

1

A Short Story of My Life and Work

Robert Kowalski

April 2002 - revised June 2015 and July 2025

Schooldays

I was born in Bridgeport, Connecticut, USA, on 15

May 1941. I went to Saint Michael’s, a Catholic

primary school in Bridgeport, attached to a Polish

parish, but I didn’t learn much Polish. My parents

would speak Polish when they didn’t want us

children to understand. I was a good student, but

not outstanding. There were 60 children in my

class, 17 girls and 43 boys.

I went to Fairfield Prep, a boys-only Jesuit High

School. It took half an hour’s walk and two buses

each way to get to school. In my second year, my

Latin teacher, Father Walsh, trained four of us to

compete in Latin sight-translation contests. The

task was to translate a previously unseen Latin text

into English without a dictionary.

The skill needed for the task was the ability to

guess the most coherent English translation of the

Latin text, constrained by our limited knowledge of

Latin and of the subject matter of the text. Many

years later, I learned that the required technique -

of generating assumptions to solve problems

subject to constraints - is called “abduction”. Our

team took first prize in New England.

I also started to have an intellectual life outside of

school. I started reading Freud, Ruth Benedict and

Joad’s “Guide to Philosophy”. I found these books

very exciting, but they undermined my Catholic

upbringing. I still believed there had to be a single

truth, and I wanted to find out what it was. I also

wanted to get away from home and to be free to

come and go as I pleased.

University of Chicago and University of Bridgeport

For these reasons, I was attracted to the University

of Chicago, and intellectually I was not

disappointed. Among the other great ideas to

which I was exposed in my first year, I was

introduced to mathematical logic; and it seemed

to me that it might lead the way to the truth.

I got “A”s in all my subjects, except English writing

skills, in which I got a “D”. I couldn’t understand

what was wrong with my writing, but I was

determined to improve it. I reasoned that if I could

understand and solve the problems with my

writing, then I would do even better in my other

subjects.

At the beginning of my second year, I began to find

the social life at the University of Chicago very

difficult. To make matters worse, I was

overwhelmed by the assigned reading of Gibbon’s

“Decline and Fall of the Roman Empire”. Reading

about the seemingly endless impedimenta that the

Roman troops had to carry to their battles was the

last straw. I left Chicago in November of my

second year.

I spent the rest of that academic year trying to find

myself. I signed up for an expedition to find gold in

Honduras, only to abandon the journey

somewhere in Ohio. I worked for half a year in a

chemical factory as a quality control inspector.

The following academic year, I enrolled at the

University of Bridgeport and commuted, with my

brothers, Bill and Dan, from my parents’ home in

Milford. Being a student at the University of

Bridgeport was easy after Chicago. I decided to

major in Mathematics.

I couldn’t get a scholarship at first. So, I supported

myself by working in Peoples Savings Bank in the

evening, processing paper tapes of the day’s

banking transactions. I discovered how to cut the

time of the work in half, mostly by performing

multiple tasks in parallel. But, because I was paid

by the hour, I then had the more difficult problem

of preventing my pay from also being cut in half.

When I went to the scholarship office to argue my

case for getting a scholarship, I was turned down

because I didn’t participate in the extracurricular

life of the University. The fact that I was busy

working to support my studies was not deemed to

be relevant. I was told that the only solution was

to join a student club. But, because I had neither

the interest nor the time to join any of the existing

clubs, I advertised in the student newspaper to

2

announce the formation of a new club for people

who didn’t want to belong to any clubs. Soon

afterwards, I was awarded a scholarship, which

allowed me to quit my job at Peoples Savings and

to work full time as a student.

Academically, after getting my scholarship, I was

left with plenty of time for independent study.

Mostly I studied Logic. My favourite title was “The

Meaning of Meaning” by C. K. Ogden and I. A.

Richards. I also worked on the problems with my

English and started to make big improvements in

my writing style.

I took the Graduate Record Examination in

Mathematics and scored higher than any previous

student at the University of Bridgeport. The

comparison isn’t completely fair, because I had

taken the exam a year earlier, and some of the

questions were virtually the same. But it had the

desired effect. I won Woodrow Wilson and

National Science Foundation Fellowships for

graduate study. They published my photograph in

the Bridgeport Post.

Stanford and University of Warsaw

I went to Stanford to study for a PhD in

Mathematics, but my real interest was Logic. I was

still looking for the truth, and I was sure that Logic

would be the key to finding it. My best course was

axiomatic set theory with Dana Scott. He gave us

lots of theorems to prove as homework. At first my

marks were not very impressive. But Dana Scott

marked the coursework himself, and he wrote lots

of comments. My marks improved significantly as

a result.

Jon Barwise was among the other students

entering Stanford as a PhD student that year, in

1963. We were friends, but also competitors. He

discovered that Stanford had an exchange

program with the University of Warsaw, noted for

its work in mathematical logic. We both applied

for the program. I got in, but he didn’t, because he

was judged to be too young.

The exchange program started with an intensive

Polish course at the end of the summer. I didn’t

receive any formal credit for the courses I

attended at the University of Warsaw, but I didn’t

have to take any exams, and I could focus

exclusively on the logic courses. I took courses

with Helena Rasiowa, Andrzej Grzegorczyk and

Andrzej Mostowski.

I spent much of my time on extracurricular

activities. I met and visited my Polish relatives,

including my grandparents, who lived near the

Soviet border. I also met my future wife, Danusia,

a student in the Mathematics Department at the

University. After only a few months, we got

married, in February 1965.

Before going to Poland, I had no interest in politics

or current affairs. But I had been brought up

during the Cold War, and the Jesuits were rabidly

anti-communist. I expected Poland to be totally

devoid of freedom, and I was surprised that it

wasn’t nearly so bad. However, I didn’t fully

appreciate how much worse it had been soon after

the war, and how much worse it was in many

other countries in the Soviet bloc. I became much

more interested and more educated about such

matters after I retired.

When I returned to Stanford at the beginning of

the next academic year, I found it hard to convince

myself that studying complex variables and

recursion theory would lead me to the truth, and I

was upset by the war that was developing in

Vietnam. I became one of the organizers of the

protest movement and found my niche dreaming

up ideas and convincing other people to put them

into action. I had the idea of dropping anti-war

leaflets from airplanes. My flatmate, Ray Tiernan,

a childhood friend from Bridgeport, organized the

bombing campaign.

Ray and I both went up in the first few bombing

missions. We practiced over Stanford and other

places in the San Francisco area. Our first attempt

nearly ended in disaster, when the leaflets got

caught in the tail of the plane.

Our goal was to bomb the Rose Bowl football

game in Los Angeles. Ray and I worked out an

elaborate plan to conceal the registration number

http://en.wikipedia.org/wiki/C._K._Ogden
http://en.wikipedia.org/wiki/I._A._Richards
http://en.wikipedia.org/wiki/I._A._Richards

3

on the side of the plane, covering it with a false

number, which we would rip off during our

getaway in mid-fight. Unfortunately, when we

landed to cover the number in the Mohave

Dessert, before the game, the plane burst a tire,

and we were too late to get to the Rose Bowl in

time. We bombed Disney Land instead.

Eventually, Ray was arrested on our last mission,

when he went up without me.

Puerto Rico and Edinburgh

I left Stanford in the middle of the academic year.

Fortunately, I had taken enough courses to leave

with a Master’s degree. I applied to teach

Mathematics at various universities, mostly

outside the United States. I eventually accepted a

job as Assistant Professor and Acting Chairman of

the Mathematics and Physics Department at the

Inter-American University in San Juan, Puerto Rico.

I was excited by the prospect of living and working

in Puerto Rico, and I studied as much Spanish as I

could before leaving. I don’t have very clear

memories of the one year I worked in Puerto Rico,

but it convinced me that I had to start again and

finish a PhD if I wanted my colleagues to take me

as seriously as I desired. I applied to several

universities in Great Britain. Eventually I accepted

the offer of a Fellowship from Bernard Meltzer,

Head of the Meta-mathematics Unit at the

University of Edinburgh.

