
Relational Algebra Learning Tool

Pritam Mitra
pm105@doc.ic.ac.uk

Supervisor: Dr. Peter McBrien
Second Marker: Dr. Fariba Sadri

June 22, 2009

1

Abstract

Currently there is a lack of good quality learning tools which makes the process of learning Relational
Algebra an interesting and exciting activity. Majority of the learning tools available for teaching
database concepts concentrate solely around SQL, which is based on the concepts of Relational Al-
gebra. As a result, often lecturers introduce Relational Algebra as conceptual operations which can
be performed by actual query languages. This often leads students to believe that Relational Algebra
play no important role in the actual implementation of database applications. They fail to realise that
SQL queries act as declarative language telling the Database Management Systems (DBMS) what
it wants. Relational Algebra on the other hand is a procedural language since it is concerned with
the execution of SQL queries. Hence it is very important that students get a good understanding of
Relational Algebra as it allows them to understand database operations in more detail and motivate
them to write optimized queries.

In this report, we introduce a new tool called RALT - Relational Algebra Learning Tool. This tool
allows the creation of Relational Algebra queries by using a graphical interface following a dataflow
approach without the need to manually enter the queries into the system.

Contents

1 Acknowledgements 3

2 Introduction 4
2.1 Motivation . 4
2.2 Project Aims . 7

3 Background & Research 8
3.1 Relational Algebra . 8
3.2 Visual Query Systems . 12

3.2.1 Introduction . 12
3.2.2 Visualisation Representation Approaches . 12
3.2.3 Interaction Strategies . 14

3.3 Related Work . 16
3.4 Data Lineage . 19
3.5 Development Environment . 24

3.5.1 Technologies . 24

4 User Iterface 26
4.1 GUI Toolkit . 26
4.2 Benefits of Java Swing . 26
4.3 User Interface in RALT . 28

5 Architecture 32
5.1 System Architecture . 32

5.1.1 Model Layer . 32
5.1.2 View Layer . 37
5.1.3 Controller . 39
5.1.4 Data Access Layer . 41

5.2 Query Tree Architecture . 41
5.3 Data Lineage . 44

6 Implementation 47
6.1 The Beginning . 47
6.2 Loading Tables from Database . 47
6.3 Implementing Relational Algebra Operators . 48
6.4 Graphical Query Building . 54
6.5 Performing Data Lineage . 58

1

6.6 Adding New Operators . 60

7 User Guide 64
7.1 Introduction . 64
7.2 On Loading . 65
7.3 Drag and Drop . 66
7.4 Viewing Table Contents . 66
7.5 Building Queries . 66
7.6 Data Lineage . 72
7.7 Delete Components . 73
7.8 Playing with visualisation elements . 75
7.9 Log Out . 76

8 Testing & Evaluation 77
8.1 Introduction . 77
8.2 System Assesment . 77

8.2.1 Connecting to Databases . 77
8.2.2 Storage of Data . 78
8.2.3 Implementing basic and advance Relational Algebra operators 78
8.2.4 Testing GUI . 79
8.2.5 Query Building . 80
8.2.6 Introduction of Data Lineage . 82

8.3 User Testing . 82
8.3.1 Carrying out the survey . 84
8.3.2 Analysis of Survey . 84
8.3.3 Questionnaire . 86

9 Conclusions & Future Work 88
9.1 Future Work . 88
9.2 Conclusion . 89

2

Chapter 1

Acknowledgements

I would first like to give special thanks to my supervisor, Dr Peter McBrien, for his continual support
and encouragement throughout the course of the project. Secondly, I would also like to thank my
second marker, Dr Fariba Sadri, for providing key insights into this project.

I would like to thank my family and friends who have always given their full support throughout
my time spent at university.

3

Chapter 2

Introduction

2.1 Motivation

The huge success of relational databases has inspired the development of Structured Query Language
(SQL) - a query language designed for interaction with relational databases.

Over the past two decades, SQL has gradually evolved from its first commercial use into a computer
product. SQL has been accepted as the industry standard for database programming language. It is
used in systems of various sizes - from mainframes to personal computers and even handheld devices.

SQL is built on the concept of Relational Algebra. Relational Algebra can be seen as the mathemat-
ics which underpins the SQL operations and acts as a formal description on the behaviour of relational
databases [1]. It bears resemblance to normal algebra (as in x× 3 + y × 2) but uses relations as values
instead of numbers [2]. The inner, lower-level operations of relational databases are, or are similar to,
Relational Algebra operations. Gaining expertise in Relational Algebra is the foundation needed for
the student to effectively craft queries in any commercially available languages.

Along with these important applications, the simple, compactness and platform independent nature
of Relational Algebra makes it an integral part of Database courses. Students equipped with a good
understanding of Relational Algebra concepts can easily break down a large problem into smaller and
easily solvable problems. Practicing SQL without having a good understanding of Relational Algebra
often encourages students to write complex SQL queries from the very beginning. Students fail to
realise how SQL queries are broken down during execution and often compute un-optimised queries
(e.g. computing JOIN operation and then performing SELECT on the results produced by the JOIN
operation). Querying with Relational Algebra forces students into a disciplined reasoning process
that involves a partitioned, step-by-step and sequential scheduling of tasks. As a result student gain
a knowledge of writing optimised query.

Despite the fact that Relational Algebra is such important aspect of the computing world partic-
ularly in the database subject area, lecturers when conducting database courses, often do not spend
much time explaining the fundamentals of Relational Algebra. Relational Algebra is introduced as
conceptual operations which can be performed by actual query languages. This leads computing
students to believe that Relational Algebra play no important part in the actual implementation of

4

database applications. The advantage of learning SQL and writing SQL queries without understand-
ing Relational Algebra in depth strengthens this belief. Students fail to realise that SQL queries
act as a declarative language- telling the Database Management Systems (DBMS) what it wants [2].
Relational Algebra on the other hand is a procedural language as it is concerned with how the SQL
queries should be executed.

Majority of the learning tools available for teaching database concepts concentrate solely around
the SQL language. The lack of high-quality learning tools for Relational Algebra acts as a factor for
not being able to draw student’s interest in this subject. Students often shy away from executing
Relational Algebra queries using the learning tools at hand, as they are required to construct the
queries by manually typing them into the system. When building queries by entering them manually
into the system, users often make syntatical errors and they spend a large proportion of their time
getting their query syntatically correct rather than understanding the concept of Relational Algebra.

In this report we introduce a new tool called RALT - Relational Algebra Learning Tool - for
assisting in teaching Relational Algebra. RALT allows users to build Relational Algebra queries using
an interactive graphical interface following the data flow approach and hence exempts them from
the hassle of entering query manually into the system. RALT also provides visualisation for different
stages of the query execution process. These features of RALT make the learning of Relational Algebra
an easy and enjoyable activity.

Through an example we will explain how Relational Algebra can be learnt in an easy and effortless
manner by using our system RALT.

Assume we have two relational tables branch and account as shown in Table 2.1 and Table 2.2.

sortcode bname cash
56 Wimbledon 94340.45
34 Goodge St 8900.67
67 Strand 34005.00

Table 2.1: branch

no type cname rate sortcode
100 current McBrien, P. NULL 67
101 deposit McBrien, P. 5.25 67
103 current Boyd, M. NULL 34
107 current Poulovassilis, A. NULL 56
119 deposit Poulovassilis, A. 5.50 56
125 current Bailey, J. NULL 5 6

Table 2.2: account

5

The result displayed in table Table 2.3, is achieved by executing the query branchX σrate>0 account
i.e. execute a product operation between the tuples of branch and those tuples of table account which
have the value of rate attribute value greater than 0. However, the person executing the query fails
to observe the intermediate steps and results produced when executing this query.

sortcode bname cash no type cname rate sortcode
56 Wimbledon 94340.45 101 deposit McBrien, P. 5.25 67
56 Wimbledon 94340.45 119 deposit Poulovassilis, A. 5.50 56
34 Goodge St 8900.67 101 deposit McBrien, P. 5.25 67
67 Strand 34005.00 101 deposit McBrien, P. 5.25 67
67 Strand 34005.00 119 deposit Poulovassilis, A. 5.50 56

Table 2.3: Table produced as a result of executing the query

branchX σrate>0 account

In Figure 2.1 we show how the same query can be displayed in a graphical interface. To build
the query, a step-by-step approach is taken. The user breaks the above query into two parts - first
executing the operation σrate>0 account and then performing the operation branchX result, where
result is the output generated by the first operation. A similar approach is taken when building
queries in RALT. Using RALT’s user friendly graphical interface, queries can be built effortlessly just
by providing the inputs for operators and then using the result table produced as input for other
operators.Executing queries this way together with the graphical representation of the query building
process, enhances user’s understanding of how queries are built and improves their knowledge about
different Relational Algebra operators.

Figure 2.1: Buidling Relational ALgebra queries using data flow approach

6

2.2 Project Aims

The primary aims of RALT are listed below.

1. Connecting to Database
Our system will allow the users to connect to a desired database. As a result a front end must
be present which will allow the users to enter necessary information to connect to a database.
Once all the data is provided our system will connect to the database and will allow the user to
perform actions on the contents of the database.

2. Storage of Data
Our system should handle user request in an intuitive way such that if the data is altered the
changes are not reflected on the mother database (i.e. the database to which user is connected).
Hence we must intuitively store all the necessary data from connected database on the client
machine and allow the user to perform operations on this duplicated data.

3. Displaying Data
A fundamental element of our system is that it will allow visualization of the contents of the
data present in the tables of a database. Also the system should display the relevant metadata
information associated with each table of the database necessary for query building.

4. Implementation of the basic Relational Algebra Operators
Our system takes the unique approach of performing all the operations in memory and should
provide the implementation of the seven basic Relational Algebra operators - Select, Project,
Natural Join, Union, Intersection, Difference,Product.

5. Building Queries
The aim of our system is to allow the users to build queries. The system should allow the
user to build queries by selecting the operators from a list and providing as inputs to these
operators tables fetched from the database the system is connected to. The system will provide
a visualisation of the query in a data flow approach. Our system will also allow users to use
results produced from a particular query to act like the input for another operator.

6. Deletion of Tree Node
The system should be able to delete a particular section of a query tree on request.

7. Implementing advanced Relational Algebra Operators
To ensure our users gain a further advanced knowledge on the concept of Relational Algebra,
we will aim to add advanced Relational Algebra Operators such as Division, Left Outer Join,
Right Outer Join, Semi Join, Anti-Join to our system.

8. Introduction of Data Lineage
This feature will allow our users to track quickly how a particular data is derived and hence will
help in enhancing their knowledge on Relational Algebra operations. Currently no learning tool
for Relational Algebra is equipped with the feature of Data Lineage.

7

Chapter 3

Background & Research

We begin this chapter by reviewing what Relational Algebra is (Section 3.1) and understanding the
functionality of the different Relational Algebra operators which have been implemented in our system.
In Section 3.2 we investigate the different ways visualising query building process. We then evaluate
some existing work done for assisting the learning of Relational Algebra (Section 3.3) before looking
into different ways of finding the lineage of an information (Section 3.4). Lastly in Section 3.5 we
review the technology and tool used in our project.

3.1 Relational Algebra

Relational Algebra is an off shoot of first-order logic. In 1970 E.F.Codd while working for IBM
proposed how Relational Algebra can be used as a basis for database query language. Since then
Relational Algebra has find extensive use in the development of query languages, the most popular of
them being SQL.

The beauty of Relational Algebra is that each of its operators takes as input one or more relational
tables and outputs a relational table as result, which can again act as an input to another operator.
This unique characteristic makes it simple to construct complex queries using the relational operators.
SQL being based on relational algebra follows a similar approach when building query. For e.g. let
us again take the table account (Table 2.2) into consideration. If now the query σrate>0 account is
executed the result displayed in Table 3.1 is produced.

no type cname rate sortcode
101 deposit McBrien, P. 5.25 67
119 deposit Poulovassilis, A. 5.50 56

Table 3.1: temp result

The result produced in Table 3.1 can then act as the input for the query Πtype to produce the
result displayed in Table 3.2. This feature of Relational Algebra allows us to go on building complex
queries by providing output of one operation as the input of another. In our application RALT we
use this feature of Relational Algebra to build query trees.

8

type

deposit

Table 3.2: Result produced by

Πtype temp result

Relational Algebra operators are usually divided into two groups - basic and advanced operators.
Below we will see a small description of the five basic operators of Relational Algebra:

• Project : A unary operation is used to select particular columns of a table. Written as
Πa1,a2,...an

(R) , where a1,an corresponds to a set of attribute names, the Project operator
produces tuples in R which are restricted to the columns a1,an

• Select: Another unary operation used to select particular rows of a table. Written as σϕR, this
operator selects the set of rows from table R which satisfy the condition ϕ.

• Union: A binary operation takes two tables with identical attributes as inputs and produces a
single table containing a set of elements containing elements from both the tables.

• Intersection: Another binary operation which takes two tables with identical attributes as
inputs and produces a single table containing a set of elements which are shared by both the
tables.

• Difference: Is a binary operation that also takes two tables with identical attributes as inputs
and produces a single table containing a set of elements which are present in the first table
removing the ones common to both the input tables.

• Product: The Product operator again takes two tables as input and produces an output with
all the possible combination of tuples from both the tables. For an example consider the tables
A and B and their Product

id name
1 John
2 Jack

Table 3.3: Employee

department
Sales

Marketing

Table 3.4: Department

9

id name department
1 John Sales
2 Jack Sales
1 John Marketing
2 Jack Marketing

Table 3.5: Result procued by executing

Employee χDepartment

Apart from the basic operators, Relational Algebra consists of some advanced operations such as:

• Natural Join:
A binary operation written R ./ S produces a set of all combinations of tuples in R and S which
are equal on their common attribute names. For example consider the tables Employee and
Dept and their natural join

name empId deptName
Harry 3415 Finance
Sally 2241 Sales

George 3401 Finance
Harriet 2202 Sales

Table 3.6: Employee

deptName manager
Finance George

Sales Harriet
Production Charles

Table 3.7: Department

name empId deptName manager
Harry 3415 Finance George
Sally 2241 Sales Harriet

George 3401 Finance George
Harriet 2202 Sales Harriet

Table 3.8: Result after executing

Employee ./ Department

• Semi Join:
Similar to Natural Join but the result of a Semi Join is only the set of all tuples in the first input
R for which there is a tuple in the second input S such that they are equal on their common
attribute names.

• Anti Join:
Anti Join, written as R . S is another binary operator which only displays the tuple of R for
which there is no common attribute in S.

• Left Outer Join:
Written as R = χS, the Left Outer Join produces the set of all possible combination of R & S

10

that are equal in their common attribute names. Additionally it also displays the tuples in R
for which there is no tuple in S common on the shared attribute names.The output tuple for
such rows in R show Null values in the columns of S which are not common between R and S.
For example given two table R and S, the Left Outer Join of the two

name empId deptName
Harry 3415 Finance
Sally 2241 Sales

George 3401 Finance
Harriet 2202 Sales

Tim 1123 Executive

Table 3.9: Employee

deptName manager
Sales Harriet

Production Charles

Table 3.10: Department

name empId deptName manager
Harry 3415 Finance null
Sally 2241 Sales Harriet

George 3401 Finance null
Harriet 2202 Sales Harriet

Tim 1123 Executive null

Table 3.11: Output for executing the Left Outer Join

Employee = χDepartment

• Right Outer Join:
Similar to the Left Outer Join, but this operator displays the tuples of the tuple S which have
not featured in the Natural Join between R and S.

• Division:
Division takes two inputs say R & S and produces the attributes unique to R for which it holds
that all their combinations with tuples in S are present in R. It is written as R÷ S.

Student Task
Fred Database1
Fred Database2
Fred Compiler1

Eugene Database1
Eugene Compiler1

Sara Database1
Sara Database2

Table 3.12: Student

Task
Database1
Database2

Table 3.13: Department

11

Student
Fred
Sara

Table 3.14: Output for

R ÷ S

3.2 Visual Query Systems

3.2.1 Introduction

Query language is composed of a set of formal operators, using which users can express requests to
a database [3]. Execution of these queries produces results from the database which are consistent
with the requests made. In order to teach the fundamentals of query languages and how they can be
used, same text materials are provided both for the naive and the expert users. The high technical
jargon used in these manuals often is too hard to understand especially for the beginners. This
motivated in the development of a new type of query language through systems called Visual Query
System (VQS). VQSs could be seen as an evolution from the traditional query languages, focussing on
providing a friendly man-machine interaction which would simplify how non-technical users interact
with the database.

As our system is mainly targeted for users who are learning database operations for the first time,
it is important that we evaluate the different ways effective man-machine interaction can be obtained
using the idea of VQS. VQS ensure that the effort needed from non-technical users is reduced and no
intermediate learning is required by the user. This is achieved by exploiting drawings/images which
when used as metaphor; cater information at the correct level of abstraction within a concise form [4].
VQSs are gaining popularity because it reduces significant amount of the mental load users previously
were forced to carry and provide sufficient visual information of the computing processes and their
relationships, which are much easier to perceive. VQS takes advantage of the high bandwidth of
human-vision channel, allowing quick gathering of large amount of information while exploiting the
visual feedback techniques [5].

