
A Concurrent Specification of POSIX File Systems
Gian Ntzik
Imperial College London & Amadeus, UK
gian.ntzik@amadeus.com

Pedro da Rocha Pinto
Imperial College London, UK
pmd09@doc.ic.ac.uk

Julian Sutherland
Imperial College London, UK
jhs110@doc.ic.ac.uk

Philippa Gardner
Imperial College London, UK
pg@doc.ic.ac.uk

Abstract
POSIX is a standard for operating systems, with a substantial part devoted to specifying

file-system operations. File-system operations exhibit complex concurrent behaviour, comprising
multiple actions affecting different parts of the state: typically, multiple atomic reads followed by
an atomic update. However, the standard’s description of concurrent behaviour is unsatisfactory:
it is fragmented; contains ambiguities; and is generally under-specified. We provide a formal
concurrent specification of POSIX file systems and demonstrate scalable reasoning for clients.
Our specification is based on a concurrent specification language, which uses a modern concurrent
separation logic for reasoning about abstract atomic operations, and an associated refinement
calculus. Our reasoning about clients highlights an important difference between reasoning about
modules built over a heap, where the interference on the shared state is restricted to the operations
of the module, and modules built over a file system, where the interference cannot be restricted
as the file system is a public namespace. We introduce specifications conditional on context
invariants used to restrict the interference, and apply our reasoning to the example of lock files.

2012 ACM Subject Classification Theory of computation — Semantics and reasoning — Pro-
gram reasoning — Program verification

Keywords and phrases POSIX, concurrency, file systems, refinement, separation logic, atomicity

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.4

Funding EPSRC Grants EP/H008373/1, EP/K008528/1 and EP/L016796/1

1 Introduction

POSIX [1] is a standard for operating systems, with a substantial part devoted to specifying
file-system operations. File-system operations exhibit complex fine-grained concurrent
behaviour, in the sense that they comprise multiple actions affecting different parts of the state:
typically, multiple atomic1 reads followed by an atomic update. The standard’s description of
this complex concurrent behaviour is unsatisfactory: it is fragmented; contains ambiguities;

1 Atomic in the sense of linearisability [18], where operations appear to take effect at a single discrete
point in time.

© Gian Ntzik and Pedro da Rocha Pinto and Julian Sutherland and Philippa Gardner;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 4; pp. 4:1–4:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gian.ntzik@amadeus.com
mailto:pmd09@doc.ic.ac.uk
mailto:jhs110@doc.ic.ac.uk
mailto:pg@doc.ic.ac.uk
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


4:2 A Concurrent Specification of POSIX File Systems

and is generally under-specified. There has been much work on formal, mathematical
specifications of POSIX file systems, but no formal description of its concurrent behaviour:
the work either restricts to sequential fragments (for example [3, 19, 24, 15, 16, 17, 7, 30]); or
takes a coarse-grained view of concurrency that does not capture the POSIX behaviour [33].

Although poorly described, there is a consensus between major file-system implementations
on what the concurrent behaviour of POSIX file systems should be. File-system operations
(such as unlinking files) typically traverse paths to identify the files or directories on which
they will act. Path traversal comprises a sequence of multiple atomic reads, each looking
up a component of the path within a directory. Other operations (such as renaming files)
exhibit the more complex behaviour of resolving multiple paths. Since POSIX does not
specify the order in which multiple paths are resolved, the atomic reads of multiple path
traversals can be arbitrarily interleaved. After the path resolution, other atomic actions
perform the intended update of the file-system operation. In summary, file-system operations
are sequential and parallel combinations of atomic actions.

We provide the first formal concurrent specification of POSIX file systems using a
specification language based on concurrent separation logic. Such separation logics provide
compositional reasoning about fine-grained concurrency and atomic operations: for example,
the TaDA program logic [9, 8] uses a first-order approach to atomicity; the Iris framework [23]
encodes the TaDA atomicity, using a higher-order approach initially introduced by Jacobs [20];
and the FCSL logic [26] uses histories. With TaDA, we are able to reason directly about
atomic operations by introducing abstract atomic triples. However, such an atomic triple
only specifies one atomic action for a given program statement. We cannot specify POSIX
file-system operations which perform multiple atomic actions using TaDA. With Iris, it is
possible to give a higher-order encoding of the TaDA atomic triples, yielding multiple atomic
operations for free. We spent a considerable amount of time trying to use Iris to specify
POSIX file-system operations, but found that the Hoare-style specifications were getting
too complex. The issue is that the multiple atomic actions in POSIX are not simple linear
sequences of atomic steps, but exhibit patterns of control flow which are better associated
with program statements than logical assertions. The same issue also arises with FCSL [26].

We introduce TaDA-Refine, a specification language for specifying multiple atomic actions
using TaDA assertions in the basic atomic statements, and an associated refinement calculus [4]
for verifying clients. Our approach is inspired by the work of Turon and Wand [36], which
was the first to combine such a specification language with separation-logic reasoning [32].
They introduced a refinement calculus for reasoning about atomicity abstraction, where a
specification program appears to perform an operation in one atomic step even though its
implementation takes many steps. They can verify that operations on simple data structures,
such as incrementing a non-blocking counter, can be abstracted to atomic specification
statements. They introduce an ownership discipline, formally captured by the notion of
fenced refinement, to verify operations on more complex data structures such as a non-
blocking stack. In contrast, we are able to reason about complex data structures using
assertions and laws inspired form modern concurrent separation logics.

Our specifications of POSIX file-system operations take the form of simple programs
from the TaDA-Refine specification language, built from atomic specification statements. An
atomic specification statement has the form ∀~x. 〈P,Q〉, where P and Q are TaDA assertions
for describing shared state. It provides an abstract description of operations that, for arbitrary
~x, atomically updates states satisfying precondition P to states satisfying postcondition
Q. The associated refinement calculus gives subtle behaviour to these atomic statements.
For example, using the stuttering law of refinement, an equivalent specification program is



G. Ntzik and P. da Rocha Pinto and J. Sutherland and P. Gardner 4:3

0 Root

1

5

3

2

4

7 7→ 0 · 24 · 42 · 256 . . .

6 7→ ε

usrtmp bin

git

.X0-lock bin lib

git

Figure 1 Example snapshot of a file-system graph.

∀~x. 〈P, P 〉;∀~x. 〈P,Q〉. In fact, the combination of stuttering and mumbling laws with the
universal quantification means that the atomic statements are robust to the environment
changing the values of the ~x over time. In §5 and the technical report [29], we demonstrate
that the presence of these laws means that the TaDA-Refine laws, model and soundness
proof are significantly simpler than those of TaDA.

We use TaDA-Refine to verify clients of POSIX file systems, often using derived hybrid
specification statements to reason about both atomic and non-atomic behaviour within one
specification. Our client reasoning is different from the usual reasoning about concurrent heap
modules using concurrent separation logics. A heap is a private namespace in the sense that
a thread can safely access only what its been given through allocation or ownership transfer.
Concurrent modules built over a heap restrict the interference on the shared resource they
encapsulate, by only allowing access to the resource via the module operations. In contrast,
a file system is a public namespace in the sense that a process or thread by default has access
to any part of the file system. File access permissions can only enforce restrictions to sets of
processes. It is not possible for a thread to keep part of a file system hidden from the rest of
the system to restrict interference. Instead, the interference must be explicitly restricted by
the reasoning. We do this by introducing context invariants to our specifications. We study
lock files which provide a simple example to introduce context invariants. A lock file is a
regular file under a path. If the lock file exists, the lock it represents is locked. Otherwise,
the lock is unlocked. Our context invariant ensures that the path must remain fixed, and
the lock file can only be added and removed using the lock operations, not the file-system
operations. Other examples of our client reasoning include named pipes which build on
lock files, and an email server to demonstrate the importance of reasoning about the full
concurrent behaviour of POSIX file systems.

2 POSIX File-system Primer

Most readers will have a basic understanding of POSIX file systems. They will perhaps
have less of an understanding of the concurrent behaviour of the file-system operations.
We describe the fragment of POSIX used in this paper, and illustrate why the concurrent
behaviour is poorly specified in the standard.

2.1 POSIX File-systems
A file system is an abstraction used to organise data, typically stored in some storage medium
such as a disk. In POSIX, this abstraction takes the form of a directed graph. In figure 1,

ECOOP 2018



4:4 A Concurrent Specification of POSIX File Systems

we give an example of an instance of such a file-system graph. The nodes in the graph
are files. There are different types of files. For this paper, we are primarily interested in
directories which are denoted as circles in figure 1, and regular files which are denoted as
curved rectangles. Each file is uniquely identified by an inode number, or henceforth simply
an inode. In figure 1, the inodes are integers with 0 denoting the root directory.

Directories store links2 to other files. Each link has an associated name which is unique
to the directory and, thus, the links give the files their names. In figure 1, the links are given
by the labelled edges. Regular files contain file data which are sequences of bytes which need
not necessarily be contiguous. In figure 1, the notation 7 7→ 0 · 24 · 42 · 256 describes a regular
file with inode 7 and the sequence of bytes 0 · 24 · 42 · 256. Regular files can be linked more
than once, as is the case with the file with inode 7 in figure 1.

In figure 2, we give the basic mathematical definitions for the file-system structure that
we use throughout the paper. We give a simplified view of the file-system structure which is
enough to introduce our reasoning. In particular, we omit features such as symbolic links, the
special filenames “.” and “..”, and file-access permissions. These features are orthogonal to
reasoning about the concurrent behaviour of file-system operation and are discussed further
in Ntzik’s thesis [27].

The basic types, given by the sets Inodes with a distinguished inode ι0 for the root
directory, FNames and Bytes, are self-explanatory. The error types, given by the set Errs,
consists of the errors used by POSIX. We describe them as we use them in examples. The
paths describe absolute paths starting from the root directory; a model in [27] also uses
relative paths which start from a particular inode. The paths, given by the set Paths, is
either the empty path ∅p or a finite sequence of file names written as a1/.../an

A file-system structure is a finite map from inodes to their contents, given by the set
Links]FileData. For a directory which stores links to other files, the content is described
formally as a finite partial function from filenames to inodes, given by the set Links. A
directory is empty if its link function has the empty domain. For a regular file, the context is
a sequence of bytes of a regular language, given by the set FileData, where ∅ denotes a gap
in the sequence and ε denotes the empty sequence. A file-system structure is well formed if
there are no dangling links.

A file-system structure is shared across all processes and is inherently concurrent. We
have given concurrent specifications for operations of a core fragment of POSIX file systems.
The fragment comprises the operations mkdir, rmdir,link, unlink, rename, stat, open,
close, read, write, lseek, opendir, closedir, readdir, pread and pwrite. The fragment
is significant, in that it includes most of the primitive structural commands that manipulate
the file-system directory structure and the primitive input-output operations that change the
contents of regular files. Also, many other operations can be seen as clients of the operations
in this fragment, and hence given derived specifications. For this paper, we motivate our
specifications by focusing in the structural operations unlink and link, and the input-output
operations read and write. We also use a number of other operations in our client examples.
The full specification of the fragment is available in Ntzik’s thesis [27].