In the meanwhile, my first daughter, Dania, was

born. I left Puerto Rico, knowing less Spanish than

when I started, because everyone wanted to

practice their English.

We used our savings from Puerto Rico to buy a car

when we got to England, and we drove it to

Edinburgh, after a detour to Poland and Italy,

arriving in October 1967. I remember arriving at

the doorway of the Meta-mathematics Unit, and

seeing the sign: “Department of Computer

Science”. My heart sank. I hated computers,

technology and engineering more generally, but I

decided I would stick it out, get my PhD as quickly

as possible, and resume my search for the truth.

 Bernard Meltzer was working on the automation

of mathematical proofs. Although I wasn’t

convinced about the value of the research topic, I

was determined not to drop out of another PhD. I

was lucky. Alan Robinson, the inventor of

resolution, was in Edinburgh spending a year’s

sabbatical. He had just finished a paper on

semantic trees applied to theorem proving with

equality. Pat Hayes, another fresh PhD student,

and I studied Alan’s paper in minute detail. A few

months later, I wrote my first research paper, on

semantic trees, with Pat as coauthor. Pat, in the

meanwhile, visited John McCarthy at Stanford, and

together they wrote their famous paper on the

situation calculus. The two papers were published

together in 1969 in the Edinburgh Machine

Intelligence Workshop series.

I finished my PhD in just over two years; and, with

a second daughter, Tania, born in Edinburgh, I was

free to start a new life. I decided to look for an

academic job in the UK. But it wasn’t as easy as I

had hoped. I was eventually interviewed for two

jobs – one a Fellowship at Pembroke College at

Oxford University, the other a Lectureship in the

Mathematics Department at the University of

Essex.

I knew I wasn’t going to be offered the Fellowship

at Pembroke College when the Master of the

College introduced me to one of the Fellows as

“Mr. Kowalski from the University of Bridgeport”. I

didn’t get the other job either. I had to settle

instead for a postdoctoral fellowship in the Meta-

mathematics Unit in Edinburgh. My third daughter,

Janina, was born that same year.

The postdoctoral fellowship gave me plenty of

time to explore my real interests. In those days

they were mainly in the philosophy of science and

epistemology. I remember reading and being

influenced by Lakatos’ “Proofs and Refutations”,

Nelson Goodman’s “Fact, Fiction and Forecast”,

and Quine’s “Two Dogmas of Empiricism”. I didn’t

fully appreciate it at the time, but in retrospect I

was lucky that Bernard encouraged me to explore

these broader interests.

4

Lakatos documented how the history of Euler’s

theorem could be viewed as a repeated cycle of

conjectured theorems, attempted proofs,

counterexamples, and revised conjectures. My

reading of Lakatos reinforced my own

experience with research on automated

theorem-proving. It encouraged me in the view

that it is both harder and more important to

identify whether a theorem is worth proving

than it is to prove the theorem, whether or not

the theorem is worth proving. The downside is

that it is easy to make a claim about a supposed

theorem that cannot later be justified.

Other developments were attracting attention in

the world of Logic and Artificial Intelligence.

Attacks against Logic were being launched from

MIT, with declarative representations declared

as bad, and procedural representations as good.

In the face of these attacks, many of the

researchers working on Logic for theorem

proving moved into other areas. But I couldn’t

accept the view that Logic was dead.

I had been working on a form of resolution,

called SL-resolution, with Donald Kuehner, who

had been one of my mathematics teachers at

the University of Bridgeport. (I visited Donald on

one of my visits back home and convinced him

to come to Edinburgh to do his PhD. Like me, he

thrived in the British PhD environment.)

SL-resolution uses logic in a goal-directed way.

We pointed this out at the end of our paper, and

I set out to convince my colleagues that the

goal-directed approach of SL-resolution

reconciles logic with the procedural approach

advocated at MIT.

In the summer of 1971, I received an invitation

from Alain Colmerauer to visit him in Marseille.

He was working on the automation of question-

answering in natural language, and he had already

done significant work on machine translation

between English and French for weather

forecasting in Canada. When he invited me to

Marseille, he was using logic to represent the

meaning of natural language sentences and using

resolution to derive answers to questions.

Alain was interested in my work on theorem

proving and on SL-resolution in particular. My

family and I stayed with him and his family for

several days in their small flat. Alain and I worked

late into the night, discovering how to use logic to

represent grammars and how to use theorem

provers for parsing.

Logic programming

In its simplest form, a logic program is a set of

facts and rules of the form if conditions then

conclusion. The simplest way to understand

such a logic program is to think of using it to

reason bottom-up (or forwards), to derive new

facts as logical consequences of the given facts.

For example, to derive bob likes bob from the

fact that bob likes logic and the rule

if X likes logic then bob likes X.

In general, bottom-up reasoning starts with

given facts, and repeatedly unifies facts with

the conditions of rules, deriving new facts that

are instances of the conclusions of the rules.

Given a set of goals to be solved, reasoning

terminates when all the goals unify with the

given or derived facts directly, or when no

more new facts can be derived.

But logic programs can also be used to

reason top-down (or backwards), to reduce

goals to subgoals. For example, given the goal

to find an X such that bob likes X, it reduces the

goal to the subgoal of finding an X such that X

likes logic.

In general, top-down reasoning starts with

a given goal, and repeatedly unifies goals with

the conclusions of rules, reducing the goals to

subgoals that are instances of the conditions of

the rules. Different rules whose conclusion

unifies with the same goal are different ways of

trying to solve the goal. Reasoning terminates

successfully when all the subgoals derived from

one way of solving the initial goal unify with

the given facts directly.

Used to reason top-down, logic programs

can be interpreted as computer programs, in

which rules behave as goal-reduction

procedures. To emphasize this use of backward

reasoning, rules in logic programs are usually

written backwards, in the form conclusion if

conditions. For example, with top-down

reasoning, the rule bob likes X if X likes logic

can be used as a procedure:

to find an X such that bob likes X,

find an X such that X likes logic.

5

We saw that some theorem provers, like hyper-

resolution, behaved as bottom-up parsers,

deriving sentences and other phrases from

sequences of words. Other theorem-provers, like

SL-resolution, behaved as top-down parsers,

decomposing the problem of recognising or

generating sentences into subproblems of

recognising or generating other phrases and

ultimately sequences of words.

Alain invited me to visit him again for a longer

period of two months the following summer of

1972. It was during that second visit that logic

programming, as I see it, was born.

I have done my best to document the birth of logic

programming, most recently in an article about the

Marseille-Edinburgh Connection. In general terms,

it is probably fair to say that my ideas were more

theoretical and perhaps more philosophical than

Alain’s, and Alain’s ideas were more practical.

Alain once even referred to my work as “poetic”,

in a sense that I’m sure was intended to be

complementary. Alain’s work led to the design and

implementation of the logic programming

language Prolog in the same summer of 1972.

Back in Edinburgh, I embarked excitedly on

recruiting converts to the logic programming

cause, with Maarten van Emden and David Warren

being the most prominent of the earliest recruits.

Initially, Bob Boyer and J Moore were also

attracted to the idea, and it led to their work on

proving properties of programs written in Lisp.

I worked closely with Maarten, and we discovered

that computation in logic programming can be

viewed in two very different, but equivalent ways:

It can be viewed as solving a goal by proving that

the goal is a theorem which is logically implied by

the program viewed as a set of axioms. But it can

also be viewed as solving a goal by showing that

the goal is true in a unique minimal model that

makes the program true.

I didn’t work so closely with David, because he was

more focused on such practical matters as

improving the Prolog language design and

implementation, and I was happier just focussing

Proof or Truth?

The original semantics of logic programs was

the theorem-hood view that a goal is solved by

proving that it is a theorem, which follows

from the program viewed as a set of axioms.

According to the completeness theorem for

first-order logic, this is equivalent to showing

that the goal is true in all interpretations that

make the program true.

An interpretation in logic gives meaning to

the words (or symbols) of a language. For

example, the rule bob likes X if X likes logic

contains the symbols bob, likes and logic. But

these symbols, taken on their own, are

meaningless. To give them meaning, we need

to associate the constant symbols bob and

logic with individuals, and the predicate

symbol likes with a relation between

individuals.