One of the primary aims of adopting a visual representation in a query based system is that it
opens up a clear communication channel between the user and the contents of the database. A visual
representation presents in front of the users essential features concerning the data, making it easily
absorbable while omitting any unnecessary details such as the internal structure of the data. Existing
VQS make use of common objects such as tables, diagrams, icon etc as a means of representing
information. An experienced user does not value the representation friendliness much as his/her
technical skills assist in adapting to abstract concepts with reasonable effort. However, for a novice
user representation friendliness is of prime importance as they prefer to interact with items similar to
the reality they are in and not be acquainted with the existence of the underlying abstract model.

3.2.2 Visualisation Representation Approaches

Models are used in VQS for indicating the data and queries. Their corresponding visual representations
together with the strategies provided by the system assist in formulating the query. The usability of

12

the VQS is determined in terms of these models [3]. As query representation is generally dependent
on data representation, both data and query are treated through a unique classification scheme which
includes different concepts, according to the choice and organisation of the chosen symbol. A brief
explanation of the concepts is given below:

• Form Based
It is seen as the first attempt to migrate from the traditional linear string representation of query
and beginning of the exploitation of the bi-dimensional space to provide an easy-to-use-interface
for data manipulation [4]. Forms are used to display objects which have similar structure. The
form concept used in program visualisation maps to an abstraction of the conventional paper
forms. Here forms are used as abstractions of tables. The main characteristic of this approach
is the visualisation of the table prototype when a query is formed, by inserting text into a form
field. Query-By-Example (QBE) applications have adapted this method of visualisation.

id name country
3 John ...

Table 3.15: Form for table
user

For example as shown in Table 3.15, by completing the form the SQL query SELECT ∗
fromuserWHERE id = 3ANDname = ‘John′ is generated.

• Diagram Based
In a diagram based representation, the visual components share a one-to-one correspondence
with specific concepts. However, diagram has a broader meaning and it is also used to describe
charts, network mode and graphs. The layout of a diagram can be modified following certain
protocols to produce new relationships. In Entity Relationship Model, this approach has been
adopted. In such models, rectangles are used to denote entities; diamonds are for relationships
while circles are used to denote attributes and relationship between these components are estab-
lished by drawing lines among them. If some of the lines are redrawn then a new relationship
model is produced.

• Icon Based
Here a set of icons are used to represent the entities of the database together with the operations
available to be performed on them. A query can be composed by combining these icons. Systems
using this approach mainly target users who are not familiar with the concepts of the data models
and who may find it difficult to adapt/interpret the Entity Relationship diagram.

• Hybrid
Such visual representation uses all three concepts discussed above, offering the user various
alternative representations of database and queries by combining different visual formalism into
a single representation.

Although VQS are proving to be a threat to the traditional query systems, they have their drawbacks
too. No standard has yet been established enabling different icons being used in different applications
to represent the same concept. This increases in potential ambiguity while interpreting a set of icons
and the discrimination power decreases. Moreover, given the space available for displaying the icons,
overcrowding of icons often occur. The limitations of screen size cluttered drawing and images are

13

often seen while displaying information, thus reducing their readability. Although one can take the
advantage of scrolling technology to space out the components, a comprehensive representation of the
whole reality of interest may be lost.

We feel the Hybrid representation is the best choice for our system. Such a representation allows
us to use icons in order to represent Relational Algebra operators while dataflow diagrams are used
for building for queries. Dataflow diagrams can be seen as a collection of boxes, connected by lines
which represent the information flow. Some of the boxes in the dataflow diagrams will represent data
tables whose contents can be shown in a form representation. Also user input for the operators such
as Select or Project could be received using the Form representation.

3.2.3 Interaction Strategies

In order to formulate query, VQS should be equipped with simple, easy to adapt interaction strategies
which will allow users to fetch the desired results from the database they are interacting with. Being
able to identify the information one is interested, especially when the database schema is made up
of a large number of concepts is a complex and difficult task. To solve this problem a mechanism is
required which will present the schema with varying amounts of detail and allowing the user to control
it. This is achieved by two approaches Top-Down and Browsing.

In a Top-Down schema navigation approach the general aspects of the reality are perceived first fol-
lowed by the introduction of specific interest [6]. Some of the different means by which this navigation
is performed are:

• Selective Zoom
Here the concepts are layered according to their importance. The concepts can be graphi-
cally examined at different levels of abstraction allowing objects above a specified importance
level being displayed at a time. For e.g. in a E-R diagram, customer table has a relation
has account with the account entity. Again customers can be generalised into regular customers,
premium customers. When showing a visual representation in such an approach, the E-R di-
agram will show only the relationship between the customer entity and the account entity re-
moving information on the type of customers. On drilling down further on the customer entity
the two generalisations can be seen.

• Hierarchical Zoom
This approach allows objects to be examined at different levels of detail. Such an approach is
presented in ESCHER [7]. In ESCHER the data model reflects the structure of the objects by
an extended relational model in which four types of attribute values (list, tuples, atomic values
and multi-sets) are defined at arbitrary depth of nesting. ESHCER allows the aggregation of
objects based on their background relation and a visual interface shows a nested table to the
user in several levels of detail.

The Browsing schema navigation scheme is designed keeping in mind that the users possess little
knowledge about the database and its interaction techniques and more than often do not have a pre-
defined goal when accessing the database. A brief description of the different means of navigation
under the Browsing navigation approach is given below:

• Intentional Browsing
This browsing is performed in the conceptual level of the database schema. It identifies all the

14

existing paths between two concepts and specifying conditions on the length of the path and/or
the presence of particular concepts.

• Extensional Browsing
Here the user lives inside a single Entity-Relation tuple and sees the database from the perspec-
tive of that tuple. The systems play its role in showing all the relationships concerning the tuple
in which the user is residing in. A tuple from one of the linked entity could be selected by the
user and that tuple becomes the centre of focus.

As we will see, in our application we have used a variety methods of the methods discussed above
for displaying various types of information. Selective zoom is used to show the contents of a table
present in the query dataflow diagram. Initially the query will be made up of operators and table
names and user can use selective zooming to view the contents of a table or the conditions attached to
particular relational algebra or SQL operator. Hierarchical zoom will be used to see the contents of a
table selected from a list of all the tables present in the database. The tool will also exploit intentional
browsing for extracting information such as which two tables can be combined when the JOIN operator
is performed or the table names with which the interested table shares a relation. Extensional browsing
is used when performing data lineage to show which database tuples contributed in deriving a selected
tuple.

Along with being able to extract the details of database easily, VQS also need an easy way for query
formulation. Different methods for formulating a database query are given below:

• Arbitrary Connected Path
In this method the user selects the intentional pattern of interest i.e. the entities and their
associations. Once an entity is selected, the data the user is looking for could be fetched by
specifying restriction conditions which involve attributes of a single entity while inter-entity
clauses could be performed by attributes of different entities.

• Connected Hierarchial Path
In this approach the user selects an entity of the database following which the system builds
a hierarchical tree view of the database with the selected entity at the root. For example in
GORDAS [6], user first selects a root concept to determine the direction of reference for the
involved relationships. Relationship attributes are assigned to the entity at the lower level in the
hierarchy. Then, the user provides the selection conditions. First, conditions on the attributes
of the root entity are specified, and, later on, those involving related entities. It is worth noting
that different root entities may be specified for the same query giving rise to different views.

• Unconnected Path Users are often interested in creating new concepts by combining different
concepts already existing in a database. The unconnected path approach for creating query
can be used to meet such user requirements. HIQUEL [6] is a system where this approach is
used. Following a step by step approach, a query can be built first by deleting the non-relevant
attributes of the selected entities and then proposing conditions on the applicable attributes.
Entities not explicitly related in the database schema can be linked with the help of relational
algebra’s join operator.

In RALT the concept of Arbitrary Connected Path and Unconnected Path when creating a query
dataflow diagram has been implemented. Arbitrary Connected Path is used when specifying conditions
on the select operator when applied to a database table. Our system also allows queries to be created
only between tables which share a relationship but also between other tables as long as they meet the

15

relationship criteria (for example if a union operator can only be applied on two tables if they are
compatible).

3.3 Related Work

In this section we will discuss some of the previously published work which has acted as an inspi-
ration/benchmark when designing the learning tool for the teaching of relational algebra. In the
context of database learning, a majority of the learning tools developed has focussed solely on the
SQL language [4]. One such tool is SQLator - an online SQL learning workbench [8]. It is a web-based
interactive tool for learning SQL.

It allows the user to evaluate his/her query formulation with the help of an evaluation engine based
on complex heuristic algorithm. However, queries are created not by graphical interaction but through
manually writing the query. Moreover, such tools lack the advanced Relational Algebra operators like
Division, Anti-Join etc. Tools such as DBTool have also been designed to support the process of
designing databases. Such tools provide a graphical interface for drawing the entity-relationship data
model. Fortunately, some tools have concentrated in highlighting the importance of the Relational
Algebra in databases applications. Below we provide a brief introduction to some of these tools.

• RAIN
Relational Algebra Interface Using Java is a tool aimed at university students to enhance their
learning in the creation and execution of the Relational Algebra query [5]. The tool operates by
connecting to a database and allowing users to perform database operations on that database.
The tool provides an interactive visual display of the physical nature of the database contents and
presents useful information such as Primary Key of a table. The application allows users to create
Relational Algebra queries in the algebraic notation. The queries created are then transformed
into their respective SQL representations and the results are maintained in a persistence state
in the database the system is connected to. This allows the user to re-use these results any time
later on.

However, RAIN expects users to be familiar with the Relational Algebra query notation.
Hence for users interested in using this tool, must first possess some basic concepts on how to
formulate Relational Algebra queries. Moreover users cannot view the results until the syntax of
their query is correct. We have tried to address this issue in our system by eliminating the need
for the user to construct queries using the algebraic notation. Instead all the user needs to do is
just select the operators and tables required for building the query together with any constraints
needed and the system takes care of the rest. This way user spends more time understanding
the concept of relational algebra operators and less time on fixing syntatical mistakes in their
query.

• RELATIONAL
RELATIONAL is another application developed in Python which helps in the learning and
creation of Relational Algebra queries. It allows users to build Relational Algebra queries by
selecting Relational Algebra operations represented as icons in the application. Once the desired
query has been constructed by the user, the query can be executed by clicking a button which
in turn displays the results in the result panel of the tool.

16

Figure 3.1: GUI for RELATIONAL

This tool gives more flexibility to the user compared to RAIN, as it allows the user to create
the Relational Algebra query by just selecting some Relational Algebra operators, tables and
attributes. However, the interface provided by the tool is not enough interactive as well as
informative and does not give the user a better understanding of how Relational Algebra query
works. For example as shown in Figure 3.1, a long sequence of query has been formulated to
compute the result shown in the result panel located at the centre of the application window.
However, by no means can a user find out what intermediate results were produced which had
contributed to the final result and hence a compromise is made on their understanding of the
functionality of relational operators.RALT addresses this problem by allowing the user to build
a query step-by-step and displaying any intermediate results produced. The user can then carry
on building a query by using any intermediate result as inputs to operators in the query.

•• Relax
RELAX - Relational Algebra Explorer is a project aimed at students to help them reason queries
in an algebraic style while at the same time improving their skills in SQL programming. In this
project a Rlational Algebra parser in a graphical interface has been implemented. The interface
allows the creation of query in a text format by choosing Relational Algebra operators. The
queries could be of any degree of complexity and can be nested, one inside the other of the
parenthesis. Once created, the query is it can be analysed and resolved.

RELAX allows the user to create complex nested queries which is not the best way for a new
user to learn Relational Algebra. Moreover, although RELAX provides a graphical interface,
the user needs to create query in an expression which RELAX understands. This technique
requires the user to be accustomed with the different types of expressions RELAX supports.
Along with that the user while creating a query must provide the correct spelling for the table
and field names. This makes the user to spend time ensuring that their query is syntactically
correct, which could have been utilised for learning Relational Algebra.

• idFQL
iDFQL - Interactive Data Flow Query Language, is a tool which follows a teaching methodology

17

different from the tools mentioned above. iDFQL provides an interactive graphical environment
which allows users to create Relational Algebra queries by selecting graphical elements. It uses
an icon-based paradigm together with a dataflow approach which represents a query.

Figure 3.2: GUI for idFQL

iDFQL takes advantage of colours to depict the relationships between different components
when building the query. Lines are used to represent the relationship different components and
each type of line is given a unique colour. Line connections are of three types - Data Connection
connects a table to an operator, Condition Connections sends the condition to the JOIN and
SELECT operator, Attribute Connections for sending the list of attributes to the PROJECT
operator. It gives the user to flexibility of selecting any portion of the query and executing it.
Although iDFQL provides a great cognitive perception of the query representation, the contents
of the table which act input to the Relational Algebra operators cannot be seen easily. A query
is only executed if and only if every operator is connected and the parameter properly set, thus
increasing the user’s technical role in query creation. Moreover, it is not possible to determine
how a particular row in one of the result tables of the query was derived.

Despite some of the issues with the tool as mentioned above, we can see that iDFQL presents
a unique way of learning Relational Algebra by using dataflow diagrams for query building
process. We decided to use the dataflow approach iDFQL follows when building queries in our
system, RALT. We have tried to address the shortcomings of iDFQL. RALT allows its users
to view the contents of a table at anytime like in RAIN and RELAX, along with its schematic
representation. Unlike RELAX, no specific syntax is required for query creation in this project.
In iDFQL the whole query must be built before its intermediate tables can be viewed. In this
project the result of an operation is displayed as soon as it is completed and this will provide
the user with a better understanding of query execution mechanism.

iDFQL builds the query from left to right which in order to view a long query, the user may
have to perform horizontal scrolling. This may not be user friendly for most users as they are

18

more accustomed to vertical scrolling and hence in our application queries are built in a top-
bottom approach, reverse of how data is inserted in a stack data structure. iDFQL also sacrifices
the space occupied by the panel for viewing the entire query that has been built by using the
same panel for displaying intermediate table information. In our application the actual visual
representation of the query built will never be compromised.

3.4 Data Lineage

The increase in the number of applications using distributed databases has resulted in the rise of
data warehousing systems. Data warehousing systems integrates data from several heterogeneous
databases in order to present a “single version of the truth’ to its users [9]. In such an environment,
data analysts often like to identify the source of a particular piece of data. In industry terminology
they want to be able to trace the data lineage. In a materialised view provided, identifying the source
of the data that produced the view together with the process by which it was produced is termed as
data lineage [10]. Some applications of data lineage are:

•• OLAP and OLAM: Effective data analysis and mining requires facilities which will allow the
exploration of data at different levels. Being able to select a portion of relevant view data and
then drilling down to its origin can be very useful. Additionally, analysts may also want to verify
the origin of suspect view data, validate the reliability of the sources or even repair the data.

• Materialised View Schema Evolution: In a data warehouse environment, users are able
to change view definitions (e.g. adding an attribute to a view). View data lineage can help in
retrofit existing view contents to the new definition without computation of the entire view.

Data lineage is usually applied in a data warehouse environment (a materialised view for storing
the tuples of the view over a number of data sources). However, it can be easily applied to a single
database environment. We will see through an example how the concept of data lineage can be easily
applied in different sectors of the academic world, especially when teaching the fundamentals of rela-
tional databases. Unfortunately, none of the learning tools available for teaching Relational Algebra
make use of data lineage. Using the data lineage feature, such tools can assist users in easily identi-
fying how a particular data was derived and hence enhancing their understanding of how Relational
Algebra operators work.

Motivating Example
With a simple example we provided a precise definition of data lineage and show how lineage tracing
can be useful when learning Relational Algebra and SQL. Consider a database with data of a retail
store spread over three source tables. The schema and sample contents of these tables are shown in
Tables 3.16,3.18,3.17 [10].

The result as displayed in Table 3.19 was computed by carrying out the following Relational
Algebra operators in sequence:

1. Perform a NATURAL JOIN operation on table store and sales table.

2. Executing another NATURAL JOIN operation on the result produced in step 1 with the item
table.

19

s id s name City State
001 Target Palo Alto CA
002 Target Albany NY
003 Macys San Francisco CA
004 Macys New York NY

Table 3.16: store
i id i name Category
0001 Binder Stationery
0002 Pencil Stationery
0003 Shirt Clothing
0004 Pants Clothing
0005 Pot Kitchenware

Table 3.17: items

s id i id price num
001 0001 4 1000
001 0002 1 3000
001 0004 30 600
002 0001 5 800
002 002 2 2000
002 004 35 800
003 0003 45 1500
003 0004 60 600
004 0003 50 2100
004 0004 70 1200
004 0005 30 200

Table 3.18: sales

3. Performing a SELECT operation on the result produced in step 2 by filtering out rows whose
state value is not ‘CA’.

4. Carrying out a PROJECT operation on the result produced in the previous step and only
displaying the s name, i name and num fields.

A new view created to show the selling pattern of the stores in the state of California (marked as
CA in the store table 3.16) is Table 3.19.

s name i name num

Target Binder 1000
Target Pencil 3000
Target Pants 600
Macys Shirt 1500
Macys Pants 600

Table 3.19: Result after carrying out the sequence of operations in setp 1-4
title of Table

After viewing the result in Table 3.19 we may be interested in the rows of the parent table which
has produced a particular row (say the tuple 〈Target, pencil, 3000〉 marked in grey above) in our
result table. Using data lineage process we can not only identify the base table rows (rows marked
grey Table 3.16, 3.18, 3.17) but will also highlight the rows of any intermediate table produced,
that will contribute in producing the tuple 〈Target, pencil, 3000〉 .This small example explains how
the feature of data lineage can offer incredible benefits to students who are beginners in Relational
Algebra. Students can use this feature not only to trace how a particular result was derived and also
to understand where they have made a mistake in their query when a result is produced different from
their expectation.

