A Short Story of My Life and Work
Robert Kowalski
April 2002 - revised June 2015 and July 2025

Schooldays

| was born in Bridgeport, Connecticut, USA, on 15
May 1941. | went to Saint Michael’s, a Catholic
primary school in Bridgeport, attached to a Polish
parish, but | didn’t learn much Polish. My parents
would speak Polish when they didn’t want us
children to understand. | was a good student, but
not outstanding. There were 60 children in my
class, 17 girls and 43 boys.

| went to Fairfield Prep, a boys-only Jesuit High
School. It took half an hour’s walk and two buses
each way to get to school. In my second year, my
Latin teacher, Father Walsh, trained four of us to
compete in Latin sight-translation contests. The
task was to translate a previously unseen Latin text
into English without a dictionary.

The skill needed for the task was the ability to
guess the most coherent English translation of the
Latin text, constrained by our limited knowledge of
Latin and of the subject matter of the text. Many
years later, | learned that the required technique -
of generating assumptions to solve problems
subject to constraints - is called “abduction”. Our
team took first prize in New England.

| also started to have an intellectual life outside of
school. | started reading Freud, Ruth Benedict and
Joad’s “Guide to Philosophy”. | found these books
very exciting, but they undermined my Catholic
upbringing. | still believed there had to be a single
truth, and | wanted to find out what it was. | also
wanted to get away from home and to be free to
come and go as | pleased.

University of Chicago and University of Bridgeport

For these reasons, | was attracted to the University
of Chicago, and intellectually | was not
disappointed. Among the other great ideas to
which | was exposed in my first year, | was
introduced to mathematical logic; and it seemed
to me that it might lead the way to the truth.

I got “A”s in all my subjects, except English writing
skills, in which | got a “D”. | couldn’t understand
what was wrong with my writing, but | was
determined to improve it. | reasoned that if | could
understand and solve the problems with my
writing, then | would do even better in my other
subjects.

At the beginning of my second year, | began to find
the social life at the University of Chicago very
difficult. To make matters worse, | was
overwhelmed by the assigned reading of Gibbon’s
“Decline and Fall of the Roman Empire”. Reading
about the seemingly endless impedimenta that the
Roman troops had to carry to their battles was the
last straw. | left Chicago in November of my
second year.

| spent the rest of that academic year trying to find
myself. | signed up for an expedition to find gold in
Honduras, only to abandon the journey
somewhere in Ohio. | worked for half a year in a
chemical factory as a quality control inspector.

The following academic year, | enrolled at the
University of Bridgeport and commuted, with my
brothers, Bill and Dan, from my parents’ home in
Milford. Being a student at the University of
Bridgeport was easy after Chicago. | decided to
major in Mathematics.

| couldn’t get a scholarship at first. So, | supported
myself by working in Peoples Savings Bank in the
evening, processing paper tapes of the day’s
banking transactions. | discovered how to cut the
time of the work in half, mostly by performing
multiple tasks in parallel. But, because | was paid
by the hour, | then had the more difficult problem
of preventing my pay from also being cut in half.

When | went to the scholarship office to argue my
case for getting a scholarship, | was turned down
because | didn’t participate in the extracurricular
life of the University. The fact that | was busy
working to support my studies was not deemed to
be relevant. | was told that the only solution was
to join a student club. But, because | had neither
the interest nor the time to join any of the existing
clubs, | advertised in the student newspaper to

announce the formation of a new club for people
who didn’t want to belong to any clubs. Soon
afterwards, | was awarded a scholarship, which
allowed me to quit my job at Peoples Savings and
to work full time as a student.

Academically, after getting my scholarship, | was
left with plenty of time for independent study.
Mostly I studied Logic. My favourite title was “The
Meaning of Meaning” by C. K. Ogden and I. A.
Richards. | also worked on the problems with my
English and started to make big improvements in
my writing style.

| took the Graduate Record Examination in
Mathematics and scored higher than any previous
student at the University of Bridgeport. The
comparison isn’t completely fair, because | had
taken the exam a year earlier, and some of the
qguestions were virtually the same. But it had the
desired effect. | won Woodrow Wilson and
National Science Foundation Fellowships for
graduate study. They published my photograph in
the Bridgeport Post.

Stanford and University of Warsaw

| went to Stanford to study for a PhD in
Mathematics, but my real interest was Logic. | was
still looking for the truth, and | was sure that Logic
would be the key to finding it. My best course was
axiomatic set theory with Dana Scott. He gave us
lots of theorems to prove as homework. At first my
marks were not very impressive. But Dana Scott
marked the coursework himself, and he wrote lots
of comments. My marks improved significantly as
a result.

Jon Barwise was among the other students
entering Stanford as a PhD student that year, in
1963. We were friends, but also competitors. He
discovered that Stanford had an exchange
program with the University of Warsaw, noted for
its work in mathematical logic. We both applied
for the program. | got in, but he didn’t, because he
was judged to be too young.

The exchange program started with an intensive
Polish course at the end of the summer. | didn’t

receive any formal credit for the courses |
attended at the University of Warsaw, but | didn’t
have to take any exams, and | could focus
exclusively on the logic courses. | took courses
with Helena Rasiowa, Andrzej Grzegorczyk and
Andrzej Mostowski.

| spent much of my time on extracurricular
activities. | met and visited my Polish relatives,
including my grandparents, who lived near the
Soviet border. | also met my future wife, Danusia,
a student in the Mathematics Department at the
University. After only a few months, we got
married, in February 1965.

Before going to Poland, | had no interest in politics
or current affairs. But | had been brought up
during the Cold War, and the Jesuits were rabidly
anti-communist. | expected Poland to be totally
devoid of freedom, and | was surprised that it
wasn’t nearly so bad. However, | didn’t fully
appreciate how much worse it had been soon after
the war, and how much worse it was in many
other countries in the Soviet bloc. | became much
more interested and more educated about such
matters after | retired.

When | returned to Stanford at the beginning of
the next academic year, | found it hard to convince
myself that studying complex variables and
recursion theory would lead me to the truth, and |
was upset by the war that was developing in
Vietnam. | became one of the organizers of the
protest movement and found my niche dreaming
up ideas and convincing other people to put them
into action. | had the idea of dropping anti-war
leaflets from airplanes. My flatmate, Ray Tiernan,
a childhood friend from Bridgeport, organized the
bombing campaign.

Ray and | both went up in the first few bombing
missions. We practiced over Stanford and other
places in the San Francisco area. Our first attempt
nearly ended in disaster, when the leaflets got
caught in the tail of the plane.

Our goal was to bomb the Rose Bowl! football
game in Los Angeles. Ray and | worked out an
elaborate plan to conceal the registration number

http://en.wikipedia.org/wiki/C._K._Ogden
http://en.wikipedia.org/wiki/I._A._Richards
http://en.wikipedia.org/wiki/I._A._Richards

on the side of the plane, covering it with a false
number, which we would rip off during our
getaway in mid-fight. Unfortunately, when we
landed to cover the number in the Mohave
Dessert, before the game, the plane burst a tire,
and we were too late to get to the Rose Bowl in
time. We bombed Disney Land instead.

Eventually, Ray was arrested on our last mission,
when he went up without me.

Puerto Rico and Edinburgh

| left Stanford in the middle of the academic year.
Fortunately, | had taken enough courses to leave
with a Master’s degree. | applied to teach
Mathematics at various universities, mostly
outside the United States. | eventually accepted a
job as Assistant Professor and Acting Chairman of
the Mathematics and Physics Department at the

Inter-American University in San Juan, Puerto Rico.

| was excited by the prospect of living and working
in Puerto Rico, and | studied as much Spanish as |
could before leaving. | don’t have very clear
memories of the one year | worked in Puerto Rico,
but it convinced me that | had to start again and
finish a PhD if | wanted my colleagues to take me
as seriously as | desired. | applied to several
universities in Great Britain. Eventually | accepted
the offer of a Fellowship from Bernard Meltzer,
Head of the Meta-mathematics Unit at the
University of Edinburgh.