2.2 Concurrent Behaviour: the unlink operation
The POSIX file-system standard is a mature English standard with a comparatively clear
description of the sequential behaviour of file-system operations. The description of the

2 In POSIX, the terms link, hard link, directory entry, and entry mean the same thing.



G. Ntzik and P. da Rocha Pinto and J. Sutherland and P. Gardner 4:5

Basic types:
ι0, ι, j, . . . ∈ Inodes : countable set of inode numbers, ι0 is the root
a, b, . . . ∈ FNames : countable set of filenames

Bytes ,
{
n ∈ N | 0 ≤ n < 28} Errs , {ENOENT, ENOTDIR, ENOTEMPTY, . . .}

Paths’ 3 p ::= a | a/p Paths , Paths’ ∪ {∅p}
File-system structure:
FS ∈ FS , Inodes fin

⇀ Links ] FileData Links , FNames fin
⇀ Inodes

FileData , Bytes∗; ({∅}∗ ; Bytes?)∗ where ∅ denotes a file gap
Notation:

isfile(o) , o ∈ FileData isdir(o) , o ∈ Links iserr(o) , o ∈ Errs
ι ∈ FS , ι ∈ dom(FS) a ∈ FS(ι) , a ∈ dom(FS(ι))

Figure 2 File-system structure, basic types and some notation.

concurrent behaviour of file-system operations is much less clear. It is fragmented, contains
ambiguities and is generally under-specified.

A particular difficulty lies with the POSIX atomicity guarantees for file-system operations.
To illustrate this point, let us consider the unlink operation. Its sequential behaviour is
straightforward. According to the POSIX standard (volume XSH, section 3), unlink(path)
removes the link identified by the path argument. For example, using the file-system graph
of figure 1, unlink(/usr/bin/git) first resolves the path /usr/bin, starting from the root
directory, following the links usr and bin to yield the directory 2. It then removes the link
named git to the regular file with inode 7 from this directory. If unlink is unable to resolve
the path because, for example, one of the names in the path does not exist in the appropriate
directory, it returns an error. Furthermore, POSIX allows some flexibility with the behaviour,
in that it allows implementations to return an error if the path identifies a link to a directory
rather than a regular file. In other words, unlink is permitted to exhibit non-determinism
due to different implementation decisions.

In a different section of the standard (volume XSH, section 2.9.7), unlink is specified as
atomic, which suggests that the whole process of resolving the path and removing the link to
the identified file is logically indivisible. However, this is a common misconception. Hidden
in the fine print of a section describing the specification rationale for unlink, we find the
statement:

“. . . Any part of the path of a file could be changed in parallel to a call to unlink,
resulting in unspecified behavior . . . ”.

Here, unspecified behaviour means that we cannot predict whether the operation is going to
succeed or error, even if we know the file-system’s state when unlink is invoked. When the
POSIX standard describes unlink as atomic (volume XSH, section 2.9.7), it means that the
removal of the link that the path identifies is atomic. The path resolution itself comprises a
sequence of atomic lookups that traverse the file-system graph by following the path. This
fragmentation and ambiguity of the description of the unlink operation in the standard
applies to all the POSIX operations that resolve paths. Such operations are sequences of
atomic read operations followed by an atomic update which removes, adds, moves (renames)
and looks up individual links in a directory. This behaviour is demonstrated by virtually all
major file-system implementations. It has two interesting implications. First, because the

ECOOP 2018



4:6 A Concurrent Specification of POSIX File Systems

file system can be changed arbitrarily by the concurrent environment between the individual
atomic steps comprising an operation, it is impossible to determine whether the operation
is going to succeed or error just by examining the file-system state at the invocation point.
The result depends on the concurrent environment and the scheduler interleavings. Thus,
POSIX operations exhibit non-determinism due to concurrent interleavings. Second, if an
operation succeeds, it does not necessarily mean that the path given as argument exists, or
even existed at any single point in time. It merely means that the operation was able to
resolve the path.

POSIX exhibits this ambiguity only for the operations that resolve paths. It is important
to understand what the intentions of the standard are with respect to their behaviour. We
suspect that POSIX does intend for these operations to have an atomic effect, but with
consideration to implementation performance. A truly atomic implementation, where both
the path resolution and the effect at the end of the path takes place in a single observable step,
would require synchronisation over the entire file-system graph. For most implementations,
the performance impact of this coarse-grained behaviour would be unacceptable. Therefore,
the wording of the standard allows path resolution to be implemented non-atomically, as a
sequence of atomic steps, where each looks up where the next name in the path leads to.
The specification of path resolution (volume XBD, section 4.13), is silent on this matter.

Our interpretation of the standard’s intentions is verified in the Austin Group mailing
list [2].3 Path resolution itself consists of a sequence of atomic lookups that traverse the
file-system graph by following the path. In the case of unlink, the effect of removing the
resolved link from the file-system graph is atomic. In fact, this is part of a common tenet
followed by virtually all major file-system implementations: removing (unlink), adding (open,
creat, link), moving (rename) and looking up individual links in a directory (path resolution
steps) are implemented atomically. In other words, when accounting for concurrency, POSIX
operations that resolve paths are sequences of atomic operations.

3 TaDA-Refine Specification Examples

We first introduce our TaDA-Refine specifications of file-system operations by example. In
particular, we specify operations on links and I/O operations on regular files. To account for
the fact that file-system operations perform sequences of atomic operations, our specifications
take the form of “programs” in a simple specification programming language.

3.1 Operations on links
In §2.2, we have informally described the behaviour of the unlink(path) operation: it
performs a sequence of atomic steps, first to resolve the argument path and then to remove
the link to the file identified by the path. We define the specification of unlink using the
following TaDA-Refine specification program:

let unlinkSpec(path) , let p = dirname(path);
let a = basename(path);
let r = resolve(p, ι0);
if ¬iserr(r) then

return link_delete(r , a) t link_delete_notdir(r , a)
else return r fi

3 Thread: “Atomicity of path resolution”, Date: 21 Apr 2015.



G. Ntzik and P. da Rocha Pinto and J. Sutherland and P. Gardner 4:7

The specification program initially splits the path argument to the path prefix p and last
name a, using dirname and basename respectively. If path is only one name, then dirname
returns null. The path prefix p is then resolved by calling the function resolve(p, ι0).
The second argument to resolve is the inode number of the directory from which to start
the path resolution. In figure 1, this would be the directory with inode 0. To simplify
the presentation, we define the specifications in this paper in terms of absolute paths, and
therefore we start the resolution from the root directory, which has the known fixed inode ι0.
If the resolution fails with an error code, we return it. If the resolution succeeds, the return
value is the inode of the directory containing the link we want to remove. POSIX allows
implementations to return an error if the link we want to remove is a link to a directory.
This freedom of choice given to implementations introduces angelic non-determinism. An
implementation is allowed to choose which behaviour to implement. On the other hand,
clients must be robust with respect to both behaviours if they wish to be portable. To
account for this, we use the non-deterministic angelic choice operator (t) to join the atomic
operations link_delete and link_delete_notdir.

resolve is defined as a function that recursively follows path, starting from the initial
directory with inode ι:

letrec resolve(path, ι) , if path = null then return ι else
let a = head(path);
let p = tail(path);
let r = link_lookup(ι, a);
if iserr(r) then return relse return resolve(p, r) fi

fi

The head and tail operations return the first name and the path postfix of the path
argument. Note that if path is a single name, then tail returns null. In each step, resolve
calls the atomic operation link_lookup(ι, a), to get the inode of the file pointed to by the
link named a, if that link exists in the directory with inode ι. If the link a does not exist in
the ι directory, or if the ι file is not a directory, link_lookup returns an error, the resolution
stops and the error is immediately returned. The procedure returns the resolved inode when
there is no more path to resolve, i.e. the postfix p of the path argument is null.

Any implementation of the unlink operation must exhibit behaviour given by the
specification program unlinkSpec. In other words, a correct implementation must be a
refinement of our specification program: unlink(path) v unlinkSpec(path).

In §5 and the technical report [29], we formally define our specification language and an
associated refinement calculus. The resulting refinement relation, v, is contextual meaning
that, in any context, unlink can be replaced by unlinkSpec to achieve the same behaviour.
Therefore, to reason about a client (a particular context), we can replace an implementation
with its specification.

To complete our unlink specification, we need to define the primitive atomic operations
link_lookup, link_delete and link_delete_notdir that do the actual lookup and
deletion of a link. Note that these are not POSIX operations, but abstract operations
corresponding to the basic atomic actions that POSIX operations perform. We use atomic
specification statements, ∀~x. 〈P,Q〉, to denote any program that atomically updates a state
satisfying the precondition P to a state satisfying the postcondition Q, inspired by Morgan’s
specification statements [25]. The universal quantifier binds ~x to both the precondition and
postcondition, and declares that the operation is atomic for all values of ~x.

We define the atomic operations link_lookup, link_delete and link_delete_notdir
as the atomic specification statements given in figure 3. Consider link_delete used in the

ECOOP 2018



4:8 A Concurrent Specification of POSIX File Systems

definition of unlinkSpec earlier. There are three cases composed with u, which we will
explain shortly. Consider the first case:

∀FS. 〈fs(FS) ∧ isdir(FS(ι)) , a ∈ FS(ι)⇒ fs(FS[ι 7→ FS(ι) \ {a}]) ∗ ret = 0〉

In the precondition fs(FS) ∧ isdir(FS(ι)), the abstract predicate fs(FS) states that the
file-system structure is given by the file-system graph FS, and the pure predicate isdir(FS(ι))
states that a directory with inode ι must exist in that file-system graph. In the postcondition,
we use the notation f [x 7→ v] to denote the function that maps x to v and all other elements
of the domain of f to f(x), and f \ S to denote the restriction of f to dom(f) \ S. The
postcondition states that if, at the point the atomic update takes effect, the link named a
exists in the directory with inode ι, then the link is removed and the return variable ret is
bound to 0. As a convention, we use ret within a function to bind its return value.

The other two cases specify erroneous behaviour. The first error case, defined by enoent,
specifies that if a link named a does not exist in the directory with inode ι then the return
variable is bound to the POSIX error code ENOENT. The second error case specifies that if
the inode ι does not identify a directory then the error code ENOTDIR is returned. Note that
the error cases do not modify the file system.

The three specification cases are composed with the non-deterministic demonic choice
operator u. We use demonic choice to account for the non-determinism of a specification due
to scheduling behaviour. In the case of link_delete, which of the three possible behaviours
we observe in a particular execution depends not only on the environment, but also on which
of the possible interleavings the scheduler decides to execute. Thus we consider the scheduler
to act as a demon and we call such specifications demonic. For example, link_delete
handles errors by returning the error code to the client. When reasoning about a particular
client, if we have information that restricts the environment, for example by requiring some
path to always exist, we can elide the cases that are no longer applicable. On the other hand,
an implementation of a demonic specification must implement all the cases. For example, an
implementation of link_delete must implement all three atomic specification statements.

The definition of link_delete_notdir is similar, except that it succeeds only when the
link being removed does not link a directory, and an extra error case is added for when it
does. link_lookup has the same error cases as link_delete, but does not modify the file
system, simply returning the target inode of the link named a, if it exists in the directory
with inode ι.