20

Usually a view definition acts as a mapping from the base data to the view data. It is easy to
compute the corresponding view when the base data and view definition is provided. However, trying
to perform the inverse mapping i.e. from the view back to the base data is a difficult task. In order to
determine the inverse mapping accurately some additional information is needed along with the base
data.

Different Approaches
From the above example we can identify that the main problem with data lineage is based on two
arguments how to store information for recording data lineage and how to use this information
stored for tracing data lineage. The data lineage problem in a data warehouse environment has been
increasingly become a focus of database engineering. Many different papers have been published which
look into these issues of data lineage proposing different solutions for them.

Traditionally data lineage was performed using metadata. Metadata is seen as a relationship data
[11] as data transformations imply different dependency on different types of data. For example a
change made to a particular data must also be made to other sets of data derived from this data.
However the use of metadata is more suited when applied to schema-level lineage tracing and not for
very effective for finer fine-grained instance level [12][10]. For example, in order to trace a specific
floating point value in a processed data to a particular satellite image pixel belonging to a source data
set, it is not feasible and practical to store all the necessary information in terms of metadata.

A correct but brute force method for performing data lineage is to store all intermediate results in
addition to the initial input. The lineage can then be traced backwards through one transformation at
a time until the base tables are reached. However, such an approach turns out to be highly inefficient
due to the high storage space needed to record all intermediate results. Also the longer the sequence
is, the less efficient the approach becomes as a large number if tracing procedures needs to be carried
out when iterating through the transformations.

[12] suggests a framework for computing instance-level data lineage using the views weak inverse
mapping. Taking into account that many database transformations or functions are irreversible, [12]
introduces the notion of weak inversion. Let us represent a function as f. f, if weakly invertible
has a corresponding function f−w. The aim of a weakly invertible function for f, is to map to the
input of f from its output, but it cannot be guaranteed to be perfect due to the fact that many
functions are irreversible. So a verification function is provided to make this result accurate. The
verification function denoted as f−v takes as inputs the input table to f as well as result generated
by the function f−w and outputs data which is a subset of the results generated by the function f−w.
Hence it provides a more accurate answer. The verification function also has access to the original
data used as input for the function . [12] aims at providing the weak inverse and verification functions
at attribute level instead of tuple level as they it allows the view definer to provide inverse functions
only for the attributes they are interested in. Once the weak inversion and the verification functions
are carried out for each attribute of the tuple of interest, their results are then combined to provide
the lineage for the tuple. An inversion planner is present which carries out the sequence of operations
that should be carried and the order in which they will occur. It determines which weak inversions
and verification functions will be applied to which tables in which order. However, such an approach
requires that the view definer to also provide the views weak inverse. This may not be practical all
the time.

21

Trio [13] is a recently developed database management systems built to address the shortcomings
of conventional DBMS by providing features like data lineage. The basic data in Trio follows the
standard relational model allowing it to be used by existing query languages and focuses data lineage
at the tuple level. In Trio if a particular data is either updated/deleted, the existing original data
is not changed and is just made to expire but not erased from the system. When an update has
happened, a new data tuple gets inserted into the system. The benefit of such an approach is that if a
data item A was derived from B and B was updated later on, As original lineage can still be obtained
from the expired portion of the database. Trio implements two new features a new relational data
model called ULDB along with a new query language based on the existing SQL called TriQL [14].
These features allow Trio to perform data lineage procedures effectively. The main new features added
in ULDB are alternatives which determine the uncertainty about the contents of a tuple, maybe for
representing the uncertainty about the presence of a tuple, lineage for connecting a tuple alternative
to other alternatives from which it was derived. ULDB relations consist of special type of tuples called
x-tuple which is made up of one or more alternatives mentioned above. Each of these alternatives is
simple regular tuples over the schema of the relation. For e.g. we have a table ULDB relation Food
made up of three alternatives shown in Figure 3.3

Figure 3.3: Relational Model ULDB used in Trio

The relation has three possible instances, one for each alternative. With this unique structure
of ULDBs relational model, lineage can be recorded at the granularity of tuple alternatives. The
lineage feature of ULDB connects a derived x-tuple alternative to the x-tuple alternatives from which
it was derived [14], automatically whenever a TriQL query is executed. In the system specified query
language TriQL, for querying lineage a built-in predicate is designed to be used as a join condition.
This predicate can be used in a recursive way to find the lineage of a tuple. Trio keeps a track of the
lineage structure in the database and uses this recursive approach to produce a fixed set of lineage
based join.

In [15] another method of lineage tracing is discussed. [15] presents an annotation management
system for relational databases. It has decided to sacrifice storage space used for the time taken to
compute lineage of a piece of data by attaching annotations to a piece of data which can be transpar-
ently carried along as the data is being transformed. How a particular data is produced can be easily
identified by examining the annotations attached to the data. The annotations represent the address
of the source of the data. Every data is given a unique address. Considering the annotations can
be used for different purposes, the base system provides two default types of annotation propagation
schemes. The default scheme uses provenance as the basis for propagation schemes. The default-all
scheme maintains annotation according to where the data is copied from all equivalent formulations
of the query. [15] introduces a new query language pSQL which extends the existing popular query
language SQL. pSQL allows users to specify how the annotations should be propagated. The system

22

stores the data for annotations in a naive way by allocating an extra column which will store the
annotation information, for every attribute of a relation. Using this annotation information for a
data, one can easily trace back to the all the source data from which it was derived by performing
repeated recursive calls.

[10] describes a new approach for performing data lineage using canonical form. It assumes that the
contents of a view are computed by evaluating the view definition query from the bottom to the top.
If V is a view derived from the base tables R1...Rn, then v is a sequence of queries used to map from
the base tables to the view V and it is the view definition query. Each operator in the tree generates
result table based on the results its child nodes produces and this result can be passed upwards in
the tree. The data lineage for a tuple can be computed by calculating the tuple derivations for the
operators which comprises the view definition tree. A view tuple ts derivation is the set of all base
and intermediate tuples which contributed to t after being executed from the bottom to the top in the
view definition tree. However all the queries defined here are based on set semantics and can easily
be applied to Views with duplicate elements.

Deriving the source for a tuple in a Select-Project-Join (SPJ) query can be computed using single
relational query over the base data. All SPJ queries need to be transformed into their canonical form
first. Using a sequence of algebraic transformations [16] any SPJ query can be transformed to the form
- πA (σC (R1 ./ R2 ./ ...Rn)) where ./, σ, π represent the Join, Select Project relational operators and
Rkdenotes the relations involved. Once the tuple is transformed to its canonical form, a single query
can be used on the canonical form to derive the tracing query for the tuple. A new operator called a
Split Operator (Split)[10] is derived. Given a table T as an input, the Split Operator chops the input
table into several tables, each being a projection of T based on certain set of attributes ie Split with
parameters the attributes of table A & B when applied to a table T, breaks T into two halves one
matches the schema of A and the other that of B. With the Split Operator and the canonical form in
hand, the query which when applied to the base table, all the derivations for the tuple one is looking
for is derived. Such a query is called a tracing query.

If D is a database with base tables R1 . . . Rn and V= v(D)= πA (σC (R1 ./ R2 ./ ...Rn)) a view and
v is the view definition query. For a tuple t ∈ V, data linega for t in D can be computed by applying
the query D can be computed by applying the query SplitR1...Rn

(σC ∧A = t (R1 ./ R2 ./ ...Rn))

However when we include aggregation operators in the view definition query, deriving data lin-
eage for a tuple from the view the query produces is not simple without storing or computing
some intermediate results. Although using a views derivation, it is possible to trace lineage for a
data one operation at a time based on the original view definition, it requires the storage of ev-
ery intermediate results. Once a simple one-level Aggregation-Select-Project-Join (ASPJ) query -
αG,aggr(B) (πA (σC (R1 ./ R2 ./ ...Rn))) is transformed into its canonical form, the lineage for a tu-
ple t produced by the ASPJ query can be found by carrying out the following query on the base tables:

SplitR1...Rn (σC ∧G = t.G (R1 ./ R2 ./ ...Rn))

For finding the lineage of a tuple formed by a multilevel ASPJ query, the query must be transformed
into its corresponding canonical form, divide it intoa set of ASPJ segments and define and intermediate
view for each segment. This intermediate view acts as the base table on which the lineage tracing
query is applied.

23

For union operator, given t ∈ T1∪T2∪T3, each tuple from any input table contributes to t. However,
in a difference operator, given t ∈ T1 − T2, the tuple t from T1 and all tuples from T2 contribute to
the lineage of t.

All the different approaches mentioned in this section provide a source of inspiration to some new
ways of performing lineage which suits the environment of RALT. From these systems we get an idea
of the pitfalls we should be avoiding when implementing the data lineage feature in the system. The
scale of our learning tool implemented in this project is not in par with commercial data warehouse
systems, making the lineage problem simpler.

Unlike in [13], showing any data in a lineage derivation which the user has deleted previously will
only raise confusion in the users mind and hence if a tuple is deleted by the user in the GUI it also
deleted from our actually system. In our system we also keep a track of the sequence of the operations
carried out while building a kept. In our application we will take the approach of implementing our
own function similar to the tracing queries method mentioned in [10] .

In Section 5.3 we explain how Data Lineage is implemented in our system in detail.

3.5 Development Environment

3.5.1 Technologies

Java

Our aim was to develop a portable, extensible, highly interactive system which eases the process of
learning Relation Algebra. We realised very early that the project would take a considerable amount
of time to design, implement and test, thus to get a swift start to the project, we chose to give priority
to technologies that we were already familiar with that would sufficiently satisfy our goals. We would
however develop into new technologies wherever we found our knowledge or skill set to be inadequate
to achieve an objective. The final decision was in favour of Java for a number of reasons such as:

• It is a highly portable language and Java programs can be installed in systems supporting
different operating systems (Windows, Linux etc.)

• Garbage collector is an important of feature of Java which provides automatic memory manage-
ment.

• Numerous open source libraries are available for java together with countless online tutorials on
different aspects of Java language.

• Documented Network,IO library available via Java.

• Swing a popular GUI toolkit is based on Java assists in the development of sophisticated user
interface.

• My previous experience with JAVA made me feel more comfortable with it than any other
popular object oriented language.

24

Java2D

Java2D [17] is a popular Java API for drawing two-dimensional graphics. It is a core element of
Java technology. Every Java2D drawing operation can ultimately be treated as filling a shape using
paint and the composition the result onto the screen. RALT relies heavily on Java swing for simple
graphical output.

SVN

No project of this scope can be realised without a suitable version control system. Although such tools
are particularly useful in group projects as it prevents team members from overwriting each others
code, they are invaluable for individual projects also. They allow the developer to track the changes
made in with previous versions of the system and if necessary it also allows the user to revert them.

Testing Framework: JUnit

JUnit is a regression testing framework written particularly for the Java programming language.
Important features of JUnit include:

• Assertions for testing expected results.

• Test suites which allow organising and running tests easily.

• It uses a graphical interface to alert the user once the code shows any anomaly.

Eclipse

To aid in coding development we used the Eclipse IDE. This provided us with a comprehensive set of
tools with which writing code was made more effective and efficient. The main tools used include a
class browser, built in debugger, syntax checking and highlighting, code completion and suggestions.
It also integrated well with our version control system. Eclipse also supports some state-of-art software
engineering features such as:

• Code Refactoring. Many complex operations such as renaming a variable/method or moving a
class to a different package can be done instantly.

• The source code can be easily formatted which makes reading the code easier. the programmers
expected behaviour.

25

Chapter 4

User Iterface

A powerful user interface is one of the key advantages of our system. This chapter introduces the
main features of our Graphical User Interface (GUI) and explains their purpose. We start with a brief
introduction to Java Swing (Section 4.1 4.2)and then see how various components of Java Swing have
been used for building different components of the GUI together with their respective functionality.

4.1 GUI Toolkit

A good user interface is very important for a learning tool as it plays a key role in transforming an
average learning tool into a superior one. Hence it was important for us to design a powerful user
friendly Graphical User Interface (GUI). As we had decided to choose Java as our core development
platform, we leaned towards the idea of designing the GUI of the application using components of Java
developed for designing user interface. Java offers more than one alternative toolkits for developing
GUI - Abstract Windowing Too(AWT), Swing, Standard Widget Toolkit(SWT).

AWT offers only a basic set of user interface components, which does not allow the creation of a
user interface rich in features. This left us to with only two choices - Java Swing or SWT. Swing
and SWT: A Tale of Two Java GUI Libraries, an article by M. Marinilli [18] helps us in making a
decision about the toolkit to choose for our application. According to the article, the main advantages
of Swing over SWT are its larger set of features, more elegant appearance and higher abstraction level
(which is very helpful especially when complex GUIs are designed). However the ease with which
SWT can be used made it a potential alternative. But the flexibility Swing offers and the complexity
SWT generates when building complex GUI made the decision swing in favour of Java Swing.

4.2 Benefits of Java Swing

Java Swing was developed for providing a sophisticated set of GUI components It is completely written
in Java and this makes the development of Swing application faster as we were already familiar with
Java and werr not required to learn any new language before using Swing’s features. An important
aspect of Swing that it allows the alternation of every component (for example changing the colour
of a component) in an application without the need for making substantial changes to the application
code. Also it is easy to change the look and feel of any application written in Swing which makes it
look very different from default settings of the components.

26

Some of the components Swing supports is shown in Table 4.1:

Component Functionality
JButton Used for submitting user requests.
JLabel Displays text information.
JList Shows items in a list form.
JProgressBar Used for displaying the progress made before an action is completed.
Scale Helps in zooming in and out of a component.
JTextArea Allows users to enter text spanning more than one line.
JTree Displays items in tree-like structure.
JMenu A menu provides a space-saving way to let the user choose one of several options.
Toolbar Used for displaying common used actions.
JTable Displays information in a table format.
JPanel Used as a container to which other components can be added.
JScrollpane Makes the component added to it scrollable.
JDialog Used for displaying a dialog box. Acts like a JPanel and can

contain Java Swing components such as JTable, JLabel, JList etc.

Table 4.1: Features supported by Swing

It is important to mention that Java Swing follows a component-based framework. The distinction
between components and objects is fairly subtle - components are seen as well-behaved objects which
are aware of their specified characteristic pattern of behaviour. Also Swing provided components
which acts as containers to which items can be added easily. For e.g. JPanel is container to which
items of different types such as JLabel, JTable can be added easily.

Another important concept of Java Swing is the Layout Manager. Layout Managers are often used
for determining the size and positioning of elements within a container. Swing provides a number of
Layout Managers such as FlowLayout, GridLayout etc. which lays out components in a container in
various ways. Different layouts are used for various purposes. In a FlowLayout when components are
added to the container, they are placed one after another in a horizontal way. When placing a new
component in a container will exceed the width of the latter, the component is placed in the next line.
GridLayout is used for displaying components of same size in rows and columns.

However the Layout Managers provided by Java were not enough for designing our GUI and we
opted to use a more customised Layout Manager known as the Spring Layout. Spring layouts do
their job by defining directional relationships, or constraints, between the edges of components. For
example, we can define that the left edge of one component is a fixed distance (5 pixels, say) from
the right edge of another component. SpringLayout can be visualized as a set of objects that are
connected by a set of springs on their edges.

Unfortunately Swing has its drawbacks too. It is extremely difficult to debug Swing applications
due to the toolkit’s visual nature. We cannot take advantage of the step-by-step debuggers like we do
when debugging objects.

27

4.3 User Interface in RALT

Having given a brief introduction to Swing, we can move forward and understand the functionality
of the different components which make up the user interface of RALT. The main functionality of
RALT is that it allows users to build Relational Algebra queries without requiring them to write any
queries themselves. Here we are faced with a dilemma as we would like to enable users to conveniently
carry out the task of building queries, yet at the same time keeping the interface simple and avoid
overloading it with any unnecessary detail which raises confusion in the minds of the user.

Figure 4.1: SQLYog

We consider the software SQLYog-a GUI tool used for popular Relational Database Management
Systems. As we can see from Figure 4.1 this application allows users to visualise different tables of
the database the system is connected too. Notice the left panel displays the tables in the databases
the user is connected to. For each database the system is connected to, the software displays the table
names present in that particular database together with the attributes of the table (attribute names
etc.). The upper part of the right panel allows users to write the query they want to execute while the
bottom part displays contents of the query (i.e. the result in the form of a relational table) generated
by the system. SQLYog inspired us to design a simple interface as shown in the Figure 4.2

Figure 4.2 displays the different components which make up the GUI. Each of these individual
components are labelled from A to F. Each of these components are designed independently and then
added into container component thanks to the adding component feature of Java Swing Components
(e.g. JPanel) . We will now give a brief description of the major components of our GUI.

28

Figure 4.2: User Interface for RALT

29

Table Name Panel

Labelled as B in the Figure 4.2, this panel is used to display the names of the different tables present
in the database to which the system is connected to. We used JList component of Java Swing for
displaying the items in a list format and adding the JList into a JScrollPane component to make the
list scrollable.