In the meanwhile, my first daughter, Dania, was
born. | left Puerto Rico, knowing less Spanish than
when | started, because everyone wanted to
practice their English.

We used our savings from Puerto Rico to buy a car
when we got to England, and we drove it to
Edinburgh, after a detour to Poland and lItaly,
arriving in October 1967. | remember arriving at
the doorway of the Meta-mathematics Unit, and
seeing the sign: “Department of Computer
Science”. My heart sank. | hated computers,
technology and engineering more generally, but |
decided | would stick it out, get my PhD as quickly
as possible, and resume my search for the truth.

Bernard Meltzer was working on the automation
of mathematical proofs. Although | wasn’t
convinced about the value of the research topic, |
was determined not to drop out of another PhD. |
was lucky. Alan Robinson, the inventor of
resolution, was in Edinburgh spending a year’s
sabbatical. He had just finished a paper on
semantic trees applied to theorem proving with
equality. Pat Hayes, another fresh PhD student,
and | studied Alan’s paper in minute detail. A few
months later, | wrote my first research paper, on
semantic trees, with Pat as coauthor. Pat, in the
meanwhile, visited John McCarthy at Stanford, and
together they wrote their famous paper on the
situation calculus. The two papers were published
together in 1969 in the Edinburgh Machine
Intelligence Workshop series.

| finished my PhD in just over two years; and, with
a second daughter, Tania, born in Edinburgh, | was
free to start a new life. | decided to look for an
academic job in the UK. But it wasn’t as easy as |
had hoped. | was eventually interviewed for two
jobs —one a Fellowship at Pembroke College at
Oxford University, the other a Lectureship in the
Mathematics Department at the University of
Essex.

| knew | wasn’t going to be offered the Fellowship
at Pembroke College when the Master of the
College introduced me to one of the Fellows as
“Mr. Kowalski from the University of Bridgeport”. |
didn’t get the other job either. | had to settle
instead for a postdoctoral fellowship in the Meta-
mathematics Unit in Edinburgh. My third daughter,
Janina, was born that same year.

The postdoctoral fellowship gave me plenty of
time to explore my real interests. In those days
they were mainly in the philosophy of science and
epistemology. | remember reading and being
influenced by Lakatos’ “Proofs and Refutations”,
Nelson Goodman’s “Fact, Fiction and Forecast”,
and Quine’s “Two Dogmas of Empiricism”. | didn’t
fully appreciate it at the time, but in retrospect |
was lucky that Bernard encouraged me to explore
these broader interests.

Lakatos documented how the history of Euler’s
theorem could be viewed as a repeated cycle of
conjectured theorems, attempted proofs,
counterexamples, and revised conjectures. My
reading of Lakatos reinforced my own
experience with research on automated
theorem-proving. It encouraged me in the view
that it is both harder and more important to
identify whether a theorem is worth proving
than it is to prove the theorem, whether or not
the theorem is worth proving. The downside is
that it is easy to make a claim about a supposed
theorem that cannot later be justified.

Other developments were attracting attention in
the world of Logic and Artificial Intelligence.
Attacks against Logic were being launched from
MIT, with declarative representations declared
as bad, and procedural representations as good.
In the face of these attacks, many of the
researchers working on Logic for theorem
proving moved into other areas. But | couldn’t
accept the view that Logic was dead.

| had been working on a form of resolution,
called SL-resolution, with Donald Kuehner, who
had been one of my mathematics teachers at
the University of Bridgeport. (I visited Donald on
one of my visits back home and convinced him
to come to Edinburgh to do his PhD. Like me, he
thrived in the British PhD environment.)

SL-resolution uses logic in a goal-directed way.
We pointed this out at the end of our paper, and
| set out to convince my colleagues that the
goal-directed approach of SL-resolution
reconciles logic with the procedural approach
advocated at MIT.

In the summer of 1971, | received an invitation
from Alain Colmerauer to visit him in Marseille.
He was working on the automation of question-
answering in natural language, and he had already
done significant work on machine translation
between English and French for weather
forecasting in Canada. When he invited me to
Marseille, he was using logic to represent the
meaning of natural language sentences and using
resolution to derive answers to questions.

Logic programming

In its simplest form, a logic program is a set of
facts and rules of the form if conditions then
conclusion. The simplest way to understand
such a logic program is to think of using it to
reason bottom-up (or forwards), to derive new
facts as logical consequences of the given facts.
For example, to derive bob likes bob from the
fact that bob likes logic and the rule

if X likes logic then bob likes X.

In general, bottom-up reasoning starts with
given facts, and repeatedly unifies facts with
the conditions of rules, deriving new facts that
are instances of the conclusions of the rules.
Given a set of goals to be solved, reasoning
terminates when all the goals unify with the
given or derived facts directly, or when no
more new facts can be derived.

But logic programs can also be used to
reason top-down (or backwards), to reduce
goals to subgoals. For example, given the goal
to find an X such that bob likes X, it reduces the
goal to the subgoal of finding an X such that X
likes logic.

In general, top-down reasoning starts with
a given goal, and repeatedly unifies goals with
the conclusions of rules, reducing the goals to
subgoals that are instances of the conditions of
the rules. Different rules whose conclusion
unifies with the same goal are different ways of
trying to solve the goal. Reasoning terminates
successfully when all the subgoals derived from
one way of solving the initial goal unify with
the given facts directly.

Used to reason top-down, logic programs
can be interpreted as computer programs, in
which rules behave as goal-reduction
procedures. To emphasize this use of backward
reasoning, rules in logic programs are usually
written backwards, in the form conclusion if
conditions. For example, with top-down
reasoning, the rule bob likes X if X likes logic
can be used as a procedure:

to find an X such that bob likes X,

find an X such that X likes logic.

Alain was interested in my work on theorem
proving and on SL-resolution in particular. My
family and | stayed with him and his family for
several days in their small flat. Alain and | worked
late into the night, discovering how to use logic to
represent grammars and how to use theorem
provers for parsing.

We saw that some theorem provers, like hyper-
resolution, behaved as bottom-up parsers,
deriving sentences and other phrases from
sequences of words. Other theorem-provers, like
SL-resolution, behaved as top-down parsers,
decomposing the problem of recognising or
generating sentences into subproblems of
recognising or generating other phrases and
ultimately sequences of words.

Alain invited me to visit him again for a longer
period of two months the following summer of
1972. It was during that second visit that logic
programming, as | see it, was born.

| have done my best to document the birth of logic
programming, most recently in an article about the
Marseille-Edinburgh Connection. In general terms,

it is probably fair to say that my ideas were more
theoretical and perhaps more philosophical than
Alain’s, and Alain’s ideas were more practical.
Alain once even referred to my work as “poetic”,
in a sense that I’'m sure was intended to be
complementary. Alain’s work led to the design and
implementation of the logic programming
language Prolog in the same summer of 1972.

Back in Edinburgh, | embarked excitedly on
recruiting converts to the logic programming
cause, with Maarten van Emden and David Warren
being the most prominent of the earliest recruits.
Initially, Bob Boyer and J Moore were also
attracted to the idea, and it led to their work on
proving properties of programs written in Lisp.

| worked closely with Maarten, and we discovered
that computation in logic programming can be
viewed in two very different, but equivalent ways:
It can be viewed as solving a goal by proving that
the goal is a theorem which is logically implied by
the program viewed as a set of axioms. But it can
also be viewed as solving a goal by showing that
the goal is true in a unique minimal model that
makes the program true.

| didn’t work so closely with David, because he was
more focused on such practical matters as
improving the Prolog language design and
implementation, and | was happier just focussing

Proof or Truth?

The original semantics of logic programs was
the theorem-hood view that a goal is solved by
proving that it is a theorem, which follows
from the program viewed as a set of axioms.
According to the completeness theorem for
first-order logic, this is equivalent to showing
that the goal is true in all interpretations that
make the program true.

An interpretation in logic gives meaning to
the words (or symbols) of a language. For
example, the rule bob likes X if X likes logic
contains the symbols bob, likes and logic. But
these symbols, taken on their own, are
meaningless. To give them meaning, we need
to associate the constant symbols bob and
logic with individuals, and the predicate
symbol likes with a relation between
individuals.