In addition to giving a meaning to the

symbols of a language, an interpretation also

identifies the facts that are true in the

interpretation. These facts, in turn, determine

whether a sentence in the language is true or

false. For example, the rule bob likes X if X

likes logic is true if (and only if) for every

individual i in the interpretation, bob likes i is

true if i likes logic is true.

An interpretation of a set of sentences

that makes all of the sentences true is said to

be a model of the set of sentences.

Maarten and I discovered that, for a

simple logic program with no negative

conditions, there is a unique model whose true

facts coincide with the facts that are true in all

the models of the program. For simple goals

with no negative conditions, the goal is true in

all models of the program (and therefore

provable) if (and only if) the goal is true in this

unique model.

This unique model is also a minimal model,

in the sense that there is no smaller model

contained within the minimal model. We also

showed that the facts that are true in this

minimal model are all the facts that can be

derived by reasoning bottom-up from the

facts and rules in the program.

We had no idea at the time that the

minimal model view would later become the

dominant view of the semantics of logic

programming.

https://www.doc.ic.ac.uk/~rak/papers/Marseille-Edinburgh.pdf

6

on the theory. David wrote the first Prolog

compiler, and he was responsible for developing

many of the features found in Prolog today.

Edinburgh at that time was a world-renowned

centre of research in Artificial Intelligence, and I

benefited from the opportunity to discuss ideas

with other researchers, including Alan Bundy, Rod

Burstall, Michael Gordon, Donald Michie, Robin

Milner and Gordon Plotkin, who were working in

Edinburgh at that time, and with such

distinguished visitors as Aaron Sloman and Danny

Bobrow.

We also had visitors who were attracted to the

logic programming idea. They included Luis Pereira

from Lisbon, Sten Ake Tarnlund from Stockholm,

Peter Szeredi from Budapest and Maurice

Bruynooghe from Leuven. I travelled extensively in

Europe, giving talks about the new cause.

Before leaving Edinburgh and before finishing my

work on automated theorem proving, I developed

the connection graph proof procedure. Until now

there has been no proof of its completeness and

only counterexamples to certain limiting cases.

The history of unsuccessful attempts to prove

completeness reinforced my conviction that

identifying theorems is more important than

proving them. Or to put it a little differently, truth

is more important than proof.

Imperial College 1974-1981

Sometime in 1973 or 1974, I was invited to apply

for a Readership in the Theory of Computing in the

Department of Computing and Control at Imperial

College in London. A British Readership is like a

tenured Associate Professorship at an American

university, with the additional feature of being

primarily for research. It was a great opportunity

to advance my career, and it had the added

attraction of being in London, one of the most

cosmopolitan and desirable places to live in the

world. I jumped at the chance.

Negation as failure

The theorem-proving method I originally

developed for executing logic programs was a

variant of SL resolution, called SLD resolution. It

was restricted to definite clause logic programs,

in which the conclusions of rules are simple

atomic formulas, and the conditions are

conjunctions of atomic formulas, where an

atomic formula is a predicate possibly

containing variables. Goals were restricted to

conjunctions of atomic formulas.

 It soon became clear that for practical

applications it is important to extend this simple

kind of logic program by including negations of

atomic formulas in goals and in the conditions

of rules. It also became clear that the most

natural way to execute such normal logic

programs is to use negation as failure, which

interprets not p as meaning p cannot be shown.

Negation as failure can be understood as

exploiting the closed world assumption that the

logic program contains all the information about

its subject matter. For example, it is natural to

assume that a railway timetable contains all the

information about train journeys within its

geographical area. So, if it cannot be shown that

there is a train connection between two places

at a time, then there is no train connection

between the two places at the time.

Keith Clark showed in a famous paper

presented at a Logic and Databases Workshop

in 1977 in Toulouse that negation as failure can

be justified by rewriting logic programs as

definitions in which, roughly speaking, if is

shorthand for if and only if. He showed that the

structure of a proof of not p by negation as

finite failure using the if-form of logic programs

is similar to the structure of a natural deduction

proof that not p is a theorem that is logically

implied by the if-and-only-if form of the

program.

Later, other authors developed various

minimal model semantics for negation as

failure. The most notable of these are the well-

founded semantics of Van Gelder, Ross and

Schlipf and the stable model semantics of

Gelfond and Lifschitz. In these semantics for

negation, not p holds if not p is true in an

appropriate minimal model.

7

It took about a year to confirm my appointment,

partly because there was another strong

candidate, and partly because doubts were raised

about my suitability for the post. I started in

January 1975, and I was assigned to teach a

course on formal languages and automata theory

immediately upon my arrival. I knew next to

nothing about automata theory, and I had little

interest in it. Fortunately, Keith Clark, then

working as a lecturer at Queen Mary College in

London, was a keen convert to logic

programming, and he provided me with guidance

for the course. I muddled through, but it was an

unhappy introduction to the Department.

However, it wasn’t long before I was able to

redirect my teaching to the areas of logic, logic

programming, and artificial intelligence, which

were central to my interests. I had to cheat a little

in the beginning, for example by setting students

the problem of writing a Prolog interpreter in

Cobol, as a programming exercise in the

comparative programming languages course.

My first few years at Imperial College were

focused on learning enough of the basics of

Computing to do my teaching, writing my book

“Logic for Problem Solving” and promoting the

cause of logic programming in general. In this

latter pursuit, I was especially fortunate in

recruiting Chris Hogger and in helping to bring

Keith Clark into the Department. I also organised

the first Logic Programming Workshop, at Imperial

College in 1976.

The book was very hard work, and it seemed to

take forever. To make matters worse, in those

days I didn’t type, and I had to rely entirely on

others to do all the typing. The final draft was a

camera-ready copy produced on a line printer,

using ancient word-processing technology. When I

finished, I knew it would be a long time before I

wrote another book.

Alan Robinson invited me to Syracuse University in

1981. During my visit I collaborated with Ken

Bowen on amalgamating object level and meta-

level logic programming. Our goal was to combine

the two levels somewhat like the way that natural

language uses sentences both to talk about the

world and to talk about sentences themselves.

In 1978 I started a course of logic lessons for 12-

year-old children at my daughters’ middle school.

We used Prolog to represent and solve logic

problems on the Departmental computer, using a

pay phone connection. The connection would be

lost when our coins ran out.

Once we demonstrated the feasibility of teaching

logic to children, I succeeded in getting support

from the Science Research Council to develop

microProlog, a microprocessor implementation of

Prolog, for use in schools. The project employed

Frank McCabe to do the implementation and

Richard Ennals to develop and test the teaching

materials.

Amalgamating object level and meta-

level in Logical English

My investigations with Ken Bowen had the

practical objective of using logic programs to

define and implement other logics and other

computer languages without introducing

such inconsistencies as the liar’s paradox: this

sentence is false. Moreover, we were also

inspired in part by the fact that Prolog

includes such an amalgamation capability,

although its logic was not very well

understood.

I recently revisited this early work on

amalgamation by incorporating it into the

language Logical English (LE), which is

syntactic sugar for the logical core of Prolog.

We use amalgamation in LE to represent

propositional attitudes, such as belief and

obligation, and speech acts, such as telling,

asking and denying. Here is a silly example:

Bob likes a person

if the person likes logic

and Bob believes that the person likes logic.

Bob believes a proposition

if Bob trusts a person

and the person tells Bob that

 the proposition is true.

Bob trusts Alice.

Alice tells Bob that Bob likes logic is true.

https://www.doc.ic.ac.uk/~rak/papers/Logical%20English%20for%20Law%20and%20Education%20.pdf

8

 Perhaps the worst thing about my work in those

days was the fact that the MSc. course lasted

throughout the summer and deprived me of the

opportunity to get away from my normal

commitments. Earlier, both when I was a student

and when I was a postdoctoral researcher in

Edinburgh, I relied upon such opportunities to

clear my mind of details and to explore broader

intellectual horizons.

The Fifth Generation Project and the Alvey

Programme

Then everything changed. In 1981, the Ministry of

International Trade and Industry in Japan

announced the Fifth Generation Project, whose

stated goal was to leapfrog IBM in ten years’ time.