Operator Panel

Designed in a similar way as the Table Panel, the Operator Panel (marked C) displays the different
operators in the system. Each operator name is assigned with a symbol which corresponds to the
symbols used when constructing Relational Algebra queries using the algebric notation. This allows
users who are used to developing queries with the algebraic notations, to quickly get used to the
system. Moreover, since icons are used to identify operations when building queries in the Query
Visualisation Panel (A), users can easily cross reference the symbol with the operator name in the
Operator Panel,if need be.

Table Data Display Panel

Marked as D, this panel is used to display the components of a table. Java Swings drag and drop
feature is used for dragging table name from the Table Name Panel and dropping them on this panel
when the contents the database under this table name is displayed in the panel. We use the JTable
feature of Java to display the contents. We embed the JTable into a JScrollpane component to make
the table scrollable.

Table Characteristic Panel

This panel is used for displaying the properties of the table i.e. the types of the attributes of a table,
whether the attribute is Primary key to the table or it is a Foreign Key. If the attribute is a Foreign
Key we also display the table name whose Primary Key acts as a Foreign Key for this table. This panel
is labelled as E. When a table name is dropped on the Table Display Panel, this panel automatically
displays the properties of the table that has been dropped. This panel is designed in the same way as
panel B & C. However in this panel we use different colours for indicating different properties (e.g.
Red for Primary Keys). Bright colours are chosen for displaying important properties as it gets users
attraction instantly.

Error Console Panel

Marked as F this error displays any error messages the system thinks the user should know about.
The message is shown by using the JLabel feature of Java Swing.

Query Visualisation Panel

Marked as A, this is most important component in our GUI. Users build their queries in this panel.
This panel is of type JPanel whose Layout Manager is set to null. This is a special kind of Layout
Manager and is required in this case since it gives us the liberty to position elements on the JPanel to
the coordinates we set. This panel accepts requests from the Table Name Panel and Operator Panel
using Java Swings drag and drop feature and acts accordingly. When building a query in this panel,
each element of a query (table names, operators, constraints) are created as independent JPanels and

30

then position them at desired co-ordinates on this panel. These individual JPanels are then connected
by straight lines which can be drawn using Java2D.

(a) QueryTreeOperator-
PanelGUI

(b) Query-
TreeCon-
straintsPanelGUI

(c) QueryTreeTablePanelGUI

These JPanels can be classified into two three types:

• QueryTreeTablePanelGUI – Used for displaying contents of a table.

• QueryTreeOperatorPanelGUI - Displays the symbol for the operator.

• QueryTreeConditionPanel – Shows any condition attached to operators like Project, Select.

We sometimes require users to input additional information when building a query. For example
users should specify the columns to be selected when carrying out a Project query or the constraints
based on which the Select operation should be carried out. This additional information is captured
by using Swing feature Jdialog, components used for display dialog boxes.

Figure 4.3: Dialog Box used for entering constraints for SELECT operator

31

Chapter 5

Architecture

The chapter opens with a broad overview of the system’s architecture, then focusses on specificc sub-
systems. Architectural considerations are illustrated by UML diagrams. In this chapter we also look
at some specifc classes and packages. Lastly, we consider how a query tree is stored in our customised
data structure and then get an idea how the lineage of a row is traced in our system.

Figure 5.1 shows a high level overview of the software’s architecture. RALT consists of a number
of subsystems, each concerned with a particular aspect of its functionality. In accordance to the good
software design processes, the subsystems were designed to be logically coherent and to minimise the
number of connections (coupling) in the system. This practice was applied in the lower level of the of
the design (packages, classes). There is a high degree of correspondence between the subsystems and
the Java packages (particularly in the section responsible for the designing View of the system).

5.1 System Architecture

As it can be easily seen from Figure 5.1 , we have followed the popular Model-View-Controller
(MVC) architecture paradigm. The beauty of this genre of architecture is that it allows the separation
of business logic from the user interface design. This makes this application modular as it allows
modification of the visual appearance of the application without causing disturbances to its business
logic. In MVC architecture, the model represents the information i.e. the data of the application. The
view corresponds to the interface which enables the user to interact with the system. The controller
is responsible for communicating requests made by the user at the view layer to the model level and
then taking back the data to the view once it has been manipulated according to the business rules of
the system. Adopting such architecture helped in speeding up the development process, particularly
in the beginning. We could simultaneously develop the GUI of the application as well as implement
the rules governing the application.

We now explain the role of each layer together with the components it is made up of in detail:

5.1.1 Model Layer

The model layer also called the Data Access Object Data (DAO) of RALT implements the business
logic behind the application. Distributed over the packages com.imperial.dao.opt, com.imperial.dao.lineage
and com.imperial.dao.utility, the model layer acts as an interface between the actual data and the user

32

Figure 5.1: System Architecture

33

interface. This layer receives requests from the Controller layer, depending on which acts on the data
and then returns the back to the Visualisation Controller.

Data Storage

An important component of the Model Layer is the way data is stored in the system. We have
modeled our system such that our implementation of the Relational Algebra operators take data
input which are similar in structure to the tables found in relational databases. We have followed the
same approach when implementing the data lineage operators. Moreover, we have decided to store
all the data of the database in memory so it was important for us to come up with an effective way
of storing data in our memory with all the relation needed for our system.

We noticed some similarities between table cells when observing how data is represented in database
tables which were helpful when we designed our own data structure for storing table information in
our memory.

sortcode bname cash no type cname rate sortcode
56 Wimbledon 94340.45 101 deposit McBrien, P. 5.25 67
56 Wimbledon 94340.45 119 deposit Poulovassilis, A. 5.50 56
34 Goodge St 8900.67 101 deposit McBrien, P. 5.25 67
67 Strand 34005.00 101 deposit McBrien, P. 5.25 67
67 Strand 34005.00 119 deposit Poulovassilis, A. 5.50 56

Table 5.1: A general relational table

As we seen in Table 5.1 top most row displays the header columns of the database table. The
rest of the rows display the data contained in the table. We can see that there are some similarities
between the cells representing the header information and the cells representing the data of the table.
Both these two types of cells store a value. The cells in the header of the table are equipped with
additional information such as the type of attributes in that column (i.e. integer or varchar), whether
the column acts as the primary key of the table etc.

34

Figure 5.2: Class TableCellItemVO used for storing cell data and TableHeaderCellItemVO used for
storing header information

In Figure 5.2 we can see that we have created the class called TableCellItemVO which can be used
for holding value in a cell of a database table. This class contains one attribute of type Object (root
of the class hierarchy in Java). This class represents the data held in each cell (each cell of the header
row as well as each cell of the rows) of a database. However, extra information is required when
storing the headers of a table and for that we extend the TableCellItemVO class to create the Java
class TableHeaderCellItemVO.

Each row is seen as an array of TableCellItemVO (e.g. TableCellItemVO [])which is represented
in the class RowItemVO.

We can combine two classes mentioned above to create a representation of a database table as
shown in the class diagram in Figure 5.3. The name attribute of class TableVO is used for storing
the name of a table. The header attribute is used for storing column information.The last attribute
rows is used for storing each row of a database table.

Figure 5.3: TableVO

Operator DAO

Having designed the data structure for storing table information, we could now implement the Rela-
tional Algebra operators which took objects containing table information as parameters (i.e. objects
of type TableVO). This part of the model layer implements the different Relational Algebra operator

35

present in our system. In order to give our users the option of using some of the advanced operators
such as Division, Anti Join etc. we went in the direction of implementing all the operators in our
system ourselves.

Figure 5.4: Class Diagram for Operators

We realized that the Relational Algebra operators to be implemented in our system fall under two
different types:

• Unary Operators: Operators which take one table as input. e.g. Select, Project

• Binary Operators: Operators which take two tables as inputs e.g. Union, Difference etc.

We also realized that all the operators share some common properties such as name. Moreover, to
make our system extendible easily, it is important that the framework should be such that users may
add operators which are not of the type Relational Algebra (e.g. SQL operators) or add operators of
different kinds such as aggregate operators (e.g. Count etc.) . This motivated us to come with a an
OperatorDAO class which could be extended by an RAOperatorDAO (Relational Algebra Operator)
class. BinaryOperatorDAO class extends the RAOperator which could be further extended depending
on the type of operator we are implementing. Each operator has a method called action which
implements the functionality specific to that operator. The fact that all the binary operators take
inputs of same kind, this type of architecture became more appropriate for the model component of our
system. This makes our model layer very modular as a programmer can easily add their own operators

36

to their system. The classes implementing the operators are located under the com.imperial.dao.opt
package. The class diagram for the the operators are shown in Figure 5.4.

Lineage DAO

Data Lineage is a key feature of our system. Unfortunately the existing database systems, for e.g.
Postgres SQL do not offer this feature. As a result we decided to implement this feature ourselves
for our system. In our system, queries are built in a tree like structure. Hence, we are required to
keep a track of the inputs to an operator together with the output it produces and any constraints
associated with it. We used these available data for implementing functions for finding the lineage of
each Relational Algebra operators which we discuss in detail in section 5.3. Similar to the way we im-
plemented each of the Relational Algebra operators, we approach the same method for implementing
the linegae for each Relational Algebra operator. As an example, for the Union operator we imple-
mented a class UnionLineageDAO.java in the package com.imperial.dao.lineage. This approach again
makes our system very modular as it allowed a programmer to easily add the lineage functionality of
a new operator he/she has added to the system without disturbing the contents of the other lineage
operators already present in the system.

5.1.2 View Layer

With our model layer being able to modify information according to user requests, we needed a way
to display this information to the user. We could do this with the help of the View Layer. As the
name suggests this layer forms the interface between the user and the rest of the system. This layer
is responsible for displaying all the different types of information to the user and also recognises
the requests made by the user. Hence this layer is equipped with all the functionalities required to
accomplish these objectives. The main components of the View layer are:

GUI

The GUI component is responsible for displaying information to the user. It also accepts requests
made by the user at the user interface. The GUI is itself again divided into several sub-components.
Figure 4.2 shows the the main GUI screen of RALT. The labels A,B,C, D, E and F indicate the
individual components which make up the GUI for the application. The beauty of Java Swing is that
it allows us to build components separately and then add them to another component. For e.g. we
can build the components labelled as A,B,C, D, E and F as shown in Figure 4.2 individually and
then integrate them into single component. This way we are able delegate specific functionalities to
the sub-components. Each of the sub-components is responsible for display of the data it is supplied
with.

In Figure 5.5 we see a breakdown of the different subcomponents which make up the GUI of our
application. Each GUI component is mapped to a Java class (the java class for the GUI component
Table Name Panel is TableNamePanelGUI.java). These classes are located under the package name
com.imperial.gui.panel. The subcomponents (Query Visualisation Panel, Table Data Display Panel,
Table Characteristic Panel, Error Console Panel) once designed independently are added to the swing
components (JPanel) Right Panel GUI and Left Panel GUI. In the end, Left Panel GUI and Right
Panel GUI are combined together to form the Application GUI.

37

Figure 5.5: Sub-components of Application GUI

Transfer Handler

An important feature of RALT is that it allows users to build Relational Algebra queries just by
dragging table and operators name(s) from panels labelled B and C in Figure 4.2 and dropping them
on the Query Visualisation Panel (labelled A in Figure 4.2). This is achieved by using the drag and
drop feature supported by Java Swing.

Before progressing any further we provide a small step by step example of how the drag and drop
feature works in our system. [19].

Let us assume the user is interested in dragging a table name from the Table Name Panel (labelled
B in Figure 4.2) and drop it onto the Query Visualisation Panel (marked as A in the same diagram).
The Table Display Panel displays the names of all the tables present in the database RALT is connected
to. The table names are displayed using the JList feature of Java Swing and each component of this
Jlist is a List Component.

In a nut shell the drag and drop feature works in the following way:

• As the user starts to drag the selected List Component from the Table Name Panel, a drag
gesture is initiated.

• As the drag begins the JList packages up the data(which is of type String) into a customised
form.

• As the user continues to drag the list component across different components of the screen, Java
Swing continuously calculates the location and provides any rendering required.

38

Figure 5.6: Workflow for Drag and Drop feature

• Once the user releases the component over a particular component (say the Query Visualisation
Panel in our case) we inspect whether the component on which the list component is dropped,
should accept the data (of type String since this is what is present inside the package)which is
being packaged.

• If yes, the data is imported and the necessary actions are taken.

This example shows us the need to equip each of the components of the GUI that supports the drag
and drop feature with custom transfer handler functionalities. This is possible as all JComponents of
Java Swing (such as JPanel, JTable, JScrollPanne, JList etc.) support the feature of drag and drop.
In package com.imperial.transferhandler we have declared the different customised TransferHandler
classes which extend the default class (TransferHandler) provided by Java Swing for implementing
the drag and drop functionality.

Cell Renderer

Often we decided, to modify the default appearance of Swing components such as JList, JTable
etc. This could be achieved by writing our own customised CellRenderer classes. Located under the
package name com.imeprial.cellrender, these classes allowed us to design each component of the GUI
to our specific needs.

View Data Package

Often in RALT we are required to display data in particular formats within a particular component.
Query Visualisation Panel is a perfect example for explaining this idea. In Figure 5.7 the Query
Visualisation Panel is made up of components displaying different data such as JTable, image of an
operator or constraints for an operator.

We have designed separate classes for displaying each different kinds of information especially for
the GUI and they are stored under the package name com.imperial.vo.gui.

5.1.3 Controller

With the View and the Model layer at hand, we needed a mechanism that would allow these two
components to talk to one another. This is where Controller comes in. This layer forms the interface
between the GUI and the Model of the application. It accepts the request made by the user at the
GUI and communicates them to the Model. Once the Model layer perform the necessary operations,

39

Figure 5.7: Query Visualisation Panel

it sends data back to the Controller layer. The Controller passes the data to the View layer either
unchanged or after performing some necessary modifications. Due to the wide variety of functions it
performs we have decided to split the Controller layer into two components Visualisation Controller
and Business Controller.

Visualisation Controller

This part of the Controller speaks to the View Layer. It receives request from View Layer and
depending on the nature of the request it either passes on to the Business Controller or handles
it itself. The Visualisation Controller keeps a track of the different panels in the application and
is hence able to pass messages to them. This layer plays an important part of the query building
process. Although we discuss the query tree structure in detail in Section 5.2, it is important to
mention here that Visualisation Controller plays an important role in building the queries which are
displayed in the Query Visualisation Controller. It determines how new nodes should be added to
the tree and also determines their position when displayed on the visualization panel. It is the sole
duty of the Visualisation Controller to maintain the correct tree structure as otherwise users may get
wrong perception from the query tree being displayed on the table. Moreover, as we will see later on
having the right query structure is crucial since our data lineage algorithm is highly dependent on it.

Business Controller

This is the second part of the Controller layer which mainly takes orders from the Visualisation
Controller and acts accordingly. When the application begins this layer reads the information for all
the tables present in the database to which the system is connected to and stores them in the memory.
Later on whenever the user wishes to view the contents of a particular table or wants to operate on
them, the Business layer passes a representation of the table.

40

5.1.4 Data Access Layer

Data Access Layer: This layer handles the functionality of connecting to a database and fetching data
from the database.

5.2 Query Tree Architecture

Having discussed the different layers of our system, we now discuss how we approached the process of
building queries in our system.

One of the key features of our application is that it allows users to build queries in a tree like
structure. This approach enhances the understanding of the Relational Algebra concepts as the
user can easily see the step by step approach undertaken in building the query together with any
intermediate results being produced. When building a query the main task is to find the operation
sequence that will produce the correct result. Since the operations of the Relational Algebra are quite
simple, many intermediate results might have to be produced before the final result is reached. The
intermediate results are used as operands in the operations that produce new intermediate results. As
a result we are required to store the sequence of operations carried out in the query building process.

Our system supports two types of operators unary and binary. In Figure 5.8(a) and 5.8(b) we see
a diagrammatic representation of presenting these operators in a tree form.

(a) Unary Operators (b) Binary Operators

Figure 5.8: Tree like representation for different Relational Algebra queries

As we can see in Figure 5.8 each node (represented by rectangular box) has at most two child nodes.
Moreover each node can have at most two parent nodes. We were required to come up with a data
structure that will allow us to implement the functionality for assisting users build queries in a tree
like structure. The tree like structure when formulating unary and binary operators for Relational
Algebra motivated us to devise our own data structure for this purpose.

We propose a data structure, in which we treat each item (input table, operator, result table or
constraints) in our query as a node. We call this Query Node as shown in Figure 5.9. A query is made

41

Figure 5.9: Query Node

up of a finite set of nodes which is either empty or consists of a data item (called the Query Node)
and two disjoint Nodes (called the First Child Node and Second Child Node). Each node can have
at most one parent. The trees are hierarchical in nature indicating that there exists a parent-child
relationship between the nodes of a tree. Having such a relationship between the nodes of a tree was
important as it allowed us to show the step by step approach taken when building a query. The first
node in a query building tree (the node without any parent) is called the Root Node.

With such a data structure, we were quicklt able to build more complicated queries than the ones
shown in Figure 5.8, by using result from one Relational Algebra operation as an input to another
relational algebra operation. Let us take an example of query formulated by carrying out the following
steps:

• Performing a Natural Join on input tables Input Table1 and Input Table2. The result of this
operation is ResultTable1.

• Perform a Select operation on the ResultTable1, with the constraint attribute1 > 0(assuming
ResultTable1 has column name attribute1 and of type integer). This operation produces the
resultant table ResultTable2.

• Perform a Semi-Join operation on the ResultTable2 together with InputTable3 to produce the
table ResultTable3.