In addition to giving a meaning to the
symbols of a language, an interpretation also
identifies the facts that are true in the
interpretation. These facts, in turn, determine
whether a sentence in the language is true or
false. For example, the rule bob likes X if X
likes logic is true if (and only if) for every
individual i in the interpretation, bob likes i is
true if i likes logic is true.

An interpretation of a set of sentences
that makes all of the sentences true is said to
be a model of the set of sentences.

Maarten and | discovered that, for a
simple logic program with no negative
conditions, there is a unique model whose true
facts coincide with the facts that are true in all
the models of the program. For simple goals
with no negative conditions, the goal is true in
all models of the program (and therefore
provable) if (and only if) the goal is true in this
unique model.

This unique model is also a minimal model,
in the sense that there is no smaller model
contained within the minimal model. We also
showed that the facts that are true in this
minimal model are all the facts that can be
derived by reasoning bottom-up from the
facts and rules in the program.

We had no idea at the time that the
minimal model view would later become the
dominant view of the semantics of logic
programming.

https://www.doc.ic.ac.uk/~rak/papers/Marseille-Edinburgh.pdf

on the theory. David wrote the first Prolog
compiler, and he was responsible for developing
many of the features found in Prolog today.

Edinburgh at that time was a world-renowned
centre of research in Artificial Intelligence, and |
benefited from the opportunity to discuss ideas
with other researchers, including Alan Bundy, Rod
Burstall, Michael Gordon, Donald Michie, Robin
Milner and Gordon Plotkin, who were working in
Edinburgh at that time, and with such
distinguished visitors as Aaron Sloman and Danny
Bobrow.

We also had visitors who were attracted to the
logic programming idea. They included Luis Pereira
from Lisbon, Sten Ake Tarnlund from Stockholm,
Peter Szeredi from Budapest and Maurice
Bruynooghe from Leuven. | travelled extensively in
Europe, giving talks about the new cause.

Before leaving Edinburgh and before finishing my
work on automated theorem proving, | developed
the connection graph proof procedure. Until now
there has been no proof of its completeness and
only counterexamples to certain limiting cases.
The history of unsuccessful attempts to prove
completeness reinforced my conviction that
identifying theorems is more important than
proving them. Or to put it a little differently, truth
is more important than proof.

Imperial College 1974-1981

Sometime in 1973 or 1974, | was invited to apply
for a Readership in the Theory of Computing in the
Department of Computing and Control at Imperial
College in London. A British Readership is like a
tenured Associate Professorship at an American
university, with the additional feature of being
primarily for research. It was a great opportunity
to advance my career, and it had the added
attraction of being in London, one of the most
cosmopolitan and desirable places to live in the
world. | jumped at the chance.

Negation as failure

The theorem-proving method | originally
developed for executing logic programs was a
variant of SL resolution, called SLD resolution. It
was restricted to definite clause logic programs,
in which the conclusions of rules are simple
atomic formulas, and the conditions are
conjunctions of atomic formulas, where an
atomic formula is a predicate possibly
containing variables. Goals were restricted to
conjunctions of atomic formulas.

It soon became clear that for practical
applications it is important to extend this simple
kind of logic program by including negations of
atomic formulas in goals and in the conditions
of rules. It also became clear that the most
natural way to execute such normal logic
programes is to use negation as failure, which
interprets not p as meaning p cannot be shown.

Negation as failure can be understood as
exploiting the closed world assumption that the
logic program contains all the information about
its subject matter. For example, it is natural to
assume that a railway timetable contains all the
information about train journeys within its
geographical area. So, if it cannot be shown that
there is a train connection between two places
at a time, then there is no train connection
between the two places at the time.

Keith Clark showed in a famous paper
presented at a Logic and Databases Workshop
in 1977 in Toulouse that negation as failure can
be justified by rewriting logic programs as
definitions in which, roughly speaking, if is
shorthand for if and only if. He showed that the
structure of a proof of not p by negation as
finite failure using the if-form of logic programs
is similar to the structure of a natural deduction
proof that not p is a theorem that is logically
implied by the if-and-only-if form of the
program.

Later, other authors developed various
minimal model semantics for negation as
failure. The most notable of these are the well-
founded semantics of Van Gelder, Ross and
Schlipf and the stable model semantics of
Gelfond and Lifschitz. In these semantics for
negation, not p holds if not p is true in an
appropriate minimal model.

It took about a year to confirm my appointment,
partly because there was another strong
candidate, and partly because doubts were raised
about my suitability for the post. | started in
January 1975, and | was assigned to teach a
course on formal languages and automata theory
immediately upon my arrival. | knew next to
nothing about automata theory, and | had little
interest in it. Fortunately, Keith Clark, then
working as a lecturer at Queen Mary College in
London, was a keen convert to logic
programming, and he provided me with guidance
for the course. | muddled through, but it was an
unhappy introduction to the Department.

However, it wasn’t long before | was able to
redirect my teaching to the areas of logic, logic
programming, and artificial intelligence, which
were central to my interests. | had to cheat a little
in the beginning, for example by setting students
the problem of writing a Prolog interpreter in
Cobol, as a programming exercise in the
comparative programming languages course.

My first few years at Imperial College were
focused on learning enough of the basics of
Computing to do my teaching, writing my book
“Logic for Problem Solving” and promoting the
cause of logic programming in general. In this
latter pursuit, | was especially fortunate in
recruiting Chris Hogger and in helping to bring
Keith Clark into the Department. | also organised
the first Logic Programming Workshop, at Imperial
College in 1976.

The book was very hard work, and it seemed to
take forever. To make matters worse, in those
days | didn’t type, and | had to rely entirely on
others to do all the typing. The final draft was a
camera-ready copy produced on a line printer,
using ancient word-processing technology. When |
finished, | knew it would be a long time before |
wrote another book.

Alan Robinson invited me to Syracuse University in
1981. During my visit | collaborated with Ken
Bowen on amalgamating object level and meta-
level logic programming. Our goal was to combine
the two levels somewhat like the way that natural

Amalgamating object level and meta-
level in Logical English
My investigations with Ken Bowen had the
practical objective of using logic programs to
define and implement other logics and other
computer languages without introducing
such inconsistencies as the liar’s paradox: this
sentence is false. Moreover, we were also
inspired in part by the fact that Prolog
includes such an amalgamation capability,
although its logic was not very well
understood.

| recently revisited this early work on
amalgamation by incorporating it into the
language Logical English (LE), which is
syntactic sugar for the logical core of Prolog.
We use amalgamation in LE to represent
propositional attitudes, such as belief and
obligation, and speech acts, such as telling,
asking and denying. Here is a silly example:

Bob likes a person
if the person likes logic
and Bob believes that the person likes logic.

Bob believes a proposition

if Bob trusts a person

and the person tells Bob that
the proposition is true.

Bob trusts Alice.
Alice tells Bob that Bob likes logic is true.

language uses sentences both to talk about the
world and to talk about sentences themselves.

In 1978 | started a course of logic lessons for 12-
year-old children at my daughters’ middle school.
We used Prolog to represent and solve logic
problems on the Departmental computer, using a
pay phone connection. The connection would be
lost when our coins ran out.

Once we demonstrated the feasibility of teaching
logic to children, | succeeded in getting support
from the Science Research Council to develop
microProlog, a microprocessor implementation of
Prolog, for use in schools. The project employed
Frank McCabe to do the implementation and
Richard Ennals to develop and test the teaching
materials.

https://www.doc.ic.ac.uk/~rak/papers/Logical%20English%20for%20Law%20and%20Education%20.pdf

Perhaps the worst thing about my work in those
days was the fact that the MSc. course lasted
throughout the summer and deprived me of the
opportunity to get away from my normal
commitments. Earlier, both when | was a student
and when | was a postdoctoral researcher in
Edinburgh, | relied upon such opportunities to
clear my mind of details and to explore broader
intellectual horizons.