Now, let us consider the link(source, target) operation. Informally, it creates a new link
identified by the path target to the file identified by source, if it does not already exist.
Formally, we give the following refinement specification:

link(source, target)
v let ps = dirname(source); let a = basename(source);

let pt = dirname(target); let b = basename(target);
let rs, rt = resolve(ps, ι0) ‖ resolve(pt , ι0);
if ¬iserr(rs) ∧ ¬iserr(rt) then

return link_insert(rs, a, rt , b) t link_insert_notdir(rs, a, rt , b)
else if iserr(rs) ∧ ¬iserr(rt) then return rs
else if ¬iserr(rs) ∧ iserr(rt) then return rt
else if iserr(rs) ∧ iserr(rt) then return rs t return rt fi

Note that the operation has to resolve two paths before the actual linking is attempted.
POSIX does not specify the order in which multiple paths are resolved. Therefore, we



G. Ntzik and P. da Rocha Pinto and J. Sutherland and P. Gardner 4:9

let link_lookup(ι, a) ,
∀FS. 〈fs(FS) ∧ isdir(FS(ι)) , a ∈ FS(ι)⇒ fs(FS) ∗ ret = FS(ι)(a)〉
u return enoent(ι, a) u return enotdir(ι)

let link_delete(ι, a) ,
∀FS. 〈fs(FS) ∧ isdir(FS(ι)) , a ∈ FS(ι)⇒ fs(FS[ι 7→ FS(ι) \ {a}]) ∗ ret = 0〉
u return enoent(ι, a) u return enotdir(ι)

let link_delete_notdir(ι, a) ,
∀FS. 〈fs(FS) ∧ isdir(FS(ι)) , a ∈ FS(ι)⇒ fs(FS[ι 7→ FS(ι) \ {a}]) ∗ ret = 0〉
u return enoent(ι, a) u return enotdir(ι) u return err_nodir_links(ι, a)

let link_insert(ι, a, j, b) ,

∀FS.
〈

fs(FS) ∧ isdir(FS(ι)) ∧ isdir(FS(j)) ,
a ∈ FS(ι) ∧ b 6∈ FS(j)⇒ fs(FS[j 7→ FS(j)[b 7→ FS(ι)(a)]]) ∗ ret = 0

〉
u return enoent(ι, a) u return eexist(j, b) u return enotdir(ι) u enotdir(j)

let link_insert_notdir(ι, a, j, b) ,

∀FS.
〈

fs(FS) ∧ isdir(FS(ι)) ∧ isdir(FS(j)) ,
isfile(FS(ι)(a)) ∧ b 6∈ FS(j)⇒ fs(FS[j 7→ FS(j)[b 7→ FS(ι)(a)]]) ∗ ret = 0

〉
u return enoent(ι, a) u return eexist(j, b)
u return enotdir(ι) u return enotdir(j) u return err_nodir_links(ι, a)

let enotdir(ι) , ∀FS. 〈fs(FS) ∧ ¬isdir(FS(ι)) , fs(FS) ∗ ret = ENOTDIR〉

let enoent(ι, a) , ∀FS. 〈fs(FS) ∧ isdir(FS(ι)) , a 6∈ FS(ι)⇒ fs(FS) ∗ ret = ENOENT〉

let eexist(ι, a) , ∀FS. 〈fs(FS) ∧ isdir(FS(ι)) , a ∈ FS(ι)⇒ fs(FS) ∗ ret = EEXIST〉

let err_nodir_links(ι, a) , ∀FS. 〈fs(FS) ∧ isdir(FS(ι)) , isdir(FS(ι)(a))⇒ fs(FS) ∗ ret = EPERM〉

Figure 3 Specifications of atomic operations for links and associated error cases.

compose the two resolve invocations in parallel, with ‖. This allows implementations to
not only resolve the paths in any order, but also to interleave the two resolutions. The link
insertion is attempted when both resolutions succeed. In that case, analogously to unlink, we
use angelic choice between link_insert and link_insert_notdir. The former allows the
link to be created for any link, even to a directory, whereas the latter considers this erroneous.
The atomic specification statements for both are defined in figure 3. Error handling must be
robust against errors from both resolutions. Note that if both resolutions error, either error
code is returned. In general, a client is unable to determine which path resolution triggered
the error.

3.2 I/O operations on regular files

POSIX defines read and write as the primitive operations for reading and writing data to
regular files. The read operation reads a sequence of bytes from a regular file to a buffer in
the heap, whereas the write operation writes a sequence of bytes stored in the buffer to a
regular file. These operations do not identify the file they update with a path, but with a
file descriptor which acts as a reference to a file. To create a file descriptor for a file, a client
must first open the file for I/O using the operator open(path,fl), where path describes the
file to be opened and fl controls the behaviour of open on subsequent I/O operations such as

ECOOP 2018



4:10 A Concurrent Specification of POSIX File Systems

read and write.

let write_off(fd, ptr , sz) ,

∀FS, o ∈ N.
〈

fs(FS) ∧ isfile(FS(ι)) ∗ fd(fd, ι, o,fl) ∧ iswrfd(fl) ∗ buf
(
ptr , b

)
∧ len

(
b
)

= sz,
fs
(
FS[ι 7→ FS(ι)[o ← b]]

)
∗ fd(fd, ι, o + sz,fl) ∗ buf

(
ptr , b

)
∗ ret = sz

〉

let write_badf(fd) , ∀o ∈ N. 〈fd(fd, ι, o,fl) ∧ O_RDONLY ∈ fl, fd(fd, ι, o,fl) ∗ ret = EBADF〉

let read_norm(fd, ptr , sz) ,

∀FS, o ∈ N.
〈

fs(FS) ∧ isfile(FS(ι)) ∗ fd(fd, ι, o,fl) ∗ buf
(
ptr , bs

)
∧ len

(
bs
)

= sz,
∃bt . fs(FS) ∗ fd(fd, ι, o + ret,fl) ∗ buf

(
ptr , bs � bt

)
∧ bt = FS(ι)[o, sz] ∗ ret = len

(
bt
)〉

let read_badf(fd) , ∀o ∈ N. 〈fd(fd, ι, o,fl) ∧ O_WRONLY ∈ fl, fd(fd, ι, o,fl) ∗ ret = EBADF〉

where we write ∀~x, x ∈ X. 〈P,Q〉 to mean ∀~x, x. 〈P ∧ x ∈ X,Q ∧ x ∈ X〉.

Figure 4 Specification of atomic read and write abstract operations.

POSIX mandates that implementations of read and write must behave atomically when
used on regular files [1]. We give the following refinement specifications to read and write,
defined using the demonic choice of abstract operations given in figure 4:

read(fd, ptr , sz) v return read_norm(fd, ptr , sz) u read_badf(fd)

write(fd, ptr , sz) v return write_off(fd, ptr , sz) u write_badf(fd)

where fd identifies the appropriate file descriptor and ptr references the buffer storing a
sequence of bytes with size sz.

In figure 4, consider the atomic specification statement of write_off. The precondition
requires fd to be a file descriptor for the file with inode ι, with current file offset o and
flags fl. Note that the current file offset is bound by the universal quantifier, meaning
that until write_off takes effect, the environment can concurrently modify it, with the
proviso it remains a valid offset (a natural number). The predicate iswrfd(fl) , O_WRONLY ∈
fl ∨ O_RDWR ∈ fl states that file descriptor must have been opened for writing. Furthermore,
the predicate buf

(
prt, b

)
states that ptr points to a heap-based buffer storing the byte

sequence b. The postcondition states that the byte sequence b stored in the ptr buffer is
written to the file, offset from the start of the file (offset 0) by o. Any existing bytes from
offset o onward, up to the length of b, are overwritten. The current file offset associated with
the file descriptor is incremented by the number of bytes written, which the operation also
returns. The write_badf abstract operation returns the EBADF error, if the file descriptor
has not been opened for writing, and does not modify the file.

Note that we have specified both operations as happening atomically, as is mandated by
POSIX. However, not all implementations follow the POSIX specification. For example, in the
ext2 file system, the reads and writes are only atomic up to page-size number of bytes. Reads
and writes of larger size are split into multiple atomic steps. It is straightforward to specify
this kind of implementation-specific behaviour in our specification language. In addition,
reading and writing to the heap buffer is not atomic in some modern implementations. In
such implementations, the I/O operations behave atomically on the file contents and the file



G. Ntzik and P. da Rocha Pinto and J. Sutherland and P. Gardner 4:11

descriptor, but non-atomically on the heap buffer. To account for such behaviour, we require
specification statements that combine atomic and non-atomic effects.

In TaDA-Refine, it is possible to derive the hybrid specification statement:

∀~x. ∃~y. {P ′}〈P (~x), Q(~x, ~y)〉{Q′(~x, ~y)}

We discuss this statement in detail in §5.3. Intuitively, this statement combines the atomic
update from P (~x) to Q(~x, ~y) with a non-atomic update from P ′ to Q′(~x, ~y). Its purpose
is twofold. First, it allows us to specify complex operations that have both atomic and
non-atomic effects on different parts of the state, such as the I/O operations of some file-
system implementations discussed earlier. Second, it is useful during atomicity proofs of
implementations that also sequentially update privately owned resources.

4 TaDA-Refine Client Reasoning I: Lock Files

Ntzik’s thesis [27] provides several examples of client reasoning based on the formal specific-
ations of POSIX file-system operations, such as those discussed in §3. Examples of client
reasoning include real-world lock files, an implementation of named pipes using regular file
I/O and lock files, and a concurrent interaction between an email client and email server
that is highly sensitive to the multi-atomic nature of path resolution. In this paper, we
concentrate on lock files.

The lock-file module is a widely-used module for implementing locks over the file system.
We describe the lock-file module and provide verified specifications for its operations to
demonstrate our reasoning with TaDA-Refine. These specifications are, however, limited.
They are only valid under the assumption that the file system is shared via the lock-module
interface. This assumption is not valid in general as the file system is a public namespace
that can be accessed and modified by concurrently executing applications. In §6, we revisit
this example and introduce context invariants to address this issue.

The lock-file concept is simple. A lock file is a regular file, under a fixed path. If the lock
file exists, the lock it represents is locked. Otherwise, the lock is unlocked. For example,
/tmp/.X0-lock is a typical lock file in contemporary Linux systems and, in figure 1, the lock
it represents is locked.

Consider the following implementation of a lock-file module with two operations, lock(lf )
and unlock(lf ), where lf is the path identifying the lock file:

unlock(lf ) , unlink(lf )

letrec lock(lf ) ,
let fd = open(lf , O_CREAT|O_EXCL);
if iserr(fd) then lock(lf )
else close(fd) fi

The lock operation attempts to create the lock file at path lf by invoking open. This
operation is used to open files for input/output (I/O) and to create new files. The second
argument to open is a composition of the flags O_CREAT and O_EXCL, which causes open to
create a file at the given path if one does not already exist; otherwise, an error is returned.
Thus, if open returns an error we try again, with a recursive call to lock. If it succeeds, we
invoke close to close the file descriptor returned by open. Note that lock files, essentially,
follow the same implementation pattern as spin locks.

The open operation exhibits different behaviour depending on the flags used as the second
argument and we give its full specification in the technical report [29]. For presentation

ECOOP 2018



4:12 A Concurrent Specification of POSIX File Systems

simplicity we define the specification only in terms of the flags used in lock:

open(path, O_CREAT|O_EXCL)
v let p = dirname(path);

let a = basename(path);
let r = resolve(p, ι0);
if ¬iserr(r) then

return link_new_file(r , a)
u eexist(r , a) u enotdir(r)

else return r fi

where link_new_file(ι, a) is defined as follows:

∀FS.
〈

fs(FS) ∧ isdir(FS(ι)) , a 6∈ FS(ι)⇒ ∃ι′. fs
(
FS[ι 7→ FS(ι)[a 7→ ι′]][ι′ 7→ ε]

)
∗ fd
(
ret, ι′, 0

)〉
This specifies the creation of a new empty, regular file at inode ι′, and the addition of a link
named a to the new file within the directory with inode ι, if the link does not already exist.
The operation allocates and returns a new file descriptor. The predicate fd(ret, ι′, 0) asserts
that the return value is a file descriptor for the file with inode ι′, and the offset from which
reads and writes to the file occur, via this file descriptor, is set to 0.

By contextual refinement, we can replace the open and unlink with their specifications
and thus derive a specification for lock and unlock respectively. However, this would not be
useful for reasoning about locks since it fails to capture the abstract lock behaviour. Instead,
we want aim to establish a general abstract specification, such as the following:

lock(lf ) v ∀v ∈ {0, 1} . 〈Lock(s, lf , v) , Lock(s, lf , 1) ∗ v = 0〉

unlock(lf ) v 〈Lock(s, lf , 1) , Lock(s, lf , 0)〉

The abstract predicate Lock(s, lf , v) states the existence of a lock represented by a lock
file at path lf , with state v, the value of which is either 0, if the lock is unlocked, or 1 if
the lock is locked. The parameter, s ∈ T1, is a variable ranging over an abstract type. It
serves to capture invariant information, specific to the implementation of the Lock predicate
and is opaque to the client. The specification states that we can abstract each lock-file
operation to a single atomic step that updates the state of the lock. In particular, the lock
specification states that the environment can arbitrarily lock and unlock the lock, but the
lock is atomically locked only when it is previously unlocked; the operation blocks while the
lock is locked. The unlock specification states that the lock can only be atomically unlocked
when the lock is locked.

