridge University Press,
2014.

[16] Y. Liu. Inference as a Data Management Problem.
PhD thesis, Imperial College London, October 2016.
Available at http://hdl.handle.net/10044/1/44960.

[17] Y. Liu and P. McBrien. Transactional and Incremental
Type Inference from Data Updates. In Proceedings of
BICOD 2015, pages 206–219, Edinburgh, UK,
6–8 July 2015. Springer.

[18] Y. Liu and P. McBrien. Transactional and Incremental
Type Inference from Data Updates. The Computer

Journal, 60(3), 2016.

[19] Z. Liu, Z. Feng, X. Zhang, X. Wang, and G. Rao.
RORS: Enhanced Rule-based OWL Reasoning on
Spark. In Asia-Pacific Web Conference, pages
444–448. Springer, 2016.

[20] P. McBrien, N. Rizopoulos, and A. C. Smith.
SQOWL: Type Inference in an RDBMS. In
Proceedings of ER 2010, pages 362–376, Vancouver,
BC, Canada, 1–4 Nov. 2010. Springer.

[21] G. Meditskos and N. Bassiliades. Combining a DL
Reasoner and a Rule Engine for Improving
Entailment-Based OWL Reasoning. In Proceedings of
ISWC 2008, pages 277–292, Karlsruhe, Germany,
2008. Springer.

[22] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue,
and C. Lutz, editors. OWL 2 Web Ontology Language:
Profiles (Second Edition). W3C Recommendation,
2012. Latest version available at
http://www.w3.org/TR/owl2-profiles/.

[23] S. Muñoz-Venegas, J. Pérez, and C. Gutierrez. Simple
and Efficient Minimal RDFS. J. Web Sem.,
7(3):220–234, 2009.

[24] C. Pang, G. Dong, and K. Ramamohanarao.
Incremental Maintenance of Shortest Distance and
Transitive Closure in First-Order Logic and SQL.
ACM Transactions on Database Systems (TODS),
30(3):698–721, 2005.

[25] H. Pérez-Urbina, E. Rodŕıguez-Dı́az, M. Grove,
G. Konstantinidis, and E. Sirin. Evaluation of Query
Rewriting Approaches for OWL 2. In Proceedings of
SSWS+HPCSW, volume 943, pages 32–44, Boston,
USA, 2012. CEUR-WS.org.

[26] K. Rohloff and R. E. Schantz. High-performance,
massively scalable distributed systems using the
mapreduce software framework: the SHARD
triple-store. In PSI EtA, page 4. ACM, 2010.

[27] A. Schätzle, M. Przyjaciel-Zablocki, and G. Lausen.
PigSPARQL: Mapping SPARQL to pig latin. In
Proceedings of the International Workshop on
Semantic Web Information Management, page 4.
ACM, 2011.

[28] R. Shearer, B. Motik, and I. Horrocks. HermiT: A
Highly-Efficient OWL Reasoner. In OWLED, volume
432, page 91, 2008.

[29] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and
Y. Katz. Pellet: A practical OWL-DL reasoner. J.
Web Sem., 5(2):51–53, 2007.

[30] H. J. ter Horst. Completeness, decidability and
complexity of entailment for RDF Schema and a
semantic extension involving the OWL vocabulary. J.
Web Sem., 3(2):79–115, 2005.

[31] J. Urbani, S. Kotoulas, J. Maassen, F. Van Harmelen,
and H. Bal. WebPIE: A Web-scale Parallel Inference
Engine using MapReduce. J. Web Sem., 10:59–75,
2012.

[32] Z. Wu, G. Eadon, S. Das, E. I. Chong, V. Kolovski,
M. Annamalai, and J. Srinivasan. Implementing an
Inference Engine for RDFS/OWL Constructs and
User-Defined Rules in Oracle. In Proceedings of ICDE
2008, pages 1239–1248, Cancún, México, 7–12 Apr.
2008. IEEE, New York.