The Fifth Generation Project and the Alvey
Programme

Then everything changed. In 1981, the Ministry of
International Trade and Industry in Japan
announced the Fifth Generation Project, whose
stated goal was to leapfrog IBM in ten years’ time.
The governments of Britain, France and Germany
were invited to participate, and logic programming
was to play a dominant role. At the time, our
group at Imperial College was the leading centre
for logic programming internationally, and it was
the obvious choice for a British centre to
collaborate or compete with Japan.

The British government responded by forming a
committee chaired by John Alvey, the Director of
Research at British Telecom. The academic
community, led by the Science Research Council,
formed its own committees to advise the Alvey
Committee. | was enlisted along with many others
to help draft recommendations for the British
response. Although | was not yet a full Professor, |
was the most senior academic in Britain arguing
the case for logic programming,

It was chaos. Academics argued with fellow
academics, industrialists argued both with
academics and other industrialists - all presided
over by the British civil service. We all wanted a
slice of the action. Some of us went further,
arguing that we should follow the lead of the Fifth
Generation Project and focus on logic
programming to the detriment of other areas. That
was a big mistake.

My position in the Department deteriorated, as |
came into conflict with my academic colleagues,
who wanted the government to focus on

mainstream software engineering and formal
methods. It wasn’t much better on the national
level, where logic programming was seen as a
newcomer (and some would say an intruder) on
the Computing scene. In the end, by the time the
Alvey Committee produced its recommendations,
virtually every area of Computing and related
Electronics was singled out for special attention,
except for logic programming, which received
hardly a mention.

The British government decided to decline the
Japanese invitation and to go it alone. The “Alvey
Programme” was established, and eventually, after
much further debate, logic programming was
identified, along with all the other areas, as worthy
of special promotion. By around 1985, as a result
of the Alvey Programme and with a lot of help
from Keith Clark, the logic programming group at
Imperial College expanded to approximately 50
people, including PhD students, research
assistants, academics and support staff. These
were supported by thirteen separate, three-year
research grants. The administrative and
managerial burden was enormous. For my reward
- or consolation - | was promoted to a full
Professorship in 1982.

My position in the Department and that of the
logic programming group were strained. We
wanted to establish ourselves as a separate entity,
and the Department wanted to keep us in our
place. In the autumn of 1987, | took a six-month
leave of absence, to get away from it all.

Logic Programming for Legal Reasoning

From 1981 to 1987, my professional life was
dominated by academic politics. It was not an area
of activity to which | was naturally drawn, but an
area into which | was pushed by events around
me. Inevitably the politics interfered with my
research.

Fortunately, | was able to continue to make
contributions to research by working with PhD
students. | worked with Marek Sergot on the
application of logic programming to legal
reasoning, and along with several other members

of the group, including a new PhD student, Fariba
Sadri, we investigated the formalisation of the
British Nationality Act as a logic program. In the
atmosphere of the Alvey era, even this caused
controversy: Some of our critics accused us of
racism, because it was supposed that the work
must have been supported by the British
government to further its racist policies. | ended
up writing to the Guardian, a national newspaper,
to try to clear our names.

Fortunately, the assessment of our work
improved over time. In 2021, Marek, Fariba and |
received the Inaugural Stanford University CodeX
Prize. The citation states: “The authors' seminal
article, "The British Nationality Act as a Logic
Program," published in the Communications of
the ACM journal, is one of the first and best-
known works in computational law, and one of
the most widely cited papers in the field."

The Event Calculus

Marek and | also worked on the representation of
temporal reasoning, developing a calculus of
events, in the spirit of McCarthy and Hayes’
situation calculus, but focusing on the way that
events initiate and terminate facts, representing
local states of affairs. This work became a major
thread of a European Community research project,
which explored, among other applications, an
application to air traffic flow management. Murray
Shanahan further developed the event calculus
and featured it in his book about the frame
problem, which is the problem of how to reason
about the passage of time, given that most facts
about the world persist from one state of the
world to the next.

Integrity constraints

Fariba and | worked on integrity checking for
deductive databases. This work was motivated by
an understanding, shared with many other
researchers, that data in relational databases can
be understood as facts in logic programs, and that
rules in logic programs can be understood as
defining abstract data in terms of more concrete
data. In those days, such logic programs were

The event calculus

The event calculus solves the frame problem by
representing and reasoning about how events
initiate and terminate facts. The solution can be
expressed by means of a single frame axiom,
which can be written (in Logical English) as a
meta-level logic programming rule:

a fact holds at a time T2

if the fact is initiated by an event

that occurred at a time T1

that is earlier than T2

and it is not the case that

the fact is terminated by an event

that occurred at a time T

that is on or after T1 and that is before T2.

For example, an event in which an agent gives an
object to another agent at a time initiates the fact
that the other agent possesses the object at the
time, and it terminates the fact the agent
possesses the object at the time.

So, if Bob possesses a book and he gives it to
Alice, then Alice possesses the book from the
time of Bob’s giving the book to Alice, and until
she gives the book to someone else.

known as deductive databases. These days, they
are better known as Datalog.

However, it was not until | attended a talk by
Herve Gallaire and Jean-Marie Nicolas at the 1977
Logic and Databases Workshop in Toulouse that |
learned that there are two kinds of rules in
database systems: logic programming rules, which
define data, and integrity constraint rules, which
constrain the data. Their talk and their papers
motivated me to work with Fariba on integrity
checking.

When we started our work, | did not have the
more general understanding, which | have now,
that logic programming rules can be understood as
representing an agent’s beliefs, and integrity
constraints can be understood as representing an
agent’s goals.

The integrity checking method we developed had
the more modest objective of monitoring updates
that add new facts to a deductive database, and of

checking whether a database that satisfies
integrity constraints before an update continues
to satisfy the integrity constraints after the
update. The method reasons forward (or bottom-
up), starting from the candidate facts to be added
to the database, checking whether the addition
violates any constraints.

This integrity checking method contributed to our
later work on abductive logic programming agents
and the computer language LPS.

Abductive Logic Programming (ALP)
and Argumentation

During my six-month leave of absence, | had
hoped to work on a second book, which |
tentatively titled Logic for Knowledge
Representation. Instead, | worked mainly with
another PhD student, Kave Eshghi, on abductive
logic programming (ALP).

Abduction is a form of reasoning that solves a
goal, such as explaining an observation or creating
a plan to achieve a desired state of affairs, by
generating hypothetical “facts”. ALP includes
integrity checking, to ensure that the generated
facts satisfy any integrity constraints. For example,
the integrity constraint than nothing can be in two
places at the same time can be used to exclude a
hypothesis that a person committed a crime if it
can be shown that the person was at another
place at the time of the crime.

Compulog

Just as my six-months leave of absence was
ending, | received an invitation from Brussels to
help organise a basic research project involving
the main academic groups in the European
Community working on logic programming. The
resulting project, Compulog, aimed to extend logic
programming, by developing a more powerful
Computational Logic. The project employed Fariba
as an academic replacement for my College work,
so that during the period 1989-91 | could work full
time as a researcher and as the project’s
coordinator. | continued the research that | started
earlier, but with greater focus than before.

Confusions between two kinds of rules

It is easy to confuse two kinds of rules: logic
programs, which are like beliefs, which describe
the world; and integrity constraints, which are
like goals, which prescribe behaviour.

For example, the sentence everyone on the
bus has a ticket to ride the bus can be
understood as a description of the state of the
passengers on the bus. Or it can be understood
as a prescription that needs to be satisfied by
the passengers on the bus. Both interpretations
can be expressed with the same rule-like
syntax, if a person is on the bus then the person
has a ticket to ride the bus. But the semantics of
logic programs interprets the rule as a
description, and the semantics of integrity
constraints interprets the rule as a prescription.

| later discovered that this confusion about
the meaning of rules can help to explain
apparent errors of human reasoning in the
Wason selection task, which is possibly the
most famous psychological experiment in
deductive reasoning. In the standard version of
the task, participants are given four cards lying
on a table, with numbers on one side of the
cards and letters on the other side. They are
also given a rule that if a card has a vowel on
one side, then it has an even number on the
other side. The task is to determine which cards
need to be turned over to test whether the rule
is true or false. Typically, only 10 % of the
participants reason in accordance with the
standards of classical logic.

