
Formal Verification of Neural Agents
in Non-deterministic Environments

Michael E. Akintunde, Elena Botoeva, Panagiotis Kouvaros, Alessio Lomuscio
Imperial College London
London, United Kingdom

{michael.akintunde13,e.botoeva,p.kouvaros,a.lomuscio}@imperial.ac.uk

ABSTRACT
We introduce a model for agent-environment systems where the
agents are implemented via feed-forward ReLU neural networks
and the environment is non-deterministic. We study the verification
problem of such systems against CTL properties. We show that
verifying these systems against reachability properties is undecid-
able. We introduce a bounded fragment of CTL, show its useful-
ness in identifying shallow bugs in the system, and prove that the
verification problem against specifications in bounded CTL is in
coNExpTime and PSpace-hard. We present a novel parallel algo-
rithm for MILP-based verification of agent-environment systems,
present an implementation, and report the experimental results
obtained against a variant of the VerticalCAS use-case.

KEYWORDS
Verification; Neural Systems
ACM Reference Format:
Michael E. Akintunde, Elena Botoeva, Panagiotis Kouvaros, Alessio Lo-
muscio. 2020. Formal Verification of Neural Agents in Non-deterministic
Environments. In Proc.of the 19th International Conference on Autonomous

Agents and Multiagent Systems (AAMAS 2020), Auckland, New Zealand, May

9–13, 2020, IFAAMAS, 9 pages.

1 INTRODUCTION
Forthcoming autonomous and robotic systems, including auto-
nomous vehicles, are expected to use machine learning (ML) meth-
ods for some of their components. Differently from more con-
ventional AI systems that are programmed directly by engineers,
components based on ML are synthesised from data and imple-
mented via neural networks. In an autonomous system these com-
ponents could execute functions such as perception [24, 33] and
control [18, 20]. Employing ML components has considerable at-
tractions in terms of performance (e.g., image classifiers), and, some-
times, ease of realisation (e.g., non-linear controllers). However, it
also raises concerns in terms of overall system safety. Indeed, it is
known that neural networks, as presently used, are fragile and hard
to understand [35].

If ML components are to be used in safety-critical systems, in-
cluding various forthcoming autonomous systems, it is essential
that they are verified and validated before deployment; standard
practice for conventional software. In some areas of AI, notably
multi-agent systems (MAS), considerable research has already ad-
dressed the automatic verification of AI systems [13, 26]. These

Proc.of the 19th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May

9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

concern the validation of either MAS models [23, 31], or MAS pro-
grams [4, 9] against expressive AI-inspired specifications, such as
those expressible in epistemic and strategy logic. However, with the
exceptions discussed below, there is little work addressing the veri-
fication of AI systems synthesised from data and implemented via
neural networks. This paper makes a contribution in this direction.

Specifically, we formalise and analyse a closed-loop system com-
posed of a reactive neural agent, synthesised from data and imple-
mented by a feed-forward ReLU-activated neural network (ReLU-
FFNN), interacting with a non-deterministic environment. Intu-
itively, the system follows the usual agent-environment loop of
observations (of the environment by the agent) and actions (by the
agent onto the environment). To model the complexity and par-
tial observability of rich environments, we assume that the neural
agent is interacting with a non-deterministic environment, where
non-deterministic updates of the environment’s state disallow the
agent from fully controlling and fully observing the environment’s
state. Under these assumptions, differently from all related work,
the system’s evolution is not linear but branching in the future.

We study the verification problem of these systems against a
branching time temporal logic. As is known, scalability is a concern
in verification and is also an issue in the case of neural systems. To
alleviate these difficulties, we are here concerned with a method
that is aimed at finding shallow bugs in the system execution, i.e.,
malfunctions that are realised within a few steps from the sys-
tem’s initialisation. This kind of analysis has been shown to be
of particular importance in applications, see, e.g., bounded model
checking (BMC) [6], as, experimentally, bugs are often realised af-
ter a limited number of steps. Given this, we focus on a bounded
version of CTL, i.e., a language expressing temporal properties re-
alisable in a limited number of execution steps. This allows us to
reason about applications where the agents ought to bring about a
state of affairs within a finite number of steps, or to verify whether
a system remains within safety bounds within a number of steps.
This enables us to retain decidability even if we consider infinite
domains over the reals for the system’s state variables, whereas
the verification problem for plain CTL is undecidable, as we show.
To further alleviate the difficulty of the verification problem, we
also introduce a novel algorithm that checks for the occurrence of
bugs in parallel over the execution paths. As we show, in the case
of bounded safety specifications, this enables us to return a bug to
the user as soon as a violation is identified on any of the branching
paths that are explored in parallel. This gives considerable advan-
tages in applications, as we show in an avionics application.

A key feature of the parallel verification procedure that we in-
troduce lies in its completeness: we can determine with precision
when a potentially infinite set of states (up to a number of steps

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

25

from the systems’s initialisation) satisfies a temporal formula.While
this results in a heavier computational cost than some incomplete
approaches, there are obvious benefits in precise verification, no-
tably the lack of false positives and false negatives. To the best
of our knowledge this is the first sound and complete verification
framework for closed-loop neural systems that accounts for non-
deterministic, branching temporal evolutions.

The rest of the paper is organised as follows. After discussing
related work, in Section 2 we formally define systems composed
by a neural agent, implemented by a ReLU-FFNN, interacting with
non-deterministic environments. We analyse the resulting mod-
els built on branching executions and define a bounded version
of the branching temporal logic CTL to express specifications of
these systems. After defining the verification problem, Section 3
introduces monolithic and compositional verification algorithms
with a complexity study. In this context we show results ranging
from undecidability for unbounded reachability, to coNExpTime
upper bound for bounded CTL. We present a toolkit for the prac-
tical verification of these systems in Section 4, implementing said
procedure, providing additional functionalities, and reporting the
experimental results obtained. We conclude in Section 5.

Related Work. In [2] a closed-loop neural agent-environment
systemwas put forward and analysed. Like the present contribution
the agent was modelled via a ReLU-FFNN. However, differently
from here, a simple deterministic environment was considered.
As a consequence, the system executions were linear and only
bounded reachability properties were analysed. [1] extended this
work to neural agents formalised via recurrent ReLU-activated neu-
ral networks and verified the resulting linear system executions
against bounded LTL properties. In contrast, the model put forward
here can account for complex, partially observable environments
resulting in branching traces, and the strictly more expressive speci-
fication language allows for existential and universal quantification
over paths. In addition, while the papers above focus on sequen-
tial verification procedures, we here develop a parallel approach
specifically tailored at identifying shallow bugs efficiently. This
requires novel verification algorithms and mixed-integer linear
programming [38] (MILP) encodings.

A number of other proposals have also addressed the issue of
closed loop systems. For example, [19] presents an approach based
on hybrid systems to analyse a control-plant where neural net-
works are synthesised controllers. Their approach is incomparable
with the one here pursued, since they target sigmoidal activation
functions (while we focus on ReLU activation functions). Also their
verification procedure is not complete, while completeness is a key
objective here. Similarly, [10, 17, 21, 39] present work addressing
closed loop systems with learned controllers and focus on reachable
set estimation and, hence, incomplete techniques for such systems.

