How To Get Your Systems Paper Accepted?

Peter Pietzuch

Department of Computing Imperial College London

February 2011

Why Does It Matter?

Scientific writing

One of the most important things that you learn as part of your PhD

- In your career, you'll be writing emails, research reports, technical specifications, whitepapers, patents, blogs, client presentations, ...
- Crucial to communicate your ideas to other people—only that much can be done orally
- You want your papers to get rejected because of the science and not the *presentation* (eh, wait...)
 - Aim to always get the comment: "this is a well-written paper"

Quality of writing improves with practice, ie write and get feedback

Caveats

- My personal views/opinions/pet peeves acquired over the years
- This will not get your paper accepted every single time
- Some variation is good

Overview

- Content
 - Style
 - Paragraphs
 - Sentences
 - Words
 - Figures and Graphs
- Structure
 - Introduction
 - The Meat
 - Evaluation
- Cayout
 - LATEX Pet Peeves
- Further Resources

Presenting Your Research

Keep the reader interested

- Not just a report of what has been done
 - Distributed systems research is not maths or physics
- Always explain why certain decisions were made
- Keep the momentum in the paper

Presenting Your Research

Keep the reader interested

- Not just a report of what has been done
 - Distributed systems research is not maths or physics
- Always explain why certain decisions were made
- Keep the momentum in the paper

Make the research accessible

- You don't want the reader to work hard to understand your work
- Always follow a **top-down** presentation
- Clearly state your contributions
- Figures and examples are your friends

Writing Style

Use present tense

- Gives impression that your work still holds in the present
- Don't use past tense or future tense

Writing Style

Use **present tense**

- Gives impression that your work still holds in the present
- Don't use past tense or future tense

Use active voice

- Makes it clear in terms of who does what.
- Passive voice keeps the subject hidden ⇒ imprecise

Writing Style

Use **present tense**

- Gives impression that your work still holds in the present
- Don't use past tense or future tense

Use active voice

- Makes it clear in terms of who does what.
- Passive voice keeps the subject hidden ⇒ imprecise

Avoid any repetition

- Readers who read sections back to back will notice it
- Feels condescending to reader (goldfish memory?)
- Although you want to restate key points/message with additional detail

Structuring your Content

Structure your outline before writing

- It's hard to start writing without a structure
- Structure should support all content
- Structure should be clear and understandable by the reader

Structuring your Content

Structure your outline before writing

- It's hard to start writing without a structure
- Structure should support all content
- Structure should be clear and understandable by the reader

Example structure

- Motivate problem
 - The Internet crashes without wibble
 - Billions of dollars are lost and we will all die
- Key idea
 - Implement wibble as part of each Internet router
 - Can be done within the existing switching plane
- Detailed contributions
 - Describe the wibble algorithm
 - Explain interactions with switching plane

Grouping Content with Paragraphs

Paragraphs

Paragraphs are essential to structure your material—use them!

- Each paragraph should express a single thought, point, argument, ...
- First sentence of a paragraph is important: **lead sentence**
 - Should contain the message of the paragraph or summarise it
 - Start with high-level overview and then provide detail
- Make sure your paragraphs are balanced in length

A single paragraph spanning an entire columns is not a good idea!

Grouping Content with Sentences

Sentences

Control the length and complexity of your sentences

- Don't complicate sentences needlessly—shorter is better
- Long sentences are hard to parse
- Don't start every single sentence with an adverb:

```
"Therefore, [...]. However, [...]. Although [...]."
```

Avoid breaking the flow by using parenthesis or footnotes

A single sentence spanning an entire paragraph is not a good idea!

Choice of Words Matters

Scientific Language

Use precise and formal language—every single word should add to the meaning

- Readers will notice hand-wavy language—you can't sweep issues under the carpet
- Always define terms, abbreviations and variables before using them
- Be consistent in the choice of words: "the system" vs. "the prototype" vs. "our architecture" vs. "our approach"

Words To Avoid

Avoid informal/unscientific words

- Don't use contractions: it's, don't, aren't, ...
- Don't use words that convey your judgement: very, bad, poor, fortunately, unusually, clearly, excitingly, it should be noted, ...

Avoid "weasel words"

• Don't use words that are vague or ambiguous: rather, arguably, relatively, often, probably, some people, many, in most respects, ...

