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Abstract

In this thesis a distributed ILP (Inductive Logic Programming) learning system is in-
troduced, called Distributed Top-directed Abductive Learning (DTAL). DTAL is based
on existing solutions such as TAL (Top-directed Abductive Learning - a centralised
ILP system, introduced by Domenico Corapi) and DAREC (Distributed Abductive
Reasoning with Constraints - a distributed abductive system, developed by Jiefei
Ma). A definition of a distributed learning task is stated. Soundness and complete-
ness of DTAL in finding solutions of a distributed ILP task are proven. Furthermore,
an experimental implementation of DTAL is described, developed as a meta-rule
layer that can be put on top of existing DAREC implementation.
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Chapter 1

Introduction

Distributed learning is one of the most interesting challenges in both machine learn-
ing and multi-agent systems areas. While a lot of work has been done in the field
of multi-agent reinforcement learning (see Panait and Luke (2005) for a general
survey), less effort has been devoted to other types of learning. In particular, the
number of publications dealing with distributed Inductive Logic Programming (ILP)
is very limited.

In this thesis, Distributed Top-directed Abductive Learning (DTAL) is introduced – a
general framework for performing distributed ILP learning in a multi-agent system,
building upon existing solutions such as TAL (Top-directed Abductive Learning, Corapi
et al. (2010) and Corapi (2011)) and DAREC (Distributed Abductive Reasoning with
Constraints, Ma (2011)). The system uses the idea of translating a learning task into
a corresponding abductive task, employed by TAL, and relies on DAREC to perform
distributed abduction. Theorems about soundness and completeness of DTAL are
stated and proven. An experimental implementation of the system is also developed
in Prolog.

This thesis is organised as follows. In Chapter 2, the basic concepts of Inductive
and Abductive Logic Programming are introduced. TAL and DAREC systems are
presented, forming the basis for the newly developed distributed system. In Chapter
3, the distributed learning task is defined. Then the DTAL system is defined, capable
of solving the task. Soundness and completeness of DTAL are proven. Chapter 4
describes experimental implementation of DTAL, created in Prolog, and its current
limitations. In Chapter 5, two other logic-based machine learning algorithms for
distributed environments are presented. Finally, Chapter 6 summarises the work
and indicates directions for its future development.
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Chapter 2

Background

2.1 General setting

Distributed or multi-agent learning can be understood and approached in many ways.
For example, should a setting in which many independently learning agents coexist,
and possibly cooperate, be considered an instance of multi-agent learning? Weiß and
Dillenbourg (1999) state some fundamental questions about the nature of multi-
agent learning and distinguish various types of multi-agent learning, based on the
concepts of multiplication, division and interaction.

Multiplied learning corresponds to the simplest scenario in which every agent learns
on its own. While interaction between agents may occur, it is not directly involved
in the learning process.

Divided learning occurs when each of the agents is responsible for a separate part of
the learning task. This may mean agents exploring separate regions of the environ-
ment or separate areas of the hypothesis search space. Another example would be
a heterogenic system composed of specialised agents, capable of acquiring different
types of data. In divided learning, the interaction between agents would typically be
largely specified by the design of the system and intended problem decomposition.

Interactive learning occurs when the interaction between agent is used directly and
dynamically in the learning process. Rather than performing separate tasks and
aggregating results afterwards, the agents communicate and perform reasoning to-
gether. Typically, the interactions are much more dynamic than in divided learning,
which means that they cannot be precisely specified at design level, and occur as
they are necessary to solve a particular problem. Obviously, the three classes of
multi-agent learning are not disjoint and the aim is not draw precise boundaries be-
tween them. Nevertheless, they are very helpful in understanding what multi-agent
learning can possibly mean.
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Chapter 2 2.2. INDUCTIVE LOGIC PROGRAMMING

This classification is later brought up by Kazakov and Kudenko (2001) who state
the general setting for ILP-based machine learning in multi-agent systems. After
explaining basic concepts of machine learning, multi-agent systems and inductive
logic programming, they start investigating the possibility of applying ILP in multi-
agent environments. They indicate some publications in the area at the time of
writing (2001). Those works, however, focus on various ways of applying ILP to
individually reasoning agents, rather than attempt to distribute the ILP process itself.
In the classification defined by Weiß and Dillenbourg, they would largely fall into the
category of multiplied learning.

2.2 Inductive Logic Programming

Inductive Logic Programming (ILP, Lavrač and Džeorski (1994)) is an approach to
machine learning in which background knowledge, examples and hypotheses are
expressed using a subset of predicate logic. The Definition 2.1 states what is an ILP
programming task, and what it means that a given hypothesis is a solution of the
task.

Definition 2.1. An Inductive Logic Programming task is a tuple 〈E,B,M〉, where E is
the set of examples, B is the background knowledge and M is mode bias, defining the
language LH of the hypothesis space. A hypothesis H ∈ LH is a solution of the learning
task if and only if:

1. B ∪H |=s E,

2. B ∪H is consistent.

where |=s is the logical entailment under a selected semantics.

In this thesis, it is assumed that the background knowledge B is a normal logic
program.

Many ILP algorithms exist. Among them, one of the most robust is Top-directed Ab-
ductive Learning (TAL), described in detail in section 2.4. Advantages of TAL include
capability to perform non-monotonic learning (using negation as failure) and non-
observational learning (learning of concepts other than those by which the examples
are defined). The basic idea behind TAL is to map an ILP task into an Abductive Logic
Programming task.
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2.3. ABDUCTIVE LOGIC PROGRAMMING Chapter 2

2.3 Abductive Logic Programming

Abductive Logic Programming (ALP, Kakas et al. (1992)) is an extension of logic
programming, enabling abduction, that is searching for possible explanations of ob-
served facts rather than just attempting to prove them using existing knowledge. For
example, given a knowledge base B:

p← q

q ← a

q ← b

set of abducibles {a, b} and observation (query) Q = {p}, an ALP system could be
expected to find two possible explanations of the observation, {a} and {b}.

It is easy to note some similarity between the aims of ILP and ALP. Given some back-
ground knowledge and observations, both are trying to construct an explanation.

The Definitions 2.2 and 2.3 cited here from Ma (2011) introduce the formal setting
for ALP.

Definition 2.2. (Ma (2011)) An abductive (logic) framework is a tuple 〈Π,AB, IC〉
where

• Π is a normal logic program called the background knowledge

• AB is the set of abducible predicates;

• IC is a set of integrity constraints.

The set of abducible predicates AB is disjoint from the set of predicates definied in
Π.

Definition 2.3. (Ma (2011)) Given an abductive logic framework 〈Π,AB, IC〉 and a
query Q, the tuple 〈∆, θ〉 is an abductive explanation if

1. ∆ is a set of abducible atoms and θ is a set of variable substitutions, i.e., ∆θ ⊆ AB;

2. Π ∪∆θ |=s Qθ

3. Π ∪∆θ is consistent with IC

where |=s is the logical entailment under a selected semantics.

Many ALP systems exist. They are capable of finding an abductive solution given an
abductive framework and a query. One of them is the ASystem (Kakas et al. (2001)),
on which both DAREC and TAL are based.
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Chapter 2 2.4. TOP-DIRECTED ABDUCTIVE LEARNING

2.4 Top-directed Abductive Learning

The notion of similarity between ILP and ALP tasks raises question about the pos-
sibility of mapping a task of one kind to the other. Indeed, this is the approach
adopted by Corapi (2011) in the Top-directed Abductive Learning (TAL) algorithm.
TAL is one of the most robust ILP algorithms. It is capable of non-monotonic ILP and
non-observational predicate learning. Furthermore, its soundness and completeness
have been proven (Corapi (2011)).

The DTAL system, introduced in this thesis, builds upon TAL, extending it for use in
distributed systems.

2.4.1 Meta-level Learning as abductive search

In TAL, the learning task’s mode declaration is translated into a set of meta-rules,
defining how mode predicates can be combined to create new rules. During the
abductive search, selected meta-rules are used to resolve the original goals and
gradually construct the newly induced rules. The process terminates with abduc-
tive assumption of a fact containing encoded description of a rule explaining one or
more examples. If the abduction is successful, the rules can be easily extracted from
their abduced representation to form the final hypothesis. The meta-rules, together
with the background knowledge for the ILP learning task is referred to as top theory.

2.4.2 Rule representation

In this section, the procedure of constructing a TAL top theory (Corapi (2011)) is
briefly explained. The DTAL system uses a very similar procedure, with slight mod-
ifications which enable its use in distributed systems. The mode declaration for an
ILP task is expressed using a set of predicate declarations, indicating which predi-
cates may be used as heads of the induced rules, which predicates may be included
in the rule bodies and imposing restrictions on the predicate arguments. The mode
declaration syntax can be summarised as follows:

• modeh(p) denotes that the predicate p may be used as the head of an induced
rule,

• modeb(p) denotes that the predicate p may be used in the body of an induced
rule,

• declaring a predicate’s argument as +type states that the argument should be
an input argument of type type,

5



2.4. TOP-DIRECTED ABDUCTIVE LEARNING Chapter 2

• declaring a predicate’s argument as –type states that the argument should be
an output argument of type type,

• declaring a predicate’s argument as #type states that the argument should be
a constant of type type,

• special type any can be used to skip imposing a type requirement on the argu-
ment.

For example, mode declaration for a learning task enabling induction of rules with
predicate flies/1 in the head and predicates bird/1, reptile/1, eats/2 in the body, may
be written as follows:

modeh(files(+any))

modeb(bird(+animal))

modeb(reptile(+animal))

eats(+animal,#food)

Assuming that the fact food(grain) is in the background knowledge, an example of a
rule that could be induced using this mode declaration is:

files(X)← bird(X), animal(X), eats(X, grain)

Abductive search through the hypothesis space requires defining a way to represent
the rules. TAL approaches this by representing rules as lists of so called MBLs (mode-
based literals): tuples of the form (m, c, v), where m is the mode identifier, c is the
list of constants used in the predicate, and v is the list of input variables used in
the predicate. The list of input variables is expressed as list of variable numbers,
counting from the beginning of the rule.

The rule representation used by TAL is presented here with an example, also sourced
from Corapi (2011).

Example 2.1. (Corapi (2011)) Consider the following mode declarations:

M =


m1 : modeh(uncle(+person,+person))

m2 : modeb(father(−person,+person))

m3 : modeb(gender(+person,#mf))

m4 : modeb(sibling(+person,+person))

The rule

uncle(X1, X2)← father(X3, X2), sibling(X3, X1), gender(X1,m)

is represented as rtM [(m1, [], []), (m2, [], [2]), (m4, [], [3, 1]), (m3, [m], [1])]. Each tuple in
the list only contains the mode declaration, the constants, and the indexes of the input
variables. For example, 2 in the second MBL refers to the second input variable in the
head, X2. Note that the particular name of the variables is not relevant.