Lastly, there has been recent activity on complete approaches
for verifying standalone ReLU-FFNNs [5, 11, 22, 25, 30, 36]. The
systems considered in these approaches are not closed-loop and
do not incorporate the environment. This makes the problems
considered there different from those analysed here; for instance no
temporal evolution can be considered for neural network-controlled
agents interacting with an environment.

More broadly, this line of work is related to long standing efforts
in BMC [3, 32] that are tailored to finding malfunctions easily

accessible from the initial states. While our approach is technically
different from BMC, it shares with it the characteristic of being
more efficient than full exploration methods when only a fraction
of the model needs to be explored.

2 NEURAL AGENT-ENVIRONMENT SYSTEMS
In this section we introduce systems with a neural agent operating
on a non-deterministic environment (NANES). These are an exten-
sion to non-deterministic environments of the deterministic neural
agent-environment systems put forward in [2].

In contrast to traditional models of agency, where the agent’s
behaviour is given in an agent-based programming language, a
NANES accounts for the recent shift to synthesise the agents’ be-
haviour from data [20]; we consider agent protocol functions imple-
mented via feed-forward ReLU neural networks1 (ReLU-FFNNs) [16].
Differently from [2], following the dynamism and unpredictabil-
ity of the environments where autonomous agents are typically
deployed [27], a NANES models interactions of an agent with a
partially observable environment. In this setting an agent cannot
observe the full environment state, and therefore cannot determin-
istically predict the effect of any of its actions.

We now proceed to a formal description of NANES components:
a neural agent and a non-deterministic environment. To this end, we
fix a set S ⊆ Rm of environment states and a setAct ⊆ Rn of actions,
for m,n ∈ N. We assume that the agent is stateless and that its
protocol (also known as action policy) has already been synthesised,
e.g., via reinforcement learning [34], and is implemented via a ReLU-
FFNN or via a piecewise-linear (PWL) combination of them.

Definition 2.1 (Neural Agents). Let S be a set of environment
states. A neural agent (or simply an agent) Ag acting on an envi-
ronment is defined as the tuple Ag = (Act, prot), where:
• Act is a set of actions;
• prot : S → Act is a protocol function that determines the action
the agent will perform given the current state of the environment.
Specifically, given ReLU-FFNNs N1, . . . ,Nh computing functions
fN1 , . . . , fNh , h ≥ 1, prot is a PWL combination of the latter.

When h = 1, prot(s) can be defined, e.g., as fN1 (s) for s ∈ S .
The environment is stateful and non-deterministically updates

its state in response to the actions of the agent.

Definition 2.2 (Non-deterministic Environments). An environment

is a tuple E = (S, tE), where:
• S ⊆ Rm is a set of states.
• tE : S × Act → 2S is a transition function which determines a
finite set of next possible environment states given its current
state and the agent’s action.

Given the above we can now define a closed-loop system com-
prising of an agent interacting with an environment.

Definition 2.3 (NANES). ANeural Agent operating on a Non-Deter-

ministic Environment System (NANES) is a tuple S = (Ag,E, I)
where Ag = (Act, prot) is a neural agent, E = (S, tE) is an environ-
ment, and I ⊆ S is a set of initial states for the environment.
1Specifically, we consider fully-connected feed-forward neural networks where hid-
den layers are activated by the widely used Rectified Linear Unit (ReLU) activation
function [28], defined as ReLU(x) B max(0, x).

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

26

Hereafter we assume the environment’s transition function is
PWL and its set of initial states is expressible as a set of linear
constraints over integer and real-valued variables. Note this does
not prevent NANES from modelling a wide class of non-linear en-
vironments as these can be approximated to arbitrary precision [8].

With each NANES S we can associate a modelMS capturing
its evolutions that is used to interpret temporal specifications.

Definition 2.4 (Model). Given a NANES system S = (Ag,E, I), its
associated temporal modelMS is a pair (R,T) where R is the set of
environment states reachable from I viaT , I ⊆ R ⊆ S , andT ⊆ R×R
is the successor relation defined by (s, s ′) ∈ T iff s ′ ∈ tE (s, prot(s)).

In the rest of the paper, we assume to have fixed a NANES S
and the associated modelMS . AnMS-path, or simply path, is
an infinite sequence of states s1s2 . . . where si ∈ R and si+1 is a
successor of si , i.e. (si , si+1) ∈ T , for each i ≥ 1. Given a path ρ
we use ρ(i) to denote the i-th state in ρ. For an environment state
s = (a1, . . . ,am), we write paths(s) to denote the set of all paths
originating from s and we use s .d to denote its d-th component ad .

We verify NANES against properties expressed in a bounded
variant of the temporal logic CTL [7]. Inspired by Real-Time Com-
putation Tree Logic (RTCTL) [12], formulae of bounded CTL build
upon temporal modalities indexed with natural numbers denoting
the temporal depth up to which the formula is evaluated.

Definition 2.5 (Bounded CTL). Given a set of environment states
S ⊆ Rm , the bounded CTL specification language over linear inequal-
ities, denoted bCTLR< , is defined by the following BNF:

φ ::= α | φ ∨ φ | φ ∧ φ | EXkφ | AXkφ,
α ::= c1(d1) + · · · + cl (dl)op c,

where op ∈ {<, >}, di ∈ {1, . . . ,m}, ci , c ∈ R, and k ∈ N.
Here atomic propositions α are linear constraints on the compo-

nents of a state. For instance, the atomic proposition (d1)+ (d2) < 2
states that “the sum of the d1-st and d2-nd components is less than
2.” The temporal formula EXkφ stands for “there is a path such that
φ holds after k time steps”, whereas AXkφ stands for “in all paths φ
holds after k time steps”. Moreover, bounded until E(φU kψ) (“there
is a path such thatψ holds within k time steps, and where φ holds
up until then”) can be defined by the abbreviations E(φU 1ψ) ≜
ψ ∨ (φ ∧ EX 1ψ), and E(φU kψ) ≜ ψ ∨ (φ ∧ EX 1E(φU k−1ψ)) for
k > 1, and analogously with A(φU kψ).

Although bCTLR< does not include any form of negation, it still
allows us to express arbitrary CTL formulae of bounded temporal
depth since it supports all Boolean and temporal operators with
their duals. Note also that although bCTLR< does not support non-
strict inequalities, one can in practice remedy this at the expense
of completeness through the use of slack variables [38] to create
an approximation of a theoretically closed feasble set, which is
common practice when modelled using MILP. Consider for instance
an atomic proposition of the form e ≥ c . It can be replaced with the
constraints e > c − ε and ε > 0, where ε is a small slack variable.

We now define the logic CTL built from the atoms of bCTLR< .
Definition 2.6 (CTL). The branching-time logic CTLR< is defined

by the following BNF:
φ ::= α | ¬φ | φ ∨ φ | AXφ | AFφ | E(φUφ),

where α is an atomic proposition in bCTLR< .