The governments of Britain, France and Germany

were invited to participate, and logic programming

was to play a dominant role. At the time, our

group at Imperial College was the leading centre

for logic programming internationally, and it was

the obvious choice for a British centre to

collaborate or compete with Japan.

The British government responded by forming a

committee chaired by John Alvey, the Director of

Research at British Telecom. The academic

community, led by the Science Research Council,

formed its own committees to advise the Alvey

Committee. I was enlisted along with many others

to help draft recommendations for the British

response. Although I was not yet a full Professor, I

was the most senior academic in Britain arguing

the case for logic programming,

It was chaos. Academics argued with fellow

academics, industrialists argued both with

academics and other industrialists - all presided

over by the British civil service. We all wanted a

slice of the action. Some of us went further,

arguing that we should follow the lead of the Fifth

Generation Project and focus on logic

programming to the detriment of other areas. That

was a big mistake.

My position in the Department deteriorated, as I

came into conflict with my academic colleagues,

who wanted the government to focus on

mainstream software engineering and formal

methods. It wasn’t much better on the national

level, where logic programming was seen as a

newcomer (and some would say an intruder) on

the Computing scene. In the end, by the time the

Alvey Committee produced its recommendations,

virtually every area of Computing and related

Electronics was singled out for special attention,

except for logic programming, which received

hardly a mention.

The British government decided to decline the

Japanese invitation and to go it alone. The “Alvey

Programme” was established, and eventually, after

much further debate, logic programming was

identified, along with all the other areas, as worthy

of special promotion. By around 1985, as a result

of the Alvey Programme and with a lot of help

from Keith Clark, the logic programming group at

Imperial College expanded to approximately 50

people, including PhD students, research

assistants, academics and support staff. These

were supported by thirteen separate, three-year

research grants. The administrative and

managerial burden was enormous. For my reward

- or consolation - I was promoted to a full

Professorship in 1982.

My position in the Department and that of the

logic programming group were strained. We

wanted to establish ourselves as a separate entity,

and the Department wanted to keep us in our

place. In the autumn of 1987, I took a six-month

leave of absence, to get away from it all.

Logic Programming for Legal Reasoning

From 1981 to 1987, my professional life was

dominated by academic politics. It was not an area

of activity to which I was naturally drawn, but an

area into which I was pushed by events around

me. Inevitably the politics interfered with my

research.

Fortunately, I was able to continue to make

contributions to research by working with PhD

students. I worked with Marek Sergot on the

application of logic programming to legal

reasoning, and along with several other members

9

of the group, including a new PhD student, Fariba

Sadri, we investigated the formalisation of the

British Nationality Act as a logic program. In the

atmosphere of the Alvey era, even this caused

controversy: Some of our critics accused us of

racism, because it was supposed that the work

must have been supported by the British

government to further its racist policies. I ended

up writing to the Guardian, a national newspaper,

to try to clear our names.

Fortunately, the assessment of our work

improved over time. In 2021, Marek, Fariba and I

received the Inaugural Stanford University CodeX

Prize. The citation states: “The authors' seminal

article, "The British Nationality Act as a Logic

Program," published in the Communications of

the ACM journal, is one of the first and best-

known works in computational law, and one of

the most widely cited papers in the field."

The Event Calculus

Marek and I also worked on the representation of

temporal reasoning, developing a calculus of

events, in the spirit of McCarthy and Hayes’

situation calculus, but focusing on the way that

events initiate and terminate facts, representing

local states of affairs. This work became a major

thread of a European Community research project,

which explored, among other applications, an

application to air traffic flow management. Murray

Shanahan further developed the event calculus

and featured it in his book about the frame

problem, which is the problem of how to reason

about the passage of time, given that most facts

about the world persist from one state of the

world to the next.

Integrity constraints

Fariba and I worked on integrity checking for

deductive databases. This work was motivated by

an understanding, shared with many other

researchers, that data in relational databases can

be understood as facts in logic programs, and that

rules in logic programs can be understood as

defining abstract data in terms of more concrete

data. In those days, such logic programs were

known as deductive databases. These days, they

are better known as Datalog.

However, it was not until I attended a talk by

Herve Gallaire and Jean-Marie Nicolas at the 1977

Logic and Databases Workshop in Toulouse that I

learned that there are two kinds of rules in

database systems: logic programming rules, which

define data, and integrity constraint rules, which

constrain the data. Their talk and their papers

motivated me to work with Fariba on integrity

checking.

When we started our work, I did not have the

more general understanding, which I have now,

that logic programming rules can be understood as

representing an agent’s beliefs, and integrity

constraints can be understood as representing an

agent’s goals.

The integrity checking method we developed had

the more modest objective of monitoring updates

that add new facts to a deductive database, and of

The event calculus

The event calculus solves the frame problem by

representing and reasoning about how events

initiate and terminate facts. The solution can be

expressed by means of a single frame axiom,

which can be written (in Logical English) as a

meta-level logic programming rule:

a fact holds at a time T2

if the fact is initiated by an event

that occurred at a time T1

that is earlier than T2

and it is not the case that

the fact is terminated by an event

that occurred at a time T

that is on or after T1 and that is before T2.

For example, an event in which an agent gives an

object to another agent at a time initiates the fact

that the other agent possesses the object at the

time, and it terminates the fact the agent

possesses the object at the time.

So, if Bob possesses a book and he gives it to

Alice, then Alice possesses the book from the

time of Bob’s giving the book to Alice, and until

she gives the book to someone else.

10

checking whether a database that satisfies

integrity constraints before an update continues

to satisfy the integrity constraints after the

update. The method reasons forward (or bottom-

up), starting from the candidate facts to be added

to the database, checking whether the addition

violates any constraints.

This integrity checking method contributed to our

later work on abductive logic programming agents

and the computer language LPS.

Abductive Logic Programming (ALP)

and Argumentation

During my six-month leave of absence, I had

hoped to work on a second book, which I

tentatively titled Logic for Knowledge

Representation. Instead, I worked mainly with

another PhD student, Kave Eshghi, on abductive

logic programming (ALP).

Abduction is a form of reasoning that solves a

goal, such as explaining an observation or creating

a plan to achieve a desired state of affairs, by

generating hypothetical “facts”. ALP includes

integrity checking, to ensure that the generated

facts satisfy any integrity constraints. For example,

the integrity constraint than nothing can be in two

places at the same time can be used to exclude a

hypothesis that a person committed a crime if it

can be shown that the person was at another

place at the time of the crime.

 Compulog

Just as my six-months leave of absence was

ending, I received an invitation from Brussels to

help organise a basic research project involving

the main academic groups in the European

Community working on logic programming. The

resulting project, Compulog, aimed to extend logic

programming, by developing a more powerful

Computational Logic. The project employed Fariba

as an academic replacement for my College work,

so that during the period 1989-91 I could work full

time as a researcher and as the project’s

coordinator. I continued the research that I started

earlier, but with greater focus than before.

I mostly worked on ALP with Francesca Toni and

Tony Kakas. We discovered that Phan Minh Dung’s

admissibility semantics for negation as failure can

be understood in terms of arguments that defend

themselves against attack from other arguments.

Confusions between two kinds of rules

It is easy to confuse two kinds of rules: logic

programs, which are like beliefs, which describe

the world; and integrity constraints, which are

like goals, which prescribe behaviour.

For example, the sentence everyone on the

bus has a ticket to ride the bus can be

understood as a description of the state of the

passengers on the bus. Or it can be understood

as a prescription that needs to be satisfied by

the passengers on the bus. Both interpretations

can be expressed with the same rule-like

syntax, if a person is on the bus then the person

has a ticket to ride the bus. But the semantics of

logic programs interprets the rule as a

description, and the semantics of integrity

constraints interprets the rule as a prescription.