6



Chapter 2 2.4. TOP-DIRECTED ABDUCTIVE LEARNING

2.4.3 Top theory generation

Definition 2.4 by Corapi (2011) formalises the process of translating the mode dec-
laration into the top theory TM . The full top theory is the union of the background
knowledge and TM . In Definition 2.4, inp(s∗), out(s∗) and con(s∗) denote, respec-
tively, the input variables, output variables and constants used in the literal s∗.

Definition 2.4. (Corapi (2011)) Given a set M of mode declarations, the top theory
TM is constructed as follows:

• For each head declaration M : modeh(s), the following rule is in TM

s∗ ←
body(inp(s∗), [(m, con(s∗), [])])

(2.1)

• For each body declaration m : modeb(s), the following clause is in TM

body(I, R)←
link(inp(s∗), I, Links),
s∗,
append(R, (m, con(s∗), Links), NR),

append(I, out(s∗), NI),

body(NI,NR)

(2.2)

• The following rules are in TM together with a standard definition for the append
predicate.

body(I,NR)←
r(NR)

(2.3)

link([HL1|TL1], L2, [X|TV ])←
nth1(X,HL1, L2),

link(TL1, L2, TV ).

link([], L2, []).

(2.4)

Example 2.2, also sourced from Corapi (2011), shows application of Definition 2.4
to sample mode declaration.

Example 2.2. (Corapi (2011)) Consider the following set of mode declarations M:

M =


m1 : modeh(p(+any))

m2 : modeb(q(+any,#any))

m3 : modeb(q(+any,−any))

(2.5)
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The corresponding top theory TM contains, together with rules (2.3) and (2.4) the
following rules:

p(V 1)←
body(V 1, [(m1, [], [])])

(2.6)

body(I, L)←
link([V 1], I, Links)

q(V 1, C1),

append(L, (m2, C1, Links),M),

append(I, [], NI),

body(NI,M)

(2.7)

body(I, L)←
link([V 1], I, Links)

q(V 1, V 2),

append(L, (m2, [], Links),M),

append(I, [V 2], NI),

body(NI,M)

(2.8)

2.4.4 Learning example

Top theory generated as defined in section 2.4.3 can be used by an ALP system to
solve an ILP learning task. In this section, a very simple example is presented. For
more examples with detailed descriptions, see Corapi (2011).

Example 2.3. Consider an ILP learning task T = 〈E,B,M〉, where

E = {can fly(armin), can fly(becky),¬can fly(cesar)}
B = {bird(armin), bird(becky)}
M = {m1 : modeh(can fly(+any)),m2 : modeb(bird(+any))}

Top theory TM together with rules (2.3) and (2.4) contains:

can fly(V 1)←
body([V 1], [(m1, [], [])]).

(2.9)

body(Input, Rule)←
bird(V 1),

link([V 1], Input, Links),

append(Rule, (m2, [], Links)),

append(Input, [], NewInput),

body(NewInput,NewRule).

(2.10)
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The successful abductive derivation for query E uses rule 2.9 to prove the positive
examples. The body goal is resolved using rule 2.10. The body goal coming from
rule 2.10 is in turn resolved using the terminating rule (2.3). This yields abducible
fact r([(m1, [], []), (m2, [], [1])]) representing rule can fly(X) ← bird(X). If the set of
examples did not contain the negative example ¬can fly(cesar), a simpler solution
can fly(X), represented by r([(m1, [], [])]) would also be possible.

2.4.5 Soundness and Completeness

TAL is a sound and complete ILP algorithm which is stated by Corapi (2011) in
Theorem 2.1.

In the theorem, H = TAL(E,B,M, ∅) denotes that the hypothesis H is computed by
aplying the TAL algorithm to the set of examples E, background knowledge B and
mode declaration M . The ∅ argument stands for integrity constraints, optionally
resolved by the algorithm.

Theorem 2.1. (Corapi (2011)) Let 〈B,E,RM〉 be an ILP task, TM be the top theory
generated from M and TM ∪B an acyclic program. If TM ∪B is abductive nonrecursive
for the query E then H = TAL(E,B,M, ∅) iff H is a subset-minimal solution for the ILP
task 〈E,B,M〉.

Soundness and completeness of TAL are used in chapter 3 as the basis for proving
soundness and completeness of DTAL.

2.5 Distributed Abductive Reasoning with Constraints

Distributed Abductive Reasoning with Constraints (DAREC) is a distributed ALP sys-
tem introduced by Ma (2011). The DAREC abductive procedure is based on ASys-
tem, which also underlies TAL. DAREC features include handling of inequalities,
arithmetical constraint solving and ability to compute non-ground conditional an-
swers.

The basic idea behind DAREC is to treat the distibuted abductive process as a se-
quence of state rewriting operations. The state contains information about remain-
ing goals, already assumed abducibles and relevant integrity and CLP constraints.
Agent processing a state at any given moment may attempt to resolve one of the
goals using its knowledge or decide to transfer the state to another agent, possibly
able to continue the derivation. Each assumed abducible needs to be checked by all
of the agents in the system for compliance with local integrity constraints.

DAREC assumes that the set of collaborating agents is fixed. No agents join or leave
during the derivation and all of them take part in it (e.g. when an abducible is
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2.5. DISTRIBUTED ABDUCTIVE REASONING WITH CONSTRAINTS Chapter 2

assumed, it must be checked for consistency by all the agents). Furthermore, it
assumes the set of abducibles is common and known to all the agents, as well as that
any agent can exchange messages with any other agent in the system.

Definition 2.5, cited here from Ma (2011), introduces the concept of a DAREC global
abductive framework. Definition 2.6, also coming from Ma (2011), sets the require-
ments for the solutions computed by DAREC.

Definition 2.5. (Ma (2011)) The (DAREC) global abductive framework for a system
of abductive agents, is a tuple 〈Σ, F̂〉, where Σ is the set of all agent identifiers and F̂ is
the set of abductive agent frameworks, i.e. {Fi | i ∈ Σ}. For any pair of agents i, j ∈ Σ,
ABi = ABj.

Definition 2.6. Ma (2011)) Given a (DAREC ) global abductive framework 〈Σ, F̂〉 and
a query Q, let Π̂ =

⋃
i∈Σ Πi, let ÎC =

⋃
i∈Σ ICi, and let ÂB =

⋃
i∈ΣABi. A pair 〈∆, θ〉

is a (DAREC ) global abductive answer for Q if and only if:

• ∆θ ⊆ ÂB;

• Π̂ ∪∆θ |= Qθ;

• Π̂ ∪∆θ |= ÎC

where θ is the variable substitutions over the variables in Q, and |= is the logical entail-
ment of a selected semantics for the logic program formed by Π̂ ∪ ÎC.

Note that by Definition 2.5, ÂB =
⋃

i∈ΣABi = ABj for any j ∈ Σ.

The process of finding an abductive answer for a given query interleaves abductive
inference performed locally by an agent using its local abductive framework, and
communication between agents, which means transfering the computational state to
a different agent to allow it to process the state further. Definition 2.7 sourced from
Ma (2011) formalises the concept of DAREC computational state. A short summary
of procedural steps that an agent can take to process a state is presented in Table
2.1.

Definition 2.7. (Ma (2011)) A (DAREC ) computational state (or state in brief) is a
tuple Θ = 〈(G,Gd),ST , τ〉, where

• each element in G is a remaining goal, and can be either a literal or a denial of
the form ∀ ~X. ← φ1, . . . , φn (n < 0) where ~X is the set of universally quantified
variables of the denial (i.e.

−→
X are variables appearing in the denial and are

withing the scope of entire denial);

• each element in Gd is a delayed goal and must be a non-abducible;

10



Chapter 2 2.5. DISTRIBUTED ABDUCTIVE REASONING WITH CONSTRAINTS

• ST is a tuple of four stores (∆,N , E , C), where

– ∆ is a set of abducibles assumed so far;

– N is a set of denials ∀ ~X ← φ1, . . . , φn (n < 0), where the ordering of
φ1, . . . , φn matters and φ1 is either an abducible or nonabducible;

– E is a set of (in-)equalities;

– C is a set of CLP constraints;

• τ is a set of tags. All free variables appearing in the state Θ are existentially
quantified within the scope of the whole state.

DAREC tags are used for two purposes. A delayed goal is tagged with the identifier
of the agent which delayed it, so that the goal is not left to be proven by the same
agent. An abducible is tagged by the agent that abduced it, with the identifiers of all
the other agents, to keep track of which agents have yet to check the abducible for
consistence. When performing the check, each agent updates the list by removing
its own identifier.

Rule Description

LD1 Resolve non-abducible by replacing a goal with the body of a cor-
responding rule.

LA1 Resolve abducible by assuming it or reusing already assumed one.

LC1 Reduce CLP constraint (not used for ILP learning).

LE1 Reduce equality or inequality by adding it to E .

LN1 Rewrite negation – convert a negative goal into a denial.

LD2 Resolve denial through non-abducible by replacing a goal with
the bodies of corresponding rules. Denied goal has to be tagged
and remembered as a global constraint because other agents may
have knowledge to prove it.

LA2 Resolve denial through abducible – the denial still needs to be
kept in N , in case the abducible needs to be assumed later on.

LC2 Resolve denial through CLP constraint (not used for ILP learning).

LE2 Resolve denial through equality.

LN2 Resolve denial through negation – try to prove the negated goal
or remember that the rest of the denial must fail.

Table 2.1: DAREC inference rules

11



2.5. DISTRIBUTED ABDUCTIVE REASONING WITH CONSTRAINTS Chapter 2

2.5.1 Soundness and Completeness

Ma (2011) proves soundness and completeness of the DAREC algorithm. The sound-
ness of DAREC is stated by Theorem 2.2. Its completeness is expressed by Theorem
2.3.

Definition 2.8. (Ma (2011)) Given a global abductive framework 〈Σ, F̂〉, let 〈∆, θ〉 be
an answer computed by the DAREC algorithm for a query Q such that ∆θ is ground,
then the completion of the hypotheses ∆θ is given by formula δ, which is the conjunc-
tion of the literals {A | A ∈ ÂB ∧ A ∈ ∆θ} ∪ {¬A | A ∈ ÂB ∧ A /∈ ∆θ}, where
ÂB =

⋃
i∈ΣABi

Theorem 2.2. (DAREC Soundness, Ma (2011)) Given a global abductive framework
〈Σ, F̂〉 and a query Q, if there is a successful global abductive derivation for Q with
global abductive answer 〈∆, θ〉, then:

1. comp(Π̂) ∪ {δ} |=3 Qθ

2. comp(Π̂) ∪ {δ} |=3 I for every I ∈ ÎC

where δ is the completion of ∆θ, Π̂ =
⋃

i∈Σ Πi, and ÎC =
⋃

i∈Σ ICi.