Comparing bCTLR< to CTLR< , we observe that on the one hand
AXkφ and EXkφ are expressible, respectively, asAX (· · · (AXφ) · · ·)
and ¬AX (· · · (AX¬φ) · · ·), where AX is applied k times. On the
other hand, CTLR< includes the AF (“in all paths eventually”) and
EU (unbounded until) modalities capable of expressing arbitrary
reachability, whereas bCTLR< admits bounded specifications only.
Note that, while bCTLR< is clearly less expressive than CTLR< ,
it still captures properties of interest. Notably, bounded safety is
expressible in bCTLR< as AGk

safe ≜ AX 1
safe ∧ · · · ∧ AXk

safe

stating that every state on every path is safe within the first k steps.
We interpret bCTLR< formulae on a temporal model as follows.

Definition 2.7 (Satisfaction). For a modelMS , an environment
state s , and a bCTLR< formula φ, the satisfaction of φ at s inMS ,
denoted (MS , s) |= φ, or simply s |= φ whenMS is clear from the
context, is inductively defined as follows:

s |= c1(d1) + · · · + cl (dl)op c iff (
∑l
i=1 ci · s .di)op c;

s |= φ ∨ψ iff s |= φ or s |= ψ ;
s |= φ ∧ψ iff s |= φ and s |= ψ ;
s |= EXkφ iff there is ρ ∈ paths(s) such that ρ(k) |= φ;
s |= AXkφ iff for all ρ ∈ paths(s) we have ρ(k) |= φ.

We assume the usual definition of satisfaction for CTLR< ; this can
be given as standard by using the atomic case from Definition 2.7.

A specification φ is said to be satisfied by S if (MS , s) |= φ for
all initial states s ∈ I . We denote this by S |= φ. It follows that,
for example, to check bounded safety we need to verify that from
all (possibly infinitely many) initial states no state (out of possibly
infinitely many) within the first k evolutions is an unsafe state. This
is the basis of the verification problem that we define below.

Definition 2.8 (Verification problem). Given a NANES S and a
formula φ, determine whether S |= φ.

In the next section we study the decidability and complexity of
the verification problem here introduced.

3 THE VERIFICATION PROBLEM
In this section we study the verification problem for a NANES
against CTL and bCTLR< specifications. First, we show that verify-
ing against CTL formulae is undecidable, already for deterministic
environments and simple reachability properties. In the rest of the
section, we focus on bounded CTL, where we develop a decision
procedure for the verification problem based on producing a single
MILP and checking its feasibility. Then we devise a parallelisable
version of the procedure that produces multiple MILPs and that can
be particularly efficient at finding counter-examples for bounded
safety properties. Following this, we analyse the computational
complexity of the verification problem against bCTLR< formulae.

3.1 Unbounded CTL
In this subsection we show undecidability of the verification prob-
lem for deterministic NANES against simple reachability proper-
ties, where a deterministic NANES is a tuple (Ag = (Act, prot),E =
(S, tE), I), where |tE (s,a)| = 1 for all s ∈ S and a ∈ Act. The unde-
cidability result for arbitrary NANES and full CTL follows.

Theorem 3.1. Verifying deterministic NANES against formulae

of the form AFα is undecidable.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

27

Proof Sketch. We can show the result by reduction from the
Halting problem of a deterministic Turing machine (DTM)M on an
input string ω0, whose tape alphabet consists of symbols 0, 1 and 2,
with one halting state (the accepting state).

The idea of the reduction is to construct a NANES S = (Ag,E, I)
such that each state of S encodes the current configuration of the
DTM, i.e., the current state ofM , the symbol under the head, and
the contents of the tape to the left and right of the head as two real
numbers (the former one is read from right to left). I consists of a
single state and encodesq0 (the initial state ofM) andω0. The run of
M on its input can be simulated by appropriately updating the state
using the environment transition function (while the agent does
not need to do anything). Conversely, it is possible to shift all the
logic to the agent’s protocol function with a trivial environment.

Finally, we verify S against the reachability specification φ of
the formAF accept, where accept encodes thatM is in the accepting
state. Then S |= φ iffM halts on ω0. It can also be checked that the
required environment transition function and the agent’s protocol
function can be implemented as piecewise-linear functions. □

We observe that the above result holds even for strongly re-
stricted NANES where either the protocol or the transition function
is linear (but not both at the same time). As a corollary, we obtain
undecidability of the verification problem against full CTL.

Corollary 3.2. Verifying NANES against CTLR< formulae is

undecidable.

3.2 Bounded CTL
We now proceed to investigate the verification problem for the
bounded CTL specification language. We start by showing an auxil-
iary result that allows us to assume without loss of generality that
the cardinality of tE (s,a) is the same for each state s and action a.

Lemma 3.3. Given a NANES S = ((Act, prot), (S, tE), I) and speci-
ficationφ ∈ bCTLR< , there is a NANESS

′ = ((Act, prot ′), (S ′, t ′E), I
′),

such that |t ′E (s1,a1)| = |t
′
E (s2,a2)| for all s1, s2 ∈ S

′
, anda1,a2 ∈ Act,

and a specification φ ′ ∈ bCTLR< such that S |= φ iff S′ |= φ ′.

Proof Sketch. Consider b = maxs ∈S,a∈Act |tE (s,a)|. Define
the components of S′ such that |t ′E (s,a)| = b for all s ∈ S ′, a ∈ Act,
and S |= φ iff S′ |= φ ′. S ′ and I ′ are defined by S ′ = S × {0, 1}
and I ′ = I × {1}. The added dimension indicates whether a state is
valid (1) or not (0). The agent’s protocol function prot

′ is defined
as prot ′((s, f)) = prot(s) for each s ∈ S , f ∈ {0, 1}. The transition
function t ′E ((s, f),a) returns tE (s,a) × {1} ∪ {(s1, 0), . . . , (sb−l , 0)}
where |tE (s,a)| = l and s1,. . . ,sb−l are pairwise distinct states from
S . The formulaφ ′ is a copy ofφ with atomic propositions α replaced
with α ∧ ((m + 1) > 0.9), where S = Rm . □

In the rest of this section we assume that |tE (s,a)| = b for all s
and a, and that tE is given as b piecewise-linear (PWL) functions
ti : Rm+n → Rm . Note that this assumption is used when devising
the verification procedure presented below.

The procedure that we put forward recasts the verification prob-
lem to MILP. It is well known that a PWL function can be MILP-
encoded using the “Big-M” method [14]. For instance, the pairs
(x ,y), where y = ReLU(x) and x ∈ [l ,u] can be found as solu-
tions to the following set of MILP constraints that use the binary

variable δ , real-valued variables x and y and constants l and u:

y ≥ 0, y ≥ x , y ≤ u · δ , y ≤ x − l · (1 − δ)

Here, when δ = 1, the constraints imply that y = x and x ≥ 0,
and when δ = 0, the constraints imply that y = 0 and x ≤ 0.
Since the function computed by a ReLU-activated neural network
can be obtained via successive compositions of the ReLU function
and linear transformations, its MILP encoding can be obtained via
the composition of constraints of the above form with appropriate
linear constraints. The resulting overall MILP is of linear size in the
size of the network. Further details of the Big-M encoding of the
ReLU function can be found in [25, 36].