The environmental interference allowed by the specification of the lock operation is due
to the stuttering refinement law:

AStutter
∀~x. 〈P, P 〉;∀~x. 〈P,Q〉 v ∀~x. 〈P,Q〉

The environment can interleave between the two sequentially composed atomic specifications,
allowing it to change the state of the lock over time, as long as the state remains in the
set {0, 1}, otherwise, the precondition of the lock specification would be violated when it
executes, leading to undefined behaviour.

In order to justify the two refinements of the module’s specification, we must refine
the abstract Lock predicates to the shared lock-file path lf in the file system according to



G. Ntzik and P. da Rocha Pinto and J. Sutherland and P. Gardner 4:13

unlock(lf ) ≡ unlink(lf ) v

H
St

ut
te

r

let p = dirname(path); let a = basename(path); let r = resolve(p, ι0) v
∀FS ∈ LF(path).

〈
fs(FS) , fs(FS) ∧ p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r)

〉
HStrengthen

v ∀FS ∈ LF(path). {true}〈fs(FS) , fs(FS)〉
{

p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r)
}

;

if ¬iserr(r) then
return link_delete(r , a)

t link_delete_notdir(r , a)
≡ return link_delete(r , a)

t (link_delete(r , a) u err_nodir_links(ι, a))
Absorb

≡ return link_delete(r , a)
DChoiceIntro

v ∀FS. 〈fs(FS) ∧ isdir(FS(r)) , a ∈ FS(r)⇒ fs(FS[r 7→ FS(r) \ {a}]) ∗ ret = 0〉
ACons, AFrame

v ∀FS ∈ LK(path).
〈

fs(FS) ∧ p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r) ∧ ¬iserr(r) ,
∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf )

〉
else

return r
v
〈

true, ret = r
〉

ACons
v
〈

true, true
〉

AFrame

v ∀FS ∈ LK(path).

〈
fs(FS) ∧ p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r) ∧ iserr(r) ,
fs(FS) ∧ p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r) ∧ iserr(r)

〉
ACons

v ∀FS ∈ LK(path).
〈

fs(FS) ∧ p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r) ∧ iserr(r) ,
∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf )

〉
fi

v ∀FS ∈ LK(path).
〈

fs(FS) ∧ p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r) ∧ iserr(r) ,
∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf )

〉
HStrengthen

v ∀FS ∈ LK(path).

{
p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r)

}
〈fs(FS) ,∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf )〉

{true}
v ∀FS ∈ LK(lf ). {true}〈fs(FS) ,∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf )〉{true}
≡ ∀FS ∈ LK(lf ). 〈fs(FS) , ∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf )〉

ACons, AUseAtomic
v
〈
Lockα(lf , 1) ∗ [G]α ,Lockα(lf , 0) ∗ [G]α

〉
v 〈Lock(s, lf , 1) , Lock(s, lf , 0)〉

Figure 5 unlock() specification proof sketch.

ECOOP 2018



4:14 A Concurrent Specification of POSIX File Systems

the state of the lock. Additionally, we must enforce that the updates to the abstract state
of the lock by multiple threads follow a protocol: a thread can lock the lock only if it is
unlocked and, similarly, can unlock the lock only if it is locked. We use shared regions
to describe shared resources that are updated according to a particular protocol, using a
technique first developed with RGSep [37] and now used by many of the concurrent separation
logics [13, 11, 21, 34, 9, 23]. A shared region is an abstract object that encapsulates some
underlying (concrete) state that is shared between multiple threads, with the proviso that it
is only accessed atomically. We use tα(~y, x), to denote a shared region with identifier α from
the set RId, of type t, with parameters ~y and abstract state x. For our current example, we
introduce a region type Lock where regions of this type are parameterised by the lock-file
path and the abstract state of the region corresponds to the state of the lock.

The shared region enforces a protocol on updates to the abstract state via a labelled
transition system. The transitions between abstract region states are labelled by guards.
Guards are abstract resources that can be taken from any user-defined separation algebra [6].
For our current example we only need a simple separation algebra with a single, indivisible
guard G and the empty guard 0. The partial, associative and commutative composition
operator between these guards is defined by the axioms: x • 0 = x = 0 • x for all x ∈ {0,G}.
We define the labelled transition system for the Lock as follows:

G : 0 1 G : 1 0

A thread can only perform a transition between abstract region states if it owns the guard
resource associated with the transition; in our current example that is the guard G.

Having defined the Lock, its transition system and guards we can now define the
interpretation of the abstract Lock predicate and abstract type T1 in terms of the region as
follows:

T1 , RId Lock(α, lf , 0) , Lockα(lf , 0) ∗ [G]α Lock(α, lf , 1) , Lockα(lf , 1) ∗ [G]α

With the above interpretation we can refine the atomic specification statement of lock
as follows:

∀v ∈ {0, 1} .
〈
Lockα(lf , v) ∗ [G]α ,Lockα(lf , 1) ∗ [G]α ∗ v = 0

〉
v ∀v ∈ {0, 1} . 〈Lock(s, lf , v) , Lock(s, lf , 1) ∗ v = 0〉

and similarly for the atomic specification statement of unlock:〈
Lockα(lf , 1) ∗ [G]α ,Lockα(lf , 0) ∗ [G]α

〉
v 〈Lock(s, lf , 1) , Lock(s, lf , 0)〉

To refine the two updates further, we can apply the AUseAtomic refinement law which
allows us to refine an update to the abstract region state to an update on the (concrete) state
the region encapsulates. A slightly simplified version of this refinement law is as follows:

∀x. (x, f(x)) ∈ Tt(G)∗

∀x.
〈
I(tα(y, x)) ∗ P (x) ∗ [G]α , I(tα(y, f(x))) ∗Q(x)

〉
v ∀x.

〈
tα(y, x) ∗ P (x) ∗ [G]α , tα(y, f(x)) ∗Q(x)

〉
The premise of the law requires that an update from the abstract region state x to f(x)
must be in the reflexive, transitive closure of transitions guarded by G denoted by Tt(G)∗. In
the conclusion, an atomic update, satisfying the premise, on the interpretation of a region
refines the same atomic update on the region itself.



G. Ntzik and P. da Rocha Pinto and J. Sutherland and P. Gardner 4:15

However, in order to refine the lock atomic specification statement further according to
AUseAtomic, we must define the interpretation of the Lock region states 0 and 1 to the
underlying file-system states.

In the state 0 the lock file does not exist, whereas in the state 1 it does. In both
states however, the path to the directory containing the lock file must exist. To assert the
aforementioned statements we define the predicate p FS7→ ι to assert that the path p resolves
to the file with inode ι in the file-system graph FS as follows:

∅p
FS7→ ι , ι ∈ dom(FS) p FS7→ ι , (p, ι0) FS7→ ι (a, ι) FS7→ ι′ , FS(ι)(a) = ι′

(a/p, ι) FS7→ ι′ , ∃ι′′. FS(ι)(a) = ι′′ ∧ (p, ι′′) FS7→ ι′

With this predicate we can now define the sets of file systems that correspond to the lock
being unlocked and locked respectively as follows:

ULK(p/a) ,
{
FS

∣∣∣ ∃ι. p FS7→ ι ∧ isdir(FS(ι)) ∧ a 6∈ FS(ι)
}

LK(p/a) ,
{
FS

∣∣∣ ∃ι. p FS7→ ι ∧ isdir(FS(ι)) ∧ a ∈ FS(ι)
}

Additionally, we define the union of the above sets: LF(p/a) , ULK(p/a) ∪ LK(p/a),
and the following predicates that describe the updates from FS to FS′ that create and
remove the lock file in its directory respectively:

lk(FS, FS′, p/a) , ∃ι, ι′. p FS7→ ι ∧ FS′ = FS[ι 7→ FS(ι)[a 7→ ι′]][ι′ 7→ ε]
ulk(FS, FS′, p/a) , ∃ι. p FS7→ ι ∧ FS′ = FS[ι 7→ FS(ι) \ {a}]

Now we define the interpretation to the Lock region as follows:

I(Lockα(lf , 0)) , ∃FS ∈ ULK(lf ). fs(FS) I(Lockα(lf , 1)) , ∃FS ∈ LK(lf ). fs(FS)

We can now proceed with the refinement by applying the AUseAtomic law. For simplicity,
let us consider the refinement of unlock:〈

∃FS ∈ LK(lf ). fs(FS) ∗ [G]α , ∃FS ∈ ULK(lf ). fs(FS) ∗ [G]α
〉

v
〈
Lockα(lf , 1) ∗ [G]α ,Lockα(lf , 0) ∗ [G]α

〉
Now we can work to refine this atomic update on the file-system state to the specification

program of unlink that we defined in section 3. A proof sketch can be seen in figure 5.
First we can frame-off the guard resource as it is no longer required by using the AFrame
refinement law which is directly analogous to the frame rule of separation logics:

〈∃FS ∈ LK(lf ). fs(FS) , ∃FS ∈ ULK(lf ). fs(FS)〉
v
〈
∃FS ∈ LK(lf ). fs(FS) ∗ [G]α , ∃FS ∈ ULK(lf ). fs(FS) ∗ [G]α

〉
Next, we strengthen the post-condition and eliminate the existential quantification over
file-system graphs:

∀FS ∈ LK(lf ). 〈fs(FS) , ∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf )〉
v 〈∃FS ∈ LK(lf ). fs(FS) , ∃FS ∈ LK(lf ), FS′. fs(FS′) ∧ ulk(FS, FS′, lf )〉
v 〈∃FS ∈ LK(lf ). fs(FS) , ∃FS ∈ ULK(lf ). fs(FS)〉

Our next challenge is that unlinkSpec consists of several steps in sequence. Earlier we
introduced the AStutter refinement law, however, unlinkSpec requires the manipulation
of hidden, intermediary, non-atomic state about the existence of the lock file being manipu-
lated. To deal with this, we introduce a generalisation of the AStutter rule, HStutter,

ECOOP 2018



4:16 A Concurrent Specification of POSIX File Systems

which chains together the non-atomic preconditions and postconditions as in the sequential
composition of Hoare triples:

∀~x. {P ′}〈P (~x), P (~x)〉{P ′′}; ∀~x. ∃~y. {P ′′}〈P (~x), Q(~x, ~y)〉{Q′(~x, ~y)}
v ∀~x. ∃~y. {P ′}〈P (~x), Q(~x, ~y)〉{Q′(~x, ~y)}

We will also need the HStrengthen refinement law which allows us to refine a non-atomic
update to a part of the state to an atomic update:

∀~x. ∃~y. {P ′}〈P ′ ∗ P (~x), Q(~x, ~y) ∗Q′(~x, ~y)〉{Q′(~x, ~y)}
v ∀~x. ∃~y. {P ′ ∗ P ′}〈P (~x), Q(~x, ~y)〉{Q′(~x, ~y) ∗Q′(~x, ~y)}

The HStrengthen refinement law will be used to move stable information about the
file system state, i.e. assertions that cannot be invalidated by the environment, into the
non-atomic assertions so that they can be used to reason about the behaviour of subsequent
steps of the program.