Cognitive psychologists have proposed a
wide variety of explanations for human
performance on the Wason task, including the
explanation that human reasoning is performed
by domain-specific methods as opposed to
general-purpose reasoning mechanisms.
Arguably, a better explanation is that it can be
hard to tell the difference between descriptive
and prescriptive rules, and that apparent errors
of reasoning can occur when the experimenter
and the participant have different
interpretations of the rules in mind.

I mostly worked on ALP with Francesca Toni and
Tony Kakas. We discovered that Phan Minh Dung’s
admissibility semantics for negation as failure can
be understood in terms of arguments that defend
themselves against attack from other arguments.

10

Francesca and | collaborated with Dung during his
several visits to Imperial College. During one of
these visits, Dung developed an abstract
argumentation interpretation of negation as
failure, and he showed that argumentation could
be used to give semantics to other logics for
default reasoning. This work was very well
received; and, arguably, Dung’s abstract
argumentation theory is the dominant approach to
argumentation theory today.

Fujitsu

Soon after the start of the Compulog project,
Fujitsu Research Laboratories, which was one of
the main partners in the Japanese Fifth Generation
Project, supported a five-year project in our group,
focused on ALP, during the period 1990-95.

During the Fulitsu project, | established good
contacts with Ken Satoh, who had been a visitor in
our group in the early 1980s. | continued my
contacts with Ken, and | visited and collaborated
with him later in Sapporo and Tokyo, after he left
Fujitsu and | retired from Imperial College.

Initially, the Fujitsu project supported Francesca
Toni, as a PhD student. But, when the first three-
year grant for the Compulog project ended, |
transferred to the Fujitsu project and extended the
leave of absence from my College work.

Towards the end of the project, Fujitsu
encouraged me to investigate the application of
logic programming to multi-agent systems. This
made me look more closely at reactive rules in
production systems, active databases and BDI
(Belief, Desire, Intention) agent programming
languages. These investigations convinced me that
integrity constraints provide the functionality of
reactive rules in these systems. This functionality is
missing in basic logic programming. But ALP shows
how reactive rules can be combined with logic
programming in a natural way.

Back in the Department

When the Fujitsu project ended, | became slowly
reintegrated into the life of the Department. Logic

Negation as failure viewed as abduction
Kave and | showed that negation as failure can
be understood in abductive terms, as generating
a negative condition not p as an abductive
hypothesis, to solve a goal.

Informally speaking, the abductive
interpretation of negation is more cautious than
the closed world assumption. It does not
conclude that not p is true if p cannot be proved.
It concludes, more tentatively, that not p can be
assumed if p cannot be proved. This
interpretation of negation can be formalised in
ALP by imposing the integrity constraints:

(1) not p and p do not both hold.
(2) either p holds or not p holds.

We tried to try to show that our abductive
procedure for negation was equivalent to the
stable model semantics of Gelfond and Lifschitz.

Our abductive procedure for negation used
an adaptation of our integrity checking
procedure for deductive databases. The
abductive procedure simulates negation as
failure, by using the integrity constraint (1) to
show that not p can be assumed to hold when p
fails to hold.

We also used the disjunctive integrity
constraint (2), to ensure that not p holds by
default if p fails to hold. However, Phan Minh
Dung argued that the integrity constraint (2) is
too strong, and he showed that a corrected
variant of our abductive procedure implements
a weaker and arguably more natural semantics
of negation as failure, namely his “admissibility
semantics”.

programming was beginning to go out of fashion,
and the logic programming group was no longer
seen as a threat. Indeed, my own rehabilitation
was so complete that, during the period 1994-97, |
became a member of a four-person Departmental
Executive Committee, and | was even given the
title of “Senior Deputy Head of Department”.

I’'m not sure what motivated me to get so involved
in the running of the Department. Perhaps |
wanted to show that | could rise above the
parochial interests of the Logic Programming
Group and could help to look after the interests of
the Department as a whole.

11

The Department had both external and internal
problems. Externally, we suffered the same fate as
many other Departments of Computing elsewhere.
We were the poor relation of the more established
departments, and we were inadequately
resourced in comparison. When the College
decided it should do more to promote Information
Technology, it looked primarily to the Electronics
and Electrical Engineering (EEE) Department for its
lead.

To some extent, our low standing in the College
was partially our own doing, the result of a long
history of internal conflicts between competing
groups. Perhaps it was because | had once been in
conflict with the rest of the Department myself
and because | had now made my peace that | was
so welcome on the Department’s Executive
Committee.

| began to find my teaching increasingly tedious.
The main problem was the inhibiting effect of the
need to prepare the examination questions before
presenting the course material. These
preparations were needed to ensure that there
was enough time to submit a draft of the
guestions to an independent external examiner
and to make any changes required by the
examiner. Although this requirement significantly
contributed to the rigour of the examination
process, | found that it increasingly inhibited the
spontaneity and enthusiasm | could generate for
my teaching.

Head of Department

In November 1996, the then Head of Department
was so unhappy with the state of the Department
and with our relations with the College that he
resigned from his post. He agreed to stay on as
Head until the Rector found a replacement. By the
beginning of March 1997, there was still no news
from the Rector, and the rumour went around that
the Department would be broken up and
distributed between the Mathematics and the EEE
Departments. In desperation, as Senior Deputy
Head of Department, | went to talk to the Rector
myself.

My real goal was to return to full time research, to
work on my book and to be my own boss. Instead,
the Rector invited me to become Head of
Department, and | accepted. One reason that |
agreed to become Head was that | thought that it
would give me the opportunity to apply Logic to
the practical problems of the Department.

| planned to try to develop general rules to solve
problems that would otherwise involve individual,
ad hoc negotiations — such problems as deciding
academic workloads, the overheads that should be
charged on research grants, and the distribution of
overheads between the Department and grant
holders. | thought that establishing a clear set of
rules that applied to everyone alike, without
favour or malice, would take the politics out of
decision making.

At first, | looked to the College for examples of
best practice. | found a variety of methods used in
other departments to calculate and regulate
workloads, but | couldn’t convince the academic
staff in the Computing Department to try them
out. Believing in Logic to the extent that | did, |
wasn’t inclined to impose by force what | couldn’t
achieve by logical argument.

| was even less successful in getting advice from
the College about how to calculate the amount
and distribution of research grant overheads; and
this was one of the areas where some of the most
difficult problems arose in the Department. People
couldn’t agree whether research overheads should
mainly support the groups doing the research or
should support the Department as a whole. The
College had no general policy about this, and
different departments had widely different policies
and practices. Discussions in our Department
didn’t produce any consensus either.

Although | tried hard to formulate general rules, |
didn’t succeed in convincing the Department. In
addition, there were too many other problems
that needed attention. These ranged from external
problems of trying to get more resources from the
College to internal problems of allocating scarce
resources, such as office space, within the
Department. | was surprised and disappointed to

12

discover the extent to which people were unwilling
to sacrifice their own personal interests for the
greater good of the community as a whole.

| resigned as Head of Department, handing over to
my successor in July 1999, and taking early
retirement, at the age of 58, on 1st September
1999.

Professor Emeritus

Having left the Department, | planned to focus on
writing my book about the application of
Computational Logic to everyday life, aimed at a
general, non-technical audience. But first there
were other matters that needed to be cleared out
of the way, some academic and others purely
domestic.

On the domestic side, | moved with my wife from
our home in Wimbledon to a small hamlet in the
West Sussex countryside. We extended the
original seventeenth century cottage, added an
oak, timber-framed summerhouse, and created a
parking area. | did most of the planning and
project management myself, and some of the
timber framing and masonry. | enjoyed the change
from academic work.

| also enjoyed the opportunity to combine
academic work with extended visits to Japan,
Australia, Portugal, Switzerland and Venezuela.
These helped me to return to research and to
recover from my period as Head of Department.