Theorem 2.3. (DAREC Completeness, Ma (2011)) Let 〈Σ, F̂〉 be a global abductive
framework. If there is a finite global abductive derivation tree T for the query Q, and
comp(Π̂) ∪ ÎC ∪ ∃Q is satisfiable under the three-valued semantics (Fitting (1985)),
then T contains a successful branch.

12



Chapter 3

Distributed ILP

In this chapter, Distributed Top-directed Abductive Learning (DTAL) algorithm is in-
troduced. It is a new approach to performing ILP learning in a multi-agent setting.
DTAL builds upon TAL and DAREC algorithms presented in chapter 2. Before DTAL is
presented, the context of distributed learning is defined. In particular, the concepts
of distributed ILP task and its solution are defined.

3.1 Distributed learning task definition

A distributed ILP task is defined as a tuple of agents’ representations of their partial
knowledge 〈A1, A2, . . . , An〉, where each agent’s partial knowledge is represented
in the format of a plain ILP task 〈Ei, Bi,Mi〉, where Ei is the set of examples, Bi

is the background knowledge and Mi is mode declaration stating what predicates
can be used in the heads and bodies of the induced rules, according to the local
knowledge of the agent. This is a very general definition, allowing for distribution of
all ingredients of the task: the examples, the background knowledge and the mode
declaration.

By analogy to Definition 2.1, a distributed learning task can be defined as follows.

13



3.2. TASK TRANSFORMATION Chapter 3

Definition 3.1. A distributed learning task is a tuple of agent representations
T = 〈A1, A2, . . . , An〉, where, for each i, Ai is the agent’s (partial) ILP learning task,
defined as 〈Ei, Bi,Mi〉. Ei is the set of examples known to the agent i, Bi is its back-
ground knowledge and Mi is the mode declaration known to agent i. The language LH

of the hypothesis space is defined by the union of mode declarations
⋃
i

Mi. A hypothesis

H ∈ LH is a solution of task T if and only if:

1.
⋃
i

Bi ∪H |=
⋃
i

Ei,

2.
⋃
i

Bi ∪H is consistent.

For the purpose of reasoning about the similarities and differences between a (cen-
tralised) learning task and a distributed learning task, the concept of correspondence
between them is defined (Definition 3.2).

Definition 3.2. Let Tc = 〈Ec, Bc,Mc〉 be an ILP task. Any distributed ILP task
〈A1, A2, . . . , An〉, such that:

1.
⋃
i

Ei = Ec

2.
⋃
i

Bi = Bc

3.
⋃
i

Mi = Mc

is a distributed ILP task corresponding to task Tc. Task Tc is the (centralised) ILP task
corresponding to Td.

3.2 Task transformation

Similarly to TAL, DTAL transforms a distributed learning task into a distributed ab-
ductive task. The transformation of agents’ local knowledge can be performed locally
and does not require any communication between them.

14
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Transformation of a distributed ILP task into DAREC distributed abductive frame-
work and query is composed of two basic steps:

1. Agents’ local mode declarations are locally translated to form agents’ local top
theories.

2. The learning examples are locally translated into integrity constraints. The
query is set to contain only the special abducible, necessary to trigger integrity
constraint resolution.

Step 1 has similar meaning to top theory generation preformed by TAL. The most
important difference is that it has to ensure that mode identifiers are unique across
the system. This can be achieved by prefixing each mode identifier with an agent
identifier (e.g. its number). Step 2 adapts the learning task to the fact that the
DAREC system requires the query to be issued to one specific agent. This means
that the examples cannot be directly used to form the query (this would require
assembling all the examples by one agent, disrupting the distribution of the task).
Alternative solution used by DTAL is based on expressing examples as agents’ local
integrity constraints. Intuitively, the constraints exclude solutions not covering the
positive examples or covering the negative ones. Detailed description of the solution
can be found in Definition 3.4.

Definition 3.3, based on definition 2.4 used by TAL, formalises the process of local
mode translation (step 1 of task transformation).

Definition 3.3. Let mi be a mode identifier prefixed with the identifier of agent i.
Given a set M of mode declarations, stored by agent i, the agent’s local top theory TM,i

is constructed as follows:

• For each head declaration M : modeh(s), the following rule is in TM,i

s∗ ←
body(inp(s∗), [(mi, con(s∗), [])])

(3.1)

• For each body declaration m : modeb(s), the following clause is in TM,i

body(I, R)←
link(inp(s∗), I, Links),
s∗,
append(R, (mi, con(s∗), Links), NR),

append(I, out(s∗), O),

body(O,NR)

(3.2)

• The following rules are in TM,i together with a standard definition for the append
predicate.
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body(I,NR)←
rule(NR)

(3.3)

link([HL1|TL1], L2, [X|TV ])←
nth1(X,HL1, L2),

link(TL1, L2, TV ).

link([], L2, []).

(3.4)

Note that, thanks to embedding agent identifiers in all their mode identifiers, there
exists a global, bidirectional mapping between mode declarations and meta-rules. A
mode identifier contains all the information necessary to refer to a particular mode
declaration across entire system: unique agent identifier and a declaration identifier
unique within agent.

Definition 3.4 describes the set of example-based constraints of a given agent, which
formalises the idea of expressing examples as constraints, mentioned above.

Definition 3.4. Let Ai = 〈Ei, Bi,Mi〉 be partial distributed learning task representa-
tion of agent Ai. The set of examples-based integrity constraints of agent i, ICE,i is
constructed as follows:

• for each positive example e+ ∈ Ei, a denial of the form← ¬e+, a is in ICE,i,

• for each negative example e− ∈ Ei, a denial of the form← e−, a is in ICE,i,

where a is a special abducible, not appearing anywhere in Bi.

Definition 3.5 uses concepts of agent’s local top theory and examples-based con-
straints to define transformation of a DTAL learning task into a DAREC abductive
task.

16
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Definition 3.5. Let T = 〈A1, A2, . . . An〉 be a distributed learning task. The corre-
sponding DAREC abductive task is a pair 〈D,Q〉 where

• D = {Σ, F̂} is a DAREC framework, constructed as follows:

– for each Ai = 〈Ei, Bi,Mi〉, an abductive framework
〈Bi ∪ TM,i, {rule/1, a/1}, ICE,i〉 is added to Σ, where TM,i is the local top
theory of agent i and a is the special abducible mentioned in Definition 3.4,
common to all the agents,

– for each agent Ai ∈ T , i is added to F̂ .

• Q = {a} is a DAREC query,

The abductive answers computed by DAREC for framework D and query Q contain
the special abducible a and representations of the rules included in the hypothesis.
The representations are rule(L) facts, where L is a list of mode-based literals (MBLs),
indicating what predicates are used in the rules.

The hypothesis can be extracted from the abduced representations, using reverse
mapping between the mode declaration and identifiers. In cases when particular
mode is declared at an agent different than the one performing extraction, this re-
quires querying the other agent, for the initial mode declaration of the predicate.
It is known which agent included a particular MBL, thanks to the fact, that agent
identifiers have been embedded in the mode identifiers.

Detailed examples of DTAL operation, including mode translation and abductive
derivation are presented in section 3.3.

3.3 Examples

In this section, some examples of how rule induction is performed by DTAL are
presented. The tables present agents’ initial knowledge, as well as sequences of
steps, including local derivation and communication between agents, that are taken
on the successful path in the derivation tree.
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3.3.1 Example 1

Agent Background Mode Examples

1 bird(armin)
modeh(can fly(+any))
modeb(bird(+any))

can fly(a)
can fly(b)
¬can fly(c)

2 bird(becky) - -

Table 3.1: Example 1 - agent specifications

Agent Top theory

1

1.1: can fly(V1)← body([V1], [(1m1,[],[])]).
1.2: body(Input, Rule)←

bird(V1),
link([V1], Input, Links),
append(Rule, (1m2, [], Links)),
append(Input, [], NewInput),
body(NewInput, NewRule).

1.3: body(Input, Rule)← rule(Rule).
1.4: bird(armin).

2 2.1: bird(becky)

Table 3.2: Example 1 - agents’ top theories

Agent Constraints

1
← ¬can fly(armin), a
← ¬can fly(becky), a
← can fly(cesar), a

2 -

Table 3.3: Example 1 - agents’ examples expressed as integrity constraints

Table 3.1 defines the learning task. Tables 3.2 and 3.3 present agents top theories
and integrity constraints, respectively. Let the computation begin at agent 1. The
initial DAREC state for the abductive query Q = {a} is 〈(G,Gd), (∆, N,E,C), τ〉 =
〈({a}, ∅), (∅, ∅, ∅, ∅), ∅〉. This is the standard translation of an abductive query to the
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initial DAREC state. The initial set of goals is equal to the query. The sets of delayed
goals, collected abducibles, collected denials, collected equalities and tags are empty.
The set of CLP constraints is empty and will remain unused, but is included here to
preserve full compliance with the general DAREC algorithm, which is capable of
solving CLP constraints.

St Ag Changes Comment

1 1 ∆′ = ∆ ∪ {a} = {a},
τ ′ = τ ∪ {〈a, {2}〉} = {〈a, {2}〉}

The special abducible a is ab-
duced.

2 1 G′ = {
← ¬can fly(armin),
← ¬can fly(becky),
← can fly(cesar)

}

Resolving the local integrity
constraints results in adding
the denial goals to the goal
list.

3 1 G′ = {
can fly(armin),
← ¬can fly(becky),
← can fly(cesar)

}

The denial goal with neg-
ative term turns into non-
denial goal with positive term
(DAREC rule LN2).

4 1 G′ = G \ {can fly(armin)} ∪ {body([armin], [(1m1, [], [])])} The first goal is resolved using
rule 1.1.

5 1 G′ = G \ {body([armin], [(1m1, [], [])])} ∪ {
bird(armin),
link([armin], [armin], Links),
append(Rule, (1m2, [], Links), NewRule),
append([armin], [], NewInput),
body(NewInput,NewRule)

}

The existing body goal is re-
solved using rule 1.2. The
body of the rule replaces the
original body goal in the goal
list.

6 1 G′ = {
body([armin], [(1m1, [], []), (1m2, [], [1])]),
← ¬can fly(becky),
← can fly(cesar)

}

The bird(armin) goal triv-
ially succeeds. Procedural
goals link and append also
succeed, binding NewInput
to [armin] and NewRule to
[(1m1, [], []), (1m2, [], [1])].

7 1 G′ = {
rule([(1m1, [], []), (1m2, [], [1])]),
← ¬can fly(becky),
← can fly(cesar)

}

The body goal is resolved us-
ing rule 1.3 and replaced with
the rule goal.
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St Ag Changes Comment

8 1 ∆′ = ∆ ∪ {rule([(1m1, [], []), (1m2, [], [1])])},
τ ′ = τ ∪ {〈rule([(1m1, [], []), (1m2, [], [1])]), {2}〉},
G′ = {← ¬can fly(becky),← can fly(cesar)}

The abducible rule is abduced
and removed from the goal
list (DAREC rule LA1).