To proceed with our refinement to unlinkSpec, we first use the fact that ∀~x. 〈P,Q〉 ≡
∀~x. {true}〈P,Q〉{true} and the HStutter refinement law to further refine the current
specification:

∀FS ∈ LK(lf ). {true}〈fs(FS) , fs(FS)〉
{

p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r)
}

;

∀FS ∈ LK(lf ).
{

p FS7→ r ∧ isdir(FS(r)) ∧
a ∈ FS(r)

}
〈fs(FS) , ∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf )〉{true}

v ∀FS ∈ LK(lf ). 〈fs(FS) , ∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf )〉

Where variables p, a and r correspond to the path prefix, the last name in the path and
the inode corresponding to the directory p respectively. The first of these two specifications
is then refined using the HStrengthen refinement law to move all of the content of the
non-atomic postcondition into the atomic postcondition. This refinement is valid as the
environment is restricted to maintaining the existence of the path lf , the recursive calls to
resolve can be thought of as a single atomic step since the result of the individual atomic
resolution steps will not be invalidated by the environment.

This specification is further refined to the first three lines of code of unlinkSpec. In this
specification, we substitute lf for path due to the function call. For the derivation of the
recursive resolve function we rely on standard fixpoint induction law:

Ind
λx. φ [ψ/A] v λx. ψ
µA. λx. φ v λx. ψ

We omit the full derivation for brevity.

let p = dirname(path); let a = basename(path);
let r = resolve(p, ι0)
v ∀FS ∈ LK(path).

〈
fs(FS) , fs(FS) ∧ p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r)

〉
Next, we must verify that:

if ¬iserr(r) then
return link_delete(r , a)

t link_delete_notdir(r , a)
else return r fi

v

∀FS ∈ LK(path).{
p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r)

}
〈fs(FS) ,∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf )〉

{true}



G. Ntzik and P. da Rocha Pinto and J. Sutherland and P. Gardner 4:17

When verifying that an if statement refines an atomic specification, it suffices to verify that
both branches of the if statement satisfy the atomic specification given that the precondition
is extended with the if statement’s condition and its negation for each branch respectively,
as is done in figure 5.

First however, before applying this rule, figure 5. applies the HStrengthen refinement
law to move the stable information about the file system in the non-atomic precondition
back into the atomic precondition.

We can now check that the false branch of the if refines:

∀FS ∈ LK(path).
〈

fs(FS) ∧ p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r) ∧ iserr(r) ,
∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf )

〉

As iserr(r) ⇒ r ∈ Errs and p FS7→ r ⇒ r ∈ Inodes, and since Inodes ∩ Errs = ∅,
p FS7→ r ∧ iserr(r)⇒ false holds. Since false⇒ ∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf ), by using the
atomic consequence rule, figure 5 reaches the goal for this branch of the if statement.

To finish showing that unlinkSpec refines the goal specification, it remains to check the
true branch of the if statement. First we apply the consequence and frame rule, to frame
away p FS7→ r ∧ a ∈ FS(r) ∧ FS ∈ LK(path), on the specification for the true branch of the if
statement:

∀FS. 〈fs(FS) ∧ isdir(FS(r)) , a ∈ FS(r)⇒ fs(FS[r 7→ FS(r) \ {a}]) ∗ ret = 0〉 v

∀FS ∈ LK(path).
〈

fs(FS) ∧ p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r) ∧ ¬iserr(r) ,
∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf )

〉
Using the specification of link_delete() and the DChoiceIntro refinement law,

φ u ψ v φ, we can show that the current specification is refined by link_delete().

Finally, the Absorb law, φt(φuψ) ≡ φ ≡ φu(φtψ), asserts that a specification made up
of an angelic choice between a specification, φ, and a second, strictly less permissive one, φuψ,
is equivalent to φ, as in both cases, it must be satisfied. This law can be used in conjunction
with the definition of link_delete_notdir(r , a) to show that return link_delete(r , a) t
link_delete_notdir(r , a) v return link_delete(r , a) 4, which completes the proof.

This proof encapsulates the entirety of the file system within the Lock shared region,
which effectively prohibits sharing of the file system via means other than the lock-file
module’s interface. This assumption is not valid in general as the file system is a public
namespace that can be accessed and modified by concurrently executing applications. In
section 6, we will extend this reasoning to be able to express the necessary restrictions on
the context in which the program executes.

5 TADA-Refine Specification Language and Refinement Calculus

We describe TADA-Refine, our concurrent specification language and associated refinement
calculus, giving just a sketch here and providing full details in the technical report [29].
We discovered that, due to the stuttering and mumbling laws, we have simpler laws and
soundness proof compared with those of TaDA.

4 link_delete_notdir(r , a) can be rewritten as link_delete(r , a) u return err_nodir_links(ι, a).

ECOOP 2018



4:18 A Concurrent Specification of POSIX File Systems

Specifications φ, ψ ::= φ;ψ | φ ‖ ψ | let f = F in φ | Fe
| φ t ψ | φ u ψ | ∃x. φ | ∀~x. 〈P,Q〉k

Functions F ::= f | A | µA. λx. φ | λx. φ

Expressions e ::= . . .

Assertions P,Q,R ::= false | true | P ∗Q | P ∧Q | P ∨Q | ∃x. P | ∀x. P | P ⇒ Q

| tkα(~y, x) | [G]α | . . .

where x denotes a variable, ~x a sequence of variables, A a recursive variable and f a function.

Figure 6 The specification language of TaDA-Refine: specifications and assertions.

5.1 The Specification Language

The syntax of the specification language for TADA-Refine is given in figure 6, using the
grammars of the specifications and assertions. Following Turon and Wand [36], we do not
distinguish between specifications and concrete programs, taking the view that programs are
the most concrete of specifications. The specifications are built from traditional programming
constructs: sequential composition φ;ψ, parallel composition φ ‖ ψ, recursion and first-order
procedures. We use additional constructs to express specification non-determinism: angelic
choice, φ t ψ, behaves either as φ or as ψ; and demonic choice, φ u ψ, behaves as φ and
ψ. Angelic and demonic non-determinism are motivated in the unlink specification of §3.1.
Existential quantification, ∃x. φ, behaves as φ for some choice of x.

The atomic specification statement, ∀~x. 〈P,Q〉k, is motivated in §3.1. It specifies any
operation that atomically updates a state satisfying the precondition P to a state satisfying the
postcondition Q. The universal quantifier binds ~x to both the precondition and postcondition,
declaring that the update is atomic for all possible values of ~x. The statement includes
a region level subscript, k, explained below. The assertions, P and Q, are based on the
intuitionistic assertions of TaDA [9]. They are built from the standard connectives from
first-order logic and intuitionistic separation logic [31], together with shared region assertions
and guard assertions of TaDA and first-order recursive predicates. In addition, we will use a
collection of abstract and pure predicates signified by the . . . and introduced by example in
the other sections. We implicitly require that the pre- and postconditions are stable: they
must account for interference from other threads. The region assertion, tkα(~y, x), asserts the
existence of a region with superscript k with identifier α of type t and parameters ~y and
abstract state x. The guard assertion, [G]α, asserts the ownership of guard G for region α.
As described in §4, associated with a region type is a guard separation algebra, a labelled
transition system and an interpretation function.

A region assertion also has a region-level superscript, k, analogous to the region-level
subscript of a specification statement. The region level is an integer, signifying that only
regions below level k may be replaced by their interpretation (opened) in the refinement of a
specification statement. Their purpose is to ensure that we cannot open the same region twice
during a refinement derivation, as this could unsoundly duplicate resources encapsulated by
the region.

We keep the specification language minimal. For simplicity and to keep specifications
declarative, variables are immutable. Additional programming constructs used in the spe-
cifications given throughout this paper can be easily encoded. For example, the specification
let x = F (e) in φ can be written as ∃x. F (e, x);φ which binds the return variable ret to x.



G. Ntzik and P. da Rocha Pinto and J. Sutherland and P. Gardner 4:19

AEElim
∀~y, x. 〈P,Q〉k v ∀~y. 〈∃x. P,∃x.Q〉k

ACons
∀~x. P 4 P ′ ∀~x.Q′ 4 Q
∀~x.
〈
P ′, Q′

〉
k
v ∀~x. 〈P,Q〉k

AFrame
∀~x. 〈P,Q〉k v ∀~x. 〈P ∗R,Q ∗R〉k

AUseAtomic
∀x. (x, f(x)) ∈ Tt(G)∗

∀x, ~x.
〈
I(tkα(~e, x)) ∗ P (~x) ∗ [G]α , I(tkα(~e, f(x))) ∗Q(~x)

〉
k

v ∀x, ~x.
〈
tkα(~e, x) ∗ P (~x) ∗ [G]α , t

k
α(~e, f(x)) ∗Q(~x)

〉
k+1

ARLevel
k1 ≤ k2

∀~x. 〈P,Q〉k1
v ∀~x. 〈P,Q〉k2

AStutter
∀~x. 〈P, P 〉k;∀~x. 〈P,Q〉k v ∀~x. 〈P,Q〉k

AMumble
∀~x. 〈P,Q〉k v ∀~x.

〈
P, P ′

〉
k
; ∀~x.

〈
P ′, Q

〉
k

Figure 7 Some refinement laws for the atomic specifications.

Control flow can be encoded with angelic choice. For example, if P then φ else ψ fi can be
written as (〈true, P 〉;φ) t (〈true,¬P 〉;ψ). Encodings for the other syntactic features used in
our specifications are given in the technical report [29]. In §5.3, we discuss the encoding of
hybrid specification statements.

In the technical report [29], we also define the operational semantics for our specification
language as a transition relation, φ, h ⇓ o, from specifications φ and concrete heaps h to
outcomes o ::= h |

 , where  denotes a fault.

5.2 The Refinement Calculus
The refinement calculus for TaDA-Refine comprises standard laws of refinement, refinement
laws for atomic specification statements adapted from [36], and laws associated with TaDA’s
program-logic rules. Unlike TaDA, where stuttering and mumbling is hidden in its underlying
semantics, the stuttering and mumbling laws are first-class citizens in TaDA-Refine. This
enables us to simplify significantly the laws associated with the TaDA rules and the proof of
adequacy (Theorem 1). The full calculus is given in the technical report [29].

In figure 7, we provide a selection of refinement laws for atomic specification statements.
The AEElim is analogous to the existential elimination rule of Hoare logics. The ACons
law is a semantic consequence law, originating from the views framework [10]. It generalises
the standard logical consequence relation, using a view-shift relation 4 adapted from TaDA
instead of the usual logical implication. The AFrame law is a frame law for atomic statements,
originating from Turon and Wand’s work [36]. The AUseAtomic and ARLevel laws are
taken from analogous rules of TaDA. AUseAtomic allows us to refine an atomic update
on the state of a shared region into an atomic update on the region’s interpretation given
by the interpretation function I. Note that by doing so the region level associated with the
specification statement is decremented. This prevents the same region to be re-opened again
in subsequent refinements. Unlike TaDA, we do not require other laws for shared regions
due to the presence of the stuttering and mumbling laws as first-class citizens. Stuttering
and mumbling originate from the work on trace semantics by Brookes [5]. AStutter allows
us to refine a single atomic update to a sequence of atomic steps, as long as the state before
the update is maintained. AMumble allows us to refine a sequence of atomic steps into a
single atomic update, as long as the environment does not invalidate the intermediate states.

ECOOP 2018



4:20 A Concurrent Specification of POSIX File Systems

Note that, by combining the two laws, we can derive a stuttering equivalence.
The laws of the refinement calculus are sound with respect to a denotational refinement

relation which is adequate with respect to an operational refinement relation. We define the
denotational refinement relation using a denotational semantics of specifications, denoted
JφKρ with variable context ρ, which is defined as sets of observed traces. This gives us a
denotational refinement relation defined as the subset relation between traces. Our adequacy
proof follows the methodology of Turon and Wand [36], significantly adapted to handle TaDA
assertions [9]; the details of adequacy and soundness are in the technical report [29].