Writers’ Workshops

Before leaving Imperial College, | started a series
of Writers” Workshops on Logic and English for
PhD students in the Department. | continued the
Workshops after leaving the College, during
several visits to Japan, organised by Ken Satoh. In
these Workshops, the students presented short,
written abstracts of their work, and we discussed
and debated how to improve their writing by using
concepts of clarity, simplicity and coherence
inspired by Computational Logic.

| enjoyed these workshops more than my other
teaching. Compared with my normal lecture
courses, which were often a stale recitation of
predetermined conclusions, the workshops were
generally an exciting, mutual learning experience.
The students seemed to enjoy them as much as |
did. | could test my theories about the logical
nature of human thought, and the students could
see how the theories might apply to their own
practical problems of communicating their
thoughts more effectively to other people.

WHO and UNICEF

| had another opportunity to apply Computational
Logic to practical problems, when Tony Burton,
working at WHO in Geneva, contacted me in 2009.

Tony belonged to a WHO/UNICEF working group
tasked with producing annual estimates of global,
country by country, annual infant immunisation
coverage. Since 2000, the group had been
collecting immunisation data from national
authorities, together with data from international
surveys. The different kinds of data are often
inconsistent, both independently and in
combination. The group needs to reconcile
inconsistencies and publish an independent,
official estimate of the actual immunization
coverage. These estimates are often controversial
and may be disputed both by experts and by
national authorities.

Tony contacted me to see if | could help the group
formulate their informal rules and heuristics in
more rigorous, logical terms, to make their
decision making more transparent and more
consistent. Computer implementation of the rules
was not a major objective.

Tony had been considering various alternative
representations for formalising the rules, including
the use of production rules, logic programs and
argumentation. We had many discussions about
the differences and the relationships between the
alternatives.

13

Eventually, we agreed on a formalisation of the
rules in logic programming terms, which we then
implemented using tabling in XSB Prolog.

In addition to helping to ensure consistency, the
Prolog program documents the argument for
every estimate. Because the rules are
transparent, the estimates can be challenged; and
if someone puts forward a convincing
counterargument, the rules can be refined to
produce better estimates both in the disputed
case and more generally.

The WHO/UNICEF working group used the Prolog
program from 2010 to 2024. In 2024, the program
was reimplemented in R, which is now one of the
standard programming languages used in
statistical computing and data visualization. The
logic programming rules are still being used, but
they have been hand-compiled into R.

The Book: Computational Logic and Human
Thinking — How to be Artificially Intelligent

Both the Writers” Workshops and the work with
WHO/UNICEF confirmed my conviction that
Computational Logic can really help people to
think and behave more intelligently. This helped
to encourage me in the work on the book.

When [first put this story on my webpage in
2002, | had made enough progress to
acknowledge that | was actually writing the book.
But it was proving more difficult than | had
expected to make the book accessible to a non-
technical audience.

| finally completed the book in 2011. The book
builds upon the use of ALP as a logical model of
human thinking. It extends ALP by employing ALP
as the thinking component of an intelligent agent
that is embedded an ever-changing world. The
agent’s life is a continuous cycle, in which it
observes the current state of the world and any
events that happen, thinks, and acts to change the

world in return, to satisfy its goals as well as it can.

Although it was not intended as a textbook, the
book has been used as a text in several

ALP Agents

An ALP agent’s highest-level goals are maintenance
goals of the form if antecedent then consequent,
where the antecedent describes some features of the
world until a certain time, and the consequent
describes some features of the world after that time.
For example, if | am hungry at a time then | will eat
some food at a future time.

The agent monitors the world, to determine
whether any antecedents of any of its maintenance
goals are true; and, if an antecedent is true, the agent
derives an achievement goal to make the consequent
of the maintenance goal true in the future.

The agent’s mission in life is to satisfy its goals as
well as it can. For example, if you are hungry and you
need to eat, then it is better to eat sooner rather than
later; and it is better to eat something you like than to
eat something that tastes awful.

To help it with this mission, an intelligent agent
maintains a database of beliefs, and it updates its
beliefs with facts that describe its observations of the
state of the world and of any events that happen. The
agent’s beliefs also include rules, which define
abstract views of its concrete observations, define
composite events as combinations of primitive events,
and define plans of actions from combinations of
primitive actions.

The rules that are included in an agent’s beliefs
can be used, among other things, to reason backwards
to reduce achievement goals to achievement
subgoals. Achievement subgoals include subgoals that
are hypothetical, candidate actions. These
hypothetical actions become facts if they are chosen
for execution and they are executed successfully.

Beliefs that are rules can also be used to reason
forwards, to derive logical conclusions from both
existing facts and hypothetical facts. In particular, they
can be used to determine logical consequences of
hypothetical action facts, and to determine whether
those actions might have desirable or undesirable side
effects. This use of forward reasoning, together with
estimates of the probability of circumstances that are
outside the agent’s control, can help the agent to
make better decisions and obtain better solutions for
its goals.

universities, in both computing and philosophy
departments. | taught a course based on the book
at Kyoto University in 2012. A Japanese translation
of the book was published in 2025.

14

2011 was a good year for me. Not only did |
complete the book, but | received the IJCAI Award
for Research Excellence. The citation says: "for his
contributions to logic for knowledge
representation and problem solving, including his
pioneering work on automated theorem proving
and logic programming".

The Meaning of Life

The book includes a chapter on the Meaning of
Life. Admittedly, the title of the chapter was
designed to attract attention, but one reviewer
seemed to dismiss the title altogether by pointing
out that the Life in question is that of a humble
wood louse. | was disappointed by the review,
because | intended the wood louse to be a
metaphor for agents in general. | hoped that
readers would notice that it is perfectly logical for
an agent’s life to be controlled by a production
system of instinctive, condition-action rules, and
for the agent not to be aware that its behaviour
has been designed to satisfy the higher-level goals
of an intelligent designer.

The Frame Problem Revisited

Having completed the book, and having argued
the case for understanding the goals, beliefs and
actions of an intelligent agent in ALP terms, |
returned to more technical work with Fariba
Sadri, developing a computer implementation of
ALP for practical applications. We soon
discovered that there was a huge obstacle to be
overcome, namely the problem of dealing
efficiently with change of state.

The event calculus and other solutions of the
frame problem reason correctly about change of
state, but they are not efficient enough for most
practical applications. We addressed this problem
by developing a more practical solution
employing destructive change of state.

Logic Production Systems (LPS)
Fariba and | employed destructive change of state

in a variant of ALP, for use as a practical computer
language for programming, databases and artificial

Destructive change of state

The event calculus and other solutions of the
frame problem all make it necessary to reason,
in one way or another, that, for every fact that
holds before the occurrence of an event, the fact
continues to hold after the event, unless it is
terminated by the event. Given a history of
events, these solutions, in effect, either compute
or store the entire history of all states, from the
beginning to the end of time. This certainly is not
practical for even a moderately large amount of
data.

All practical computer languages solve the
frame problem by computing and storing only a
single current state. Given one or more events
that occur simultaneously, these languages
destructively update the current state, deleting
any data that is terminated by the events, and
adding any data that is initiated by the events.
They leave any existing data that is not
terminated by the events simply untouched,
without reasoning that they are untouched. This
solution enables efficient computation, but it
creates the new problem of understanding its
logical semantics. To solve this new problem, we
had to reconsider the semantics of logic
programming and ALP.

We solved the new problem by replacing the
theorem-hood view of the relationship between
goals and beliefs by the model-generation view.

The model-generation view justifies the use
of destructive updates, because it simply
constructs a model piecemeal. The model is
constructed in the same way that the real world
unfolds, existing at any given time only in its
current state, and changing state by destroying
its past. But in its totality, the real world is the
complete history of all its states and events,
past, present and future. The frame axiom is
true, not because it is used to reason about
change of state, but because it is an emergent
property that is true in this complete history of
the world. In contrast, in the theorem-hood
view, destructive change of state is hard to
justify, because it amounts to changing the
axioms in the middle of an attempted proof of a
theorem.

intelligence. We called the language LPS, because
the language is a logical reconstruction of
production systems.