Given a MILP program π , we use vars(π) to denote the set of
variables in π . Denote by a the assignment function a : vars(π) → R,
which defines the specific (binary, integer or real) value assigned
to a MILP program variable. We write a |= π if a satisfies π , i.e., if
a(δ) ∈ {0, 1} for each binary variable δ , a(ι) ∈ N for each integer
variable ι, and all constraints in π are satisfied. Hereafter, we will
denote by boldface font tuples of MILP variables (of lengthm for
S ⊆ Rm the set of environment states) representing an environment
state and call them state variables.

Monolithic Encoding.We now give a recursive encoding of the
verification problem into a single MILP. As a stepping stone, we
first encode the computation of a successor environment state as
a composition of the protocol function prot and of the transition
functions ti . By assumption, prot and each ti is a PWL function,
and so the predicate y = ti (x , prot(x)) is expressible as a set of
MILP constraints by means of the Big-M method, which we denote
by Ci (x ,y) (note that x ∪y ⊂ vars(Ci (x ,y))). Solutions of Ci (x ,y)
represent pairs of consecutive environment states [2]:

Lemma 3.4. Let Ci (x ,y) be a MILP program corresponding to y =
ti (x , prot(x)). Given two states s and s ′ inMS , we have that s

′ =

ti (s, prot(s)) iff there is an assignment a to vars(Ci (x ,y)) such that

s = a(x), s ′ = a(y), and a |= Ci (x ,y).

Denote by bCTLR≤ the bounded CTL language over atomic
propositions α where op ∈ {≤, ≥} (i.e., linear constraints over
non-strict inequalities). As a second step, given a NANES S and a
formula φ ∈ bCTLR≤ , we construct a MILP program πS,φ , whose
feasibility corresponds to the existence of a state inMS that satis-
fies φ. For ease of presentation, and without loss of generality, we
assume that φ may contain only the temporal modalities EX 1 and
AX 1, for which we write EX and AX , respectively2. We make use
of the indicator constraints of the form (δ = v) ⇒ c , for a binary
variable δ , binary value v ∈ {0, 1} and a linear constraint c , mean-
ing that whenever the value of δ is v , the constraint c should hold.
In particular, indicator constraints can be used to naturally express
disjunctive cases. For instance, the disjunction x = 3 ∨ x = 5 can
be encoded using two auxiliary binary variables δi , i ∈ {1, 2}, and
the following set of MILP constraints:

(δ1 = 1) ⇒ x = 3, (δ2 = 1) ⇒ x = 5, δ1 + δ2 = 1.

Here, the constraint δ1 + δ2 = 1 ensures that at least one of the two
clauses is satisfied (note that, in general, the above encoding does
2ForQ ∈ {A, E }, the formulaQX kφ is equivalent toQX 1(· · · (QX 1φ) · · ·) where
QX 1 is applied k times to φ and which grows linearly in k assuming unary encoding
of numbers.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

28

πS,α (x) = {Cα (x)}, where Cα (x) is defined as c1xd1 + · · · + clxdl op c for α = c1(d1) + · · · + cl (dl)op c and x = (x1, . . . ,xm),

πS,φ1∨φ2 (x) = (δ = 1) ⇒ (πS,φ1 (x1) ∪ {x = x1}) ∪ (δ = 0) ⇒ (πS,φ2 (x2) ∪ {x = x2}), where the binary variables δ ,δ1, . . . ,δb , the
state variables x1, x2, y1, . . . ,yb , y, and all
auxiliary variables in Ci (x ,yi) are fresh.

πS,φ1∧φ2 (x) = πS,φ1 (x) ∪ πS,φ2 (x),

πS,EXφ (x) =
⋃b
i=1(δi = 1) ⇒ (Ci (x ,yi) ∪ {y = yi }) ∪ {δ1 + · · · + δb = 1} ∪ πφ (y),

πS,AXφ (x) = C1(x ,y1) ∪ · · · ∪Cb (x ,yb) ∪ πS,φ (y1) ∪ · · · ∪ πS,φ (yb),

Figure 1: Monolithic encoding πS,φ for φ ∈ bCTLR≤ .

not rule out an assignment where both clauses are satisfied at the
same time). Given a binary variable δ and a set of constraints π , we
hereafter abbreviate {(δ = v) ⇒ c | c ∈ π } to (δ = v) ⇒ π .

We now define the monolithic encoding πS,φ .

Definition 3.5. Given a NANES S and a formula φ ∈ bCTLR≤ ,
theirmonolithic MILP encoding πS,φ is defined as theMILP program
πS,φ (x), where x is a tuple of fresh state variables, and πS,φ (x) is
built inductively using the rules in Figure 1.

In the encoding in Figure 1, the base case πS,α (x) for an atom α
produces the MILP program consisting of a single linear constraint
corresponding to α and using variables in x . Each inductive case de-
pends on the state variables x but might in turn generate programs
for subformulas which depend on freshly created state variables
different to x (such as x1, x2, y, etc). All other auxiliary variables
employed in the encoding are also fresh, preventing undesirable
interactions between unrelated branches of the program.
• Disjunctions use a binary variable δ and two sets of indicator
constraints. In a feasible assignment a, when δ is 1, φ1 is satisfied
and the variables x take the values of the variables x1, while
when δ is 0, φ2 is satisfied and x takes the values of x2.
• We encode conjunction as the union of the constraints for each
of the conjuncts, which all must be satisfied at the same time.
• We encode EX via b-ary disjunction: there are b possible next
states and each disjunct chooses one of them by ensuring that
the relevant Ci (x ,yi) is satisfied. The variables for the successor
state y are assigned accordingly to this choice; moreover, the
subprogram for φ depends on them. Notably, only one copy of
πS,φ is required.
• To satisfy AXφ, all b possible successor states should satisfy φ,
and so we take the union of all Ci (x ,yi) and of b copies of πS,φ ,
each depending on one of the successor state variables yi .

Note that the size of πS,φ may grow exponentially due to b rep-
etitions of πS,ψ in πS,AXψ (x); for φ = AXkα , the size of πS,φ is
O(k · bk · |S|). The same estimate works in the general case for the
temporal bound k of φ. On the other hand, when φ contains no AX
operator, the size of πS,φ remains polynomial O(k · b · |S|).

We can prove that πS,φ is as intended.

Lemma 3.6. Given a NANES S and a formula φ ∈ bCTLR≤ , the

following are equivalent:

(1) There exists a state s inMS such that s |= φ.
(2) There exists an assignment a to vars(πS,φ (x)) such that a |=

πS,φ (x) and s = a(x).

Finally, we can exploit Lemma 3.6 to devise a procedure that
solves the verification problem by restricting x to the initial states

Algorithm 1 The monolithic MILP verification procedure.

1: procedure mono-verify(S, φ)
2: Input: NANES S = (Ag,E, I); formula φ ∈ bCTLR<
3: Output: True/False
4: φI ← Boolean formula representing I
5: φ ′ ← NNF(¬φ ∧ φI)
6: πS,φ ′ ← MILP associated with S and φ ′
7: feasible← MILP_SOLVER(πS,φ ′)
8: return ¬feasible

of S. The procedure is given by Algorithm 1. Its soundness and
completeness is shown by the following.