I Definition 1 (Denotational Refinement). φ v ψ ⇐⇒ JφKρ ⊆ JψKρ.

We define the operational refinement relation as a partial-correctness contextual refinement,
using our operational semantics given in the technical report [29]:

φ vop ψ ⇐⇒ ∀C, h.

{
C[φ], h ⇓  ⇒ C[ψ], h ⇓  

C[φ], h ⇓ h′ ⇒ C[ψ], h ⇓ h′ ∨ C[ψ], h ⇓
 

where C is a specification context. If the specification ψ faults, then φ is allowed to do
anything since a fault is treated as unspecified behaviour.

I Theorem 2 (Adequacy). If φ v ψ, then φ vop ψ

5.3 Derived Hybrid Specification Statement
The derived hybrid atomic statement, ∀~x. ∃~y. {P ′}〈P (~x), Q(~x, ~y)〉{Q′(~x, ~y)}k, extends the
atomic specification statement with non-atomic components: the atomic specification state-
ment P (~x) is atomically updated to Q(~x, ~y) for all values of ~x; at the same time, the
non-atomic precondition P ′ is updated to Q′(~x, ~y) without any atomicity guarantees. The
quantification extends to the end of the statement and is a little subtle. The non-atomic
precondition is independent of the universally quantified ~x because the environment may be
modifying it before the atomic update takes effect. The two postconditions are linked by the
existentially quantified ~y, non-deterministically chosen by the implementation at the point
the atomic update takes effect.

The hybrid specification statement is a derived construct, defined as a specification
program comprising a sequence of atomic specification statements.

I Definition 3 (Hybrid Specification Statement). The hybrid specification statement is defined
by:

∀~x. ∃~y. {P ′}〈P (~x), Q(~x, ~y)〉{Q′(~x, ~y)}k ,
∃p.∀~x. 〈P ′ ∗ P (~x), P ′ ∧ p ∗ P (~x)〉k;
µA. λp. ∃p′.∀~x. 〈p ∗ P (~x), p′ ∗ P (~x)〉k;Ap′

t ∃~x, ~y. ∃p′′. 〈p ∗ P (~x), p′′ ∗Q(~x, ~y)〉k;(
µB. λp′′. ∃p′′′. 〈p′′, p′′′〉k;Bp′′′

t 〈p′′, Q′(~x, ~y)〉k

)
p′′

 p

The first atomic specification statement solely serves to capture the states satisfied by the
non-atomic precondition P ′ into the variable p, so that it can be passed as an argument to
the subsequent recursive function. It is a silent atomic step: since it does not change the
state, the first atomic specification statement is not observable by AStutter. The recursive
function that follows consists of two branches that are non-deterministically chosen using
angelic choice. Note that these branches operate on both the non-atomically updated state
captured by the logical variables p, p′, . . . and the atomically updated state specified by the



G. Ntzik and P. da Rocha Pinto and J. Sutherland and P. Gardner 4:21

HMumble
∀~x.∃~y.

{
P ′
}
〈P (~x), Q(~x, ~y)〉

{
Q′(~x, ~y)

}
k
v

∀~x. ∃~y.
{
P ′
}〈
P (~x), P ′(~x)

〉{
P ′′
}
k
; ∀~x. ∃~y.

{
P ′′
}〈
P ′(~x), Q(~x, ~y)

〉{
Q′(~x, ~y)

}
k

HStutter
∀~x.
{
P ′
}
〈P (~x), P (~x)〉

{
P ′′
}
k
; ∀~x.∃~y.

{
P ′′
}
〈P (~x), Q(~x, ~y)〉

{
Q′(~x, ~y)

}
k
v

∀~x. ∃~y.
{
P ′
}
〈P (~x), Q(~x, ~y)〉

{
Q′(~x, ~y)

}
k

HStrengthen
∀~x. ∃~y.

{
P ′
}〈
P ′ ∗ P (~x), Q(~x, ~y) ∗Q′(~x, ~y)

〉{
Q′(~x, ~y)

}
k
v

∀~x. ∃~y.
{
P ′ ∗ P ′

}
〈P (~x), Q(~x, ~y)〉

{
Q′(~x, ~y) ∗Q′(~x, ~y)

}
k

Figure 8 Select hybrid specification statement refinement laws.

P and Q assertions. The first branch updates the non-atomic state p, while maintaining
the atomic precondition P (~x) for all ~x, and then recursively continues with the resulting
non-atomic state p′. Effectively, this specifies that while P ′ is being modified in multiple steps
the concurrent environment may change ~x as long as it maintains P (~x). The second branch
of the angelic choice terminates the recursion by performing the atomic update from P (~x) to
Q(~x, ~y), for some ~x and ~y (determiend by the the atomic update takes affect). The same
update may also update the non-atomic part of the state. After this point, the non-atomic
part of the state can continue to be updated until we reach a state satisfying Q′(~x, ~y); the
atomic part cannot be further updated by the thread, and the environemnt need not be
constrained, as the atomic step has been done by the thread.

We can derive refinement laws for hybrid specification statements which are analogous
those given for the atomic specification statements. Most are straightforward extensions
accounting for the non-atomic state component. We focus on the most interesting cases
in figure 8. The HStrengthen law allows us to refine part of the non-atomic component
update into an atomic update, essentially making the whole operation “more” atomic. The
HMumble law simply extends AMubmle to the hybrid case. However, consider HStutter.
For the atomic component it acts in the same as AStutter, whereas for the non-atomic
component it acts as the sequencing rule of Hoare logics. In fact, a property of these derived
hybrid laws is when the atomic pre- and postconditions are true then the hybrid refinement
laws correspond to standard Hoare rules, and when the non-atomic pre- and postconditions
are true then the hybrid refinement laws correspond to the laws of atomic specification
statements.

6 TaDA-Refine Client Reasoning II: Context Invariants

In section 4, we introduced the key elements of our client reasoning by examining a simple lock
file module and proving a refinement between the abstract specification and implementation
for the unlock operation. However, it encapsulates the entire file system within the Lock
shared region and thus also the abstract predicate Lock. This prevents us from using the
abstract specification to reason about clients that make further use of the file system.

We are unable to abstract the details of how a module’s implementation shares the file
system and maintain compositionality at the same time. This is due to the nature of POSIX
file systems. In POSIX all possible file system paths are usable by everyone at all times,
even if they do not exist. The concept of a path being private to an application simply

ECOOP 2018



4:22 A Concurrent Specification of POSIX File Systems

does not exist 5. In other words the file system is a public namespace. In contrast, the
traditional heap memory is a private namespace. Heap addresses are usable only when
allocated. When an address is first allocated, it is only known to the allocating thread and
thus we can programmatically control how they are shared with other threads. Dereferencing
an unallocated heap address is undefined behaviour, typically resulting in a crash.

Effectively, in POSIX file systems all locations are shared, with everyone. Therefore, in
§4, by fully encapsulating the file system state in the Lock shared region, we restrict all file
system access to the lock-file module. This is too restrictive; we cannot reason about the
module’s use in contexts that also use the file system. The solution is to place restrictions
on the context itself.

In the case of the lock-file module, we require that the context keeps the sub-graph formed
by the path to the lock-file directory unmodified, and that the only way to create or remove
the lock file is via the module’s operations. Otherwise, the context could interfere with the
resolution of the path, rendering it unresolvable or diverting the resolution to a different
location. The lock-file module cannot enforce such restrictions on its own. Instead, these
restrictions form a proof obligation for the context. We express such proof obligations with
context invariants. For our lock-file module, LFCtx denotes the context invariant under which
its specification holds.

In order to define LFCtx, we first encapsulate the file system within the global file-system
shared region of type GFS. There is only a single instance of this region with a known
identifier which we keep implicit. All clients accessing the file system do so via this region.
The region’s state is a file-system graph, FS ∈ FS, with the straightforward interpretation:
I(GFS(FS)) , fs(FS). The guards and labelled transition system of this region, are defined
by the context. However, we define LFCtx to place restrictions on the guards and transition
system.

To aid our definitions, we introduce some notation: Gt denotes the set of guards associated
with the region type t; G • G′ denotes the partial, associative and commutative composition
of guards; G#G′ states that the composition of guards G and G′ is defined; and Tt(G)∗
denotes the transitions for guard G of the region type t, where the superscript ∗ denotes the
reflexive-transitive closure. We also define the following auxiliary predicates:

!G ∈ Gt , G ∈ Gt ∧ G • G undefined

(x, y) †t G , (x, y) ∈Tt(G)∗∧ ∀G′∈ Gt.G′#G⇒ (x, y) 6∈ Tt(G′)∗

The predicate !G ∈ Gt states that there is only one instance of the guard G of the region type
t, and (x, y) †t G states that in regions of type t, the transition from state x to y is defined
only for G. Additionally, we define the expression FS�p to identify the sub-graph of FS that
is formed by the path p as follows:

FS�p , FS�
ι0
p FS�ιa , ι 7→ (a 7→ FS(ι)(a)) FS�ιa/p , ι 7→ (a 7→ FS(ι)(a)) ] FS�FS(ι)(a)

p

We can now define the context invariant as follows:
LFCtx(p/a) ,

∃FS ∈ LF(p/a).GFS(FS) ∧ ! [LF(p/a)] ∈ GGFS

∧ ∀FS ∈ ULK(p/a). ∃FS′. lk(FS, FS′, p/a) ∧ (FS, FS′) †GFS LF (p/a)
∧ ∀FS ∈ LK(p/a). ∃FS′. ulk(FS, FS′, p/a) ∧ (FS, FS′) †GFS LF (p/a)

∧ ∀G ∈ GGFS. ∀FS, FS′ ∈ LK(lf ). (FS, FS′) ∈ TGFS(G)∗ ⇒ FS�p = FS′�p

The first line of the definition restricts the states of the global file-system region to
those in which the path to the lock-file directory exists and the lock file itself may exist

5 File-access permissions restrict access to only the processes with the same privileges.



G. Ntzik and P. da Rocha Pinto and J. Sutherland and P. Gardner 4:23

or not. Additionally, it requires the indivisible guard LF (p/a) to be defined for the global
file-system region. The second and third lines of the definition state that transitions creating
or removing the lock file in its directory are only defined for the guard LF (p/a). Therefore,
only ownership of this guard grants a thread the capability to transition between locked
and unlocked states. Finally, the last line of the definition requires all transitions between
lock-file states to maintain the same file-system sub-graph for the path p. This guarantees
that the context does not concurrently modify the sub-graph such that the path resolution is
diverted to a different location.

Assuming the context satisfies LFCtx(lf ), we can now redefine the interpretation of the
Lock region as:

I(Lockα(lf , 0)) , ∃FS ∈ ULK(lf ).GFS(FS) ∗ [LF(lf )]

I(Lockα(lf , 1)) , ∃FS ∈ LK(lf ).GFS(FS) ∗ [LF(lf )]

Instead of the Lock fully encapsulating the file system itself in section 4, we now encapsulate
only the possible ways in which the file system is shared with everyone else by means of the
global file system region.

The global file system shared region is an abstraction breaker. All modules accessing the
file system use it. Therefore, all file-system module specifications are effectively parametric
to its definition. Thus we amend the original lock-file specification of section 4 accordingly:

LFCtx(lf ) ` lock(lf ) v ∀v ∈ {0, 1} . 〈Lock(s, lf , v) , Lock(s, lf , 1) ∗ v = 0〉

LFCtx(lf ) ` unlock(lf ) v 〈Lock(s, lf , 1) , Lock(s, lf , 0)〉

It remains to prove the refinement between the implementation and our specification. In
figure 9 we give a sketch proof for the lock operation. Throughout the proof we assume
that LFCtx holds. On the other hand, LFCtx is a proof obligation for the context.The main
difference from the proof of unlock in § 4 is that we use AUseAtomic twice; first to refine
the atomic update on the Lock predicate into an update on the global file system region
GFS and then again to refine that update to an atomic update on the underlying file system
in the refinement of close and open. The refinement of open proceeds similarly to unlock
and is given in the technical report [29].