The above query when executed in our system is stored using the data structure displayed in
Figure 5.10 in the following way:

In Figure 5.10 the tables are represented as orange rectangles, the operators as blue Rounded
Rectangles, the Constraints as green rectangles. Each of these three items in our query structure is
treated as a node (Query Node).The red line between two nodes in Figure 5.10 is the relationship
between a parent node and its first child node. For e.g. the red line between Input Table1 and Input
Table2 means that Input Table2 is the first child of Input Table1. The black line between two nodes
indicates the parents relationship with its Second Child Node.

Hence as shown in Figure 5.10 our new data structure allows us to store all the necessary information
required to support the methodology of creating queries in a tree like format. In RALT users are able
to build more than one queries at the same time which are completely independent of one another.
We maintain a list of all the individual queries built in the application as shown in Figure 5.11. Each
element of the list refers to the Root Node of a query which is unique and displays a table.

42

Figure 5.10: Diagram shows how a query tree is stored in RALT

43

Figure 5.11: Storing multiple query Trees

5.3 Data Lineage

Data Lineage is an important feature of RALT. Having such a feature allows users to quickly track
how a particular piece of information in a query is derived. It is important to mention here that we
have decided to undertake data lineage at a tuple level than at the row level i.e. when performing
data lineage, users can see how a particular row of a database table is derived and not how the cell of
a particular row is derived. In Section 3.4 we explained different ways of performing data lineage.

As the feature of data lineage was a late addition to our system we had to make the best use of the
existing architecture of RALT. Fortunately the modularity of the system made the task of integrating
this feature without creating many development issue. In RALT, for visualisation purposes, we keep
a representation of the different components i.e. base tables, operators, constraints and intermediate
result of a query data flow. As the developer is in control of the data structure used for storing data
in RALT, it can be easily modified to accommodate address of the source of a data. One way of
performing data lineage can be of assigning unique ids to each tuple in a query. When a new tuple
is created in the intermediate tables as a result of some operation, it is assigned a unique id. For
each query being created, an index table is kept which keeps a track of all the < child, parent >
association. When we want to find the lineage of a particular row we can look up the index table and
find the parent(s) and then perform data lineage on the parent row(s).

However, this method requires us to store additional information such as the unique id given to
rows of a table. We implemented the data lineage functionality in RALT using a recursive approach
which does not require storage of any additional information.We will explain this approach with an
example. In Figure 5.12 shows the visual representation of a query which has been executed. First a
Select Operation is executed on the relational table Table1 and then a Natural Join is performed with
the output from the previous operation(Table2) and Table3 to produce the final result Final Table.

44

Figure 5.12: Explaining Data Lineage in RALT

45

We are now interested in finding how a particular row in table Final Table is derived. Due to
data structure used to store information when building a query (Figure 5.9), we can access the node
designated as Natural Join in Figure 5.12 since it is the parent of the node labeled Final Table. From
this node we can retrieve the two input nodes for the Natural Join operation. As we had mentioned
earlier, in section 5.1.1 we use our implementation of the lineage functionality for Natural Join
operator to discover the rows of Table2 and Table3 that had had contributed in the derivation of our
row of interest in table Final Table. Once the correct lineage row(s) for Table2 is established, we can
carry on similarly find the out the rows in Table1 which had contributed in producing the lineage
rows in Table2. Table3 on the other hand do not have any parent and hence is not produced from any
other table higher up in the query tree. Hence we have already determined the rows of Table3 which
have participated in producing our row of interest in Final Table. Hence we continue our propogation
just with Table2. This propogation stops when the rows of Table1 participating in the lineage are
found and we are unable to move up the query tree anymore due to the absence of a parent for Table1.

46

Chapter 6

Implementation

This chapter describes some selected aspects of the program’s implementation. It begins with describing
the initial set of actions carried out when RALT loads (Section 6.1). We then go on explaining in
Section 6.2 how tables from the database is fetched and stored in our memory and then illustrate our
implementation of different Relational Algebra operators in Section 6.3. Section 6.4 explains how a
query tree is built in our system which leads on to Section 6.5 where we demonstrate how Data Lineage
is performed. Finally we end with Section 6.6 giving an workflow of how a programmer can add new
operators to our system.

6.1 The Beginning

When RALT loads up it calls the ApplicationGUI class located under the com.imperial.gui.panel
package. This class extends the JFrame class of Java Swing. JFrame is a top-level container which
must be present in order to display a swing application. The ApplicationGUI when initialised also
initialises instances of LeftPanelGUI and RightPanelGUI which in turn initializes their respective
sub-components.The ApplicationGUI also keeps an instance of an object of type BusinessController
and VisualisationController. These two instances are used for supporting the query building process
as they communicate messages between the View Layer and Model Layer. The ApplicationGUI on
its instantiation, requests the BusinessController to load the relational tables present in the database
the system is connected to. Once this task is completed the VisualisationController is instructed
to display the table names fetched by the BusinessController on the application screen. As each of
the sub-components of GUI are initialised, they register with the Visualisation Controller. This way
the Visualisation Controller can keep a record of all the different sub-components and send them
information when need be.

6.2 Loading Tables from Database

Once the BusinessController receives the request for fetching the relational tables, it calls a method
in the Model Layer. BusinessController invokes the loadTables() method of the TableDAO class
located under the package com.imperial.dao.utility. Fortunately it is quite simple to fetch data from
a database, thanks to the inbuilt methods provided by Java. However in addition to fetching just the
column names and row data of a table, we were also interested in fetching additional information such
as the Primary Key, column types etc.

47

String query = "Select * from tableName";

ResultSetMetaData rsmd = fetchData.getMetaData();

\\get the Metadata for the table tableName

ResultSet fetchData = fetchStmt.executeQuery(query);

\\ get the rows of the table tableName

ResultSet primaryKeysSet = meta.getPrimaryKeys(null, null,tableName);

\\ get the Primary Key of tableName

ResultSet foreignKeys = meta.getImportedKeys(null, null,tableName);

\\get the foreign keys of the table

..................

while (fetchData.next()){ // while there are more rows

add rows to a list

}

This was possible by using the metadata associated with each table of the database. Metadata
is nothing but data about data. An interesting fact to notice is that although in Java it is possible
to fetch the column names and types while traversing through the list containing all the attributes
of the table, we cannot identify which attributes represent the Primary Key or Foreign Key of the
table. Fortunately, Java developers have provided us with the option of fetching this information
separately by exercising the methods meta.getPrimaryKeys() and meta.getImportedKeys(). meta is
the Metadata of the entire database and we fetch the Primary Keys and Foreign Keys from this
database Medatadata by providing the name of the table we are interested in.

We keep a record of this information and when traversing through the list of all column attributes
of a table and verify whether they represent the Primary Key or Foreign Key of a table. If yes, we set
the appropriate value of object type in TableHeaderCellItemVO, used for storing header information
of a database table in our system. loadTables() returns an object of type HashMap, which is stored
at the BusinessController and is used for future references when requests are made by the Visualisa-
tionController. Each element of the HashMap is of type 〈String, TableV O〉, where the key represents
the name of the table 1 and the value refers to the TableVO object which contains both the header
information and row values of the table.

6.3 Implementing Relational Algebra Operators

We had mentioned in section 5.1.1 that a unique feature of RALT is that it implements its own
Relational Algebra operators. Implementing these operators increases the flexibility of our system.
Moreover, the modular approach taken when implementing these queries makes it very easy to add
new operators into the system or even modify the existing ones without disturbing the functionality

1Since each table in a database must have a unique name, we have chosen the table name to be the key when storing
information in a HashMap

48

of the operators already present in the system. However, it is important to mention that when im-
plementing some operators we take advantage of using the functionality offered by operators already
implemented in the system. This is done in order to minimise code duplication. For example, when
implementing the functionality of the Left Outer Join, we make the use of the functionality of Natural
Join, Semi Join and the Difference operator. We will explain this in more detail when illustrating
the implementation process for each of these operators.We have tried to pay utmost attention to
the problem of code duplication as having duplicated code increases the potential chance of bug in
the system. Often when implementing the functionalities of Relational Algebra operators we use the
same functionality again and again. This results in code duplication and we have opted to keep these
functions under one class called UtilityDAO (shown in Figure 6.1)which is located under the package
name com.imperial.dao.utility. Whenever we need to perform these functionalities, we initialise an
instance of the UtilityDAO and invoke the required function.

Figure 6.1: Class Diagram for the class UtilityDAO

Operator Name Operator Type Java Class

Project unary ProjectRAOptDAO
Select unary SelectRAOptDAO
Product binary ProductRAOptDAO
Union binary UnionRAOptDAO
Intersection binary IntersectionRAOptDAO
Difference binary DifferenceRAOptDAO
Natural Join binary NaturalJoinRAOptDAO
Semi Join binary SemiJoinRAOptDAO
Anti Join binary AntiJoinRAOptDAO
Natural Join binary NaturalJoinRAOptDAO
Left Outer Join binary LeftOuterJoinRAOptDAO
Right Outer Join binary RightOuterJoinRAOptDAO

Table 6.1: Operators in RALT together with their respective Java classes
title of Table

In Table 6.1 we give a list of all the operators that have been implemented in RALT together with
the name of their corresponding Java classes in our system. We now explain how we implemented
these operators in detail.

49

Project

• Class - ProjectRAOptDAO

• Input TableVO table, int [] index, boolean removeDuplicates

• Output ResultVO

• Description – The first parameter to this method refers to the input table on which the project
operator must be performed. The int array called the index refers to the column indices of the
input table which are to be selected. For example if the input table has four attributes and
the index array has values [1, 3], our Project operator selects only the second and the fourth2

columns for each row data of the input table. The user is responsible for selecting the columns
by interacting with the view layer and the column indices selected are passed by the Controller
to our operator. The third parameter informs the operator whether to remove duplicate rows
before returning the result to the Business Controller. When the Project operation of Relational
Algebra is called, this value is always set to true since we follow the set algebra and hence all
duplicates must be removed. The reason for having this parameter is because when implement-
ing some operators, we perform project like operation but we wish to keep the duplicates as
well. Hence this one parameter helps in preventing duplication of code.

Our Project operator traverses through each row of the input table, selecting cell values from
each row whose column index match the values present in the index parameter.

Select

• Class - SelectRAOptDAO

• Input TableVO table, LinkedList 〈 SelectConstraintsVO 〉 constraints

• Output ResultVO

• Description – The implementation of this operator was a complex task due to the wide variety
of items (constraints) that had to be considered during its implementation. Here is a typical
Relational Algebra query on Selcet operator.

σrate>=5.25∧ type=‘current′account

As we can see that the Select operator is made up of both logical (e.g. ∧) operators as well
as arithmetic (e.g. =,≥) operators. Moreover, each attribute may have more than one constraint
(e.g. rate > 0 ∧ rate < 5.5). This made things more complicated. The second parameter sent
when invoking the Select method is a list of constraints. We decided to group each of the constraints
according to the attributes. For example each element of the constraints parameter represents the
constraints assigned to a particular attribute of the input table to the operator. Each individual
constraint for a particular attribute can be captured by the class IndividualConstrainItemVO. The
comparisonType field can take six different integer values each a unique Comparison operator (e.g.
=, >,≥, <,≤). The logicalType represents whether constraint is AND or an OR type.

These individual constraints for an attribute are then wrapped under a single object of type
SelectConstraintVO. This instance also keeps a track of the column index in the first parameter for

2Since in computer programs the indexing of arrays start from 0 and not 1

50

(a) IndividualConstrainItemVO (b) SelectConstraintVO

Figure 6.2: Classes used for capturing constraints for the Select operator

the Select method which it represents.When carrying out the Select operator, we first traverse through
all the rows of the table and then for each row we traverse through the constraints list. We verify
if each row satisfies all the constraints and if yes then we add it to the result table.Before returning
the resultant table, we remove all the duplicate rows by calling the removeDuplicated method of the
UtilityDAO.

Product

• Class - ProductRAOptDAO

• Input TableVO table1, TableVO table2

• Output ResultVO

• Description – It produces all the possible combination of each row of the first table with rows
in the second table. It does not remove duplicates.

Union

• Class - UnionRAOptDAO

• Input TableVO table1, TableVO table2

• Output ResultVO

• Description – The operator combines the rows present in both the input tables and then
removes the duplicated rows.

Intersection

• Class - IntersectionRAOptDAO

• Input TableVO table1, TableVO table2

• Output ResultVO

• Description – It compares all the rows in the first table with the rows in the second table and
returns on the common rows between the two tables. Any duplicated rows from the final table
are removed.

51

Difference

• Class - DifferenceRAOptDAO

• Input TableVO table1, TableVO table2

• Output ResultVO

• Description – It returns only the rows of the first table which do not appear in the second
table.

An interesting thing to mention here is that for Union, Intersection and Difference to be successfully
computed, we must first find out whether the two input tables are compatible or not. We have prepared
classes which does this validation which are present under the com.imperial.validator package. We
determine if two tables are compatible or not just by comparing the information present in the header
of the two tables.

Natural Join

• Class - NaturalJoinRAOptDAO

• Input TableVO table1, TableVO table2

• Output ResultVO

• Description – Returns all the combination of rows in table1 with rows in table2 which are
equal on their common attribute names. Unlike in the Product operator, in case of Natural Join
the common attribute between the two tables appear only once in the result table. We first find
the attribute(s) which are common between the two tables and then compare which rows of the
two tables are equal on these common attributes. If they are, we add them to the result table.

Natural Join

• Class - NaturalJoinRAOptDAO

• Input TableVO table1, TableVO table2

• Output ResultVO

• Description – Returns all the combination of rows in table1 with rows in table2 which are
equal on their common attribute names. Unlike in the Product operator, in case of Natural Join
the common attribute between the two tables appear only once in the result table. We first find
the attribute(s) which are common between the two tables and then compare which rows of the
two tables are equal on these common attributes. If they are, we add them to the result table.

Semi Join

• Class - SemiJoinRAOptDAO

• Input TableVO table1, TableVO table2

• Output ResultVO

52

• Description – Computed similarly to the Natural Join operator, but instead of displaying rows
from the table2, we display only the rows of table1 which are equal to rows in table2 on common
attributes.

Anti Join

• Class - AntiJoinRAOptDAO

• Input TableVO table1, TableVO table2

• Output ResultVO

• Description – The definition of Anti Join says that it is those rows of table1 which have not
featured in the Natural Join with table2. To implement this operator we could have adhered
to the standard way of going through all the rows of the table1 and table2 and select only the
rows which are not equal on the shared attributes. However we opted for a way which would
allow us to utilise the already implemented method in our application. We first performed a
Semi between table1 and table2. From this operation we get only those rows of table1 which
have appeared in a Natural Join with table2. Since we are interested in finding those rows of
table1 which which do not appear in the Natural Join with table2, we simply use the Difference
operator and subtract the result by the Semi Join operator from table1.

SemiJoinRAOptDAO semi = new SemiJoinRAOptDAO ();

ResultVO tempResult = semi.action(table1, table2);

// find the Semi Join between table1 and table2

DifferenceRAOptDAO diff = new DifferenceRAOptDAO ();

ResultVO finalResult = diff.action(table1, tempResult.getTable());

// subtract the result produced by the semi join from table1 to get the

// Anti Join rows

Left Outer Join

• Class - LeftOuterJoinRAOptDAO

• Input TableVO table1, TableVO table2

• Output ResultVO

• Description – According to the definition of Left Outer Join, the output table of this operation
consists of the output of a Natural Join between table1 and table2 together with those of table1
which have not featured in the Natural Join. The rows which do not feature in the Natural Join
in the output table have null values under the columns of table2 which are not common with
table1. We implement this operator by first finding a Semi Join between table1 and table2 and
perform a Difference between table1 and the result produced by the Semi Join. We add these
rows to the rows produced by the Natural Join between table1 and table2, setting the cell values
under columns of table2 (which are not shared with table1) to NULL values.

53

Right Outer Join

• Class - RightOuterJoinRAOptDAO

• Input TableVO table1, TableVO table2

• Output ResultVO

• Description – As we know, Right Outer Join follows the similar concept as Left Outer Join,
but instead of displaying the rows of table1 which have not featured in the Natural Join between
table1 and table2; it displays the rows of table2. Like in Left Outer Join, this operator can also
be implemented by using the already implemented operators in our system.

LeftOuterJoin = ((table1 ./ table2))∪((table2−πtable21,table22...table2n(table1 ./ table2))χ(NULL . . .NULL))

From the above equation we can say that the Right Outer Join can be computed by a combining
the operators Natural Join, Project and Product. In our implementation we first compute a
Natural Join between the two input tables (table1 and table2) and then Project all the columns
of table2 in the order corresponding to that of table2. We then subtract the rows produced
by the Project operator from table2 to get the rows in table2 which have not performed in
the Natural Join. These rows are extended so that they match the column header of the rows
produced by the Natural Join between table1 and table2, placing NULL values in the columns
which only belong to table1. Hence we get our result.

This section gives us an idea how we implemented each of the Relational Algebra in our system.
Having this knowlege we can move onto the next Section which explains how queries are built.