Theorem 3.7. Given a NANES S and a formula φ ∈ bCTLR< ,

Algorithm 1 returns False iff S ̸|= φ.

Proof. Suppose that Algorithm 1 returns False. It follows that
πS,¬φ∧φI (x) is feasible. So, by Lemma 3.6, there exists an assign-
ment a to vars(πS,¬φ∧φI (x)) such that a |= πS,¬φ∧φI (x). Moreover,
for s = a(x), we have that s |= φI and s |= ¬φ. It follows that s ∈ I
and s ̸ |= φ, and consequently,S ̸|= φ. Conversely, if there exists s ∈ I
such that s ̸ |= φ, we obtain that there is an assignment satisfying
πS,¬φ∧φI (x), and therefore Algorithm 1 returns False. □

Recall that strict inequalities are not supported in the MILP
solver. Therefore note that we only pass ¬φ (the negation of the
specification), and the initial state φI (expressed only in terms
of non-strict intequalities) to the MILP solver in negation normal

form (NNF). In this process, negation is eliminated by pushing it
down and through the atoms resulting in all strict inequalities of
atoms of the original specification φ being converted to non-strict
inequalities.

Compositional Encoding. Observe that due to its handling of
disjunctions, the previously introduced encoding πS,φ might result
in excessively large programs whose feasibility is a computationally
expensive task. We now propose a different encoding that instead
of delegating disjunction to the MILP solver (the φ1 ∨ φ2 and EXφ
cases) creates a separate program for each disjunct. More specifi-
cally, for a formula φ, we define a set ΠS,φ of MILP programs with
the property that there exists a state s inMS such that s |= φ iff at
least one of the programs in ΠS,φ is feasible. A specific feature of
this encoding lies in its parallelisability. Due to this, it is particularly
amenable to efficiently finding bugs that can be reached within a
few steps along some of the paths from the initial states, similarly
to BMC [6]. We demonstrate this experimentally in the next section
after having introduced the encoding here.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

29

ΠS,α (x) = {[Cα (x)]},
ΠS,φ1∨φ2 (x) = ΠS,φ1 (x) ∪ ΠS,φ2 (x),
ΠS,φ1∧φ2 (x) = ΠS,φ1 (x) × ΠS,φ2 (x),

ΠS,EXφ (x) =
⋃b
i=1 {[Ci (x ,y)]} × ΠS,φ (y),

where the state variables y and all remain-
ing variables in Ci (x ,y) are fresh,

ΠS,AXφ (x) =
>b

i=1 {[Ci (x ,yi)]} × ΠS,φ (yi),
where the state variables y1, . . . ,yb and all
remaining variables in Ci (x ,yi) are fresh.

Figure 2: Compositional encoding ΠS,φ for φ ∈ bCTLR≤ .

Below, given a setC of linear constraints, we write [C] to denote
the respective MILP program. Given sets A = {[A1], . . . , [Ap]} and
B = {[B1], . . . , [Bq]} ofMILP programs, wewriteA×B to denote the
product of A and B computed as {[Ai ∪ Bj] | i = 1, ..,p, j = 1, ..,q}.

Definition 3.8. Given a NANES S and a formula φ ∈ bCTLR≤ ,
their compositional MILP encoding ΠS,φ is defined as the set of
MILP programs ΠS,φ (x), where x is a tuple of fresh state variables,
and ΠS,φ (x) is built inductively using the rules in Figure 2.

Following the monolithic encoding in Figure 1, in Figure 2Cα (x)
is the linear constraint corresponding to the atomic proposition α
defined over x . We use the same convention regarding the state
and auxiliary variables of subprograms. In ΠS,φ every program π
represents one of the encodings of φ.
• For disjunction we take the union of the two sets of encodings.
• Every encoding of φ1 ∧ φ2 consists of an encoding of φ1 and of
an encoding of φ2, therefore we take the product of the two sets.
• Every encoding of EXφ is an encoding of φ extended with the
constraints Ci (x ,y) for a single i .
• Every encoding of AXφ consists of b (possibly different) encod-
ings of φ extended with the constraints Ci (x ,yi) for i = 1, . . . ,b.

The set ΠS,φ grows exponentially with the temporal depth of φ;
however each program in the set can be smaller than the monolithic
MILP πS,φ .

Similarly to Lemma 3.6 we can prove that ΠS,φ is as intended.

Lemma 3.9. Given a NANES S and a formula φ ∈ bCTLR≤ , the

following are equivalent:

(1) There exists a state s inMS such that s |= φ.
(2) There is a MILP π (x) ∈ ΠS,φ (x) and an assignment a to

vars(π (x)) such that s = a(x) and a |= π (x).

Based on Lemma 3.9, we can devise a verification procedure that
searches for a feasible MILP in the set of MILPs generated by the
encoding of Figure 2. This procedure is presented in Algorithm 2.
Importantly, it naturally lends itself to parallelisation when check-
ing feasibility of the generated programs. In turn this enables us to
check in parallel for a possible falsification of formulas in which
the temporal operator is universally quantified as in AXkα . As we
will see in the next section, this will become particularly useful
when verifying bounded safety.

Computational Complexity. Finally we study the complexity of
the verification problem for bCTLR< . The upper bound follows

Algorithm 2 The compositional MILP verification procedure.

1: procedure comp-verify(S, φ)
2: Input: NANES S = (Ag,E, I); formula φ ∈ bCTLR<
3: Output: True/False
4: feasible← False
5: φI ← Boolean formula representing I
6: φ ′ ← NNF(¬φ ∧ φI)
7: ΠS,φ ′ ← Set of MILPs associated with S and φ ′
8: for π in ΠS,φ ′ do
9: aux ← MILP_SOLVER(π)
10: if aux is True then
11: feasible← True
12: break
13: return ¬feasible

from the monolithic verification procedure and the lower bound
can be obtained by reduction from the validity problem of QBF.

Theorem 3.10. Verifying NANES against bCTLR< is in coNExpTime

and PSpace-hard in combined complexity.

We also show that the complexity of the verification problem is
reduced to coNP for the bounded safety fragment of bCTLR< .

Corollary 3.11. Verifying NANES against bounded safety prop-

erties is coNP-complete in combined complexity.

Proof Sketch. The upper bound follows from the fact that we
can check whether a property φ = AGk

safe is not satisfied by S by
guessing an initial state s and a path ρ of length k originating from
s , and by verifying that ρ(i) ̸|= safe for some i = 1, . . . ,k . If such
an initial state s exists, then there exists an initial state s ′ with the
same properties of polynomial size. This follows from the encoding
into MILP and the fact that if a MILP instance is feasible, there is a
solution of polynomial size. The lower bound can be adapted from
the NP lower bound of the satisfiability problem of neural networks
properties [22], and holds already for one-step formulae. □

4 IMPLEMENTATION AND EXPERIMENTS
We have implemented the verification procedures described in the
previous section in an open source toolkit calledNANESVerify [29].
The tool takes as input a bCTLR< specification φ and a NANES S in
the form of ReLU-FFNNs implementing the agent, piecewise linear
(PWL) functions (possibly given as ReLU-FFNNs) implementing the
environment and a set I of the initial states in the form of a hyper-
rectangle which can be encoded as x1 ≥ l1 ∧ x1 ≤ u1 ∧ · · · ∧ xm ≥
lm ∧xm ≤ um for hyper-rectangle [l1,u1]× · · · × [lm ,um] and state
variables x = (x1, . . . ,xm). The top-level call to the tool returns
True if φ is satisfied on S, and returns False if φ fails for some
initial state ofS. In the latter case, a trace in the form of state-action
pairs is produced, giving an example run of the system which failed
to satisfy the specification.