7 Related Work

There has been substantial work on the formal specification of key fragments of POSIX file
systems, even leading to a verification challenge by Joshi and Holzmann [22]. Refinements
from specifications to implementations have been widely studied [3, 19, 15, 16]. Of particular
note are the specifications based on Z notation, and the use of refinement calculus to
construct verified implementations [24, 15, 16]. Recently, specifications based on separation
logic [31] have been introduced, focusing on scalable client reasoning [17, 30]. This work [17]
demonstrates that first-order reasoning scales poorly when reasoning about file-system clients,
hence the introduction of a specification based on separation logic. Taking inspiration from
this work, we demonstrate scalable reasoning about clients of POSIX file-systems using TaDA-
Refine. Separation logics have also been used to build a verified fault-tolerant file-system
implementation in the Coq theorem prover [7] and to verify elements of the Linux Virtual
Filesystem Switch (VFS) [12]. All the aforementioned works are on sequential fragments of
POSIX and do not handle concurrency.

Fisher et al. develop Forest [14], a declarative DSL in Haskell for safe manipulation of
file systems. Forest clients use the typing discipline to specify the file-system structures

ECOOP 2018



4:24 A Concurrent Specification of POSIX File Systems

lock(lf ) ≡
A

St
ut

te
r,

In
d

let fd = open(lf , O_CREAT|O_EXCL)
AUseAtomic

v
∀FS ∈ LF(lf )〈

GFS(FS) ∗ [LF(lf )] ,
((GFS(FS) ∗ fd = EEXIST) ∨ (∃FS′ ∈ LK(lf ).GFS(FS′) ∗ fd(fd,−,−))) ∗ [LF(lf )]

〉
AEElim〈 ∃FS ∈ ULK(lf ).GFS(FS) ∗ [LF(lf )] ,

(∃FS ∈ LK(lf ).GFS(FS) ∗ [LF(lf )]) ∨
(∃FS ∈ ULK(lf ).GFS(FS) ∗ [LF(lf )] ∗ fd = EEXIST)

〉
if iserr(fd) then

lock(lf )
Ind

v
〈
∃FS ∈ ULK(lf ).GFS(FS) ∗ [LF(lf )] , ∃FS ∈ LK(lf ).GFS(FS) ∗ [LF(lf )]

〉
AFrame

v
〈
∃FS ∈ ULK(lf ).GFS(FS) ∗ [LF(lf )] ∗ fd = EEXIST,
∃FS ∈ LK(lf ).GFS(FS) ∗ [LF(lf )] ∗ fd = EEXIST

〉
else

close(fd) v
〈

fd(fd,−,−) , true
〉

v
〈
∃FS ∈ ULK(lf ).GFS(FS) ∗ [LF(lf )] , ∃FS ∈ LK(lf ).GFS(FS) ∗ [LF(lf )]

〉
fi

v
〈
∃FS ∈ ULK(lf ).GFS(FS) ∗ [LF(lf )] , ∃FS ∈ LK(lf ).GFS(FS) ∗ [LF(lf )]

〉
ACons, AUseAtomic

v ∀v ∈ {0, 1} .
〈
Lockα(lf , v) ∗ [G]α ,Lockα(lf , 1) ∗ [G]α ∗ v = 0

〉
Figure 9 lock() specification proof sketch.

they need and file-system access preserves the application invariants identified by static
types. This work is an attempt to bridge the gap between the untyped world of sequential
file-systems and the strongly-typed world of programming languages.

Ridge et al. have developed a coarse-grained concurrent specification of a fragment of the
POSIX file system, based an operational semantics [33] with adaptations in the semantics to
capture real-world implementations. The specification is used as a test oracle in a substantial
test suite which they generate for major real-world implementations. However, since their
concurrent specification is coarse-grained, their tests can only expose sequential behaviour.
We can derive such coarse-grained specifications from the specifications we give in this paper,
by a trivial application of the AMumble refinement law. Such coarse-grained specifications
could be used to verify coarse-grained implementations. However, they are not suitable as a
general POSIX specification for client reasoning, as the implicit assumption of additional
synchronisation is too strong.

We have given a specification of the complex concurrent behaviour associated with POSIX
file systems by introducing TaDA-Refine, a concurrent specification language based on TaDA
assertions [9, 8] and an associated refinement calculus. Our approach is inspired by the
work of Turon and Wand [36]. However, we do not adopt their notion of fenced refinement
to reason about fine-grained concurrent data structures as its applicability is more limited
than more recent mechanisms of expressing sharing protocols and capabilities found in
concurrent program logics. More significantly, fenced refinement proofs carry the built-in
assumption that the module’s state can only ever be changed by the module’s operations
which is not appropriate for reasoning about file-system clients. For this purpose we adopt
TaDA’s assertions and introduce context invariants for client reasoning. Furthermore, we



G. Ntzik and P. da Rocha Pinto and J. Sutherland and P. Gardner 4:25

introduce the hybrid specification statement as useful derived construct for reasoning about
combinations of atomic and non-atomic effects.

Recently, various concurrent separation logics have been introduced to support reasoning
about atomic operations [20, 35, 34, 9, 23, 26]. However, the examples have generally been
limited to those using operations comprising single atomic steps. In contrast, our work on
specifying POSIX file systems requires operations comprising multiple atomic steps. With
higher-order logics such as [35, 34, 23], it is possible to encode multi-atomic specifications as
auxiliary code in the style of [20]. With logics based on histories such as [26], it should also
be possible to support multi-atomic specifications, although it is unclear if this method is
applicable to operations that have concurrent path traversals such as link. It is important
to note that, for client reasoning, all these formalisms require additional constraints on the
context analogous to our context invariants.

8 Conclusions & Future Work

We have developed TaDA-Refine, a concurrent specification language and an associated
refinement calculus which is able specify the complex concurrent behaviour of POSIX file
systems. To the best of our knowledge, this is the first specification of file-system concurrency
that captures the intended POSIX semantics. Here, we have verified the lock-file client
module. In Ntzik’s thesis [27], we have also verified an implementation of named pipes which
regular file I/O and lock file, and the concurrent interaction between and email client and
server that is sensitive to the multi-atomic nature of path resolution. This client verification
is not straightforward due to the file system being a public namespace. We introduce
specifications conditional on context invariants to restrict interference.

Our research on file-system specification and client verification is far from over. We
believe we have formalised the established consensus of the concurrent behaviour of POSIX
file systems. Our methodology is, however, flexible enough to explore other choices, if desired.
We plan to extend the specification to larger fragments, for example, covering symbolic links
and file-access permissions. These are orthogonal to POSIX file-system concurrency and
should not affect our reasoning methodology presented here.

For this paper, we justify our specification by appealing to the standard and the community
consensus regarding the atomicity of operations. In future, we will justify our specification
with respect to implementations. We plan to systematically justify the specification against
real-world implementations by generating tests and using the specification as a test oracle,
similarly to the approach of Ridge et al [33]. Another approach, following our refinement laws,
is to refine the specification to a fine-grained concurrent reference implementation. Both
approaches will require a mechanised version of our POSIX specification. Additionally, we
want to build on the works of Chen et al.[7] and Ntzik et al. [28] to extend our specifications
with fault-tolerance guarantees. We also want to study Network File Systems (NFS), which
exhibit concurrent behaviours that are not sequentially consistent.

References
1 POSIX.1-2008, IEEE 1003.1-2008, The Open Group Base Specifications Issue 7. URL:

http://pubs.opengroup.org/onlinepubs/9699919799/ [cited ].
2 The Austin Group Mailing List. https://www.opengroup.org/austin/lists.html. Ac-

cessed: September 30, 2016.
3 Konstantine Arkoudas, Karen Zee, Viktor Kuncak, and Martin Rinard. Verifying a file

system implementation. In Jim Davies, Wolfram Schulte, and Mike Barnett, editors, Formal

ECOOP 2018

http://pubs.opengroup.org/onlinepubs/9699919799/
https://www.opengroup.org/austin/lists.html


4:26 A Concurrent Specification of POSIX File Systems

Methods and Software Engineering, volume 3308 of Lecture Notes in Computer Science,
pages 373–390. Springer Berlin Heidelberg, 2004. URL: http://dx.doi.org/10.1007/
978-3-540-30482-1_32, doi:10.1007/978-3-540-30482-1_32.

4 Ralph-Johan Back and Joakim Wright. Refinement calculus: a systematic introduction.
Springer Science & Business Media, 2012.

5 Stephen Brookes. Full abstraction for a shared-variable parallel language. Information and
Computation, 127(2):145 – 163, 1996. URL: http://www.sciencedirect.com/science/
article/pii/S0890540196900565, doi:http://dx.doi.org/10.1006/inco.1996.0056.

6 C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract separation logic. In
22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007), pages 366–378,
July 2007. doi:10.1109/LICS.2007.30.

7 Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nick-
olai Zeldovich. Using crash hoare logic for certifying the fscq file system. In Proceedings
of the 25th Symposium on Operating Systems Principles, SOSP ’15, pages 18–37, New
York, NY, USA, 2015. ACM. URL: http://doi.acm.org/10.1145/2815400.2815402,
doi:10.1145/2815400.2815402.

8 Pedro da Rocha Pinto. Reasoning with Time and Data Abstractions. PhD thesis, Imperial
College London, September 2016.

9 Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. Tada: A logic for
time and data abstraction. In Richard Jones, editor, ECOOP 2014 – Object-Oriented Pro-
gramming, volume 8586 of Lecture Notes in Computer Science, pages 207–231. Springer
Berlin Heidelberg, 2014. URL: http://dx.doi.org/10.1007/978-3-662-44202-9_9,
doi:10.1007/978-3-662-44202-9_9.

10 Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew Parkinson, and
Hongseok Yang. Views: Compositional reasoning for concurrent programs. In Proceed-
ings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’13, pages 287–300, New York, NY, USA, 2013. ACM. URL:
http://doi.acm.org/10.1145/2429069.2429104, doi:10.1145/2429069.2429104.

11 Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, MatthewJ. Parkinson, and
Viktor Vafeiadis. Concurrent abstract predicates. In Theo D’Hondt, editor, ECOOP
2010 – Object-Oriented Programming, volume 6183 of Lecture Notes in Computer Science,
pages 504–528. Springer Berlin Heidelberg, 2010. URL: http://dx.doi.org/10.1007/
978-3-642-14107-2_24, doi:10.1007/978-3-642-14107-2_24.

12 Gidon Ernst, Gerhard Schellhorn, Dominik Haneberg, Jörg Pfähler, and Wolfgang Reif.
Verification of a virtual filesystem switch. In Ernie Cohen and Andrey Rybalchenko, editors,
Verified Software: Theories, Tools, Experiments, volume 8164 of Lecture Notes in Computer
Science, pages 242–261. Springer Berlin Heidelberg, 2014. URL: http://dx.doi.org/10.
1007/978-3-642-54108-7_13, doi:10.1007/978-3-642-54108-7_13.

13 Xinyu Feng. Local rely-guarantee reasoning. In Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’09, pages
315–327, New York, NY, USA, 2009. ACM. URL: http://doi.acm.org/10.1145/1480881.
1480922, doi:10.1145/1480881.1480922.

14 Kathleen Fisher, Nate Foster, David Walker, and Kenny Q. Zhu. Forest: A language
and toolkit for programming with filestores. In Proceedings of the 16th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’11, pages 292–306, New York,
NY, USA, 2011. ACM. URL: http://doi.acm.org/10.1145/2034773.2034814, doi:10.
1145/2034773.2034814.