I later discovered that this confusion about

the meaning of rules can help to explain

apparent errors of human reasoning in the

Wason selection task, which is possibly the

most famous psychological experiment in

deductive reasoning. In the standard version of

the task, participants are given four cards lying

on a table, with numbers on one side of the

cards and letters on the other side. They are

also given a rule that if a card has a vowel on

one side, then it has an even number on the

other side. The task is to determine which cards

need to be turned over to test whether the rule

is true or false. Typically, only 10 % of the

participants reason in accordance with the

standards of classical logic.

Cognitive psychologists have proposed a

wide variety of explanations for human

performance on the Wason task, including the

explanation that human reasoning is performed

by domain-specific methods as opposed to

general-purpose reasoning mechanisms.

Arguably, a better explanation is that it can be

hard to tell the difference between descriptive

and prescriptive rules, and that apparent errors

of reasoning can occur when the experimenter

and the participant have different

interpretations of the rules in mind.

11

Francesca and I collaborated with Dung during his

several visits to Imperial College. During one of

these visits, Dung developed an abstract

argumentation interpretation of negation as

failure, and he showed that argumentation could

be used to give semantics to other logics for

default reasoning. This work was very well

received; and, arguably, Dung’s abstract

argumentation theory is the dominant approach to

argumentation theory today.

Fujitsu

Soon after the start of the Compulog project,

Fujitsu Research Laboratories, which was one of

the main partners in the Japanese Fifth Generation

Project, supported a five-year project in our group,

focused on ALP, during the period 1990-95.

During the Fulitsu project, I established good

contacts with Ken Satoh, who had been a visitor in

our group in the early 1980s. I continued my

contacts with Ken, and I visited and collaborated

with him later in Sapporo and Tokyo, after he left

Fujitsu and I retired from Imperial College.

Initially, the Fujitsu project supported Francesca

Toni, as a PhD student. But, when the first three-

year grant for the Compulog project ended, I

transferred to the Fujitsu project and extended the

leave of absence from my College work.

Towards the end of the project, Fujitsu

encouraged me to investigate the application of

logic programming to multi-agent systems. This

made me look more closely at reactive rules in

production systems, active databases and BDI

(Belief, Desire, Intention) agent programming

languages. These investigations convinced me that

integrity constraints provide the functionality of

reactive rules in these systems. This functionality is

missing in basic logic programming. But ALP shows

how reactive rules can be combined with logic

programming in a natural way.

Back in the Department

When the Fujitsu project ended, I became slowly

reintegrated into the life of the Department. Logic

programming was beginning to go out of fashion,

and the logic programming group was no longer

seen as a threat. Indeed, my own rehabilitation

was so complete that, during the period 1994-97, I

became a member of a four-person Departmental

Executive Committee, and I was even given the

title of “Senior Deputy Head of Department”.

I’m not sure what motivated me to get so involved

in the running of the Department. Perhaps I

wanted to show that I could rise above the

parochial interests of the Logic Programming

Group and could help to look after the interests of

the Department as a whole.

Negation as failure viewed as abduction

Kave and I showed that negation as failure can

be understood in abductive terms, as generating

a negative condition not p as an abductive

hypothesis, to solve a goal.

Informally speaking, the abductive

interpretation of negation is more cautious than

the closed world assumption. It does not

conclude that not p is true if p cannot be proved.

It concludes, more tentatively, that not p can be

assumed if p cannot be proved. This

interpretation of negation can be formalised in

ALP by imposing the integrity constraints:

(1) not p and p do not both hold.

(2) either p holds or not p holds.

We tried to try to show that our abductive

procedure for negation was equivalent to the

stable model semantics of Gelfond and Lifschitz.

Our abductive procedure for negation used

an adaptation of our integrity checking

procedure for deductive databases. The

abductive procedure simulates negation as

failure, by using the integrity constraint (1) to

show that not p can be assumed to hold when p

fails to hold.

We also used the disjunctive integrity

constraint (2), to ensure that not p holds by

default if p fails to hold. However, Phan Minh

Dung argued that the integrity constraint (2) is

too strong, and he showed that a corrected

variant of our abductive procedure implements

a weaker and arguably more natural semantics

of negation as failure, namely his “admissibility

semantics”.

12

 The Department had both external and internal

problems. Externally, we suffered the same fate as

many other Departments of Computing elsewhere.

We were the poor relation of the more established

departments, and we were inadequately

resourced in comparison. When the College

decided it should do more to promote Information

Technology, it looked primarily to the Electronics

and Electrical Engineering (EEE) Department for its

lead.

 To some extent, our low standing in the College

was partially our own doing, the result of a long

history of internal conflicts between competing

groups. Perhaps it was because I had once been in

conflict with the rest of the Department myself

and because I had now made my peace that I was

so welcome on the Department’s Executive

Committee.

I began to find my teaching increasingly tedious.

The main problem was the inhibiting effect of the

need to prepare the examination questions before

presenting the course material. These

preparations were needed to ensure that there

was enough time to submit a draft of the

questions to an independent external examiner

and to make any changes required by the

examiner. Although this requirement significantly

contributed to the rigour of the examination

process, I found that it increasingly inhibited the

spontaneity and enthusiasm I could generate for

my teaching.

Head of Department

In November 1996, the then Head of Department

was so unhappy with the state of the Department

and with our relations with the College that he

resigned from his post. He agreed to stay on as

Head until the Rector found a replacement. By the

beginning of March 1997, there was still no news

from the Rector, and the rumour went around that

the Department would be broken up and

distributed between the Mathematics and the EEE

Departments. In desperation, as Senior Deputy

Head of Department, I went to talk to the Rector

myself.

My real goal was to return to full time research, to

work on my book and to be my own boss. Instead,

the Rector invited me to become Head of

Department, and I accepted. One reason that I

agreed to become Head was that I thought that it

would give me the opportunity to apply Logic to

the practical problems of the Department.

I planned to try to develop general rules to solve

problems that would otherwise involve individual,

ad hoc negotiations – such problems as deciding

academic workloads, the overheads that should be

charged on research grants, and the distribution of

overheads between the Department and grant

holders. I thought that establishing a clear set of

rules that applied to everyone alike, without

favour or malice, would take the politics out of

decision making.

At first, I looked to the College for examples of

best practice. I found a variety of methods used in

other departments to calculate and regulate

workloads, but I couldn’t convince the academic

staff in the Computing Department to try them

out. Believing in Logic to the extent that I did, I

wasn’t inclined to impose by force what I couldn’t

achieve by logical argument.

I was even less successful in getting advice from

the College about how to calculate the amount

and distribution of research grant overheads; and

this was one of the areas where some of the most

difficult problems arose in the Department. People

couldn’t agree whether research overheads should

mainly support the groups doing the research or

should support the Department as a whole. The

College had no general policy about this, and

different departments had widely different policies

and practices. Discussions in our Department

didn’t produce any consensus either.

Although I tried hard to formulate general rules, I

didn’t succeed in convincing the Department. In

addition, there were too many other problems

that needed attention. These ranged from external

problems of trying to get more resources from the

College to internal problems of allocating scarce

resources, such as office space, within the

Department. I was surprised and disappointed to

13

discover the extent to which people were unwilling

to sacrifice their own personal interests for the

greater good of the community as a whole.

I resigned as Head of Department, handing over to

my successor in July 1999, and taking early

retirement, at the age of 58, on 1st September

1999.

Professor Emeritus

Having left the Department, I planned to focus on

writing my book about the application of

Computational Logic to everyday life, aimed at a

general, non-technical audience. But first there

were other matters that needed to be cleared out

of the way, some academic and others purely

domestic.

On the domestic side, I moved with my wife from

our home in Wimbledon to a small hamlet in the

West Sussex countryside. We extended the

original seventeenth century cottage, added an

oak, timber-framed summerhouse, and created a

parking area. I did most of the planning and

project management myself, and some of the

timber framing and masonry. I enjoyed the change

from academic work.

I also enjoyed the opportunity to combine

academic work with extended visits to Japan,

Australia, Portugal, Switzerland and Venezuela.

These helped me to return to research and to

recover from my period as Head of Department.

Writers’ Workshops

Before leaving Imperial College, I started a series

of Writers’ Workshops on Logic and English for

PhD students in the Department. I continued the

Workshops after leaving the College, during

several visits to Japan, organised by Ken Satoh. In

these Workshops, the students presented short,

written abstracts of their work, and we discussed

and debated how to improve their writing by using

concepts of clarity, simplicity and coherence

inspired by Computational Logic.