The user can specify a parameter to determinewhether themono-
lithic or compositional procedure with parallel or sequential execu-
tion is to be used. When using sequential execution, NANESVerify
follows the respective procedures from Algorithms 1 and 2. For the
compositional procedure with parallel execution, NANESVerify

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

30

performs the computation in line 9 of Algorithm 2 asynchronously
across eight worker processes running a separate Gurobi instance
for each MILP. The main process finishes either when a MILP-
solving job terminates with a feasible solution (finding a counter-
example), all jobs gave infeasible results, or no result was returned
within a given time limit.

We used Python to implement the tool and relied on Gurobi
ver. 8.1 [15] as a back-end to resolve the feasibility of the generated
MILP problems. When constructing the Big-M encodings of the
neural networks, the lower and upper bounds for each neuron are
determined using symbolic linear relaxation [37] starting from the
bounds of the input nodes given by I . For other MILP variables
encountered, we propagate their bounds throughout the encoding
using interval arithmetic. For the compositional encoding, we dele-
gate disjunctions at the level of atomic propositions to the MILP
solver, which avoids the unnecessary blow-up of the number of
MILPs generated and can still be efficiently handled by the solver.
Aircraft Collision Avoidance System Example. To validate the
toolkit we use a scenario involving two aircraft, the ownship and the
intruder, where the ownship is equipped with a collision avoidance
system referred to as VerticalCAS [21]. The intruder is assumed
to follow a constant horizontal trajectory. VerticalCAS once every
second issues vertical climbrate advisories to the ownship pilot, to
avoid a near mid-air collision (NMAC), a region where the ownship
and intruder are separated by less than 100ft vertically and 500ft
horizontally. The possible advisories are:

1) COC: Clear Of Conflict.
2) DNC: Do Not Climb.
3) DND: Do Not Descend.
4) DES1500: Descend at least 1500 ft/s.
5) CL1500: Climb at least 1500 ft/s.
6) SDES1500: Strengthen Descent to at least 1500 ft/s.
7) SCL1500: Strengthen Climb to at least 1500 ft/s.
8) SDES2500: Strengthen Descent to at least 2500 ft/s.
9) SCL2500: Strengthen Climb to at least 2500 ft/s.

The advisories instruct the pilot to accelerate until the vertical
climbrate of the ownship complies with the advisory. For some advi-
sories, e.g. DND, the pilot can choose any acceleration in [д/4,д/3],
where д represents the gravitational constant 32.2 ft/s2.

We hereafter denote by [m] the set {1, ..,m}. The set of tuples
S = (h, Ûh0,τ , adv) ∈ [−3000, 3000] × [−2500, 2500] × [0, 40] × [9]
describe an ownship–intruder encounter, where:

1) h (ft): Intruder altitude relative to ownship.
2) Ûh0 (ft/s): Ownship vertical climbrate.
3) τ (s): Time to loss of horizontal separation.
4) adv: The previous advisory issued by VerticalCAS.

The vertical geometry of the encounter is given by h and Ûh0, and
τ reports the seconds until the ownship (black) and intruder (red)
are no longer horizontally separated, illustrated in Fig. 3.

The VerticalCAS system is composed of nine ReLU-FFNNs F ={(
fNi : R

3 → R9
)
: i ∈ [9]

}
, one for each advisory, with three in-

puts (h, Üh0,τ), five fully-connected hidden layers of 20 units each,
and nine outputs representing the score of each possible advisory.
NANES Encoding. We model VerticalCAS as a neural agent with
protocol function prot(s) = argmax(apply(select(s), s)) on input

NMAC zone

�

�

h

τ

Ûh0

Figure 3: VerticalCAS encounter geometry

state s = (h, Ûh0,τ , adv) ∈ S , producing an action a ∈ Act = [9]
corresponding to the highest-scoring advisory, where:
• select : S → F selects the neural network corresponding to the
previous advisory adv, defined select(s) = fadv,
• apply : F × R4 → R9 computes the output of a neural network
given a state, defined as apply(f , s) = f (h, Ûh0,τ),
• argmax: R9 → [9] returns the index of the score with highest
value from a neural network’s output.

Since each of the above functions and the ReLU-FFNNs are PWL,
the composition prot is also PWL.

We model the ownship pilot’s non-deterministic behaviour in
the environment of S. Thus, the environment transition function tE
“chooses” an acceleration and determines the next state of the envi-
ronment through the state transition dynamics. As described in [21],
the acceleration chosen by the pilot is assumed to be from a contin-
uous interval, but we bound the number of possible successor states
of tE , by discretising the set of possible accelerations into b equally
spaced cells. Here we choose b = 3. Take for example advisory
DND; the set of next possible accelerations are {д/4, 7д/24,д/3}.

Assume a boolean predicate compliant : S × Act → B which
returns True iff the current vertical climbrate of the ownship is
compliant with the advisory issued by the agent. Non-zero acceler-
ations are chosen only if compliant does not hold, otherwise the
pilot maintains a constant climbrate, i.e., Üh(i)0 = 0 for i ∈ [b]. Given
the current state s ∈ S , the issued advisory adv′ = prot(s), and the
set of b accelerations { Üh(i)0 : i ∈ [b]} corresponding to the advisory
adv′, we define each of the transition functions t1, . . . , tb for tE as:

ti

©­­­«

h
Ûh0
τ
adv

 , adv
′
ª®®®¬ =


h − Ûh0∆τ − 0.5 Üh

(i)
0 ∆τ 2

Ûh0 + Üh
(i)
0 ∆τ

τ − ∆τ
adv′


,

where ∆τ = 1 and i ∈ [b].
Experimental Results.We testedNANESVerify on the following
safety specification:

φk = AXk ((1) > 100 ∨ (1) < −100)

for various values of k . The formula φk is satisfied if from ev-
ery initial state in I , all possible evolutions of the system remain
safe after k time steps, i.e., there does not exist a state in I which,
after k time steps, can lead to the ownship entering the unsafe
region (|h | ≤ 100), which may potentially lead to an NMAC for
small values of τ (recall that in bCTLR< , the term (1) represents
the first component of the state s and so refers to s .1 = h). We
consider the verification problem with the set of initial states I =
[−133,−129] × {−19.5,−22.5,−25.5,−28.5} × {25} × {COC}. This