9 1 G′ = {can fly(becky),← can fly(cesar)} As in step 3, the denial of a
negative goal is turned into a
positive goal (DAREC LN2).

10 1 G′ = G \ {can fly(becky)} ∪ {body([becky], [(1m1, [], [])])} The first goal is resolved using
rule 1.1.

11 1 G′ = G \ {body([becky], [(1m1, [], [])])} ∪ {
bird(becky),
link([becky], [becky], Links),
append(Rule, (1m2, [], Links), NewRule),
append([becky], [], NewInput),
body(NewInput,NewRule)

}

Similarly to step 5, the exist-
ing body goal is resolved us-
ing rule 1.2. The body of the
rule replaces the original body
goal in the goal list.

12 1 Gd′ = Gd ∪ {bird(becky)},
τ ′ = τ ∪ {〈bird(becky), {1}〉},
G′ = {

body([becky], [(1m1, [], []), (1m2, [], [1])]),
← can fly(cesar)

}

The bird(becky) goal is de-
layed because agent 1 has no
way of prooving it on its own.
A corresponding tag is added
to mark which agent was un-
able to prove the goal. Pro-
cedural goals link and append
also succeed, binding NewIn-
put to [armin] and NewRule to
[(1m1, [], []), (1m2, [], [1])].

13 1 G′ = {
rule([(1m1, [], []), (1m2, [], [1])]),
← can fly(cesar)

}

The body goal is resolved us-
ing rule 1.3 and replaced with
the rule goal.

14 1 ∆′ = ∆,
τ ′ = τ ,
G′ = {← can fly(cesar)}

The abducible rule fact, ab-
duced previously in step 8, is
reused. The rule goal is re-
moved from the goal list.
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St Ag Changes Comment

15 1 N ′ = N ∪ {← can fly(cesar)} = {← can fly(cesar)},
τ ′ = τ ∪ {〈← can fly(cesar), {2}〉},
G′ = {body([cesar], [(1m1, [], []), (1m2, [], [1])])}

The can fly goal in the de-
nial is resolved using rule 1.1.
However, the original goal
needs to be remembered and
is added to the set of dynamic
constraints. This is to ensure
that the denied goal can never
be proven using a different
rule (e.g. one stored by an-
other agent).

16 1 N ′ = N ∪ {← body([cesar], [(1m1, [], []), (1m2, [], [1])])},
τ ′ = τ ∪ {〈← body([cesar], [(1m1, [], []), (1m2, [], [1])]), {2}〉},
G′ = {← (

bird(cesar),
link([cesar], [cesar], Links),
append(Rule, (1m2, [], Links), NewRule),
append([cesar], [], NewInput),
body(NewInput,NewRule)

)}

The denied body goal is re-
solved further using rule 1.2.
Another dynamic constraint is
collected, as in the previous
step.

17 1 N ′ = N ∪ {← bird(cesar)},
τ ′ = τ ∪ {〈← bird(cesar), {2}〉}
G′ = ∅

The first goal of the denial
fails. However, it still has
to be added to the dynamic
constraints so that it can be
checked by remaining agents.
The goal list is now empty but
there are still delayed goals
and constraints to be checked
by other agents.

18 2 τ ′ = {
〈bird(becky), {1}〉,
〈← can fly(cesar), ∅〉,
〈← body([cesar], [(1m1, [], []), (1m2, [], [1])]), ∅〉,
〈← bird(cesar), ∅〉

},
Gd = ∅,
G = {
← can fly(cesar),
← body([cesar], [(1m1, [], []), (1m2, [], [1])]),
← bird(cesar),
bird(becky)

}

The computational state is
now transfered to agent 2
(DAREC rule TR). The dy-
namic constarints are ex-
tracted to the goal list, and
agent 2 label is removed form
the corresponding tags. The
delayed goal bird(becky) is
also added to the goal list, so
that agent 2 can try to prove
it.
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St Ag Changes Comment

19 2 G = ∅ The denial goals succeed
since agent 2 has no way
of proving them. The goal
bird(becky) also succeeds be-
cause this fact is contained in
the background knowlege of
agent 2 (rule 2.1).

Table 3.4: Example 1 - successful rule derivation.

The abductive answer computed for this example is rule([(1m1, [], []), (1m2, [], [1])]),
which represents the rule can fly(X)← bird(X). Given joint background knowledge
of the agents, this rule indeed explains all the positive examples (armin and becky
are birds) and none of the negative examples (cesar is not known to be a bird).

3.3.2 Example 2

Agent Background Mode Examples

1 bird(armin)
modeh(can fly(+any))
modeb(bird(+any)) can fly(ben)

2 plane(ben)
modeh(can fly(+any))
modeb(plane(+any)) can fly(armin)

Table 3.5: Example 2 - agent specifications

Table 3.5 defines the learning task. Tables 3.6 and 3.7 present agents top the-
ories and integrity constraints, respectively. Let the computation begin at agent
1. As in Example 1, the initial DAREC state for the abductive query Q = {a} is
〈(G,Gd), (∆, N,E,C), τ〉 = 〈({a}, ∅), (∅, ∅, ∅, ∅), ∅〉.
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Agent Top theory

1

1.1: can fly(V1)← body([V1], [(1m1,[],[])]).
1.2: body(Input, Rule)←

bird(V1),
link([V1], Input, Links),
append(Rule, (1m2, [], Links)),
append(Input, [], NewInput),
body(NewInput, NewRule).

1.3: body(Input, Rule)← rule(Rule).
1.4: bird(armin).

2

2.1: can fly(V1)← body([V1], [(2m1,[],[])]).
2.2: body(Input, Rule)←

plane(V1),
link([V1], Input, Links),
append(Rule, (2m2, [], Links)),
append(Input, [], NewInput),
body(NewInput, NewRule).

2.3: body(Input, Rule)← rule(Rule).
2.4: plane(ben).

Table 3.6: Example 2 - agents’ top theories

Agent Constraints

1 ← ¬can fly(ben), a

2 ← ¬can fly(armin), a

Table 3.7: Example 2 - agents’ examples expressed as integrity constraints
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St Ag Changes Comment

1 1 ∆′ = ∆ ∪ {a} = {a},
τ ′ = τ ∪ {〈a, {2}〉} = {〈a, {2}〉}

The special abducible a is ab-
duced.

2 1 G′ = {← ¬can fly(ben)} Resolving the local integrity
constraints results in adding
the denial goal to the goal list.

3 1 G′ = {can fly(ben)} The denial goal with neg-
ative term turns into non-
denial goal with positive term
(DAREC rule LN2).

4 1 G′ = {body([ben], [(1m1, [], [])])} The goal is resolved using rule
1.1.

5 1 Gd′ = {body([ben], [(1m1, [], [])])}
τ ′ = τ ∪ {〈body([ben], [(1m1, [], [])]), {1}〉}
G′ = ∅

The body goal is delayed for
resolution by another agent.
The goal list is now empty.

6 2 Gd′ = ∅
τ ′ = {〈a, ∅〉, 〈body([ben], [(1m1, [], [])]), {1}〉}
G′ = {body([ben], [(1m1, [], [])]),← ¬can fly(armin)}

The computational state is
transfered to agent 2 (DAREC
rule TR). The delayed body
goal is added to the goal list,
so that agent 2 can try to
prove it. Integrity constraints
for abducible a are resolved
and agent 2 label is removed
form the corresponding tag.

7 2 G′ = {
plane(ben),
link([ben], [ben], Links),
append(Rule, (2m2, [], Links)),
append(ben, [], NewInput),
body(NewInput,NewRule)

}

The body goal is resolved us-
ing rule 2.2. The plane(ben)
goal succeeds, as well as
procedural goals link and
append, binding NewInput
to [ben] and NewRule to
[(1m1, [], []), (2m2, [], [1])].

8 2 ∆′ = ∆ ∪ {rule([(1m1, [], []), (2m2, [], [1])])},
τ ′ = τ ∪ {〈rule([(1m1, [], []), (1m2, [], [1])]), {1}〉},
G′ = {← ¬can fly(armin)}

The abducible rule is assumed
and removed from the goal
list (DAREC rule LA1).

9 2 G′ = {can fly(armin)} As in step 3, the denial of a
negative goal is turned into a
positive goal (DAREC LN2).
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St Ag Changes Comment

10 2 G′ = {body([armin], [(2m1, [], [])])} The first goal is resolved using
rule 2.1.

11 2 Gd′ = {body([armin], [(2m1, [], [])])}
τ ′ = τ ∪ {〈body([armin], [(2m1, [], [])]), {2}〉}
G′ = ∅

Similarly to step 5, the exist-
ing body goal is delayed.

12 1 Gd′ = ∅
τ ′ = {
〈a, ∅〉,
〈rule([(1m1, [], []), (1m2, [], [1])]), ∅〉,
〈body([armin], [(2m1, [], [])]), {2}〉

},
G′ = {body([armin], [(2m1, [], [])])}

The computational state is
transfered to agent 2 (DAREC
rule TR). The delayed body
goal is added to the goal list,
so that agent 2 can try to
prove it. The tag for agent 2
is removed from the rule ab-
ducible.

13 1 G′ = {
bird(armin),
link([armin], [armin], Links),
append(Rule, (1m2, [], Links)),
append(ben, [], NewInput),
body(NewInput,NewRule)

}

The body goal is resolved us-
ing rule 2.2. The bird(armin)
goal succeeds, as well as
procedural goals link and
append, binding NewInput
to [armin] and NewRule to
[(2m1, [], []), (1m2, [], [1])].

14 1 ∆′ = ∆ ∪ {rule([(2m1, [], []), (1m2, [], [1])])},
τ ′ = τ ∪ {〈rule([(2m1, [], []), (1m2, [], [1])]), {2}〉},
G′ = ∅

The rule abducible is as-
sumed. Corresponding tag is
added to mark the abducible
for consistency check by the
other agent.

15 2 τ ′ = {
〈a, ∅〉,
〈rule([(1m1, [], []), (1m2, [], [1])]), ∅〉
〈rule([(2m1, [], []), (1m2, [], [1])]), ∅〉

},
G′ = G = ∅

The state is transfered to
agent 2 for consistency check
of the most recent abducible.
Since there are no integrity
constraints containing the
rule abducible, the check
trivially succeeds.

Table 3.8: Example 2 - successful rule derivation.