15

We focussed on production systems because we
wanted to show that, like production systems, LPS
can be understood both as a scaled down model of
human thinking and as a practical language for
computer applications. For our logical
reconstruction, in addition to justifying destructive
change of state, we needed to show that
condition-action rules in production systems can
be reformulated as integrity constraints (or goals).

| investigated the related problem of how to deal
with conflicting obligations and contrary-to-duty
obligations with Ken Satoh. We argued that
obligations can be understood as goals in ALP. To
say that p is obligatory, is to say that p is a goal and
it must be true in all best possible worlds. To say
that p is obligatory, but that if p is violated then g
is obligatory, means that the real goal is p or g, and
that models in which p is true are better than
models in which g is true. We argued that this
approach solves several “paradoxes” in the logic of
obligations, and we published our work in the
Journal of Philosophical Logic.

Our work on LPS was concerned with more
practical issues of developing a usable
implementation of LPS. The first implementations
were done as MSc student projects in Prolog.
Occasionally, | would test an implementation using
small examples written in LPS. When the examples
did not work as | expected, | would study the
Prolog implementation to see whether the
implementation or the example was the source of
the problem. Eventually, | decided to reprogram
parts of the implementation myself. To my
surprise, | discovered that | enjoyed programming
in Prolog.

Computational Logic for Use in Teaching (CLOUT)

In 2016, we received a research grant from
Imperial College to create a new implementation
of LPS, together with example LPS programs, for
teaching logic and computing in secondary school.
We recruited Miguel Calejo in Lisbon, to produce a
professional implementation of LPS using SWISH,
an online interface for SWI Prolog.

| enjoyed writing programs in LPS, illustrating the
wide range of pedagogical examples that can be
implemented naturally in LPS. The programs
included such examples as the prisoner’s dilemma,
the dining philosophers, rock-paper-scissors, map
colouring, toy blocks worlds, Conway’s game of
life, self-driving cars and bank account
transactions.

To make the examples more appealing, Miguel
developed an elegant declarative language for
associating images with facts. The images change
as the facts change over time, animating the
history of the world generated by the program’s
actions and other events. Many of the examples
and animations can be found at LPS on SWISH and
in the paper Combining Logic Programming and

Imperative Programming in LPS.

We organised several workshops at Imperial
College for high school teachers to introduce them
to our new, user-friendly implementation of LPS,
and we advertised the workshops in the
Computing at Schools (CAS) Forum of the British
Computer Society. The workshops were well
received, and the teachers who participated were
very enthusiastic. But we didn’t have any
connections inside the educational establishment,
and the new language and its applications that we
were promoting were in direct competition with
the computer science curriculum supported by the
establishment.

Because we did not have sufficient resources to
campaign successfully for our radically different
approach to educational computing, we shifted
our attention to other applications of LPS.

Logical Contracts

The competition for CLOUT came not only from
more established approaches to teaching
computing, but also from other applications of LPS
competing for our attention. The most pressing of
these were applications of LPS to blockchain
systems, smart contracts and law.

16

https://le.logicalcontracts.com/example/LogicalEnglish.swinb
http://www.doc.ic.ac.uk/~rak/papers/Combining%20LP%20and%20IP%20in%20LPS.pdf
http://www.doc.ic.ac.uk/~rak/papers/Combining%20LP%20and%20IP%20in%20LPS.pdf

We started to investigate blockchain applications
around 2017, when the excitement surrounding
blockchains and cryptocurrencies, such as Bitcoin,
was near its peak. Miguel was the driving force
behind this work, and we recruited my former PhD
student, Jacinto Davila, to join us. We tentatively
explored the creation of a company, Logical
Contracts, in association with Imperial College, to
logically represent legal contracts in a language
that is close to natural, human language, but
executable by computer. The plan was to use
logical contracts implemented in LPS to:

e monitor compliance of the parties to a
contract,

e enforce compliance, by automatically
performing actions to fulfil obligations,
and/or by issuing warnings and remedial
actions to respond to violations of
obligations,

e explore logical consequences of hypothetical
scenarios, and

e query and update the Ethereum blockchain.

We developed several proof-of-concept
applications, and we showed how other smart
contract applications could be reimplemented
naturally in LPS.

We obtained support from several small
companies, implementing applications in such
areas as international swaps and derivatives
contracts, and accountancy tax law. However, the
more applications we developed, the more we
could see that the blockchain technology was
incidental to the main need, which is for a
technology-agnostic computational representation
that is close to natural language. This need led, in
turn, to a new focus for our work, namely to the
development of a controlled natural language,
Logical English, which is syntactic sugar for Prolog
or LPS, and which can be read and understood
without technical training, but with only a reading
knowledge of English.

Compared with ordinary English, not only is Logical
English computable, but in many cases, it can be
easier to understand. Just as importantly, because
it is unambiguous, it is harder to misunderstand.

Logic Production Systems (LPS)
Condition-action rules in ordinary production
systems do not have a logical interpretation.
They have a seemingly logical syntax as rules of
the form if conditions then actions. But the
“inference engine” that executes the rules
employs a procedure called “conflict
resolution”, which does not have a logical
semantics.

For example, given the rules

if am hungry then | eat some food
if I am sleepy then | go to sleep

and given the facts that / am hungry and | am
sleepy at the same time, production systems
employ conflict resolution to select only one of
the two actions / eat some food or I go to sleep,
and it performs the selected action immediately.
If the rules were sentences with a logical
semantics, the inference engine should derive
both actions, instead of only one, as logical
consequences of the facts and rules.

In the logical reconstruction of condition-
action rules in LPS, the rules are rewritten as
maintenance goals with explicit times, and the
constraint that a person cannot eat and sleep at
the same time is expressed explicitly as an
additional goal. The LPS inference engine
correctly derives both the conclusion that / eat
some food at a future time and the conclusion
that / go to sleep at a future time, but where the
two future times need to be different.

There can be many worlds that satisfy the
goals, differing by the times at which they make
the two actions true. Some of these worlds may
be better than others, and the implementation
of LPS needs to choose between them, either by
making sensible decisions itself, or by enacting
the preferences of the goals’ designer. Deciding
how to deal with preferences has been the
biggest challenge in the design of LPS.

The 50-Year Anniversary of Prolog

In 2022, the Prolog Heritage Association and the
Association for Logic Programming celebrated the
birth of Prolog in 1972. In addition to a special
Prolog Symposium held in Paris and to other
celebrations that year, we established the Prolog
Education Group (PEG), to promote logical and
computation thinking through Prolog. The Group
has been meeting online for this purpose biweekly
since its inception.

17

Because the logical core of Prolog is much simpler
than ALP and LPS, it is also much easier to learn.
Students can learn logic and computing implicitly
by using Prolog to explore the logical
consequences of facts and rules, starting with
given examples, and updating and modifying the
examples with new facts, rules and assumptions.

Although the logic underpinning Prolog lacks some
of the features of classical logic, it includes such
powerful features as negation as failure and the
amalgamation of object language and
metalanguage, which are lacking in classical logic.
Negation as failure makes it possible to represent
rules and exceptions; and the amalgamation of
object language and metalanguage makes it
possible to express propositional attitudes and
speech acts. These features enable many
applications, such as the representation and
execution of legal texts, for which classical logic is
inadequate. They also make it possible to use
Prolog to support logical and computational
thinking at all levels and in all areas of the
educational curriculum.

These legal and educational applications of Prolog
can be facilitated by employing Logical English
syntax, using such simple sentences as Alice likes a
person if the person likes logic, which can be
understood even by young children without any
formal training in logic, mathematics or
computing.

Runnable and modifiable examples of Logical
English can be found in Logical English on SWISH

and in the papers Logical English for Law and

Education and Logical English Demonstration.

Logic in the Age of Al

During most of the 20%" century, symbolic
approaches, many of them based on the use of
logic, dominated Al. This changed, around 10-15
years ago, when so-called sub-symbolic
approaches, using artificial neural networks
trained on vast amounts of data and using
powerful graphic processing units (GPUs), began to
make huge advances. These advances include large
language models (LLMs), which generate natural

language text in response to human prompting.
Because LLMs are trained on virtually the whole of
human knowledge on the internet, they are
beginning to achieve human levels of general
intelligence, and they are on the verge of achieving
a form of superintelligence. These developments
are creating a huge challenge for what it means to
be human in the age of Al.