Common Mistakes

That vs. which

"That" is defining but "which" is non-defining:

- "The wibbles that are easy to implement are based on lists."
- "The wibbles, which are easy to implement, are based on lists."
- Be careful about what "it", "this", "that", ... refers to
- Avoid using etc. unless the other items are obvious
- Spell out numbers less than ten

Spell-checking & proofreading

You should **never** have spelling errors—always run a spell-checker before submission

Figures

Figures and text should be self-contained on their own

- Make sure that each figure is referred to and explained in the text
- Readers should be able to skip figures without missing content
- Refer to line numbers in pseudo-code

13 / 26

Figures

Figures and text should be self-contained on their own

- Make sure that each figure is referred to and explained in the text
- Readers should be able to skip figures without missing content
- Refer to line numbers in pseudo-code

Captions

- Two schools of thought:
 - **Descriptive captions**: "Throughput of the Wibble Prototype"
 - Message caption: "Wibble has a higher throughput than a centralised message server."
- Ensure consistent capitalisation of captions (either way is fine)

Graphs

- Plots should have more than one line but less than 4–5 lines.
 - Readers like to compare things
- They must be readable when printed in black and white
- It should be easy to see what the main features of a graph are

General Paper/Thesis Structure

- Abstract
- Introduction
- Background/Related Work
- The Meat
- Evaluation
- (Related Work)
- Future Work & Conclusions

It's fine to deviate a little bit based on your material

Abstract

- Should be self-contained
- Can't be too long; short is good
- Should encourage the reader to read on
- Think about its structure

Abstract template

- Problem/Motivation
- Solution (Key idea)
- More detail on contribution
- Some evidence (eg evaluation results)

(1–2 sentences)

(1-2 sentences)

(2 sentences)

(1-2 sentences)

Introduction

- Make the reader excited and keep them interested
 - Cut to the chase
- Should be summary of entire paper
- Write first and then revisit at the end

Introduction Structure

Introduction template

- Context/Motivation
- Problem
 - Why this is a hard/open problem?
 - State-of-the-Art
- Key idea/insight
 - Solution overview/some detail (bigger picture)
- Summary of research
 - Details of contribution
- Evidence of successful solution (eg evaluation results)
- Summary of contributions
- Paper outline

It's fine to vary some parts

Background

- Anything the reader needs to know to understand the contribution
- Provide more detail on the problem
 - Include some quantitative evidence that illustrates problem or key idea
- If there is lots of related work, discuss related work early to differentiate your own work

Careful

- Do not take momentum out of the paper
- Do not bury your **contributions** here

Related Work

- Make sure that you include all relevant work
 - Always easy to get rejected based on missing citations
- Compare/contrast with your own work—don't just enumerate
 - Don't be dismissive
 - Refer to references by author or project names:

```
"Skywalker et al. [1] propose . . . ."
"Wibble [2] is a system . . . ."
```

- Avoids reader having to consult bibliography to understand [1]
- It's not "related works", always "related work"

The Meat

- Divide this into 2–3 sections
 - eg "Design/Architecture" and "Implementation" details
 - ... but avoid generic section titles
- Start with high-level overview of solution (top-down)
 - Give the reader the bigger picture first
 - Figure with overview of system architecture works well
 - Roadmap helps as well
- Give examples and make them consistent (eg a running example)

Evaluation

Choice of experiments

- Think carefully about what the experiments are supposed to show
- What questions will the reader have?
- Discuss all results and draw relevant conclusions

Evaluation template

- Evaluation goals
- 2 Evaluation methodology
 - Overview of experiments
 - Evaluation metrics
- Experimental set-up
- Experiments
- Discussion of key insights

The Rest

Future Work & Conclusions

- Can be separate sections
- Emphasise the key results of the work
- Conclusions not just summary—try to draw insightful conclusions

Bibliography

Make sure entries are listed consistently

Layout and Type-setting

Golden Rule

Make your layout choices consistent!

Why Does It Matter?

- Raises confidence in the quality of the work
- Authors paying attention to layout details will also pay attention to scientific details

LATEX Pet Peeves

Use protected spaces (~) to avoid bad line breaks

- Figure \ref{fig:arch}, Section \ref{sec:intro}, Wibble~\cite{wibble11}, ...
- 4~MB/s, 10~nodes, ...

Type-setting multi-character variable names in math mode

- $varname \Rightarrow varname$ (effectively typeset as v * a * r * ...)
 - compare to $v a r n ame \Rightarrow varname$
- Instead use \$\mbox{varname}\$ ⇒ varname

Type-setting numbers and units

- In general, don't put numbers in math mode
- Math mode: 42 vs. text mode: 42
- Units always use roman font: use \mathrm{...} or \mbox{...}

Resources

- [a] "The Elements of Style", William Strunk Jr. and E.B. White. Macmillan Publishing Co., New York, 1979. http://www.bartleby.com/141/strunk5.html
- [b] "Writing Technical Articles", Henning Schulzrinne http://www.cs.columbia.edu/~hgs/etc/writing-style.html
- [c] "Tips for Writing Technical Papers", Jennifer Widom, January 2006 http://infolab.stanford.edu/~widom/paper-writing.html