The abductive answer computed for this example is

{rule([(1m1, [], []), (2m2, [], [1])]), rule([(2m1, [], []), (1m2, [], [1])])
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which represents the hypothesis:

can fly(X)← plane(X)

can fly(X)← bird(X)

This is the most complex hypothesis that can be computed for this example. Other
possibilities include the simplest hypothesis containing only rule can fly(X) with
empty body and hypotheses containing the simple rule as well as one of the complex
ones:

can fly(X)

can fly(X)← bird(X)

can fly(X)

can fly(X)← plane(X)

In both of these hypotheses, the second rule is clearly redundant. However, they
can be computed because of the fact that the algorithm attempts to explain all the
examples separately. In the future, the system can easily be extended to avoid re-
turning such solutions. This could be achieved by additional post-processing of the
hypotheses to detect redundant rules or by iterative removing of positive examples
which are already covered (the cover loop approach, Corapi (2011)).

3.4 Soundness and Completeness

In this section, theorems about fundamental properties of DTAL learning algorithm,
namely its soundeness and completeness, are stated and proven. Corresponding
theorems about soundness and completeness of TAL and DAREC are used as the
basis.

When a distributed learning task is considered, a fundamental question to ask is how
the fact of distribution of knowledge affects the overall reasoning capability of the
system. In Definition 3.6, the concept of a centralised top theory is introduced. It is
then used in reasoning about the relations between a set of local top theories gen-
erated by the agents and a global (centralised) top theory, which could be generated
for a hypothetical global ILP learning task, based on the knowledge of all agents
aggregated in just one reasoning entity.

Definition 3.6. Let Td = 〈A1, A2, . . . , An〉 be a distributed learning task. Let Tc be a
centralised task corresponding to Td. The top theory Thc generated by TAL for task Tc
is the centralised top theory of task Td.

Theorem 3.1 expresses both soundness and completeness of DTAL. Intuitively, it
states that all the solutions computed by DAREC are indeed solutions of the global
ILP task corresponding to the distributed ILP task for which the algorithm is run.
Furthermore, every existing solution to the task can be computed by DAREC.
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Figure 3.1: Theorem 3.1 illustration

Theorem 3.1. Let Td = 〈A1, A2, . . . , An〉 be a distributed learning task and Thc its
centralised top theory and an acyclic program. Let Tc = 〈

⋃
i

Ei,
⋃
i

Bi,
⋃
i

Mi〉 be an ILP

task corresponding to Td. If Thc is abductive nonrecursive for query
⋃
i

Ei then:

• if the hypothesis H is computed by applying the DTAL algorithm to task Td,
H ∈ DTAL(Td), then H is a solution of task Tc;

• if H is a subset-minimal solution of task Tc, then H is computed by applying the
DTAL algorithm to task Td, H ∈ DTAL(Td).

To state a proof for Theorem 3.1, some lemmas about the properties of DAREC al-
gorithm need to be introduced. At the end of the section, they are brought together
with existing theorems provided by Corapi (2011) and Ma (2011) to from the com-
plete proof. The Figure 3.1 is used to give an intuition of how the elements of the
proof are used together. Theorems 2.1 (Corapi (2011)) state soundness and com-
pleteness of TAL in its ability to compute answers of an ILP learning task. Theorems
2.2 and 2.3 (Ma (2011)) state soundness and completeness of DAREC as an abduc-
tive proof procedure. Lemma 3.2 expresses the equivalence between a centralised
top theory used by TAL and the distributed top theory employed by DTAL. Lemma
3.3 provides the formal correctness of expressing the learning examples as integrity
constraints.

Lemma 3.1 formalises the similarity between a centralised top theory of a DTAL
task and a simple set-theoretical union of DTAL agents’ locally generated partial top
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theories.

Lemma 3.1. Let T = 〈A1, A2, . . . , An〉 be a distributed learning task. Let Thi be a
local top theory of agent i, generated from its local mode declaration and background
knowledge. Let Thall =

⋃
i

Thi. Let Thc be the centralised top theory for task T. For

every clause in Thall there is exactly one clause in Thc which differs exactly by the mode
identifier constant. For every clause in Thc there is at least one clause in Thall which
differs exactly by the mode identifier constant.

Proof. The process of top theory generation, either for the centralised TAL or for
DTAL, is composed of three basic steps:

1. Each clause from the background knowledge is added to the top theory un-
changed.

2. Each mode declaration is translated into exactly one mode clause.

3. A special clause terminating the rule generation and link predicate are added.

The three sets of clauses added to the top theory in the above steps are disjoint and
can be considered separately.

1. If a background clause is contained in the centralised top theory Thc, then
it must also be contained in the centralised background knowledge Bc, men-
tioned in Definition 3.6. If that is the case, the clause must come from the local
background knowledge of at least one agent Ai. This implies that it will also
be contained in the locally generated partial top theory Thi of agent i, and, by
that fact, also in Thall which is the union of all agents’ locally generated theo-
ries.
If a background clause is contained in the theory Thall, then it must be con-
tained in at least one locally generated partial top theory Thi of agent i. If that
is the case, the clause must come from the agent’s local background knowl-
edge Bi. This implies that it is contained in the union of all agents’ background
knowledge and, by definition of the centralised top theory, in Thc.

2. If a mode clause C1is contained in the centralised top theory Thc, then a cor-
responding mode declaration must be contained in the centralised mode Mc,
mentioned in Definition 3.6. If that is the case, the declaration must come from
the local mode declaration of at least one agent Ai. This implies that a clause
C2, different from C1 only by the agent-specific mode identifier, will also be
contained in the locally generated partial top theory Thi of agent i, and by that
fact also in Thall which is the union of all agents’ locally generated theories. In
case when agent’s mode declarations overlap, Thall may actually contain more
clauses representing the same mode declaration, differing by the agent-specific
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identifiers.
If a mode clause is contained in the theory Thall, then it must be contained in
at least one locally generated partial top theory Thi of agent i. If that is the
case, a corresponding mode declaration must exist in the agent’s local mode
Mi, and also in the union of all agents’ mode declaration and, by definition of
the centralised top theory, a corresponding clause must be included in Thc.

3. The terminating clause and link predicate are present in each top theory, in-
dependently from the mode declaration. It is included Thc and each of the
agents’ locally generated top theories, by which fact it is also included in Thall
�

The connection between top theories stated in Lemma 3.1 can be further used to
show that, whether an ALP system is applied to a centralised top theory or to a set
union of local top theories, it finds precisely the same ILP task solutions (hypothe-
ses).

Lemma 3.2. Let T = 〈A1, A2, . . . , An〉 be a distributed learning task. Let Ei be the set
of examples known to agent i. Let Thi be a local top theory of agent i, generated from
its local mode declaration and background knowledge. Let Thall =

⋃
i

Thi. Let Thc be

the centralised top theory for task T. Let Aall and Ac be abductive logic frameworks,
defined as follows:

Aall = 〈Thall, {rule/1}, ∅〉

Ac = 〈Thc, {rule/1}, ∅〉

For a given sound and complete ALP system S, a hypothesis H can be found by post-
processing of an answer to query

⋃
i

Ei, returned by S for framework Aall if and only if

H can be found by post-processing an answer returned by S for framework Ac.

Proof. By Lemma 3.1, every clause in top theory Thc has an equivalent clause in top
theory Thall and every clause in Thall has an equivalent clause in Thc. The differing
mode identifiers do not influence the resolution procedure until a rule fact is ab-
duced, which contains identifiers of clauses used up to this point. The identifiers are
only used to keep record of the rules used in the derivation and they are removed by
the abductive answer post-processing. Since every clause in Thall has an equivalent
clause in Thc, every solution found for Thall can also be found for Thc. Since every
clause in Thc has at least one equivalent clause in Thall, every solution found for
Thc can also be found for Thall. The potential presence of duplicate clauses in Thall,
caused by overlap between agents’ mode declarations, can only introduce additional
ways of inducing the same solutions and does not change the set of all solutions
found for the query �

The DTAL system uses DAREC integrity constraints to express the examples, as noted
in 3.3. The main reason for that is to enable actual distribution of examples - if the
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examples were used to form the query, they would have to be known to a single agent
before starting the learning process. Lemma 3.3 states that this way of expressing
examples does not violate the soundness and completeness of the system. For the
purpose of the lemma, a distributed-query-equivalent of given DAREC framework and
query is defined.

Definition 3.7. Let D be a DAREC framework and Q a query for the framework D. The
pair 〈D,Q〉. The query Q = {q1, q2, . . . , qi} can be transformed into an equivalent query
for a helper goal, QDQ = {a} (where a does not appear in Q nor in D) by transforming
each of the original goals q1 . . . qn into an integrity constraint of the form ← not qi for
positive goals and→ qi for negative goals and distributing them arbitrarily among the
agents of the framework D and adding them to agents’ existing integrity constraints. Let
DDQ denote the resulting framework. The pair 〈DDQ, QDQ〉 is called the distributed-
query equivalent of the pair 〈D,Q〉.

Lemma 3.3. Let D be a DAREC framework and Q a query for the framework D. Let
〈Ddist, Qdist〉 be the distributed-query equivalent of the pair 〈D,Q〉. Let S be the set
of answers computed by DAREC for query Q and framework D. Let Sdist be the set of
answers computed by DAREC for query Qdist and framework Ddist.

A ∈ S ⇐⇒ A ∪ {a} ∈ Sdist

Proof. The Definition 2.6 of a (DAREC) global abductive answer 〈∆, θ〉 requires
satisfaction of both of the following conditions:

1. ∆θ ⊆ ÂB

2. Π̂ ∪∆θ |= Qθ

3. Π̂ ∪∆θ |= ÎC

We will show that both of these conditions are met for a pair of a DAREC framework
and a query 〈D,Q〉 if and only if corresponding conditions are met for its distributed-
query equivalent:

1. ∆θdist ⊆ ÂBdist

2. Π̂ ∪∆θdist |= Qθdist

3. Π̂ ∪∆θdist |= ÎCdist

The conditions 2 and 3 can be rewritten as follows:

Π̂ ∪∆θ |= Qθ ∪ ÎC (3.5)

30



Chapter 3 3.4. SOUNDNESS AND COMPLETENESS

Under the generalised 3-valued semantics, fact 3.5 holds if and only if:

Π̂ ∪∆θ |= {← ¬q : q ∈ Q+θ} ∪ {← q : q ∈ Q−θ} ∪ ÎC (3.6)

Let ∆θdist be the ∆θ extended by adding the special abducible a, not appearing
anywhere in Π̂, nor in ÎC. Let ÂBdist = ÂB ∪ {a}.