To address this challenge, we need to improve our
understanding of what it means for a human or
artificial agent to be intelligent. With such an
understanding, we can hope to improve our own
human intelligence and to exploit artificial
intelligence for our own human goals.

Arguably, human intelligence can collaborate with
artificial intelligence in much the same way that
conscious logical thinking collaborates with
subconscious intuitive thinking in the dual process
cognitive model of human thinking. In humans,
logical thinking monitors intuitive thinking,
endorsing it in some cases and overriding it in
other cases. Similarly, when humans and Al
collaborate, human logical thinking can monitor Al
thinking and can control the use of Al for human
purposes. The Prolog Education Group is
reorienting its mission for this task, and | am
contributing to this effort.

Wikipedia

Although it is not directly related to PEG or to
developments in Al, | have also participated in
educational activities as an editor of Wikipedia, off
and on since around 2006.

| am fascinated by Wikipedia as an experiment in
democratic decision-making, where anyone can
edit an article and present their point of view, and
decisions are made by trying to reach consensus
through argument and discussion. It intrigues me
to think that such a consensus-building approach
might work for solving other problems, such as
deciding how to run a country or how to settle a
dispute between different countries.

While my own experience has been generally
positive, it hasn’t been without its problems,
including editing wars in the early days. More

18

https://le.logicalcontracts.com/example/LogicalEnglish.swinb
https://www.doc.ic.ac.uk/~rak/papers/Logical%20English%20for%20Law%20and%20Education%20.pdf
https://www.doc.ic.ac.uk/~rak/papers/Logical%20English%20for%20Law%20and%20Education%20.pdf
https://www.doc.ic.ac.uk/~rak/papers/Logical_English_Demonstration_for_ICLP.pdf

recently, several of my edits have been reverted,
because it was argued that they did not represent
a neutral point of view or that they exaggerated
the importance of my own point of view. These
reversions discouraged me for a while, but | am
slowly recovering my confidence to begin anew.

But what amazes me, more than anything else, is
the reluctance of other experts to contribute to
Wikipedia even when there are glaring mistakes or
imbalances that anyone with even a modest
knowledge of the subject can recognise. It reminds
me of the way that many people do not take part
in political elections, because they think that their
vote won’t make any difference.

Life in the Stone Age

| don’t work all the time. The best time for me to
work is in the morning, and then intermittently
throughout the day. Some days | don’t work
consciously at all.

Living as | do in West Sussex, | don’t have to go far
to immerse myself in the English countryside. The
South Downs are not far away, and | can also walk
straight out of my garden or across the road into
the adjacent fields. My neighbour, who farms the
fields, lets me wander over them with few
constraints.

One day about eighteen years ago, | was walking in
the field across the road when | noticed some
worked flint lying on the ground. For several years,
I had been looking for prehistoric flint artefacts off
and on, mostly in the South Downs, where there
are Neolithic flint mines. | soon discovered that
within a mile of my home, there were the remains
of prehistoric activity, mostly dating to the
Mesolithic period about 8,000 years ago. Since my
first discovery, | identified three separate
Mesolithic sites and collected a large number of
flint artefacts, including microliths, arrowheads,
scrappers and knives.

About twelve years ago, | teamed up with the
distinguished archaeologist and lithics expert,
Andrew David, shortly after his retirement.
Together, we explored my Mesolithic sites in

greater detail, and we published an article
documenting our discoveries.

In the last few years, however, coinciding in part
with disruptions caused by COVID, | have scaled
back my archaeological activities, and | have been
spending more of my time in the garden, planting
and shaping trees in the Japanese, niwaki style.

Search for Truth

Looking back at my academic work, | like to see it
as a search for truth, with Logic leading the way.

The search began in secondary school, triggered by
my extracurricular reading of such books as Joad’s
“Guide to Philosophy”. When | read about Plato’s
philosophy of ideas, | was convinced that it was
true. And when | read about Aristotle’s empiricism,
| was convinced again, but this time that a contrary
philosophy was true. It couldn’t be that both
philosophies were true. But Joad offered no
guidance to decide between the two apparent
truths.

The first-year mathematics course at the
University of Chicago introduced me to
mathematical logic, which seemed almost magical
in its use of symbolism. Mathematical logic
seemed to be able to conjure truth out of nothing.
| decided to major in mathematics at the
University of Bridgeport, partly because
mathematics is the language of mathematical
logic, and partly because it seemed to show that
indisputable truth is possible. | hoped it might help
me to find other truths elsewhere.

My search continued at Stanford and the
University of Warsaw. But | began to doubt that
mathematics would help to solve such life and
death problems as the war in Vietnam. | never
questioned the relevance of Logic, because to my
mind the logic of common-sense left no doubt that
the war was wrong. But | questioned the purpose
of mathematical logic, because it seemed to me
that it had become a branch of pure mathematics,
and that it had lost touch with the original purpose
of Logic, to help people think more clearly and
more effectively.

19

https://www.doc.ic.ac.uk/~rak/papers/David%20and%20Kowalski.pdf

Ideally, | would have continued my studies of Logic
in a philosophy department. But | didn’t have the
necessary academic background. | found myself
doing a PhD in computer science at the University
of Edinburgh instead. Fortunately, the PhD, which
was about using symbolic logic to mechanically
prove mathematical theorems, didn’t require any
knowledge of conventional computing.

The topic of my PhD was not one that | chose for
myself. Nor was it on the shortest path to my
ultimate goal. But it gave me an entry into the field
of artificial intelligence, where | worked on the
development of logical methods that could be
implemented by means of computers. Although |
had little enthusiasm for the goals of artificial
intelligence, | learned that the same logical
methods | was developing to prove mathematical
theorems, could also be used for other, less
mathematical kinds of problem solving. | was
encouraged by the thought that the same logical
methods, used to make computers more
intelligent, could also be used by people to
improve their own human intelligence.

My work has also benefited from attacks against
logic by other researchers working in artificial
intelligence. These attacks drew attention to
weaknesses in my theories and helped me to
identify areas where the theories needed to be
improved.

Perhaps the biggest weakness of traditional
mathematical and philosophical logics is that they
focus on pure, disembodied thought. Even logics
like the event calculus, which are concerned with
actions, events and changing states of affairs, just
deal with thinking about change, without actually
performing it. | believe that the model-generation
semantics solves this problem.

| am still searching for the truth. | started by
believing that the truth comes from proving
theorems as logical consequences of axioms. But
now | believe that the truth comes from
performing actions to satisfy our goals. But,
because other agents have other goals and
perform other actions, our combined actions can

conflict with one another, and our actions can be
self-defeating.

The actions we perform come from two sources:
from subconscious, intuitive associations of
conditions and actions, and from conscious
reasoning to derive actions to satisfy goals (by
abduction). Both sources of candidate actions are
valuable, and both can be improved. Intuitive,
condition-action associations can be improved by
gaining more experience and by reinforcement
learning. Conscious reasoning can be improved by
better logical reasoning and by gaining more
knowledge, consisting of true beliefs.

But knowledge alone is useless. It becomes useful
when Logic uses knowledge to derive candidate
actions from goals. The more knowledge we have,
the more options we have for satisfying our goals,
and therefore the more options we have for
avoiding conflicts with other agents. Logic can also
use knowledge to derive possible consequences of
candidate actions. This can help us to identify both
positive and negative consequences of those
actions, and it can help us to decide which actions
to perform.

What are the implications for Education? Yes, we
need to teach Al, because in doing so, we need to
teach what it means for any agent, human or
artificial, to be intelligent. But we shouldn’t stop at
honouring the intelligence of Al, no matter how
powerful it may become. Moreover, there are not
many lessons to be learned from sub-symbolic Al
for improving human condition-action
associations. This needs to be learned from human
experience.

But we can and should teach the lessons we have
learned from developing symbolic, logic-based Al,
because they can also be used by humans, to
improve our own human, logical thinking skills.
Moreover, we can use such logical systems as
Prolog and Logical English, to help to support
those lessons with motivating and educationally
relevant examples.

20