6.4 Graphical Query Building

As mentioned earlier, graphical representation of the query building process is an important feature
of our system. What makes this feature exclusive is the fact queries can be built entirely by graphical
interaction without the need for writing anything down. As shown in Figure 4.2, we use the Query
Visualisation Panel (marked A) for displaying the query building process. The Query Visualisation
Panel accepts inputs such as table and operator name from the Table Name Display Panel and
Operator Panel, marked as B and C respectively in Figure 4.2. Drag and drop feature is supported
by all the three Panels. When the user selects a table name or an operator name (which are displayed
as JList items in the Panels), the Transfer Handler class responsible for implementing the drag and
drop feature, wraps it into an object which is transferable and sends it off to the Query Visualisation
Panel. The Query Visualisation Panel is designed to accept the transferable type of object and can can
immediately decode its contents (e.g. operator name or table name which is of type String). Moreover
it can also determine the point where the drop was made. Once these two information is obtained,
the Query Visualisation Panel calls the addToQueryTree() method of the Visualisation Controller,
passing a String and a Point object, representing the item dropped and the location respectively.As
we have mentioned earlier, the Visualisation Controller plays an important part in the query building
process. From the information passed in the addToQueryTree() method, the Visualisation Controller
can build a query.

54

The Visualisation controller keeps a track of all queries being built with the help of two LinkedLists
-querySequence, expectingSequence. There is a reason for keeping queries in two separated lists. Our
system allows users to just drop an operator on the Query Visualisation Panel without specifying any
input table to the operator. Since the Root Item of every query displays an input table and this is
not the case when only an operator is dropped, we keep this empty query structure (empty since the
Root Item does display table contents)in the expectingSequence as we expect the user to soon add
input tables to this empty query.

(a) Empty Query Structure for Unary Op-
erator

(b) Empty Query Structure for Binary Operator

Figure 6.3: Queries stored in the expectingSequence with Root Item empty

This way we save searching time, as we are not required to navigate through all queries in the
querySequence when the user provides a table as Root Item for an incomplete operator. Once a table
is provided for the rootItem, we remove it from the expectingSequence and add it to the querySequence.

In Figure 6.4 we present a flow chart of the addToQueryTree() method. On receiving the parameters
name (String) and a location(Point), the Visualisation Controller verifies whether the name matches
any of the implemented operators present in the system or equivalent to one of the tables names
fetched from the database. Once it is known what the name represents, we use the location attribute
to determine where the drop occurred. If the user dropped a table name just on the panel, then we
display the contents of the table in a QueryTreeTablePanelGUI object and add it to the querysequence.
If the user just drops an operator on the Query Visualisation Panel itself, we create an empty tree
structure which contains a QueryTreeOperatorPanelGUI Object displaying symbol of the operator
being dropped together with empty JPanel(s), where the user can drop tables for input to the operator.
The empty query structure can contain one or two empty JPanels depending whether the operator
dropped is unary or binary. Alternatively users can drop operators on a table name. If a binary
operator is dropped, the Visualisation Controller adds an empty JPanel where another table can be
dropped to complete this query.

Users can drop tables on these empty JPanels. The JPanels are able to accept both a String name
belonging to a table fetched from the database or of type TableVO. In our system users can provide
inputs to operators either by dragging table names (fetched from the database)onto the JPanels in
which case the Visualisation Controller fetches the contents of the respective table from the Business
Controller and displays the information on the Query Visualisation Panel. Otherwise, the user can

55

provide as input to operators results produced by operators which may be present in a different query
tree. Like we use the drag and drop feature when dropping table name we use a similar approach.
However, we cannot wrap up the name of the table of the intermediate result and send it to the
Visualisation query like we did in the first case since the Business Controller does not keep a record of
the intermediate results produced. Fortunately Java drag and drop allows us to transfer customised
data structure. Each node in a query tree representing a table has an attribute of type TableVO,
containing all the header and row information related to the table. When making such a table as
an input to an operator by dragging the table contents onto the empty JPanel, our customised data
transfer operation, sends a copy of the TableVO object whose contents the JPanel displays on receiving.

When users drop tables on these empty JPanels, which if satisfies the input condition for an oper-
ator, instigates the Visualisation Controller to give the command to execution of the operator with
these valid inputs and returning the result for the operation. An interesting thing to note here is
that some operators (Project and Select) require additional information in which case dialog box are
displayed to capture input. When the user input the necessary data, the operator is executed and
result displayed. This result is then displayed in a QueryTreeTablePanelGUI and set as a child for the
query node displaying the operator symbol. The Visualisation Controller is equipped with auxiliary
functions which when given correct inputs create different types of JPanels for displaying various types
of information -e.g. contents of the result produced by an operator, displaying an operator symbol or
the constraints related to an operator. The Visualisation Controller is responsible for positioning these
newly created panels so that they can show the parent-child relationship correctly in a query building
tree. As we had mentioned earlier in Section 5.2, each item node present in a query tree belongs to
the type Query Node. A Query Node represents JPanels (QueryTreeTablePanelGUI, QueryTreeOper-
atorPanelGUI, QueryTreeConditionPanelGUI) to display different types of information. Each Query
Node contains the x & y coordinate for each JPanel and also the height and width of the panel. These
values are set by the Visualisation Controller when the nodes are created. However, when the user
manually moves the Query Node on the Query Visualisation Panel or changes its size, these values are
updated so that the changes are reflected in the Query Visualisation Panel. To show the parent-child
relationship every Query Node keeps a record of all the other Query Nodes it is connected to.

At the end of the execution of the addToQueryTree() method, the Visualisation Controller requests
the Query Visualisation Panel to reflect the changes made to the query trees. The latter iterates over
the items(Query Node) present in the expectingSequence and querySequence and displays them on
the panel positioning them according to their x and y coordinate values set by the Visualisation. Each
Query Node contains a list of nodes it is connected to. The Query Visualisation Panel when iterating
over the two sets of LinkedLists representing all the complete and incomplete queries present in the
system, also draws any line between two nodes to represent the parent-child relationship.

56

Figure 6.4: Flow Chart explaining the method addToQueryTree()

57

6.5 Performing Data Lineage

In this section we will explain the how data lineage is performed in our system. We understand the
process of tracking data lineage through an example. Let us assume we have built the query as shown
in Figure 6.5

Figure 6.5: Example query for illustrating Data Lineage in RALT

The query is built by first carrying out the Project operator by projecting the account table with
the columns no,type,cname. We then execute a Natural Join between the result produced by this
Project operator and the movement table. We are interested in finding the lineage for the second row
of the result produced by the Natural Join (the row marked in green). It is important here to mention
that we have implemented functionality for tracking the lineage for each of the Relational Algebra
operators. We have implemented these functionalities in separate classes, which are located under the

58

package com.imperial.dao.lineage. For example the class implementing the lineage functionality for the
Difference operator is DifferenceLineageDAO while that for Product operator is ProductLineageDAO.
The functions for performing data lineage take as input the following parameters:

• target - it is of type TableVO. It is made up of the rows of a table whose lineage we are trying
to find.

• first input table - also of type TableVO and represents the first input for the operator which
produced the row(s) whose lineage we are interested in.

• second input table - as the name suggests it refers to the second input table and is only
applicable for the binary operators. It is of type TableVO also.

We perform data lineage by moving up the query tree, calling the appropriate data lineage func-
tionality when we encounter an operator node in the tree. The parent-child relationship shared by the
nodes in the query tree helps us in achieving our goal. Once we determine the rows in the parent(s) of
the operator node which act as the parent of the rows of the target table whose lineage we are trying
to find are determined, we perform a lineage on these rows of the parent tables.

In our example once the user selects a row in the result produced by the Natural Join operator
and requests the system to find how that particular row was derived, we do the following steps:

1. We call the method showLineage in the VisualisationController class, passing as parameter the
co-ordinates of the point on which the user has clicked in relation to the Query Visualisation
Panel. We use the co-ordinates passed as parameters to verify which Query Node in our list of
queries contains that point. Once the node is found, we can easily find which row in the JTable
(target table) contained in that node has being clicked thanks to Java Swings in built method.
We call the method recursiveLineageDisplay passing the Query Node and the rows selected in
the JTable (represented as an array of integers).

2. In the recursiveLineageDisplay method, we get the parent of the Query Node. If no parent is
found, we know that the table has not been derived from any table that have appeared before
in the query and hence stop our propagation. If we find a node we detect whether the JPanel
inside the node represents an operator or not (i.e. whether it is an operator node of type
QueryTreeOperatorPanelGUI). If it is, we find the name of the operator represented in that
node together with its type (i.e. whether unary or binary). In our example, we have found this
node to contain a QueryTreeOperatorPanelGUI JPanel representing the Natural Join operator.

3. If the operator node is of type unary we get the parent of this node which is the input table
to the operator. We call the respective lineage operation for that operator with the help of
our Business Controller. For example for finding the lineage of the Select operator we call the
functionality of the class SelectLineageDAO from the Business Controller.

If the operator is of type binary, we get the two input tables to the operator. In our case
we refer to the two input tables for the Natural Join operator. Once we get the input tables,
we call the class designed for implementing the tracing lineage for this binary operator (in our
case it is the NaturalJoinLineageDAO). We can determine the input tables easily as the three
nodes one representing the operator node, while the other two represent the input table nodes,
are connected directly/indirectly. For example the first input table node acts as a parent to
the operator node as well as the second input table. Hence once we access the parent of the
operator node (which is the first input table) we can also access the second input table since it

59

is the child of the first input table node. Having the required data we call the lineage operation
for that operator.

4. The lineage operations returns two arrays of int - the first representing the indices of rows in
the first input table which have participated in generating the row(s) whose lineage we are
interested in. The second array contains the same information but for the second input table.
If the operator is unary, we are just interested in the first array. We instruct the Query Nodes
containing these input tables to display the rows whose indexes are contained in the array in
Red colour when displayed in the Query Visualisation Panel.

5. We go back to step 2 passing the Query Node(s) containing the input table(s) together with
the array that contains the indices of the row that has participated as source from which rows
in our target table was derived. This recursive approach allows us trace back how a particular
row is derived from all the tables present in that tree that have appeared before our target
table. In our example we call the recursiveLineageDisplay method twice - first one containing
the Query Noe containing the first input table to our Natural Join operator together with the
first array passed by the NaturalJoinLineageDAO class. The second recursiveLineageDisplay is
called which contains the Query Node containing the second input table to the operator and the
second array returned by the lienage function for the Natural Join operator.

As we go to back to step 2, we notice that the node containing the second input table has no parent
hence the propogation stops. The first input table however has a parent - a Query Node representing
the Project Operator. Hece we carry on the data lineage process for this node until a node is reached
which has no parent (the node displaying the table account).

This way we achive data lineage in our system.

6.6 Adding New Operators

When designing our system, we have kept in mind the possibility that the code maintainers may
wish to add new operators to the system. We allow users to add new operators to our system by
just making few modifications to the existing system, without disturbing the existing implemented
operators. Let us see how a new operator can be added by the Programmer (person in charge of
maintaining the code) through an example. We assume that our Programmer wants to add a Left
Outer Join Operator into the system, which is not already present in the system. The Programmer
needs to carry out the following steps to add a new operator into the system.

• The Programmer creates a Java class in the package com.imperial.dao.opt . This is the package
where we create and keep individual classes for all Relational Algebra operators. We call this
class LeftOuterJoinRAOptDAO. Since we know that Left Outer Join is a binary operator our
class extends the abstract class BinaryOperatorRADAO and implements the method action of
that class. All binary operators in our system extend this class and the action method takes as
parameter two TableVO (object we used to represent database table) type objects.

• In Figure 6.6, we can see how our Programmer has implemented the Left Outer Join operator.
We can see that when implementing this method the Programmer has taken advantage of the
already existing operators in the system (for example Semi Join, Natural Join) etc. Also we can
see that Programmer has decided to implement a method named addExtraRows specific to this
class. Sometimes we may wish to verify whether the inputs to an operator are valid or not. In

60

Figure 6.6: LeftOuterJoinRAOptDAO.java

61

that case the user needs to implement a class for validation which extends the GeneralValidator
located under the package com.imperial.validator. This package is used for containing all the
classes used for validating functions. The validation class returns an error message if something
is wrong. If the inputs are accepted by the validator class, we carry on implementing the
functionality of the operator. However for simplicity purpose, our Programmer has decided
not to validate the inputs. The Programmer must remember that the action method returns
an object of type ResultVO, which is made up of object TableVO and a String. The TableVO
object represents the result produced by the operator while the String signifies any error message
generated due to incorrect execution of the operator. We use this String to alert the user in case
something has gone wrong (for example the inputs are of wrong type for the operator). The
message is displayed to the user in the Error Console Panel.

• Now that the Programmer has implemented the functionality of the Left Outer Join operator, it
should be integrated with the rest of the system. First the Controller should be able to call the
action method of LeftOuterJoinRAOptDAO class. All binary operators have the same inputs
two objects of type TableVO. The method callBinaryOperation in the Business Controller
method is responsible for calling binary operations (for example Natural Join, Semi Join etc.)
while the callUnaryOperation calls the operators Project and Select. The callBinaryOperation
accepts as parameters the following:

– operationName: a String object representing the operator name.

– table1 : the first input table. It is of type TableVO.

– table2 : another TableVO object representing the second input table.

The Programmer adds the code in this method which allows the calling of the action method
of LeftOuterJoinRAOptDAO class when the operationName is equal to Left Outer Join. The
Programmer adds the following line of code as one of the else statements in the method:

else if (operationName.equals("Left Outer Join")) {

LeftOuterJoinRAOptDAO semi= new LeftOuterJoinRAOptDAO ();

newTable = semi.action(table1, table2);

}

• The Programmer must also provide information to the Visualisation Controller which will allow
the latter to determine that Left Outer Join is the name for an operator and it is of type binary.
Visualisation Controller must be also informed of the symbol to be displayed in the Query
Visualisation Panel to demonstrate that a Left Outer Join operation has occurred. This can
be done by simply adding one line of code. In the VisualisationController we have a HashMap
named operatorKeys which stores information about operators. In constructor of the class
VisualisationController, our Programmer adds the following code,

operatorKeys.put("Left Outer Join", new OperatorItemVO("binary","="+"\u00D7"));

Since we use symbols the for representing Relational Algebra operators in Query Visualisation
Panel, the icon for Left Outer Join can be easily fetched from the HashMap. Also when the user
drops the Left Outer Join operator on the Query Visualisation Panel, the Visualisation Controller
can immediately determine whether the operator is binary or unary and act accordingly.

62

• When a new operator is added to the system, it must be displayed in the panel displaying all the
operators in the system. The OperatorPanelGUI class located under the com.imperial.gui.panel
contains an attribute of type a two dimensional array of String, called operators. In this com-
ponent of the GUI we display the operator names together with a symbol for the operator. We
have opted for displaying the symbol for the operator using Unicode. Each item of the operators
attribute is representing as operator name,operator Unicode value. The Programmer should add
the following element to the two dimensional attribute operators:

{"Left Outer Join","="+"\u00D7"}

Now the Left Outer Join is displayed in the OperatorPanelGUI.

We can see from this example how easily one can add new operators to our system. This makes
our system easily extendible.

63

Chapter 7

User Guide

This chapter presents a brief, overview of RALT from the user’s perspective. The basic functionality
of each aspect is illustrated by screenshots.

7.1 Introduction

RALT is started by double clicking on the Java application icon labeled RALT present in the CD-ROM
provided for this application. The application can be installed anywhere on the system according to
the system owners desire 1. When the application is started the Login Screen as shown in Figure 7.1
appears.

Figure 7.1: Login Screen for RALT

The user is required to provide the information needed to connect to a database. The following
information are required:

1The user must have Java 1.6 installed in the system in order to start up this application.

64

• address – The url of where the database server is located. For example db.doc.ic.ac.uk. If the
database the user wants to connect to is located in the same machine where RALT is currently
running, the user is required to provide localhost .

• port – The user may provide the port it wishes to connect to otherwise the system takes number
to be 5432, the standard port used for Postgres databases.

• database - This is a mandatory field and the user is required to provide the name if the database
he/she wants to connect to at the database server. A possible name of a database can be
lab bank branch.

• username - The username for logging into the server should be provided here.

• password - This is the password for required for connecting to the database.

• database type – The user must choose the type of Database. RALT allows users to connect to
two kinds of database - Microsoft SQL Sever 2005 DBMS and Postgres 7.4 DBMS.

7.2 On Loading

Once the details have been entered, the user can submit the information by clicking on the Login
button. The system tries to connect to the database. If it fails to connect to the database, an alert
message in a popup box is triggered, asking the user to verify the details provided. Once the user
confirms the details, it must re-submitted.

Figure 7.2: Screenshot: Application Screen of RALT

65

If the system manages to connect to the system, it displays to the user the main screen of the
application (Figure 7.2). On loading the main application screen, the system displays the names of
the tables fetched from the database in a list at the top left panel of the screen. This panel is marked
as Table Name Panel. The bottom left panel displays all the operators in the system in a list and is
called the Operator Panel. Each operator is assigned a symbol which is equivalent to the symbol used
when building Relational Algebra queries using algebraic notations.

7.3 Drag and Drop

User can drag components from one part of the screen to another. This way user can also build queries
by dragging and dropping operator names from the panels displaying table and operator names. Users
can also use this feature to view the contents of a table. When the user hovers the mouse over a table
or operator name the mouse cursor changes from arrow to a hand. This indicates that the item is

eligible for drag and drop. While dragging an item, when the mouse icon becomes , it indi-
cates that no drop is possible on that component.Also at the bottom of the application screen, the
area bordered by a red line, is used for displaying messages to the user.

We explain the effect of dragging and dropping components in the following section.