∆θdist = ∆θ ∪ {a} (3.7)

Since a ∈ ∆θdist, fact 3.6 holds if and only if:

Π̂ ∪∆θdist |= {← ¬q, a : q ∈ Q+θ} ∪ {← q, a : q ∈ Q−θ} ∪ ÎC (3.8)

By Definition 3.7:

ÎCdist = {← ¬q, a : q ∈ Q+θ} ∪ {← q, a : q ∈ Q−θ} ∪ ÎC (3.9)

From (3.8) and (3.9) we get that:

Π̂ ∪∆θdist |= ÎCdist (3.10)

By Definition 3.7, Qdist = Qθdist = {a} and:

Π̂ ∪∆θdist |= Qdistθ (3.11)

Together with the fact that {a} ⊆ AB, facts 3.10 and 3.11 mean that ∆θdist satisfies
the definition of an abductive answer for framework Ddist and query Qdist �

With lemmas introduced in this section, as well as results by Corapi (2011) and Ma
(2011) quoted in Chapter 2, Theorem 3.1 can be proven. Soundness and complete-
ness of DTAL are proven here by considering the stages of mode translation and
abductive search separately.

Proof of Theorem 3.1 By Theorem 2.1 TAL is known to be a sound and complete ILP
algorithm. Lemma 3.2 states, that the top theory generated by TAL for a centralised
learning task can be replaced by union of agents’ locally generated partial DTAL top
theories Thall =

⋃
i

Thi. By Theorems 2.2 and 2.3, DAREC can be used on the Thall

instead of a sound and complete centralised ALP algorithm, to find exactly the same
solutions to the task. In DAREC, the background knowledge for the abductive task
(in case of a learning task, this is the top theory Thall) can be distributed arbitrarily
among agents. In particular, the locally generated top theories, considered as their
set union Thall before, can be stored locally by agents that generated them. Finally,
distribution of the learning examples and expressing them as agents’ local integrity
constraints does not violate soundness and completeness of the system, as stated by
Lemma 3.3. This implies that, for any distributed ILP task Td and its corresponding
(centralised) ILP task Tc, the following holds:

H ∈ DTAL(Td) ⇐⇒ H ∈ TAL(Tc) (3.12)

Given soundness and completeness of TAL and the fact that by Definition 3.1, Td and
Tc have the same solutions, it can be concluded that any H ∈ DTAL(Td) is indeed
a solution of the ILP learning task Tc = 〈

⋃
i

Ei,
⋃
i

Bi,
⋃
i

Mi〉. Similarly, by fact 3.12,

and completeness of TAL, any subset-minimal solution of Tc is computed by DTAL �
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Implementation and Evaluation

The DTAL system has been implemented in SWI-Prolog as a task-translating layer
that can be put on top of an existing DAREC implementation. The implementation
was tested with the DAREC implementation created by Jiefei Ma as a part of his PhD
thesis (Ma (2011)). Brief specification of the implementation is provided in Section
4.1. The implementation code can be found in Appendix A.

The DAREC implementation had to be modified so that it can be used with SWI-
Prolog. Unfortunately, the YAP-Prolog, for which the implementation was originally
intended, no longer supports some constructions used in DAREC. The availability of
older versions of YAP is very limited. Moreover, even the newest version is difficult
to obtain, especially in a variant with multi-threading support. Section 4.2 lists the
changes that were introduced in the DAREC implementation.

4.1 Specification of the DTAL implementation

The top-level procedures of the implementation, forming the user interface of the
DTAL layer, as well as their intended use, are presented in this section. The figure 4.1
gives a high-level overview of the implementation. The parts in black are intended
to be run by all the agents in the system. The parts in grey should be run by just one,
arbitrarily chosen agent.

preprocess(Background, Mode, Examples, Theory)

The preprocess procedure processes background knowledge, mode declaration
and examples into a complete local top theory of an agent. The Background, Mode
and Examples arguments are the paths to files containing the corresponding com-
ponents of an agent’s partial learning task definition. The Theory argument is the
path to the output file containing preprocessed task. The background knowledge is
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Figure 4.1: DTAL implementation overview

copied to the theory file without changes. The mode declaration is translated into
corresponding meta-rules, containing agent-specific mode identifiers. The examples
are translated into integrity constraints. The output theory file is intended for use as
the theory file for a DAREC agent. Typically, the preprocess predicate is called by
every DTAL agent once, before the standard DAREC derivation begins. The source
code of the procedure is presented in Listing 4.1. The code of toptheory and
examples as constraints procedures can be found in Appendix A.

Listing 4.1: The preprocess procedure

preprocess(Background, Mode, Examples, Theory) :-

open(Background, read, BStream),
clauses_from_file(BStream, BClauses),
close(BStream),

open(Mode, read, MStream),
clauses_from_file(MStream, MClauses),
close(MStream),

open(Examples, read, EStream),
clauses_from_file(EStream, EClauses),
close(EStream),

toptheory(MClauses, MTheory),
examples as constraints(EClauses, Constraints),
flatten([BClauses, MTheory, Constraints], TopTheory),

open(Theory, write, TStream),
clauses_to_file(TopTheory, TStream),
close(TStream).

topic file(Topic)
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The topic file procedure generates the topic file for the DAREC system. The
file indicates abducibles and built-in predicates to enable resolving them properly
by DAREC (built-in predicates are resolved using a standard Prolog call, rather than
DAREC derivation based on the background knowledge). The content of this file is
the same for all agents and independent of a particular learning task. Typically, the
procedure may be run by a DTAL agent once, before the standard DAREC derivation
begins. Alternatively, the topic file generated by the procedure may be shipped with
agents’ code - its content does not change. If many agents are run in an environment
sharing the same file system, a single topic file may be used by all of them. The
source code of the procedure is presented in Listing 4.2.

Listing 4.2: The topic file procedure

topic_file(Topic) :-
open(Topic, write, Stream),
clauses_to_file([

(abducible(a)),
(abducible(rule(_))),
(builtin(link(_,_,_))),
(builtin(append(_,_,_))),
(builtin(nonmember(_,_)))

], Stream),
close(Stream).

postprocess(Mode, HypoRep, Hypothesis)

The postprocess procedure performes extraction of the hypothesis form its ab-
duced representation, given as a list of rule facts. The Mode is the path to the file
containing the agent’s local mode declaration. HypoRep is the list of abduced rule
representations. Hypothesis is the answer to the original learning task, expressed
as a list of Prolog rules. During the execution of postprocess procedure, agents
possessing particular mode declarations are identified using the agent-specific mode
identifiers and asked for the necessary mode declarations. If the mode declaration in
question comes form the current agent, the query is resolved using local knowledge,
bypassing the TCP communication. The source code of the procedure is presented
in Listing 4.3. The code of extract hypothesis procedure can be found in Ap-
pendix A.

Listing 4.3: The postprocess procedure

postprocess(Mode, HypoRepA, Hypothesis) :-
open(Mode, read, Stream),
clauses_from_file(Stream, MClauses),
close(Stream),
delete(HypoRepA, a, HypoRep),
extract hypothesis(MClauses, HypoRep, Hypothesis).
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run mode server(Mode, Port)

The run mode server procedure enables testing of the DTAL code without a DAREC
implementation. The procedure starts a simple TCP server, capable of responding to
mode queries with the corresponding mode declaration. This is necessary during
the post-processing phase, as noted in the postprocess predicate description. The
Mode argument is the path to a file containing agent’s local mode declaration. Port
is the number of TCP port on which the server will by accepting mode queries.

Listing 4.4: The run mode server procedure

run_mode_server(Mode, Port) :-
open(Mode, read, Stream),
clauses_from_file(Stream, MClauses),
close(Stream),
sample_server(Port, MClauses).

4.2 Changes in the DAREC implementation

In this section, the changes that were introduced in the DAREC implementation are
briefly described. The changes are independent of the characteristic of the learning
environment and were necassary to enable using DAREC with SWI-Prolog. This in
turn was needed because of very limited availability of YAP-Prolog, for which the
implementation was initially developed (Ma (2011)).

The main changes are as follows:

• The code using global variables has been altered to accommodate to the fact
that in SWI global variables are not shared between threads. A procedure was
implemented, that wraps around thread creation by injecting additional goals
to a newly created thread. The added goals are redefining necessary global
variables inside the new thread.

• The code directly performing TCP communication has been replaced with code
using SWI-specific TCP communication predicates.

• The predicates new variables in term and variables within term, not
available in SWI, have been reimplemented.

• A number of YAP-specific predicates was replaced with semantically equivalent
SWI predicates,

• The ’@’ operator used by DAREC to denote the fact that a particular predicate is
defined by a particular agent (< predicate head >@< agent name >) has been
replaced by the asterisk operator (’*’). This is to accommodate the syntactic
differences between SWI-Prolog and (past versions of) YAP-Prolog.
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• The YAP-specific inequality operator ’=/=’ used for dealing with inequalities
has been replaced with ’=\=’.

4.3 Testing and Limitations

Various components of the implementation were used for testing others during the
development work. For example, top theories generated by the DTAL layer were
used in the process of modifying the DAREC implementation. In this section, current
limitations of the implementation, as well as achieved results are presented.

The DAREC implementation developed by Jiefei Ma (Ma (2011)) is in fact an imple-
mentation of the DAREC2 system - an extended version of DAREC, introducing the
concept of confidentiality (hence the second ’C’). The background knowledge pred-
icates of DAREC2 are divided into two classes. One of them is publicly known, that
is, agent’s knowledge of the predicate is advertised so that other agents know, that
the advertising agent may be helpful in resolving goals expressed using that predi-
cate. The other class is confidential and private to the agent - the agent may use the
knowledge when performing local resolution, but other agents are unaware of the
predicate existence. From their point of view, if no agent advertises the predicate, it
is undefined and goals expressed using it fail. It is easy to see how DAREC2 is a more
general system than plain DAREC - if all predicates in the background knowledge of
DAREC2 agents are marked as public (askable), the system behaves in exactly the
same way as DAREC.

Unfortunately, the case when all predicates are marked as askable is an extreme case
of DAREC2 application, rather than its typical use. Extensive use of askable predi-
cates with the DAREC system very often leads to its malfunction. The limitations of
the current version include in particular:

• floundering when resolving negated askable goals,

• inability to resolve integrity constraints containing askable predicates (essential
for expressing DTAL learning examples as constraints).

Despite the limitations mentioned above, performing DTAL learning in a limited
scope was possible.

The Example 1, presented in the section 3.3 was successfully solved after manually
introducing some changes in the top theory. The basic idea used to overcome current
limitations, was to resign from marking all the background knowledge and example
predicates as askable by default. Instead, they were included in the background
knowledge as standard (defined) predicates. The top theory was then manually ad-
justed, to turn only some selected predicates back into askables. It has to be admit-
ted, that the choice of new askables was made using author’s prediction on which
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Figure 4.2: Example 1 – computed abductive answer

of the predicates may need to be consulted with another agent. With this modi-
fications, the DAREC2 system was able to abduce fact rule([1m1, [], []], [1m2, [], [1]])
corresponding to the rule can fly(X) ← bird(X), the same one achieved manually
in the derivation presented for Example 1 in section 3.3. The abductive answer
computed for the example is presented in Figure 4.2. Note that for the purpose of
the example, the agent names used were a1 and a2. Due to the pending necessity
to modify the DAREC implementation to handle askable predicates better, the post-
processing phase has not been embedded in the system yet, and needs to be done
separately.