15 L. Freitas, Zheng Fu, and J. Woocock. Posix file store in z/eves: an experiment in the
verified software repository. In Engineering Complex Computer Systems, 2007. 12th IEEE
International Conference on, pages 3–14, July 2007. doi:10.1109/ICECCS.2007.36.

http://dx.doi.org/10.1007/978-3-540-30482-1_32
http://dx.doi.org/10.1007/978-3-540-30482-1_32
http://dx.doi.org/10.1007/978-3-540-30482-1_32
http://www.sciencedirect.com/science/article/pii/S0890540196900565
http://www.sciencedirect.com/science/article/pii/S0890540196900565
http://dx.doi.org/http://dx.doi.org/10.1006/inco.1996.0056
http://dx.doi.org/10.1109/LICS.2007.30
http://doi.acm.org/10.1145/2815400.2815402
http://dx.doi.org/10.1145/2815400.2815402
http://dx.doi.org/10.1007/978-3-662-44202-9_9
http://dx.doi.org/10.1007/978-3-662-44202-9_9
http://doi.acm.org/10.1145/2429069.2429104
http://dx.doi.org/10.1145/2429069.2429104
http://dx.doi.org/10.1007/978-3-642-14107-2_24
http://dx.doi.org/10.1007/978-3-642-14107-2_24
http://dx.doi.org/10.1007/978-3-642-14107-2_24
http://dx.doi.org/10.1007/978-3-642-54108-7_13
http://dx.doi.org/10.1007/978-3-642-54108-7_13
http://dx.doi.org/10.1007/978-3-642-54108-7_13
http://doi.acm.org/10.1145/1480881.1480922
http://doi.acm.org/10.1145/1480881.1480922
http://dx.doi.org/10.1145/1480881.1480922
http://doi.acm.org/10.1145/2034773.2034814
http://dx.doi.org/10.1145/2034773.2034814
http://dx.doi.org/10.1145/2034773.2034814
http://dx.doi.org/10.1109/ICECCS.2007.36


G. Ntzik and P. da Rocha Pinto and J. Sutherland and P. Gardner 4:27

16 Leo Freitas, Jim Woodcock, and Andrew Butterfield. Posix and the verification grand chal-
lenge: A roadmap. 2014 19th International Conference on Engineering of Complex Com-
puter Systems, 0:153–162, 2008. doi:http://doi.ieeecomputersociety.org/10.1109/
ICECCS.2008.35.

17 Philippa Gardner, Gian Ntzik, and Adam Wright. Local reasoning for the posix file system.
In Zhong Shao, editor, Programming Languages and Systems, volume 8410 of Lecture Notes
in Computer Science, pages 169–188. Springer Berlin Heidelberg, 2014. URL: http://dx.
doi.org/10.1007/978-3-642-54833-8_10, doi:10.1007/978-3-642-54833-8_10.

18 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990. URL:
http://doi.acm.org/10.1145/78969.78972, doi:10.1145/78969.78972.

19 WimH. Hesselink and MuhammadIkram Lali. Formalizing a hierarchical file system.
Formal Aspects of Computing, 24(1):27–44, 2012. URL: http://dx.doi.org/10.1007/
s00165-010-0171-2, doi:10.1007/s00165-010-0171-2.

20 Bart Jacobs and Frank Piessens. Expressive modular fine-grained concurrency specifica-
tion. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’11, pages 271–282, New York, NY, USA, 2011.
ACM. URL: http://doi.acm.org/10.1145/1926385.1926417, doi:10.1145/1926385.
1926417.

21 Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank
Piessens. VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java, pages
41–55. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. URL: http://dx.doi.org/
10.1007/978-3-642-20398-5_4, doi:10.1007/978-3-642-20398-5_4.

22 Rajeev Joshi and GerardJ. Holzmann. A mini challenge: build a verifiable filesystem.
Formal Aspects of Computing, 19(2):269–272, 2007. URL: http://dx.doi.org/10.1007/
s00165-006-0022-3, doi:10.1007/s00165-006-0022-3.

23 Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birke-
dal, and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for con-
current reasoning. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’15, pages 637–650, New York,
NY, USA, 2015. ACM. URL: http://doi.acm.org/10.1145/2676726.2676980, doi:
10.1145/2676726.2676980.

24 Carroll Morgan and Bernard Sufrin. Specification of the unix filing system. Software
Engineering, IEEE Transactions on, SE-10(2):128–142, March 1984. doi:10.1109/TSE.
1984.5010215.

25 Carroll Morgan and Trevor Vickers. On the refinement calculus. Springer Science & Busi-
ness Media, 2012.

26 Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and GermánAndrés Delbianco. Com-
municating state transition systems for fine-grained concurrent resources. In Zhong Shao,
editor, Programming Languages and Systems, volume 8410 of Lecture Notes in Computer
Science, pages 290–310. Springer Berlin Heidelberg, 2014. URL: http://dx.doi.org/10.
1007/978-3-642-54833-8_16, doi:10.1007/978-3-642-54833-8_16.

27 Gian Ntzik. Reasoning About POSIX File Systems. PhD thesis, Imperial College London,
September 2016.

28 Gian Ntzik, Pedro da Rocha Pinto, and Philippa Gardner. Programming Languages and
Systems: 13th Asian Symposium, APLAS 2015, Pohang, South Korea, November 30 -
December 2, 2015, Proceedings, chapter Fault-Tolerant Resource Reasoning, pages 169–
188. Springer International Publishing, Cham, 2015. URL: http://dx.doi.org/10.1007/
978-3-319-26529-2_10, doi:10.1007/978-3-319-26529-2_10.

ECOOP 2018

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ICECCS.2008.35
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ICECCS.2008.35
http://dx.doi.org/10.1007/978-3-642-54833-8_10
http://dx.doi.org/10.1007/978-3-642-54833-8_10
http://dx.doi.org/10.1007/978-3-642-54833-8_10
http://doi.acm.org/10.1145/78969.78972
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1007/s00165-010-0171-2
http://dx.doi.org/10.1007/s00165-010-0171-2
http://dx.doi.org/10.1007/s00165-010-0171-2
http://doi.acm.org/10.1145/1926385.1926417
http://dx.doi.org/10.1145/1926385.1926417
http://dx.doi.org/10.1145/1926385.1926417
http://dx.doi.org/10.1007/978-3-642-20398-5_4
http://dx.doi.org/10.1007/978-3-642-20398-5_4
http://dx.doi.org/10.1007/978-3-642-20398-5_4
http://dx.doi.org/10.1007/s00165-006-0022-3
http://dx.doi.org/10.1007/s00165-006-0022-3
http://dx.doi.org/10.1007/s00165-006-0022-3
http://doi.acm.org/10.1145/2676726.2676980
http://dx.doi.org/10.1145/2676726.2676980
http://dx.doi.org/10.1145/2676726.2676980
http://dx.doi.org/10.1109/TSE.1984.5010215
http://dx.doi.org/10.1109/TSE.1984.5010215
http://dx.doi.org/10.1007/978-3-642-54833-8_16
http://dx.doi.org/10.1007/978-3-642-54833-8_16
http://dx.doi.org/10.1007/978-3-642-54833-8_16
http://dx.doi.org/10.1007/978-3-319-26529-2_10
http://dx.doi.org/10.1007/978-3-319-26529-2_10
http://dx.doi.org/10.1007/978-3-319-26529-2_10


4:28 A Concurrent Specification of POSIX File Systems

29 Gian Ntzik, Pedro da Rocha Pinto, Julian Sutherland, and Philippa Gardner. A concurrent
specification of POSIX file systems (technical report). Technical Report 2018/3, Depart-
ment of Computing, Imperial College London, 2018. URL: https://www.doc.ic.ac.uk/
research/technicalreports/2018/#3.

30 Gian Ntzik and Philippa Gardner. Reasoning about the posix file system: Local update and
global pathnames. In Proceedings of the 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015,
pages 201–220, New York, NY, USA, 2015. ACM. URL: http://doi.acm.org/10.1145/
2814270.2814306, doi:10.1145/2814270.2814306.

31 J.C. Reynolds. Separation logic: a logic for shared mutable data structures. In Logic in
Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium on, pages 55–74, 2002.
doi:10.1109/LICS.2002.1029817.

32 John C. Reynolds. Intuitionistic reasoning about shared mutable data structure. In Mil-
lennial Perspectives in Computer Science, pages 303–321. Palgrave, 2000.

33 Tom Ridge, David Sheets, Thomas Tuerk, Andrea Giugliano, Anil Madhavapeddy, and
Peter Sewell. Sibylfs: Formal specification and oracle-based testing for posix and real-
world file systems. In Proceedings of the 25th Symposium on Operating Systems Principles,
SOSP ’15, pages 38–53, New York, NY, USA, 2015. ACM. URL: http://doi.acm.org/
10.1145/2815400.2815411, doi:10.1145/2815400.2815411.

34 Kasper Svendsen and Lars Birkedal. Impredicative concurrent abstract predicates. In
Zhong Shao, editor, Programming Languages and Systems, volume 8410 of Lecture Notes
in Computer Science, pages 149–168. Springer Berlin Heidelberg, 2014. URL: http://dx.
doi.org/10.1007/978-3-642-54833-8_9, doi:10.1007/978-3-642-54833-8_9.

35 Kasper Svendsen, Lars Birkedal, and Matthew Parkinson. Modular reasoning about separ-
ation of concurrent data structures. In Matthias Felleisen and Philippa Gardner, editors,
Programming Languages and Systems, volume 7792 of Lecture Notes in Computer Science,
pages 169–188. Springer Berlin Heidelberg, 2013. URL: http://dx.doi.org/10.1007/
978-3-642-37036-6_11, doi:10.1007/978-3-642-37036-6_11.

36 Aaron Joseph Turon and Mitchell Wand. A separation logic for refining concurrent objects.
ACM SIGPLAN Notices, 46(1):247–258, 2011.

37 Viktor Vafeiadis and Matthew Parkinson. A Marriage of Rely/Guarantee and Separation
Logic, pages 256–271. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. URL: http://
dx.doi.org/10.1007/978-3-540-74407-8_18, doi:10.1007/978-3-540-74407-8_18.

https://www.doc.ic.ac.uk/research/technicalreports/2018/#3
https://www.doc.ic.ac.uk/research/technicalreports/2018/#3
http://doi.acm.org/10.1145/2814270.2814306
http://doi.acm.org/10.1145/2814270.2814306
http://dx.doi.org/10.1145/2814270.2814306
http://dx.doi.org/10.1109/LICS.2002.1029817
http://doi.acm.org/10.1145/2815400.2815411
http://doi.acm.org/10.1145/2815400.2815411
http://dx.doi.org/10.1145/2815400.2815411
http://dx.doi.org/10.1007/978-3-642-54833-8_9
http://dx.doi.org/10.1007/978-3-642-54833-8_9
http://dx.doi.org/10.1007/978-3-642-54833-8_9
http://dx.doi.org/10.1007/978-3-642-37036-6_11
http://dx.doi.org/10.1007/978-3-642-37036-6_11
http://dx.doi.org/10.1007/978-3-642-37036-6_11
http://dx.doi.org/10.1007/978-3-540-74407-8_18
http://dx.doi.org/10.1007/978-3-540-74407-8_18
http://dx.doi.org/10.1007/978-3-540-74407-8_18

	Introduction
	POSIX File-system Primer
	POSIX File-systems
	Concurrent Behaviour: the unlink operation

	TaDA-Refine Specification Examples
	Operations on links
	I/O operations on regular files

	TaDA-Refine Client Reasoning I: Lock Files
	TADA-Refine Specification Language and Refinement Calculus
	The Specification Language
	The Refinement Calculus
	Derived Hybrid Specification Statement

	TaDA-Refine Client Reasoning II: Context Invariants
	Related Work
	Conclusions & Future Work