We have discussed the different the functionality of each component of the Application Screen in
Chapter 4.

7.4 Viewing Table Contents

To view the contents of a table the user needs to drag a table name and drop it onto the panel labelled
Table Data Display Panel (Figure 7.2). Dropping the table name there automatically displays the
contents of the table. For example dropping the table account on Table Data Display Panel, displays
the data of that table in that panel as shown in Figure 7.3. Users must realise no action is taken if
they try to drop an operator on this panel. The tables displayed are scrollable allowing users to view
all the rows of the table in case they exceed the space allocated to them.

As soon as a table name is dropped, the table properties attribute types, Primary key for the
table etc. are displayed on the panel labelled as Table Characteristics.

7.5 Building Queries

We will explain the query building process through an example. We want a project operation on the
table account. We first select the table name account from the panel displaying all the table names
and drop it onto the Query Visualisation Panel. Figure 7.3 shows the effect of this action. The table
account is displayed in the latter panel as a rectangular box. The user can scroll through the rows of
the table.

We now select the Project operator from the list displaying all the operator names, drag it and
drop it on the rectangular box displaying the table account. Since Project operator requires some
additional information, it displays a dialog. The dialog displays the column names of the account

66

Figure 7.3: Screenshot: Effect of dropping the table account onto the Table Data Display Panel panel
and Query Visualisation Panel

table. A checkbox is assigned to each column name which the user can select to instruct the Project
operator which attributes to select.

We select the first and last field by checking the checkboxes. We then click the Ok button. The
Project Operator is executed and the whole query is displayed in a tree-like structure as displayed in
Figure 7.4.

As we can see in Figure 7.4, the account table we had seen earlier is now connected to a rectangular
box displaying the Project symbol (Π). This box is connected to a rectangular box displaying some
data in a table form. This is the result generated by the Project Operation. Moreover, the box
displaying the Project symbol is also connected to another box by a blue line. The latter displays
the constraints for the project operator, i.e. the columns selected. We use red lines for connections
between boxes displaying operator symbols and those displaying table data. On the other hand,
blue lines are used for connecting any operator with any constraints it may be related to, as clearly
explained in the above figure.

Alternatively, we can build a query by first dropping an operator and then providing it with in-
puts. The operator will not execute until it has the required inputs. As shows in Figure 7.5, we have
dropped the Natural Join operator on to the Query Building panel, an incomplete tree structure is
created by the system. Since Natural Join is a binary operator, we see two empty red rectangular
boxes are connected to the box displaying the operator symbol. We can provide the input operator
by dropping table names on these boxes.

When we first provide one input to the Natural Join, the inputs for the operator are incomplete.
Hence it is not executed as shown by Figure 7.6. However, on receiving a valid second input as shown
in Figure 7.7, the Natural Join is executed and the result displayed.

67

Figure 7.4: Screenshot: A tree-like representation for a Project query

Figure 7.5: Screenshot: Dropping the Natural Join operator without any input table

68

Figure 7.6: Screenshot: Adding one input table to the Natural Join Operator

Figure 7.7: Screenshot: Executing of the Natural Join

69

Figure 7.8: Screenshot: Providing output of an operation as input for another

Our system also allows us to provide as input to operators, results generated by another operation.
Let us take the example given in Figure 7.8. As we can see, we have two separate queries. The first
query is a Project operation on the accounts table which selects the columns no and sortcode. The
second query is an incomplete Semi Join query whose second input is only available. Our application
allows us to provide the result generated by the Project operation as the first input to the Semi Join
operator. To do this we left-click on any rows of the table produced by the Project operator (which
highlights the row) and then drag that row and drop it on to the red box. The yellow arrow in Figure
7.8 demonstrates the process of dragging the row of the result table and providing it as the first
input of the Semi Join oprator.On receiving this input, the requirements for the Semi Join operator
is complete and it gets executed as shown in Figure 7.9.

Our system can also alert the user when correct inputs are not provided for an operator. Let us
taken the Union operator for example which must have as inputs two tables which are compatible
i.e. both table have the same number of columns and the type of the column at a particular index
in the first table must be equal to the type of the column at the same index in the second table.
In Figure 7.10, we have provided two non-compatible tables account and movement as input to the
Union operator. The system will not execute this operator and will show the user an error message,
as pointed by the green arrow in Figure 7.10. The message given to the user in this case is “The two
tables are not Union compatible”.

70

Figure 7.9: Screenshot: Execution of Semi Join after receiving input as output from the Project
operator

Figure 7.10: Screenshot: Showing error message displayed when Union operator is supplied with
incompatible inputs

71

7.6 Data Lineage

In RALT user can easily see how a particular row has been derived. To view the lineage of a row, we
first select the row by left-clicking on it. The selected the row gets highlighted. Once our desired row
is selected, we right click on the box containing the panel which displays a pop-up as shown in Figure
7.11. We have selected the third row of the table.

Figure 7.11: Screenshot: Showing Popup when the mouse is right clicked on the box

By clicking on the Show Lineage item of the popup menu we can view the rows in the other tables
of the query, which have appeared higher up in the query tree. This can be seen by Figure 7.12.
Notice that the row whose lineage we are finding has been highlighted in red together with the rows
of tables which have contributed in producing this row.

72

Figure 7.12: Screenshot: Data Lineage of the selected row

7.7 Delete Components

Our system is equipped with a feature that allows user to delete components. For example let us
consider the query shown on Figure 7.13, we have executed.

After executing the query, the user may realise that they provided a wrong table as the second
input and they wish to change it. This can done by right-clicking on the second input when the popup
box. Selecting the first item in the popup list, labeled as Delete Table, the query takes a new form as
shown in figure 7.14. We can see that the second input has been replaced by an empty panel and the
result of the Natural Join is missing. The previously complete tree structure of the Natural Join is
currently replaced by an incomplete structure with one input table (the first table).

The user can add a new table as the second input to the Natural Join, by dropping it on the empty
panel (the bordered by red box). On receiving the second input the Natural Join operator is complete
and gets executed showing the new result.

However, we have certain rules when a user wants delete an item from the system. They are the
following:

1. If the user deletes a table which does not act as an input to an operator, it gets removed from
the screen.

73

Figure 7.13: Screenshot: Showing a complete execution of a Natural Join query

Figure 7.14: Screenshot: Transformation of the Natural Join query when the second input is deleted

74

2. If the item has no parents, then deleting it deletes the entire query.

3. If the item deleted is a result of an operation the following happens:

• Everything below the box displaying the operator symbol(whose result we are deleting) is
deleted.

• If the operator is binary , it replaces its second input with an empty item where users can
drop new tables to complete the necessary inputs to the operator so that the query can
execute.

• If the operator is a unary operator, it gets removed leaving its sole input (first input in
case of binary)on the screen on which new operators could be dropped.

4. If the item deleted is an operator node, it just keeps its first input table and deletes anything
else it is connected to by the red or blue lines.Any sub-queries built on the result produced by
this operation also gets deleted.

5. If the item deleted is an input for an operator two things happen:

• If the operator had all the required input(s) and had already executed, it will delete the
result it has produced together with any sub-queries built on that result.

• If the operator is binary and the table deleted is the second input, it will just transform into
an incomplete query structure by replacing the second input with an empty panel where
the user can add inputs later. If the item to be deleted is the first input, we delete all the
components below it and either step2 or step3 will apply.

Following these rules, the user can delete items for queries.

Clear panel

The user can clear a panel of all elements if they decide to. To do this they must right-click anywhere
on the screen which will display a popup and form that select the Clear Panel option. This clears
the entire screen.

7.8 Playing with visualisation elements

In RALT users can move the boxes displayed on the scrren when building a query. These boxes
represent different types of information. They sometimes display data in a table, sometimes the
symbol for an operator or the constraints attached to an operator. Sometimes they display nothing
but appear as an empty box to which user can add table. No matter what they represent, user has
the privilege of adjusting the size of the boxes or even dragging them to a different location on the
scree.

Figure 7.15 displays one such box. In order to change the size of the box or move it we first need
to left-click on the outer black border of the box labelled with the red arrow. On clicking on the
outer border of the rectangular box, eight small white square are displayed around the border. On
hovering the mouse over these square boxes user, can notice that the mouse cursor changes to an two
directional arrow. When the cursor takes this form the user by holding onto the left mouse button
can move the mouse cursor to change the size of the box.

75

Figure 7.15: Screenshot: Rectangular Box for representing displaying information in Query Building
Panel

Alternatively after clicking on the black outer border of the box, when the user hovers the mouse over
the area on the border not containing the white boxes, the curson changes to a diamond shape. User
can now hold on to their left mouse button and move it over the screen when the rectangular box also
moves. The box remains where the user drops it. Once dropped all the connections the box previously
had are re-drawn in relation to the boxes current position. This feature allows users to change the
position of boxes if they overlap with boxes in other queries, does making query computation difficult.

7.9 Log Out

When the system wants to Log Out of the system, they can click on the File menu located at the
top left corner of the application screen and select the Log Out option. The system gives asks the
user whether they intend to disconnect from the system using a popup box. If the user clicks on
the Cancel button, no action takes place and the popup box dissapears. If the user selects the Ok
button, then we the user is directed to the Login Screen.

76

Chapter 8

Testing & Evaluation

In this chapter we attempt to evaluate the application built during the course of this project. We
realised that it is difficult to come up with a fair, unbiased appraisal by just carrying out tests on
the system without any user testing. This encouraged us to involve people who have been not been
associated with the development process when testing this application and gather their views on the
system.

8.1 Introduction

To evaluate the success of the RALT, we have chosen different ways of assessing the software. First,
several test cases were created, and the program is applied to solve both simple and complex Relational
Algebra queries. We also present the system in front of some Computing students allowing them to
interact with the system and later asking for their feedback.

8.2 System Assesment

Majority of the components in RALT has been developed from scratch. This includes the GUI and
also our own implementation of the Relational Algebra operators. Hence responsibility lay with the
development team to make sure that all the components worked correctly. Fortunately, modular ap-
proach taken for the development of the different components of RALT made testing these components
fairly straight forward. Table 8.1 summarizes the aims before we started the project together with
information about whether they were achieved or not at the end.

We now justify how we came to the conclusion that these aims were achieved.

8.2.1 Connecting to Databases

This was a simple test. On our systems login screen, we entered the necessary information and
monitored whether the system connected to the correct database or not. For example, we submitted
the following information on the login screen of RALT:

• address – db.doc.ic.ac.uk

• port – 5432

77

Aims Result
Connecting to Database Completed
Storage of Data Completed
Displaying Data Completed
Implementation of the basic Relational Algebra Operators Completed
Building Queries Completed
Deletion of Tree Nodes Completed
Implementing advanced Relational Algebra Operators Completed
Introduction of Data Lineage Completed

Table 8.1: Status of predefined aims at the end of the Project

• database - lab bank branch.

• username - lab

• password - lab

• database type - Postgres

On submitting this information the main application screen of the system loaded up and displayed
table names in the Table Name Panel which matched with the tables present in the database whose
details we had provided. Hence we could conclude that our system was connecting to a database from
the information provided by the user.

8.2.2 Storage of Data

A unique feature of our system is that it stores all the data fetched from the database in memory. We
ensured that our system was extracting all the necessary information by printing all the components
of the data structure which we had designed for storing this information. We noticed that not only
all the rows for each table in the database were fetched correctly but the metadata fetched (e.g.
Primary key of a table, Foreign key reference etc) were also correct. This feature could be more easily
tested once the user interface was ready as we could see the contents fetched from the database in a
graphical manner.

8.2.3 Implementing basic and advance Relational Algebra operators

We chose to test our implementation of the Relational Algebra Operators through Unit testing. Unit
testing is a testing methodology which gives the programmer the confidence that individual units of
source code are not behaving abnormally. We chose JUnit test framework for this purpose.

Being able to test whether the code is behaving properly after any modifications is made to it
allows us to be reassured that changing small amount of codes does not break the larger system[20].
Without automated testing tools like JUnit, retesting becomes a tedious and inaccurate process.
Allowing testing process to occur frequently and automatically, we can keep software coding errors
to a minimum. We create JUnit test classes for each operator. These are located under the package
com.imperial.testCases.

78

Figure 8.1: Screenshot: JUnit Test Case for Natural Join Operator

In Figure 8.1, we can see the result produced by the JUnit test case for the Natural Join operator.
When running the JUnit test cases produce results for known inputs different from our expected result,
we immediately realise that the method has not behaved properly. Moreover we can write separate
test cases testing various functionalities of the function and run all of them together with the help of
JUnit. JUnit proved to be extremely helpful since we were implementing several operators and often
had to change the code for the operators. With JUnit at hand, we could quickly run the designed test
cases after a modification is made to the code for an operator and observe the results. Hence, after
these test results we could also confirm that our implementation of the Relational Algebra operators
were behaving correctly.

8.2.4 Testing GUI

While implementing the Relational Algebra operators, we also simultaneously carried out the devel-
opment of the GUI. As we had mentioned earlier in Section 4.3, our main application GUI is made up
of several components. Using Java Swing, we could develop and test these components individually
without the need of integrating them into the application GUI. This way we could determine the look
and feel of the individual subcomponents without worrying about the other parts of the system GUI.

Once all the individual parts of the GUI are designed, we integrated them together into the system
to create the main application screen. We could now test the interaction between different components
of the GUI. For example we could now see whether dragging a table name from the Table Name Panel

79

Figure 8.2: Screenshot: After the development of Table Data Display Panel

and dropping it onto the Table Data Display Panel, displays the data correctly or not. This was not
possible earlier as the different components did not interact with one another.

8.2.5 Query Building

Query building is an essential feature of our system. We tested this functionality by creating a number
of test cases which involved a sequence of actions which had to be carried out. We started with keeping
things small, testing each of the individual operator, verifying whether correct input and output were
displayed for each operator. Once satisfied we took a bigger step of using the results produced by one
query as input to other operators. When observed whether queries being built, displayed the correct
sequence of activities. Happy with the results we decided to build individual queries and then using
the result, produced after a sequence of operators in one query as inputs to another. For example if
we consider Figure 8.3, we have executed the following sequence of operations 1:

• We first drop a Project Operator and a Semi Join operator onto the Query Visualisation Panel.

• We drop table name account as input for the Project operator and choose the fields no and
sortcode as fields to be attributed. The Project operator does its computation and displays the
results in a table (marked as “Project on Account).

• We drop the movement table as second input to the Semi Join operator.

• As indicated by the yellow right angled arrow, we drag the result produced by the Project
operator and drop it on the empty panel acting as the first input to the Semi Join Operator.

• The Result is shown in Figure 8.4

1we carry out these operations on the database lab bank branch located at db.doc.ic.ac.uk

80

Figure 8.3: Screenshot: Testing the transfer of output of one operator as input of another in a separate
query

Figure 8.4: Screenshot: Testing the construction of two separate queires

81

8.2.6 Introduction of Data Lineage

Since Data Lineage was a late addition to our project, the user interface was already complete when
we began testing this feature. Hence, we thought the best way to test data lineage will be to select a
row of a table and call the data lineage operation on that and verify whether the correct in the query
tree were highlighted as the lineage of our selected row. We first started with testing the Lineage on
individual operators. For example we provided two inputs two a Natural Join Operator which gets
executed and produces a result. We carry data lineage on say the first row of the result produced
and verify whether rows in the input tables marked as the lineage for our row of concern is actually
accurate or not.

Having successfully verified that lineage operation worked perfectly for each of the operators imple-
mented in our system, we ventured to test it on a more complex query. Below we give an example of a
test case query we created for testing purposes. The query can be built by carrying out the following
sequence of operations and diagrammatic representation of the query is given in Figure 8.5:

• Execute a Project operator on the table account selecting column no, type and cname of the
table.

• Execute a Natural Join operation on the result produced by Project with the movement table.

• Select the second row of the result produced and execute the data lineage operation on this row.

• Observe the rows in the query tree that have been highlighted red.

• Verify whether the rows are the correct rows or not.

By carrying out such tests like this we received an assurance that our data lineage functionality
could work correctly for multi level query tree.

8.3 User Testing

Since RALT is designed to help students in learning Relational Algebra, we realised the best to eval-
uate this system is by allowing users to use it and monitor their activities and listening to their
feedback, specially the negative ones. On using the system the following response was received from
a Computing student at Imperial College.

Md. Salih Noor, MEng Computing: “RALT makes the process of query building very easy. And
the best part is I dont need to write anything.”

Similar responses were received from other students who got a chance to lay their hands on the
system. However, to obtain a statistical meaningful measure of RALT’s usability based on the opinions
of its prospective users, we need to carry out a formal survey. Unfortunately some elements limit the
scope of this study, including the following:

• To attain a high level of precision, a large number of students must be surveyed. However, due
to the lack of time and the busy schedule of most of our colleagues prevented us from surveying
many students.

82

Figure 8.5: Screenshot: Testing Data Lineage

• We cannot rule out the fact that the survey is inherently biased since the people being surveyed
are member of the same academic discipline. All of them are at present, final year MEng
Computing student at Imperial College. These people are already accustomed to the Relational
Algebra algebraic notation and may even feel more comfortable to write queries using algebraic
notation instead of visual interaction.

• Since our tool is actually designed for students learning Relational Algebra for the first time,
the surveyed students do not match the best profile for our target audience. To produce more
meaningful results, the study must be extended to include users from various backgrounds,
primarily the ones learning Relational Algebra for the first time.