Adjustments to the askable predicates allowed the system to solve the task presented
in Example 2 from section 3.3 as well. All the hypotheses mentioned in section
3.3 were found. The abductive answer corresponding to the most sophisticated
hypothesis is presented in Figure 4.3.

Further work on the implementation will focus on resolving the issues with askable
predicates described above. The precise cause of the problem is not fully known yet.
It is conjectured that the backtracking information stored for askable predicates may
not be sufficient.

Another approach could be an attempt to ’downgrade’ DAREC2 to DAREC so that
there are no separate classes of predicates and all of them are advertised – this
would enable simplifying the system, in particular the internal DAREC constructions
used to handle the askable predicates.
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Figure 4.3: Example 2 – computed abductive answer
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Related Work

DTAL is not the first attempt to bring logic-based machine learning to a multi-agent
environment. Two other algorithms enabling distribution of a learning process are
presented in this section and briefly compared to DTAL.

5.1 Multi-agent Inductive Learning System

Huang and Pearce Huang and Pearce (2006) introduced the Multi-Agent Inductive
Learning System (MAILS). The system works by interlacing deduction and induc-
tion. An agent tries to explain observed example using its background knowledge.
At some point it may reach a goal expressed with a predicate for which it lacks defi-
nition. At this point, it may either induce the necessary predicate itself or ask other
agents for help, supplying them with corresponding examples for the new predicate.
In this approach, distribution of the learning process is rather coarse-grained: a sin-
gle predicate needs to be defined by a single agent, without help from other agent’s
except for the initially provided examples. Further work by Huang and Pearce Huang
and Pearce (2007) builds upon MAILS, providing an interesting example of applying
it in the task of finding a path in a graph.

The limitations of MAILS system can be seen in the Example 1, introduced in section
3.3 and presented again in Table 5.1.

The hypothesis solving Example 1 is can fly(X) :- bird(X). However, it would
not be possible to compute it using the MAILS system. The reason is that induction
of a single predicate has to be executed by a single agent. The agent starting the
learning process could explain just one of the positive examples using this rule.
Since communication between agents can only involve a request to induce a new
predicate and examples for the same predicate, there is no way of using a fact from
the other agent’s background knowledge. This is potentially a serious limitation,
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Agent Background Examples

1 bird(armin)
can fly(armin)
can fly(becky)
¬can fly(cesar)

2 bird(becky) -

Table 5.1: Example - background knowledge split across agents

because in many applications of multi-agent systems it is natural for the agents to
have knowledge similar in nature (expressed by the same predicate) but referring
to a different entity. For example, an agent placed in the hall could know that
closed(front door) holds, while only the agent in the living room would be
aware that closed(window) is also true.

Tasks solved by Huang and Pearce (2006) can also be solved by DTAL – the delega-
tion of the task of inducing a particular predicate can be expressed using the concept
of delayed goals, introduced by DAREC and used by DTAL.

5.2 Sound Multi-agent Incremental Learning

Bourgne et al. define an algorithm called SMILE (Sound Multi-agent Incremental
LEarning) Bourgne et al. (2008). This is a method of performing concept learning in
a multi-agent environment. The idea behind SMILE is to perform a local revision of
a global hypothesis whenever a new example is considered. After that, consistency
of the new hypothesis with examples known by other agents is checked. If some
agent knows an example contradicting the proposed version of the hypothesis, it
objects the changes and sends relevant example to the proposer, which updates the
hypothesis. This process is repeated iteratively, until all agents agree on and share
the same hypothesis.

This method however is limited to direct learning of concepts defined by a tuple
of boolean variables. Compared to more general ILP algorithms, this means that it
is only capable of observational predicate learning (only rules for the predicate in
which examples are expressed can be generated). Furthermore, the learning process
cannot use any background knowledge. In general, tuple-based (attribute-value)
learning is less expressive than ILP, as noted by Raedt (2010).

This limitation can also be seen using example presented in the Table 5.1. Rea-
soning about the three entities in question (armin, becky and cesar) would require
describing each of them as a tuple of boolean values and using this knowledge as
the examples, which must themselves contain entire available knowledge. While this
could seem feasible in this case (just one boolean value describing whether some-
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thing is a bird), if more kinds of animals were defined, the examples would need to
provide a value for each type of animal and each entity. This knowledge could not
only be difficult to assemble, it may also be incomplete, especially from the point of
view of a single agent.

In further work on SMILE Bourgne et al. (2009) Bourgne et al. investigate a slightly
modified approach, in which the hypothesis is not necessarily shared between the
agents, which are now allowed to keep their own versions, possibly inconsistent
with union of all knowledge in the system. Many hypotheses created in this way can
than be used to classify new examples using some aggregation method, e.g. majority
voting.
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Conclusions and Further Work

In this thesis, the concept of Distributed ILP learning has been introduced. The DTAL
algorithm capable of solving distributed ILP task has been devised. Furthermore, its
fundamental properties, such as soundness and completeness have been stated and
proven. The algorithm has also been implemented as a top theory and meta-rule
processing layer for an existing implementation of DAREC.

The DTAL algorithm is considerably more general than existing distributed logic-
based learning algorithms, described in short in Chapter 5, by allowing use of dis-
tributed background knowledge and non-observational predicate learning.

The robustness of DTAL may largely be seen as coming at cost of its scalability.
Similarly to DAREC, which DTAL is based on, the state transfers between agents
may require transmitting substantial amount of information, representing the cur-
rent computational state. Resolving negative goals may be particularly expensive,
because it requires remembering all the intermediate steps (all the possible ways of
proving the negated goal) for future reference. This problem may be seen even in
the Example 1 (Section 3.3), for which the set of dynamically collected constraints
becomes seemingly very large, given the size of the learning task. Future work on
DTAL can focus on investigating the scalability of the algorithm and finding ways to
improve it.

One possible way of decreasing the communication cost would be modifying the ab-
ductive search process to introduce communicating incremental state information.
Instead of passing complete computational state, only information about its change
could be transmitted. This would certainly increase the complexity of the system
itself, because agents would have to be aware of the version of state known to other
agents. However, sending incremental state information does not have to be manda-
tory. If not certain about the current state version at one of its peers, an agent may
resort to sending the full state. In many cases the state is transfered from agent A to
agent B and then send back immediately. In such cases, it should be easy to express
the state change incrementally.
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As many ILP algorithms, DTAL in its current form does not allow any noise in the
data, and attempts to find a precise logical definitions of the learned concepts, based
on all of the examples. Especially in large distributed environments, it may be de-
sired to search for a hypothesis best describing observed examples, rather then find-
ing an exact solution or failing altogether. In the future, the possibility of extending
DTAL to enable dealing with noisy data may be investigated. Since assuming noise in
the data implies resigning from formal soundness with respect to entire set of exam-
ples, the work in this area could be combined with further research on reducing the
cost of communication between agents - it could now be acceptable to deliberately
drop some information from the state.
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Appendix A

DTAL source code

:-use_module(library(lists)).

%%%%% INTERFACE %%%%%

preprocess(Background, Mode, Examples, Theory) :-

open(Background, read, BStream),
clauses_from_file(BStream, BClauses),
close(BStream),

open(Mode, read, MStream),
clauses_from_file(MStream, MClauses),
close(MStream),

open(Examples, read, EStream),
clauses_from_file(EStream, EClauses),
close(EStream),

toptheory(MClauses, MTheory),
examples_as_constraints(EClauses, Constraints),
flatten([BClauses, MTheory, Constraints], TopTheory),

open(Theory, write, TStream),
clauses_to_file(TopTheory, TStream),
close(TStream).

topic_file(Topic) :-
open(Topic, write, Stream),
clauses_to_file([

(abducible(a)),
(abducible(rule(_))),
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(builtin(link(_,_,_))),
(builtin(append(_,_,_))),
(builtin(nonmember(_,_)))

], Stream),
close(Stream).

postprocess(Mode, HypoRepA, Hypothesis) :-
open(Mode, read, Stream),
clauses_from_file(Stream, MClauses),
close(Stream),
write(MClauses), nl, nl,
delete(HypoRepA, a, HypoRep),
extract_hypothesis(MClauses, HypoRep, Hypothesis).

run_mode_server(Mode, Port) :-
open(Mode, read, Stream),
clauses_from_file(Stream, MClauses),
close(Stream),
sample_server(Port, MClauses).

%%%%% TOP-THEORY GENERATION %%%%%

toptheory(M,TT) :-
toptheory(M, 1, T),
toptheory_terminator(X),
append(T, [X], TT).

toptheory([], _, []).

toptheory([modeh(Pred)|DT], Counter, [R|RT]) :-

%tal_mode_id(Counter, ModeId),
dtal_mode_id(Counter, ModeId),

Pred =.. [Name|ArgTypes],
length(ArgTypes, Len),

functor(Head, Name, Len),
Head =.. [Name|Args],
typecheck(ArgTypes, Args, TypeChecks),
constants_and_variables(ArgTypes, Args, Constants, Variables, []),
BodyPred =.. [body,Variables,[(ModeId, Constants, [])]],
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append(TypeChecks, [BodyPred], Body),
list_to_tuple(Body, BodyTuple),
R = (Head :- BodyTuple),

Counter1 is Counter + 1,
toptheory(DT, Counter1, RT).

toptheory([modeb(NPred)|DT], Counter, [R|RT]) :-

% handle NBF in the same clause
(NPred = -Pred; (NPred \= -_, NPred = Pred)),

%tal_mode_id(Counter, ModeId),
dtal_mode_id(Counter, ModeId),

functor(RuleHead, body, 2),
RuleHead =.. [body|[Input,Rule]],
Pred =.. [Name|ArgTypes],
length(ArgTypes, Len),
functor(ActualPred, Name, Len),
ActualPred =.. [Name|Args],

typecheck(ArgTypes, Args, TypeChecks),
LinkGoal = link(Input, Args, Links),
constants_and_variables(ArgTypes, Args, Constants, _InputVar,

OutputVar),
RuleExtension = (ModeId,Constants,Links),
RepetitionCheck = nonmember(RuleExtension, Rule),
AppendRuleGoal = append(Rule, [RuleExtension], NewRule),
AppendInputGoal = append(Input, OutputVar, NewInput),
RecursiveGoal = body(NewInput, NewRule),
include_negation(NPred, ActualPred, NActualPred),

append(TypeChecks, [NActualPred, LinkGoal, RepetitionCheck,
AppendRuleGoal, AppendInputGoal, RecursiveGoal], BodyList),

list_to_tuple(BodyList, BodyTuple),
R = (body(Input, Rule) :- BodyTuple),

Counter1 is Counter + 1,
toptheory(DT, Counter1, RT).