I enjoyed these workshops more than my other

teaching. Compared with my normal lecture

courses, which were often a stale recitation of

predetermined conclusions, the workshops were

generally an exciting, mutual learning experience.

The students seemed to enjoy them as much as I

did. I could test my theories about the logical

nature of human thought, and the students could

see how the theories might apply to their own

practical problems of communicating their

thoughts more effectively to other people.

WHO and UNICEF

I had another opportunity to apply Computational

Logic to practical problems, when Tony Burton,

working at WHO in Geneva, contacted me in 2009.

Tony belonged to a WHO/UNICEF working group

tasked with producing annual estimates of global,

country by country, annual infant immunisation

coverage. Since 2000, the group had been

collecting immunisation data from national

authorities, together with data from international

surveys. The different kinds of data are often

inconsistent, both independently and in

combination. The group needs to reconcile

inconsistencies and publish an independent,

official estimate of the actual immunization

coverage. These estimates are often controversial

and may be disputed both by experts and by

national authorities.

Tony contacted me to see if I could help the group

formulate their informal rules and heuristics in

more rigorous, logical terms, to make their

decision making more transparent and more

consistent. Computer implementation of the rules

was not a major objective.

Tony had been considering various alternative

representations for formalising the rules, including

the use of production rules, logic programs and

argumentation. We had many discussions about

the differences and the relationships between the

alternatives.

14

Eventually, we agreed on a formalisation of the

rules in logic programming terms, which we then

implemented using tabling in XSB Prolog.

In addition to helping to ensure consistency, the

Prolog program documents the argument for

every estimate. Because the rules are

transparent, the estimates can be challenged; and

if someone puts forward a convincing

counterargument, the rules can be refined to

produce better estimates both in the disputed

case and more generally.

The WHO/UNICEF working group used the Prolog

program from 2010 to 2024. In 2024, the program

was reimplemented in R, which is now one of the

standard programming languages used in

statistical computing and data visualization. The

logic programming rules are still being used, but

they have been hand-compiled into R.

The Book: Computational Logic and Human

Thinking – How to be Artificially Intelligent

Both the Writers’ Workshops and the work with

WHO/UNICEF confirmed my conviction that

Computational Logic can really help people to

think and behave more intelligently. This helped

to encourage me in the work on the book.

When I first put this story on my webpage in

2002, I had made enough progress to

acknowledge that I was actually writing the book.

But it was proving more difficult than I had

expected to make the book accessible to a non-

technical audience.

I finally completed the book in 2011. The book

builds upon the use of ALP as a logical model of

human thinking. It extends ALP by employing ALP

as the thinking component of an intelligent agent

that is embedded an ever-changing world. The

agent’s life is a continuous cycle, in which it

observes the current state of the world and any

events that happen, thinks, and acts to change the

world in return, to satisfy its goals as well as it can.

Although it was not intended as a textbook, the

book has been used as a text in several

universities, in both computing and philosophy

departments. I taught a course based on the book

at Kyoto University in 2012. A Japanese translation

of the book was published in 2025.

ALP Agents

An ALP agent’s highest-level goals are maintenance

goals of the form if antecedent then consequent,

where the antecedent describes some features of the

world until a certain time, and the consequent

describes some features of the world after that time.

For example, if I am hungry at a time then I will eat

some food at a future time.

The agent monitors the world, to determine

whether any antecedents of any of its maintenance

goals are true; and, if an antecedent is true, the agent

derives an achievement goal to make the consequent

of the maintenance goal true in the future.

The agent’s mission in life is to satisfy its goals as

well as it can. For example, if you are hungry and you

need to eat, then it is better to eat sooner rather than

later; and it is better to eat something you like than to

eat something that tastes awful.

To help it with this mission, an intelligent agent

maintains a database of beliefs, and it updates its

beliefs with facts that describe its observations of the

state of the world and of any events that happen. The

agent’s beliefs also include rules, which define

abstract views of its concrete observations, define

composite events as combinations of primitive events,

and define plans of actions from combinations of

primitive actions.

The rules that are included in an agent’s beliefs

can be used, among other things, to reason backwards

to reduce achievement goals to achievement

subgoals. Achievement subgoals include subgoals that

are hypothetical, candidate actions. These

hypothetical actions become facts if they are chosen

for execution and they are executed successfully.

Beliefs that are rules can also be used to reason

forwards, to derive logical conclusions from both

existing facts and hypothetical facts. In particular, they

can be used to determine logical consequences of

hypothetical action facts, and to determine whether

those actions might have desirable or undesirable side

effects. This use of forward reasoning, together with

estimates of the probability of circumstances that are

outside the agent’s control, can help the agent to

make better decisions and obtain better solutions for

its goals.

15

2011 was a good year for me. Not only did I

complete the book, but I received the IJCAI Award

for Research Excellence. The citation says: "for his

contributions to logic for knowledge

representation and problem solving, including his

pioneering work on automated theorem proving

and logic programming".

The Meaning of Life

The book includes a chapter on the Meaning of

Life. Admittedly, the title of the chapter was

designed to attract attention, but one reviewer

seemed to dismiss the title altogether by pointing

out that the Life in question is that of a humble

wood louse. I was disappointed by the review,

because I intended the wood louse to be a

metaphor for agents in general. I hoped that

readers would notice that it is perfectly logical for

an agent’s life to be controlled by a production

system of instinctive, condition-action rules, and

for the agent not to be aware that its behaviour

has been designed to satisfy the higher-level goals

of an intelligent designer.

The Frame Problem Revisited

Having completed the book, and having argued

the case for understanding the goals, beliefs and

actions of an intelligent agent in ALP terms, I

returned to more technical work with Fariba

Sadri, developing a computer implementation of

ALP for practical applications. We soon

discovered that there was a huge obstacle to be

overcome, namely the problem of dealing

efficiently with change of state.

The event calculus and other solutions of the

frame problem reason correctly about change of

state, but they are not efficient enough for most

practical applications. We addressed this problem

by developing a more practical solution

employing destructive change of state.

Logic Production Systems (LPS)

Fariba and I employed destructive change of state

in a variant of ALP, for use as a practical computer

language for programming, databases and artificial

intelligence. We called the language LPS, because

the language is a logical reconstruction of

production systems.

Destructive change of state

The event calculus and other solutions of the

frame problem all make it necessary to reason,

in one way or another, that, for every fact that

holds before the occurrence of an event, the fact

continues to hold after the event, unless it is

terminated by the event. Given a history of

events, these solutions, in effect, either compute

or store the entire history of all states, from the

beginning to the end of time. This certainly is not

practical for even a moderately large amount of

data.

All practical computer languages solve the

frame problem by computing and storing only a

single current state. Given one or more events

that occur simultaneously, these languages

destructively update the current state, deleting

any data that is terminated by the events, and

adding any data that is initiated by the events.

They leave any existing data that is not

terminated by the events simply untouched,

without reasoning that they are untouched. This

solution enables efficient computation, but it

creates the new problem of understanding its

logical semantics. To solve this new problem, we

had to reconsider the semantics of logic

programming and ALP.

We solved the new problem by replacing the

theorem-hood view of the relationship between

goals and beliefs by the model-generation view.

The model-generation view justifies the use

of destructive updates, because it simply

constructs a model piecemeal. The model is

constructed in the same way that the real world

unfolds, existing at any given time only in its

current state, and changing state by destroying

its past. But in its totality, the real world is the

complete history of all its states and events,

past, present and future. The frame axiom is

true, not because it is used to reason about

change of state, but because it is an emergent

property that is true in this complete history of

the world. In contrast, in the theorem-hood

view, destructive change of state is hard to

justify, because it amounts to changing the

axioms in the middle of an attempted proof of a

theorem.

16

We focussed on production systems because we

wanted to show that, like production systems, LPS

can be understood both as a scaled down model of

human thinking and as a practical language for

computer applications. For our logical

reconstruction, in addition to justifying destructive

change of state, we needed to show that

condition-action rules in production systems can

be reformulated as integrity constraints (or goals).