• Given the time the students could provide, we kept the scope of this survey to a minimum.

• Given the small sampling population, the sampling error and non-sampling errors, such as that
due to false response, become highly significant.

Although we need to consider these factors when evaluating the results of our survey, nevertheless
the survey highlighted the strength and drawbacks of our system. Four students participated in our
survey. We call them User1, User2, User3 and User4. Our goal was to solve some Relational Algebra
queries on paper and time how long each user take to solve each query. Then we ask our users to
solve the same set of queries using RALT. We again time how long it takes each user to execute the
each query and compare the results with the paper based approach.

83

8.3.1 Carrying out the survey

Before starting, we handed out printed copies of Section 3.1 to each user. This allowed them to
refresh their knowledge about Relational Algebra just by flicking through a few pages. We then
presented each user a sheet of paper containing 3 relations and 9 questions. The sheet is attached
in Appendix A. Model answers for the query are provided in Appendix B. User had to transform
the verbal description of each question into a Relational Algebra queries using the twelve Relational
Algebra operators mentioned in Section 3.1. They were allocated 27 minutes for completing all 9
questions. Since an important feature of RALT is that it allows complex queries to be broken down
into small easily solvable queries, our questions often require the users to write complex queries. This
way we can test how easy it is for users to build complex queries in RALT, when in the second half
of the survey they solve these questions in RALT.

We monitored the workout of each user individually, timing how much time they took to solve each
question. Once they finished or the time allocated was over, we collect their workout. After a short
break we introduce them to RALT. We give them a brief introduction on how queries are built. We
work out some demo queries in front of them, allowing them to get used to the user interface before
we start working out. We also show them the feature of data lineage and how they can use it to track
how a result was derived. Then we provide them with two use cases and ask them to carry out the
activities. These tests gave our user a flavour of RALT and they felt more confident to solve the nine
queries under a time constrained environment.

We then began the second phase of the survey. We connect the RALT applications to a database
which displays the same relations user had worked with in the first part of the survey. We again ask
them to carry out their activities. They are again given 27min for solving the 9 questions. We observe
how long they take to solve each query. We also pay attention how the user is solving the questions.
We wait until the user finishes all the queries, or 27 minute is over. After this we collect the users
work.

8.3.2 Analysis of Survey

As we can see from Table 8.2, we can see that users were able to answer more questions correctly using
RALT than the paper based approach. Majority of the students have been able to able to answer
7-9 queries correctly. Also from Figure 8.6 we can notice that the most of students have managed to
finish building queries using RALT in significantly less time than paper based.

No. of correct
question Paper based RALT

0-3 2 0
4-6 2 2
7-9 0 2

Table 8.2: Results from Paper based and RALT based Test

84

When analysing the workout of our users in the paper based test, we notice that they have spent a
large proportion of their time trying to find the intermediate results when building a complex query.
Making an error when producing one of the intermediate results correctly gets carried on to the later
stages of the query building process, as a result of which incorrect result is derived. We also notice
that the users struggled considerably in the last two questions of our set which involved the Division
operators. All the users took the path of not answering the question using the Division operator.

When analysing the work done by the users in RALT, we can see a considerable number of improve-
ments. Most users built small sub-queries and coordinated the output of these queries to get the final
result. The fact that users did not have to compute the intermediate results themselves, gave them
extra time investigate different methods of solving a query. We also noticed that in RALT for the last
two questions, user used the Division operator. When asked about the idea of using operators like the
Division, the users mentioned the fact the unfamiliarity of the operator was a reason for not using it
in the paper based version of the test, as it had slipped out of their mind. However, as the Division
operator symbol could be seen in the user interface, it prompted them to use it.

Figure 8.6: Comparison of time taken by user to complete the 9 questions using both paper-based
approach and RALT

Although from Figure 8.6 we observe that majority of users managed to solve the nine queries
in subsequently less time with RALT when compared to the paper based approach, there was an
exception. Though User3 took less time when using RALT, the time difference was not significantly
low compared to the average improvement of 40%. When investigating the reason for this, we found
User3 found that when building complex queries, the Query Visualisation Panel soon got filled up
with too much information which affected her navigation time. We realized that User3 did not use
the feature of deleting unwanted queries with our delete option. Also in RALT we have tried to
minimise any importance given to syntax when making a query. So when in a Select operator, the
user is required to enter a conditional value the quotes attached to the value as we see in traditional
system, is left out. For example, if we want to select the row from table account where type is current,
instead of specifying the constraint like type=‘current as we do in traditionally, we write it simply as
rate=current. However, User3 did not realise this feature and she received wrong result for entering
a String constraint inside quotes.

85

When writing queries by hand, we noticed our users often wrote unoptimised queries. For example
they would often execute a Select operation after performing a Natural Join. This way we compare
many rows unnecessary. But when building the same queries in RALT, the visualization of the
intermediate results made them aware of the unnecessary operations being performed and they became
more motivated to write optimized query. We were happy to see this change in attitude of our users
as one of the main aims of our learning tool was to make users realise how queries can be optimised.

8.3.3 Questionnaire

At the end of the survey we gave our users a questionnaire to give us a feedback of their user experience
with RALT. The questionnaire was designed to capture their reaction when working through the
system in a relaxed manner. This was carried out before the compputer based test started when
we handed our users two use cases so that they can get them accustomed to the system. These use
cases were for building query trees and performing data lineage. We used the sequence of activities
illustrated in 8.2.5 for query building while that in 8.2.6 for data lineage. The following was the
questionnaire:

1. (a) Carry out the procedure of query building in RALT as described in section 8.2.5.

• Did u find the correct Result?
• How difficult did u find the procedure of query building?

(Very Easy, Easy, Medium, Difficult, Very Difficult)

(b) Carry out the procedure for determining data lineage in RALT as described in section 8.2.6.

• Did u find the correct Result?
• How difficult did u find the procedure of finding the lineage for a row?

(Very Easy, Easy, Medium, Difficult, Very Difficult)

2. To what extent do u rate the following statements:
(Very Easy, Easy, Medium, Difficult, Very Difficult)

• Can a new user get familiar with the system easily?

• Do you think the user interface is easy to use?

3. Do you think RALT should be used for the purpose of teaching?
a) Yes b) No

4. 4. Do you think you learned more using this tool?
a) Yes b) No

We got the following response:

1. (a) Carry out the procedure of query building in RALT as described in section 8.2.5.

• Did u find the correct Result?
Yes: 4 No: 0
• How difficult did u find the procedure of query building?

(Very Easy, Easy, Medium, Difficult, Very Difficult)
Very Easy = 1, Easy =2, Medium =1, Difficult=0, Very Difficult=0

86

(b) Carry out the procedure for determining data lineage in RALT as described in section 8.2.6.

• Did u find the correct Result?
Yes: 4 No: 0
• How difficult did u find the procedure of finding the lineage for a row?

(Very Easy, Easy, Medium, Difficult, Very Difficult)
Very Easy = 3, Easy =1, Medium =0, Difficult=0, Very Difficult=0

2. To what extent do u rate the following statements:
(Very Easy, Easy, Medium, Difficult, Very Difficult)

• Can a new user get familiar with the system easily?
Very Easy = 1, Easy =2, Medium =1, Difficult=0, Very Difficult=0

• Do you think the user interface is easy to use?
Very Easy = 1, Easy =1, Medium =1, Difficult=1, Very Difficult=0

3. Do you think RALT should be used for the purpose of teaching?
a) Yes=4 b) No=0

4. 4. Do you think you learned more using this tool?
a) Yes=3 b) No=1

The main negative point stated by the student was the fact, RALT at times had too many informa-
tion on the query building screen which made it confusing for the user as they sometimes lost track
of the work. Also, they stated that though initially they like the idea of being able to move the query
tree elements on the visualisation panel, sometimes they would overlap one query tree with another
and hence would like an automatic feature which will separate and align the query trees properly.

Besides the criticism we received, further discussions with the students together with the results of
the study indicated that users have a generally favourable opinion of RALT. They enjoyed the method
of building queries through graphical interactions. Everyone said the feature of data lineage assisted
significantly in understanding how a particular row was derived. However, given the limitations of
the study as we discussed earlier, one must interpret these results with care. For a more statistically
meaningful appraisal of the system’s usability, a larger and more rigorous study needs to be conducted.

87

Chapter 9

Conclusions & Future Work

We open this chapter by looking at how our current work can be extended and outline the potential
direction for further research. We then try to make a conclusion about the outcome of this project.
We attempt to answer questions like – What has been particularly successful? What went wrong?

9.1 Future Work

Although the user feedback we received for RALT was overwhelming, we feel there are still a large
number of features which could be added to our system that will enhance the learning of Relational
Algebra for students. Below we discuss some of these features:

• Our system is missing the basic aggregate operations which are included in all databases. Such
operations include Sum, Count, Average, Maximum, and Minimum. Having these operations in
our system will allow users to manipulate integer and they can execute queries such as find the
customer in the table with the maximum account balance. Execution of such queries is currently
not possible in our system.

• Although not part of Relational Algebra, OLAP (ROLL UP, PIVOT, GROUP BY etc.) op-
erators are extremely useful when viewing data. For example they allow in grouping together
particular rows of a table based on a certain column field. We feel the OLAP CUBE operator
in particular will be a fine addition to our system. CUBE operator is extremely helpful in the
analysis of data. Currently not all DBMS like Postgres support the CUBE operation; as a result
users using such databases is forced to miss out of this important operator. However, it is a
different case with our system. We store all the data fetched from a database in memory of the
client machine. Hence, we can implement our own CUBE operator that will allow the user to
perform this operation on the data held in memory. This way the user need to be connected to
a particular type of in order to execute OLAP operators which are supported in all DBMS.

• Although our tool is meant for the teaching of Relational Algebra, we can extend it to make it
an SQL learning tool as well. This way the user can execute both Relational Algebra and SQL
queries from one single application and can compare the results produced by the two.

• An important feature to have in our system will be to allow the user to write SQL queries into
the system in the traditional SQL way i.e. SELECT * from users WHERE uid=10, and then
transform this query into a tree like format showing the stepwise step execution of the query
using Relational Algebra.

88

• Although the current user interface of RALT is more powerful than the other learning tools for
Relational Algebra, we feel having a 3-D interface will allow us to entice more users to use our
tool. Having 3-D capabilities, the tool will no doubt make the learning of Relational Algebra a
more exciting activity.

• Our system has no option where user can save their query and then load them at a later point
in time. As a result everytime a user loads the system they have to start building all queries
from scratch. This is a waste of time and we must provide them with an option of saving thier
queries.

We have thus presented some of the more interesting possibilities for further work. Some of these
ideas may be more promising than others.

9.2 Conclusion

Below we provide what we consider to be the primary achievements of the Project:

• Creating an application which can execute Relational Algebra operations without the need for
the user to input any query by hand.

• Being able to display the query building process in a tree like structure.

• Using Java Swing for creating a user interface which is powerful as well as user friendly. It allows
users to get accustomed to the system quickly and provides a easy man-machine interaction.

• Being able to implement all the Relational Algebra operators on our own and understanding
how some of the advanced operators (i.e. Natural Join, Semi Join etc.) can be computed by y
combining the basic Relational Algebra operators (Project, Union etc).

• Being able to implement the feature of data lineage in a learning tool, which to our knowledge
has never been used before for academic purposes.

A major area of failure we think has been the way data is displayed on the Query Visualisation
Panel. We noticed if the user did not go on building queries without deleting the ones they do not
require anymore, the application screen will get filled with information very soon and it will be hard
to navigate. Also the results produced by an operator when displayed on our Query Visualisation
Panel is not given a name, which makes it hard for some users to identify the correct result. We
should address these two issues quickly.

To conclude, we have implemented a system which allows users to compute Relational Algebra
queries just by graphical interaction.

89

APPENDIX A
Given the three relations as shown below,

sid sname rating age
22 Dustin 7 45
29 Brutus 1 33
31 Lubber 8 55.5
32 Andy 8 5.5
58 Rusty 10 35
64 Horatio 7 35
71 Zorba 10 16
74 Horatio 9 35
85 Art 3 25.5
95 Bob 3 63.5

Table 9.1: Sailors

sid bid day
22 101 10/10/98
22 102 10/10/98
22 103 10/8/98
22 104 10/7/98
31 102 11/10/98
31 103 11/6/98
31 104 11/12/98
64 101 9/5/98
64 102 9/8/98
74 103 9/8/98

Table 9.2: Reserves

bid bname colour
101 Interlake blue
102 Interlake red
103 Clipper green
104 Marine red

Table 9.3: Boats

Solve the following questions by computing them into equivalent Relational Algebra queries:

1. Find the names of sailors who have reserved boat 103.

2. Find the names of sailors who have reserved a red boat.

3. Find the colors of boats reserved by Lubber.

4. Find the names of Sailors who have reserved at least one boat.

5. Find the names of sailors who have reserved a red or a green boat.

6. Find the names of Sailors who have reserved a red and a green boat.

7. Find the sids of sailors with age over 20 who have not reserved a red boat.

8. Find the names of sailors who have reserved all boats.

9. Find the names of sailors who have reserved all boats called Interlake.

90

APPENDIX B
Some model Answers for the above queries are:

1. Πsname ((σbid=103Reserves) ./ Sailors)

2. Πsname ((σcolour=‘red′Boats) ./ Reserves ./ Sailors)

3. Πcolour ((σsname=‘Lubber′Sailors) ./ Reserves ./ Boats)

4. Πsname (Sailors ./ Reserves)

5. Πsname (((σcolour=‘red′Boats) ∪ (σcolour=‘green′Boats)) ./ Reserves ./ Sailors)

6.

Πsname (((Πsid ((σcolour=‘red′Boats) ./ Reserves))) ∩ (Πsid ((σcolour=‘green′Boats) ./ Reserves)))) ./ Sailors)

7. Πsid (σage≥20Sailors)−Πsid ((σcolour=′red′Boats) ./ Reserves ./ Sailor)

8. (((Πsid,bidReserves)÷ (ΠbidBoats)) ./ Sailors)

9. Πsname (((Πsid,bidReserves)÷ (Πbid (σbname=‘Interlake′Boats))) ./ Sailors)

91

Bibliography

[1] Dr Gordon Russell. Relational Algebra. http://db.grussell.org/section010.html.

[2] Relational Algebra. http://www.databasteknik.se/webbkursen/relalg-lecture/index.html.

[3] C. Batini, T. Catarci, M.F. Costabile, and S. Levialdi. Visual query systems: a taxonomy. In
Proceedings of the IFIP TC2/WG, volume 2, pages 153–168. Citeseer.

[4] A.P. Appel, EQ Silva, C. Traina Jr, and A.J.M. Traina. iDFQL–A query-based tool to help the
teaching process of the relational algebra. In Proceedings of World Congress on Engineering and
Technology Education (WCETE2004), pages 429–433, 2004.

[5] Steven Wallace Harris. RAIN Relational Algebra Interface.
http://www.cs.stir.ac.uk/courses/it/projects/PastDissertations/Abstracts/2005-
2006/Harris.RTF.

[6] S.Levialdi of University of Roma. C.Bantini C.Catarci of University of Roma, M.F.Costabile of
University of Bari. Visual Strategies for Querying Databases .

[7] T.L.Kunji Eds. North Holland. ESCHER Interactive Visual Handling of Complex Objects in the
Extended NF2-Database Model. In Visual Database Systems.

[8] S. Sadiq, M. Orlowska, W. Sadiq, and J. Lin. SQLator: an online SQL learning workbench. ACM
SIGCSE Bulletin, 36(3):223–227, 2004.

[9] Ganesh Variar. The Origin of Data. http://www.intelligententerprise.com/020201/503feat31.jhtml.

[10] Y. Cui, J. Widom, and J.L. Wiener. Tracing the lineage of view data in a warehousing environment.
ACM Transactions on Database Systems (TODS), 25(2):179–227, 2000.

[11] Samsung Electronics. Won Kim. On Metadata Management Technology: Status and Issues.
http://www.jot.fm/issues/issue200503/column4/column4.pdf.

[12] A. Woodruff and M. Stonebraker. Supporting fine-grained data lineage in a database visualization
environment. Computer, 1997.

[13] J. Widom. Trio: A system for integrated management of data, accuracy, and lineage. CIDR, 2005.

[14] P. Agrawal, O. Benjelloun, A.D. Sarma, C. Hayworth, S. Nabar, T. Sugihara, and J. Widom. Trio:
A system for data, uncertainty, and lineage. In Proceedings of the 32nd international conference on
Very large data bases, pages 1151–1154. VLDB Endowment, 2006.

92

[15] D. Bhagwat, L. Chiticariu, W.C. Tan, and G. Vijayvargiya. An annotation management system
for relational databases. The VLDB Journal The International Journal on Very Large Data Bases,
14(4):373–396, 2005.

[16] A. Silberschatz, M. Stonebraker, and J.D. Ullman. Database systems: Achievements and opportuni-
ties. ACM Sigmod Record, 19(4):6–22, 1990.

[17] Java2D. http://java.sun.com/products/java-media/2D/index.jsp.

[18] Swing and SWT: A Tale of Two Java GUI Libraries. http://www.developer.com/java/other/article.php/1093621790612.

[19] Java Drag and Drop. http://java.sun.com/docs/books/tutorial/uiswing/dnd/intro.html.

[20] Jamie Scheinblum. Creating junit test cases.

93