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

31

Comp-Par Comp-Seq Monolithic

k
1
2
3
4
5
6

−19.5 −22.5 −25.5 −28.5
0.629s 0.608s 0.649s 0.652s
2.901s 2.730s 1.092s 1.429s
10.67s 1.716s 1.918s 1.824s
39.58s 40.91s 2.474s 2.570s
145.6s 156.3s 159.8s 3.830s
797.4s 544.8s 573.5s 568.8s

−19.5 −22.5 −25.5 −28.5
0.728s 0.819s 0.737s 0.750s
5.392s 5.594s 0.623s 0.618s
26.06s 0.986s 0.961s 0.964s
109.9s 108.7s 1.404s 1.417s
433.5s 481.2s 512.4s 2.244s
2174.s 1639.s 1826.s 1859.s

C V
3037 2993
6668 5981
10300 8969
13930 11957
17560 14945
21198 17933

−19.5 −22.5 −25.5 −28.5 C V
0.039s 0.039s 0.041s 0.042s 3190 2996
4.399s 6.450s 1.444s 3.323s 6974 5987
23.33s 14.58s 12.79s 13.59s 10759 8978
– – 377.5s 29.96s 14542 11969
– – – 751.1s 18325 14960
– – – – 22116 17951

Table 1: Verification times for a VerticalCAS system against the property φk for different values of k and Ûh0. Greyed-out cells
indicate a False result, otherwise a True result. We use dashes ‘–’ to indicate a two hour timeout. The C and V columns indicate
the number of MILP constraints and variables, respectively.

is a potentially risky encounter with the intruder initially below the
ownship, but with the ownship descending towards the intruder.

All results were obtained on a machine with an Intel Core i7-
6700 3.40GHz CPU with 16GB of RAM, running a 64-bit version of
Ubuntu 16.04. The results for the monolithic procedure are denoted
Monolithic, and the results for the compositional procedure with
parallel and sequential execution are denoted Comp-Par and Comp-
Seq, respectively. In Table 1, we report the performance of the
tool in terms of the amount of time (in seconds) to resolve the
specification φk for k ∈ {1, . . . , 6} with initial climbrates Ûh0 ∈
{−19.5,−22.5,−25.5,−28.5} for each of the execution modes. For
all cases we use a fixed timeout of two hours. We also report the size
(number of constraints and variables) of the single MILP problem
πS,φk when using Monolithic and for the compositional cases,
the size of the largest MILP problem constructed for ΠS,φk .

In Table 1 we see a climbrate of −28.5 ft/s resulting in a period
where the ownship enters the unsafe region for four time steps. For
smaller descent rates, the time spent in the unsafe region decreases,
until for Ûh0 = −19.5 where the ownship remains safe for the entire
period. Upon analysing the trace produced by NANESVerify for
(Ûh0,k) = (−22.5, 3), the agent produces advisory CL1500 at each
time step, causing the pilot to accelerate at д/4 ft/s2 in an attempt to
climb to avoid colliding with the intruder. The descent rate was not
reduced quickly enough to avoid the unsafe state (h, Ûh0,τ , adv) =
(−97.719, 1.65, 22, CL1500) being reached by the third timestep.

Overall, Comp-Par is the most performant method for resolv-
ing the specification φk . We observe that 3k MILPs are generated
for each k when using a compositional encoding; it becomes in-
creasingly necessary to spread the computational load across the
available worker processes especially when checking for infeasibil-
ity. The speed-up is most noticeable for Ûh0 = −19.5.

We expect that Comp-Par is in general more performant when
checking for feasibility. For Comp-Seq, we observed that the first
MILP checked in the for-loop of Algorithm 2 was feasible, causing
the loop to return early, giving quicker feasibility checks compared
to Comp-Par. We observe that Monolithic is overall the least
performant encoding, with several cases of timeouts when checking
for infeasibility of the generated MILPs for k ≥ 4. Although for
VerticalCAS, the unsafe region was entered and eventually escaped,
the performance of our compositional procedure exemplifies the
tractability of finding shallow bugs in a faulty system.

We are unable to present a comparison with other tools because,
as far as we are aware, no other tool supports branching models and
CTL specifications as we do here. We use double-precision floating
point numbers for representing real values. For the MILP solver that
we use for our back-end, Gurobi, we use the default tolerance level
of 10−6, which represents the amount of numerical error allowed on
a constraint while still considering it “satisfied”. We rely on Gurobi
for dealing with any further numerical issues. Note also that our
encoding is more efficient than [2], which does not use symbolic
linear relaxation for their neural network encoding nor interval
arithmetic-based bounds propagation for MILP variables.

5 CONCLUSIONS
As we argued in Section 1, forthcoming autonomous systems will
make greater use of machine learning methods; therefore there is an
urgent need to develop techniques aimed at providing guarantees
on the resulting behaviour of such systems. While the benefits of
formal methods have long been recognised, and they have found
large adoption in safety-critical systems as well as in industrial-
scale software, there have been few efforts to introduce verification
techniques for systems driven by neural networks.

In this paper we defined a system composed of a neural agent
driven by deep feed-forward neural networks interacting with
a non-deterministic environment. The resulting system displays
branching evolutions. We defined and studied the resulting verifica-
tion problem. While the problem is undecidable for full reachability,
we isolated a fragment of the temporal language and showed that
its corresponding verification problem is in coNExpTime. We de-
veloped and reported on a toolkit which includes a novel parallel
algorithm to verify temporal properties of the complex environment
defined in the VerticalCAS scenario. As demonstrated, while the par-
allel algorithm remains complete, it offers considerable advantages
over its sequential counterpart when searching for counterexamples
to bounded safety specifications in concrete examples.

In future work we plan to extend the framework to multiple
agents operating in an environment.

ACKNOWLEDGMENTS
This work is partly funded by DARPA under the Assured Autonomy
programme (FA8750-18-C-0095). Alessio Lomuscio is supported by
a Royal Academy of Engineering Chair in Emerging Technologies.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

32

REFERENCES
[1] M. E. Akintunde, A. Kevorchian, A. Lomuscio, and E. Pirovano. 2019. Verification

of RNN-Based Neural Agent-Environment Systems. In Proceedings of the 33rd

AAAI Conference on Artificial Intelligence (AAAI19). AAAI Press, 6006–6013.
[2] M. E. Akintunde, A. Lomuscio, L. Maganti, and E. Pirovano. 2018. Reachability

Analysis for Neural Agent-Environment Systems. In Proceedings of the 16th

International Conference on Principles of Knowledge Representation and Reasoning

(KR18). AAAI Press, 184–193.
[3] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. 2003. Bounded Model

Checking. Advances in Computers 58 (2003), 117–148.
[4] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. 2006. Verifying Multi-

agent Programs byModel Checking. Autonomous Agents and Multi-Agent Systems

12, 2 (2006), 239–256.
[5] R. .R. Bunel, I. Turkaslan, P. Torr, P. Kohli, and P. K. Mudigonda. 2018. A Unified

View of Piecewise Linear Neural Network Verification. In Proceedings of the 31st

Annual Conference on Neural Information Processing Systems (NeurIPS18). Curran
Associates, Inc., 4790–4799.