I investigated the related problem of how to deal

with conflicting obligations and contrary-to-duty

obligations with Ken Satoh. We argued that

obligations can be understood as goals in ALP. To

say that p is obligatory, is to say that p is a goal and

it must be true in all best possible worlds. To say

that p is obligatory, but that if p is violated then q

is obligatory, means that the real goal is p or q, and

that models in which p is true are better than

models in which q is true. We argued that this

approach solves several “paradoxes” in the logic of

obligations, and we published our work in the

Journal of Philosophical Logic.

Our work on LPS was concerned with more

practical issues of developing a usable

implementation of LPS. The first implementations

were done as MSc student projects in Prolog.

Occasionally, I would test an implementation using

small examples written in LPS. When the examples

did not work as I expected, I would study the

Prolog implementation to see whether the

implementation or the example was the source of

the problem. Eventually, I decided to reprogram

parts of the implementation myself. To my

surprise, I discovered that I enjoyed programming

in Prolog.

Computational Logic for Use in Teaching (CLOUT)

In 2016, we received a research grant from

Imperial College to create a new implementation

of LPS, together with example LPS programs, for

teaching logic and computing in secondary school.

We recruited Miguel Calejo in Lisbon, to produce a

professional implementation of LPS using SWISH,

an online interface for SWI Prolog.

I enjoyed writing programs in LPS, illustrating the

wide range of pedagogical examples that can be

implemented naturally in LPS. The programs

included such examples as the prisoner’s dilemma,

the dining philosophers, rock-paper-scissors, map

colouring, toy blocks worlds, Conway’s game of

life, self-driving cars and bank account

transactions.

To make the examples more appealing, Miguel

developed an elegant declarative language for

associating images with facts. The images change

as the facts change over time, animating the

history of the world generated by the program’s

actions and other events. Many of the examples

and animations can be found at LPS on SWISH and

in the paper Combining Logic Programming and

Imperative Programming in LPS.

We organised several workshops at Imperial

College for high school teachers to introduce them

to our new, user-friendly implementation of LPS,

and we advertised the workshops in the

Computing at Schools (CAS) Forum of the British

Computer Society. The workshops were well

received, and the teachers who participated were

very enthusiastic. But we didn’t have any

connections inside the educational establishment,

and the new language and its applications that we

were promoting were in direct competition with

the computer science curriculum supported by the

establishment.

Because we did not have sufficient resources to

campaign successfully for our radically different

approach to educational computing, we shifted

our attention to other applications of LPS.

Logical Contracts

The competition for CLOUT came not only from

more established approaches to teaching

computing, but also from other applications of LPS

competing for our attention. The most pressing of

these were applications of LPS to blockchain

systems, smart contracts and law.

https://le.logicalcontracts.com/example/LogicalEnglish.swinb
http://www.doc.ic.ac.uk/~rak/papers/Combining%20LP%20and%20IP%20in%20LPS.pdf
http://www.doc.ic.ac.uk/~rak/papers/Combining%20LP%20and%20IP%20in%20LPS.pdf

17

We started to investigate blockchain applications

around 2017, when the excitement surrounding

blockchains and cryptocurrencies, such as Bitcoin,

was near its peak. Miguel was the driving force

behind this work, and we recruited my former PhD

student, Jacinto Dávila, to join us. We tentatively

explored the creation of a company, Logical

Contracts, in association with Imperial College, to

logically represent legal contracts in a language

that is close to natural, human language, but

executable by computer. The plan was to use

logical contracts implemented in LPS to:

• monitor compliance of the parties to a

contract,

• enforce compliance, by automatically

performing actions to fulfil obligations,

and/or by issuing warnings and remedial

actions to respond to violations of

obligations,

• explore logical consequences of hypothetical

scenarios, and

• query and update the Ethereum blockchain.

We developed several proof-of-concept

applications, and we showed how other smart

contract applications could be reimplemented

naturally in LPS.

We obtained support from several small

companies, implementing applications in such

areas as international swaps and derivatives

contracts, and accountancy tax law. However, the

more applications we developed, the more we

could see that the blockchain technology was

incidental to the main need, which is for a

technology-agnostic computational representation

that is close to natural language. This need led, in

turn, to a new focus for our work, namely to the

development of a controlled natural language,

Logical English, which is syntactic sugar for Prolog

or LPS, and which can be read and understood

without technical training, but with only a reading

knowledge of English.

Compared with ordinary English, not only is Logical

English computable, but in many cases, it can be

easier to understand. Just as importantly, because

it is unambiguous, it is harder to misunderstand.

The 50-Year Anniversary of Prolog

In 2022, the Prolog Heritage Association and the

Association for Logic Programming celebrated the

birth of Prolog in 1972. In addition to a special

Prolog Symposium held in Paris and to other

celebrations that year, we established the Prolog

Education Group (PEG), to promote logical and

computation thinking through Prolog. The Group

has been meeting online for this purpose biweekly

since its inception.

Logic Production Systems (LPS)

Condition-action rules in ordinary production

systems do not have a logical interpretation.

They have a seemingly logical syntax as rules of

the form if conditions then actions. But the

“inference engine” that executes the rules

employs a procedure called “conflict

resolution”, which does not have a logical

semantics.

For example, given the rules

if I am hungry then I eat some food

if I am sleepy then I go to sleep

and given the facts that I am hungry and I am

sleepy at the same time, production systems

employ conflict resolution to select only one of

the two actions I eat some food or I go to sleep,

and it performs the selected action immediately.

If the rules were sentences with a logical

semantics, the inference engine should derive

both actions, instead of only one, as logical

consequences of the facts and rules.

In the logical reconstruction of condition-

action rules in LPS, the rules are rewritten as

maintenance goals with explicit times, and the

constraint that a person cannot eat and sleep at

the same time is expressed explicitly as an

additional goal. The LPS inference engine

correctly derives both the conclusion that I eat

some food at a future time and the conclusion

that I go to sleep at a future time, but where the

two future times need to be different.

There can be many worlds that satisfy the

goals, differing by the times at which they make

the two actions true. Some of these worlds may

be better than others, and the implementation

of LPS needs to choose between them, either by

making sensible decisions itself, or by enacting

the preferences of the goals’ designer. Deciding

how to deal with preferences has been the

biggest challenge in the design of LPS.

18

Because the logical core of Prolog is much simpler

than ALP and LPS, it is also much easier to learn.

Students can learn logic and computing implicitly

by using Prolog to explore the logical

consequences of facts and rules, starting with

given examples, and updating and modifying the

examples with new facts, rules and assumptions.

Although the logic underpinning Prolog lacks some

of the features of classical logic, it includes such

powerful features as negation as failure and the

amalgamation of object language and

metalanguage, which are lacking in classical logic.

Negation as failure makes it possible to represent

rules and exceptions; and the amalgamation of

object language and metalanguage makes it

possible to express propositional attitudes and

speech acts. These features enable many

applications, such as the representation and

execution of legal texts, for which classical logic is

inadequate. They also make it possible to use

Prolog to support logical and computational

thinking at all levels and in all areas of the

educational curriculum.

These legal and educational applications of Prolog

can be facilitated by employing Logical English

syntax, using such simple sentences as Alice likes a

person if the person likes logic, which can be

understood even by young children without any

formal training in logic, mathematics or

computing.

Runnable and modifiable examples of Logical

English can be found in Logical English on SWISH

and in the papers Logical English for Law and

Education and Logical English Demonstration.

Logic in the Age of AI

During most of the 20th century, symbolic

approaches, many of them based on the use of

logic, dominated AI. This changed, around 10-15

years ago, when so-called sub-symbolic

approaches, using artificial neural networks

trained on vast amounts of data and using

powerful graphic processing units (GPUs), began to

make huge advances. These advances include large

language models (LLMs), which generate natural

language text in response to human prompting.

Because LLMs are trained on virtually the whole of

human knowledge on the internet, they are

beginning to achieve human levels of general

intelligence, and they are on the verge of achieving

a form of superintelligence. These developments

are creating a huge challenge for what it means to

be human in the age of AI.