toptheory_terminator(X) :-
X = (body(_Input, Rule) :- rule(Rule)).

tal_mode_id(Counter, Id) :-
number_chars(Counter, CounterChars),
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atom_chars(Id, [m|CounterChars]).

dtal_mode_id(Counter, Id) :-
alias(Alias),
number_chars(Counter, CounterChars),
atom_chars(Rest, [m|CounterChars]),
atom_concat(Alias, Rest, Id).

typecheck([],[],[]).

typecheck([+any|TT], [_|VT], Checks) :-
typecheck(TT, VT, Checks).

typecheck([-any|TT], [_|VT], Checks) :-
typecheck(TT, VT, Checks).

typecheck([+TH|TT], [VH|VT], [CH|CT]) :-
TH \= any,
CH =.. [TH,VH],
typecheck(TT, VT, CT).

typecheck([-TH|TT], [VH|VT], [CH|CT]) :-
TH \= any,
CH =.. [TH,VH],
typecheck(TT, VT, CT).

typecheck([@TH|TT], [VH|VT], [CH|CT]) :-
TH \= any,
CH =.. [TH,VH],
typecheck(TT, VT, CT).

include_negation(-_, Goal, (\+Goal)) :- !.

include_negation(_Pred, Goal, Goal).

constants_and_variables([], [], [], [], []).

constants_and_variables([TH|TT], [AH|AT], C, [AH|IT], O) :-
TH = +_,
constants_and_variables(TT, AT, C, IT, O).

constants_and_variables([TH|TT], [AH|AT], C, I, [AH|OT]) :-
TH = -_,
constants_and_variables(TT, AT, C, I, OT).
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constants_and_variables([TH|TT], [AH|AT], [AH|CT], I, O) :-
TH = @_,
constants_and_variables(TT, AT, CT, I, O).

%%%%% HYPOTHESIS EXTRACTION %%%%%

extract_hypothesis(_Mode, [], []).

extract_hypothesis(Mode, [RepH|RepT], [RuleH|RuleT]) :-
extract_rule(Mode, RepH, RuleH),
extract_hypothesis(Mode, RepT, RuleT).

extract_rule(Mode, rule(Rep), Rule) :-
extract_rule(Mode, Rep, [], NestedRuleList),
flatten(NestedRuleList, RuleList),
RuleList = [Head|BodyList],
(list_to_tuple(BodyList, BodyTuple)

-> Rule = (Head :- BodyTuple)
; Rule = Head

).

extract_rule(_Mode, [], _Vars, []).

extract_rule(Mode, [RepH|RepT], Vars, [Goals|RuleT]) :-
%RepH = (ModeId, Consts, Links),
%atom_chars(ModeId, [m|NumberChars]), %% change for DTAL
%%%% DTAL VERSION
%decompose_mode_id(ModeId, Agent, Number),

%%%%
%number_chars(ModeNumber, NumberChars),
%nth1(ModeNumber, Mode, ModeElem),

RepH = (ModeId, Consts, Links),
%tal_get_mode(Mode, ModeId, ModeElem),
dtal_get_mode(Mode, ModeId, ModeElem),
(ModeElem = modeh(Pred) ; ModeElem = modeb(Pred)),
get_goal(Pred, Consts, Links, Vars, VarsOut, Goals),
append(Vars, VarsOut, NewVars),
extract_rule(Mode, RepT, NewVars, RuleT).

get_goal(NPred, Consts, Links, VarsIn, VarsOut, Goals) :-
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% handle NBF in the same clause %%%%%%%%%%%%%%
(NPred = -Pred; (NPred \= -_, NPred = Pred)),

Pred =.. [PredName|PredArgs],
rule_args(PredArgs, Consts, Links, VarsIn, VarsOut, Guards, RuleArgs),
Goal =.. [PredName|RuleArgs],
include_negation(NPred, Goal, NGoal),
Goals = [NGoal|Guards].

tal_get_mode(Mode, ModeId, ModeElem) :-
atom_chars(ModeId, [m|NumberChars]),
number_chars(ModeNumber, NumberChars),
nth1(ModeNumber, Mode, ModeElem).

dtal_get_mode(Mode, ModeId, ModeElem) :-
decompose_mode_id(ModeId, Agent, Number),
alias(Agent),
!,
nth1(Number, Mode, ModeElem).

dtal_get_mode(_Mode, ModeId, ModeElem) :-
decompose_mode_id(ModeId, Agent, Number),
ask_for_mode(Agent, Number, ModeElem).

decompose_mode_id(ModeId, Agent, Number) :-
atom_chars(ModeId, Chars),
decompose_mode_id(Chars, [], AgentCharsR, NumberChars),
reverse(AgentCharsR, AgentChars),
atom_chars(Agent, AgentChars),
number_chars(Number, NumberChars).

decompose_mode_id([’m’|T], BeforeR, BeforeR, T) :- !.

decompose_mode_id([H|T], Acc, Agent, Number) :-
decompose_mode_id(T, [H|Acc], Agent, Number).

rule_args([], _, _, _, [], [], []).

rule_args([@_|PredArgT], [ConstH|ConstT], Links, VarsIn, VarsOut,
Guards, [ConstH|RuleArgT]) :-

write(’rule_args: const\n’),
rule_args(PredArgT, ConstT, Links, VarsIn, VarsOut,
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Guards, RuleArgT).

rule_args([-_|PredArgT], Const, Links, VarsIn, [X|VarsOut],
Guards, [X|RuleArgT]) :-

write(’rule_args: out\n’),
rule_args(PredArgT, Const, Links, VarsIn, VarsOut, Guards, RuleArgT).

rule_args([+any|PredArgT], Const, [Link|LinkT], VarsIn, VarsOut,
Guards, [X|RuleArgT]) :-

!, %% don’t use the next rule, which would treat ’any’ as a type
nth1(Link, VarsIn, X),
rule_args(PredArgT, Const, LinkT, VarsIn, VarsOut,

Guards, RuleArgT).

rule_args([PredArgH|PredArgT], Const, [Link|LinkT], VarsIn, VarsOut,
[GuardH|Guards], [X|RuleArgT]) :-

PredArgH = +Type,
write(’rule_args: in\n’),
write(nth1(Link, VarsIn, X)), nl,
nth1(Link, VarsIn, X),
write(’after nth1\n’),
GuardH =.. [Type,X],
rule_args(PredArgT, Const, LinkT, VarsIn, VarsOut, Guards,

RuleArgT).

%% For the input variable in the head.
%% Disjointness with the above clauses by empty link list,
%% may cause some invalid representations to pass.

rule_args([+any|PredArgT], Const, [], VarsIn, [X|VarsOut],
Guards, [X|RuleArgT]) :-

!, %% don’t use the next rule, which would treat ’any’ as a type
write(’rule_args: in2any\n’),
rule_args(PredArgT, Const, [], VarsIn, VarsOut, Guards, RuleArgT).

rule_args([+Type|PredArgT], Const, [], VarsIn, [X|VarsOut],
[GuardH|Guards], [X|RuleArgT]) :-

GuardH =.. [Type,X],
rule_args(PredArgT, Const, [], VarsIn, VarsOut, Guards, RuleArgT).

%%%%% TCP MODE INFORMATION INTERCHANGE %%%%%

ask_for_mode(Agent, Id, ModeDecl) :-
agent(Agent, AdrPort),
tcp_socket(Socket),
tcp_connect(Socket, AdrPort, Streams),
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write(Streams, mode_q(Id)),
write(Streams, ’.\n’),
flush_output(Streams),
read(Streams, Msg),
Msg = mode_a(ModeDecl),
close(Streams).

mode_response(ModeList, Msg, Res) :-
Msg = mode_q(Id),
nth1(Id, ModeList, Mode),
Res = mode_a(Mode).

sample_server(Port, ModeList) :-
tcp_socket(S),
tcp_bind(S, localhost:Port),
tcp_listen(S, 5),
tcp_open_socket(S, AcceptFd),
sample_server_connection(AcceptFd, ModeList).

sample_server_connection(L, ModeList) :-
tcp_accept(L, S, _),
tcp_open_socket(S, Streams),
read(Streams, Msg),
mode_response(ModeList, Msg, Res),
write(Streams, Res),
write(Streams, ’\n.’),
flush_output(Streams),
close(Streams),
sample_server_connection(L, ModeList).

% A1: sample_server(4500, [modeh(p(+any)), modeb(q(+any))]).
% A2: assert(agent(s, localhost:4500)), ask_for_mode(s, 2, M).

%%%%% EXAMPLES AS CONSTRAINTS %%%%%

examples_as_constraints([], []).

examples_as_constraints([EH|ET], [CH|CT]) :-
EH = (\+E),
!,
CH = (ic :- a, E),
examples_as_constraints(ET, CT).
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examples_as_constraints([EH|ET], [CH|CT]) :-
CH = (ic :- a, \+EH),
examples_as_constraints(ET, CT).

%%%%% FILE I/O %%%%%

theory_to_file(Theory, File) :-
open(File, write, Stream),
clauses_to_file(Theory, Stream),
close(Stream).

clauses_to_file([], _Stream).

clauses_to_file([(H)|T], Stream) :-
write(Stream, H),
write(Stream, ’.\n’),
clauses_to_file(T, Stream).

clauses_from_file(Stream, Clauses) :-
read(Stream, Term),
(Term = end_of_file

-> Clauses = []
; Clauses = [Term|T], clauses_from_file(Stream, T)).

%%%%% THE LINK PREDICATE %%%%%

link(_Vars, [], []).

link(Vars, [H|T], [LinkH|LinkT]) :-
link_one(Vars, H, LinkH),
link(Vars, T, LinkT).

link_one(Vars, One, Link) :-
link_one(Vars, One, 1, Link).

link_one([One|_VarT], One, Counter, Counter).

link_one([_|VarT], One, Counter, Link) :-
Counter1 is Counter + 1,
link_one(VarT, One, Counter1, Link).
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%%%%% HELPER PREDICATES %%%%%

list_to_tuple([X], X).

list_to_tuple([H|T], (H,Rest)) :-
list_to_tuple(T,Rest).

list_difference(A, B, Result) :-
list_difference(A, B, [], ResultR),
reverse(ResultR, Result).

list_difference([], _, Result, Result).

list_difference([H|T], ToRemove, Acc, Result) :-
member(H, ToRemove),
!,
list_difference(T, ToRemove, Acc, Result).

list_difference([H|T], ToRemove, Acc, Result) :-
list_difference(T, ToRemove, [H|Acc], Result).

nonmember(Item, List) :-
\+ member(Item, List).

alias(Alias) :-
nb_getval(myalias, Alias).
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