[6] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. 2001. Bounded Model Checking Using
Satisfiability Solving. Formal Methods in System Design 19, 1 (2001), 7–34.

[7] E. M. Clarke, O. Grumberg, and D. A. Peled. 1999. Model Checking. The MIT
Press, Cambridge, Massachusetts.

[8] C. D’Ambrosio, A. Lodi, and S. Martello. 2010. Piecewise linear approximation
of functions of two variables in MILP models. Operations Research Letters 38, 1
(2010), 39–46.

[9] T. T. Doan, Y. Yao, N. Alechina, and B. Logan. 2014. Verifying heterogeneous
multi-agent programs. In Proceedings of the 13th International Conference on

Autonomous Agents and Multi-Agent Systems (AAMAS14). IFAAMAS, 149–156.
[10] S. Dutta, X. Chen, and S. Sankaranarayanan. 2019. Reachability Analysis for Neu-

ral Feedback Systems using Regressive Polynomial Rule Inference. In Proceedings

of the 22nd ACM International Conference on Hybrid Systems: Computation and

Control (HSCC19). ACM, 157–168.
[11] R. Ehlers. 2017. Formal Verification of Piece-Wise Linear Feed-Forward Neural

Networks. In Proceedings of the 15th International Symposium on Automated

Technology for Verification and Analysis (ATVA17) (Lecture Notes in Computer

Science), Vol. 10482. Springer, 269–286.
[12] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. 1992. Quantitative

temporal reasoning. Real-Time Systems 4, 4 (1992), 331–352.
[13] P. Gammie and R. van der Meyden. 2004. MCK: Model Checking the Logic of

Knowledge. In Proceedings of 16th International Conference on Computer Aided

Verification (CAV04) (Lecture Notes in Computer Science), Vol. 3114. Springer,
479–483.

[14] I. Griva, S. Nash, and A. Sofer. 2009. Linear and nonlinear optimization. Vol. 108.
Siam.

[15] Z. Gu, E. Rothberg, and R. Bixby. 2016. Gurobi Optimizer Reference Manual.
http://www.gurobi.com. (2016).

[16] S. S. Haykin. 1999. Neural Networks: A Comprehensive Foundation. Prentice Hall.
[17] C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu. 2019. ReachNN: Reachability

Analysis of Neural-Network Controlled Systems. ACM Transactions on Embedded

Computing Systems (TECS) 18, 106 (2019), 1–22.
[18] K.J. Hunt, D. Sbarbaro, R. Zbikowski, and P.J. Gawthrop. 1992. Neural networks

for control systems–A survey. Automatica 28, 6 (1992), 1083–1112.
[19] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee. 2019. Verisig: verifying safety

properties of hybrid systems with neural network controllers. In Proceedings

of the 22nd ACM International Conference on Hybrid Systems: Computation and

Control (HSCC19). 169–178.
[20] K. Julian, J. Lopez, J. Brush, M. Owen, and M. Kochenderfer. 2016. Policy Com-

pression for Aircraft Collision Avoidance Systems. In Proceedings of the 35th

Digital Avionics Systems Conference (DASC16). IEEE, 1–10.
[21] K. D. Julian and M. J. Kochenderfer. 2019. A Reachability Method for Verifying

Dynamical Systems with Deep Neural Network Controllers. CoRR abs/1903.00520
(2019).

[22] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. 2017. Reluplex:
An Efficient SMT Solver for Verifying Deep Neural Networks. In Proceedings of

the 29th International Conference on Computer Aided Verification (CAV17) (Lecture

Notes in Computer Science), Vol. 10426. Springer, 97–117.
[23] P. Kouvaros and A. Lomuscio. 2016. Parameterised Verification for Multi-Agent

Systems. Artificial Intelligence 234 (2016), 152–189.
[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012. ImageNet Classification with

Deep Convolutional Neural Networks. In Proceedings of the 26th Conference on

Neural Information Processing Systems (NIPS12). Curran Associates, Inc., 1097–
1105.

[25] A. Lomuscio and L. Maganti. 2017. An approach to reachability analysis for
feed-forward ReLU neural networks. CoRR abs/1706.07351 (2017).

[26] A. Lomuscio, H. Qu, and F. Raimondi. 2017. MCMAS: A Model Checker for the
Verification of Multi-Agent Systems. Software Tools for Technology Transfer 19, 1
(2017), 9–30.

[27] P. Maes. 1993. Modeling adaptive autonomous agents. Artificial life 1, 1–2 (1993),
135–162.

[28] V. Nair and G. E. Hinton. 2010. Rectified Linear Units Improve Restricted Boltz-
mann Machines. In Proceedings of the 27th International Conference on Machine

Learning (ICML10). Omnipress, 807–814.
[29] NANESVerify. 2020. Neural Agent operating on a Non-deterministic Environment

System Verify, https://vas.doc.ic.ac.uk/software/neural/. (2020).
[30] N. Narodytska. 2018. Formal Analysis of Deep Binarized Neural Networks. In

Proceedings of the 27th International Joint Conference on Artificial Intelligence,

(IJCAI18). IJCAI, 5692–5696.
[31] W. Penczek and A. Lomuscio. 2003. Verifying Epistemic Properties of multi-agent

systems via bounded model checking. In Proceedings of the 2nd International

Joint Conference on Autonomous Agents and Multi-agent systems (AAMAS03).
IFAAMAS, 209–216.

[32] W. Penczek, B. Woźna, and A. Zbrzezny. 2002. Bounded Model Checking for the
Universal Fragment of CTL. Fundamenta Informaticae 51, 1-2 (2002), 135–156.

[33] J. Redmon, S. K. Divvala, R. B. Girshick, and Ali. Farhadi. 2016. You Only Look
Once: Unified, Real-Time Object Detection. The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR16) (2016), 779–788.
[34] R. S. Sutton and A. G. Barto. 1998. Reinforcement Learning – An Introduction. MIT

Press.
[35] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R.

Fergus. 2014. Intriguing properties of neural networks. In Proceedings of the 2nd

International Conference on Learning Representations (ICLR14).
[36] V. Tjeng, K. Xiao, and R. Tedrake. 2019. Evaluating Robustness of Neural Net-

works with Mixed Integer Programming. In Proceedings of the 7th International

Conference on Learning Representations (ICLR19).
[37] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. 2018. Efficient Formal Safety

Analysis of Neural Networks. In Proceedings of the 32nd Conference on Neural

Information Processing Systems (NIPS18). Curran Associates, Inc., 6367–6377.
[38] W. Winston. 1987. Operations research: applications and algorithms. Duxbury

Press.
[39] W. Xiang, H. Tran, J. A. Rosenfeld, and T. T. Johnson. 2018. Reachable Set

Estimation and Safety Verification for Piecewise Linear Systems with Neural
Network Controllers. In 2018 Annual American Control Conference (ACC). AACC,
1574–1579.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

33

https://vas.doc.ic.ac.uk/software/neural/

	Abstract
	1 Introduction
	2 Neural agent-environment systems
	3 The Verification Problem
	3.1 Unbounded CTL
	3.2 Bounded CTL

	4 Implementation and Experiments
	5 Conclusions
	Acknowledgments
	References