To address this challenge, we need to improve our

understanding of what it means for a human or

artificial agent to be intelligent. With such an

understanding, we can hope to improve our own

human intelligence and to exploit artificial

intelligence for our own human goals.

Arguably, human intelligence can collaborate with

artificial intelligence in much the same way that

conscious logical thinking collaborates with

subconscious intuitive thinking in the dual process

cognitive model of human thinking. In humans,

logical thinking monitors intuitive thinking,

endorsing it in some cases and overriding it in

other cases. Similarly, when humans and AI

collaborate, human logical thinking can monitor AI

thinking and can control the use of AI for human

purposes. The Prolog Education Group is

reorienting its mission for this task, and I am

contributing to this effort.

Wikipedia

Although it is not directly related to PEG or to

developments in AI, I have also participated in

educational activities as an editor of Wikipedia, off

and on since around 2006.

I am fascinated by Wikipedia as an experiment in

democratic decision-making, where anyone can

edit an article and present their point of view, and

decisions are made by trying to reach consensus

through argument and discussion. It intrigues me

to think that such a consensus-building approach

might work for solving other problems, such as

deciding how to run a country or how to settle a

dispute between different countries.

While my own experience has been generally

positive, it hasn’t been without its problems,

including editing wars in the early days. More

https://le.logicalcontracts.com/example/LogicalEnglish.swinb
https://www.doc.ic.ac.uk/~rak/papers/Logical%20English%20for%20Law%20and%20Education%20.pdf
https://www.doc.ic.ac.uk/~rak/papers/Logical%20English%20for%20Law%20and%20Education%20.pdf
https://www.doc.ic.ac.uk/~rak/papers/Logical_English_Demonstration_for_ICLP.pdf

19

recently, several of my edits have been reverted,

because it was argued that they did not represent

a neutral point of view or that they exaggerated

the importance of my own point of view. These

reversions discouraged me for a while, but I am

slowly recovering my confidence to begin anew.

But what amazes me, more than anything else, is

the reluctance of other experts to contribute to

Wikipedia even when there are glaring mistakes or

imbalances that anyone with even a modest

knowledge of the subject can recognise. It reminds

me of the way that many people do not take part

in political elections, because they think that their

vote won’t make any difference.

Life in the Stone Age

I don’t work all the time. The best time for me to

work is in the morning, and then intermittently

throughout the day. Some days I don’t work

consciously at all.

Living as I do in West Sussex, I don’t have to go far

to immerse myself in the English countryside. The

South Downs are not far away, and I can also walk

straight out of my garden or across the road into

the adjacent fields. My neighbour, who farms the

fields, lets me wander over them with few

constraints.

One day about eighteen years ago, I was walking in

the field across the road when I noticed some

worked flint lying on the ground. For several years,

I had been looking for prehistoric flint artefacts off

and on, mostly in the South Downs, where there

are Neolithic flint mines. I soon discovered that

within a mile of my home, there were the remains

of prehistoric activity, mostly dating to the

Mesolithic period about 8,000 years ago. Since my

first discovery, I identified three separate

Mesolithic sites and collected a large number of

flint artefacts, including microliths, arrowheads,

scrappers and knives.

About twelve years ago, I teamed up with the

distinguished archaeologist and lithics expert,

Andrew David, shortly after his retirement.

Together, we explored my Mesolithic sites in

greater detail, and we published an article

documenting our discoveries.

In the last few years, however, coinciding in part

with disruptions caused by COVID, I have scaled

back my archaeological activities, and I have been

spending more of my time in the garden, planting

and shaping trees in the Japanese, niwaki style.

Search for Truth

Looking back at my academic work, I like to see it

as a search for truth, with Logic leading the way.

The search began in secondary school, triggered by

my extracurricular reading of such books as Joad’s

“Guide to Philosophy”. When I read about Plato’s

philosophy of ideas, I was convinced that it was

true. And when I read about Aristotle’s empiricism,

I was convinced again, but this time that a contrary

philosophy was true. It couldn’t be that both

philosophies were true. But Joad offered no

guidance to decide between the two apparent

truths.

The first-year mathematics course at the

University of Chicago introduced me to

mathematical logic, which seemed almost magical

in its use of symbolism. Mathematical logic

seemed to be able to conjure truth out of nothing.

I decided to major in mathematics at the

University of Bridgeport, partly because

mathematics is the language of mathematical

logic, and partly because it seemed to show that

indisputable truth is possible. I hoped it might help

me to find other truths elsewhere.

My search continued at Stanford and the

University of Warsaw. But I began to doubt that

mathematics would help to solve such life and

death problems as the war in Vietnam. I never

questioned the relevance of Logic, because to my

mind the logic of common-sense left no doubt that

the war was wrong. But I questioned the purpose

of mathematical logic, because it seemed to me

that it had become a branch of pure mathematics,

and that it had lost touch with the original purpose

of Logic, to help people think more clearly and

more effectively.

https://www.doc.ic.ac.uk/~rak/papers/David%20and%20Kowalski.pdf

20

Ideally, I would have continued my studies of Logic

in a philosophy department. But I didn’t have the

necessary academic background. I found myself

doing a PhD in computer science at the University

of Edinburgh instead. Fortunately, the PhD, which

was about using symbolic logic to mechanically

prove mathematical theorems, didn’t require any

knowledge of conventional computing.

The topic of my PhD was not one that I chose for

myself. Nor was it on the shortest path to my

ultimate goal. But it gave me an entry into the field

of artificial intelligence, where I worked on the

development of logical methods that could be

implemented by means of computers. Although I

had little enthusiasm for the goals of artificial

intelligence, I learned that the same logical

methods I was developing to prove mathematical

theorems, could also be used for other, less

mathematical kinds of problem solving. I was

encouraged by the thought that the same logical

methods, used to make computers more

intelligent, could also be used by people to

improve their own human intelligence.

My work has also benefited from attacks against

logic by other researchers working in artificial

intelligence. These attacks drew attention to

weaknesses in my theories and helped me to

identify areas where the theories needed to be

improved.

Perhaps the biggest weakness of traditional

mathematical and philosophical logics is that they

focus on pure, disembodied thought. Even logics

like the event calculus, which are concerned with

actions, events and changing states of affairs, just

deal with thinking about change, without actually

performing it. I believe that the model-generation

semantics solves this problem.

I am still searching for the truth. I started by

believing that the truth comes from proving

theorems as logical consequences of axioms. But

now I believe that the truth comes from

performing actions to satisfy our goals. But,

because other agents have other goals and

perform other actions, our combined actions can

conflict with one another, and our actions can be

self-defeating.

The actions we perform come from two sources:

from subconscious, intuitive associations of

conditions and actions, and from conscious

reasoning to derive actions to satisfy goals (by

abduction). Both sources of candidate actions are

valuable, and both can be improved. Intuitive,

condition-action associations can be improved by

gaining more experience and by reinforcement

learning. Conscious reasoning can be improved by

better logical reasoning and by gaining more

knowledge, consisting of true beliefs.

But knowledge alone is useless. It becomes useful

when Logic uses knowledge to derive candidate

actions from goals. The more knowledge we have,

the more options we have for satisfying our goals,

and therefore the more options we have for

avoiding conflicts with other agents. Logic can also

use knowledge to derive possible consequences of

candidate actions. This can help us to identify both

positive and negative consequences of those

actions, and it can help us to decide which actions

to perform.

What are the implications for Education? Yes, we

need to teach AI, because in doing so, we need to

teach what it means for any agent, human or

artificial, to be intelligent. But we shouldn’t stop at

honouring the intelligence of AI, no matter how

powerful it may become. Moreover, there are not

many lessons to be learned from sub-symbolic AI

for improving human condition-action

associations. This needs to be learned from human

experience.

But we can and should teach the lessons we have

learned from developing symbolic, logic-based AI,

because they can also be used by humans, to

improve our own human, logical thinking skills.

Moreover, we can use such logical systems as

Prolog and Logical English, to help to support

those lessons with motivating and educationally

relevant examples.

