Robert Kowalski

IMPERIAL COLLEGE

The initial announcement of
the FGCS project caused a
great deal of confusion and
controversy throughout the
world. Critics of the project
were uncertain about its scope,
which ranged from Al applica-
tions to parallel computer
architectures; and they were
critical of its methods, which
used logic programming (LP) to bridge the gap between
applications and machines. They also criticized the lack of
attention given to mainstream computing and software
¢ngineering matters.

Invitations for international collaboration were re-
garded with suspicion, because it was believed that such
collaboration would unequally benefit Japan. To a large
extent, MCC in the U.S., Alvey in Great Britain, and
ESPRIT in Europe were set up to compete with Japan.
These research programs promoted both FGCS and
mainstream computing technologies and paid relatively
little attention to LP compared with the FGCS project.
The European Computer Research Centre (ECRC) in
Munich and the Swedish Institute for Computer Science
in Stockholm (SICS), on the other hand, pursued the LP
approach, but on a much more modest scale.

Announcement of FGCS and the British
Response
I began 10 receive draft outlines of the FCGS project in
mid-1981. Even at this stage it was clear that LP was des-
tined to play an important role. Having advocated LP as
a unifying foundation for computing, I was delighted
with the LP focus of the FCGS project.

Like many others, however, I was worried that the
project might be too ambitious and rely too heavily on
research breakthroughs that could not be foreseen in

B4 vk 1993/Vol.36, No.3 / COMMUNICATIONS OF THE ACM

advance. The field of Al in particular, was notorious for
raising great expectations and producing disappointing
results. Having recently supervised a Ph.D. dissertation
Ly George Pollard on the topic of parallel computer ar-
chitectures for LP, I was enthusiastic about the long-
term prospects of such architectures, but apprehensive
about realizing those prospects within the 10-year time
scale of the FGCS project. On balance, however, the
FGCS strategy of setting ambitious goals seemed prefer-
able to the more conservative strategy of aiming at safe
targets.

Although I was invited to the October 1981 FGCS
Conference, which presented the project plans in detail,
I was unable to attend, because I was already committed
to participate in the New Hampshire Functional Pro-
gramming (FP) Conference being held at the same time.
My colleagues, Keith Clark and Steve Gregory in the LP
group at Imperial College (IC), also attended the FP
Conference, where they presented their paper on the
relational language. By coincidence, their work on the
relational language eventually led to the concurrent LP
language, GHC, which was later developed at ICOT,
and which served as the software foundation of the
FGCS project.

Following the FGCS conference, the British delega-
tion, sent to Tokyo to discuss the possibility of collaborat-
ing with the FGCS project, met with other parties in the
U.K. to prepare a draft response. A report was pre-
sented to a general meeting in London, which I was in-
vited to attend. The prominent role planned for LP in

FGCS was noted with skepticism.
The result of those meetings was that a committee,

chaired by John Alvey, was created to formulate a U.K.
program of research in information technology (IT).
The committee consulted widely, and research groups
throughout the country lobbied the committee to pro-
mote support for their work. 'There was widespread con-




cern, especially among academic groups in particular,
that the Alvey program might follow the FGCS lead and
promote Al and LP to the detriment of other research
areas.

At that time the LP group at IC, although small, was
probably the largest and most active LP group in the
world. As head of the group, I had a responsibility to
argue the case for LP. To begin with, my arguments
seemed to have little positive effect. When the Alvey
program finally started, LP rececived hardly a mention in
the plan of work., More generally, declarative languages
(LP and FP) and their associated parallel computer ar-
chitectures were also largely overlooked.

To remedy this latter oversight, John Darlington, also
at IC, and I were invited by the Alvey directorate to edit
a document on behalf of the U.K., LP and FP research
communities to put the case for declarative languages
and their parallel computer architectures. The case was
accepted, and a declarative-systems architecture initia-
tive was added to the Alvey program. However, the initi-
ative became dominated by FP, and the planned LP/FP
collaboration never materialized. Equally frustrating was
the exclusion of LP from the formal methods activities
within Alvey, especially since so much of the work in our
group at [C was concerned with the development of for-
mal methods for verifying and transforming logic pro-
grams.

Although LP was not singled out for special support,
there was enough general funding available to keep me
and my colleagues busy with negotiating grant applica-
tions (and to distract me from doing research). I also
continued to argue the case for LP, and eventually in
1984 the Alvey directorate launched a LP initiative. By
November 1985, the initiative had awarded a total of
£2.2 million for 10 projects involving eight industrial
research organizations and eight universities.

Together with research grants which were awarded
before the LP initiative, the Alvey program supported
13 research grants for our group, involving a total ex-
penditure of £1.5 million. At its peak in 1987 the LP
group at IC contained approximately 50 researchers in-
cluding Ph.D. students. Those grants funded LP-
oriented work in such diverse areas as deductive data-
bases, legal reasoning, human-computer interaction, in-
telligent front ends, logic-programming environments,
and implementations and applications of the concurrent
LP language, Parlog.

Thus the LP group at IC was for a time relatively well
supported. But, because its work was divided into so
many separate projects, mostly of three years duration,
and many with other collaborators, the work was frag-
mented and unfocused. Moreover, the group remained
isolated within the Alvey program as a whole.

ESPRIT

Most of the funding under the Alvey program came to
an end around 1988. Researchers in the UK, including
those in our group at IC, increasingly looked to the
ESPRIT program in Europe to continue support for
their work. For me, ESPRIT had the advantage over
Alvey that work on LP was held in higher regard. But

it had the disadvantage that it involved larger collabo-
rations that were difficult to organize and difficult to
manage.

My involvement with ESPRIT was primarily with the
basic research program, first as coordinator of the com-
putational logic (Compulog), Action, which started in
1989, and then as the initial coordinator of the Com-
pulog Network of Excellence. Both of these were con-
cerned with developing extensions of LP using enhance-
ments from the fields of computer algebra, database
systems, artificial intelligence, and mathematical logic.
In 1991 Gigina Aiello in Rome took over my responsibil-
ities as coordinator of the Network, and in 1992
Krzysztof Apt in Amstersdam took over as coordinator
of the Action. By 1992 the Newwork contained over 60
member nodes and associated nodes throughout Europe.

Contacts with Japan

My frustrations with the Alvey program were exacer-
bated by my early contacts with the FGCS project and by
my resulting awareness of the importance of LP to
FGCS. These contacts came about both as the result of
visits made by participants in the FGCS project to our
group at IC and as a result of my visits to Japan.

I made my first visit to Japan in November 1982, on
the initative of the British Council in Tokyo, and my
second visit in June 1984, as part of a small SERC dele-
gation. These visits gave me an insight into the FGCS
work beginning at ICOT, ETL, the universities, and
some of the major Japanese computer manufacturers,

As a consequence of these early contacts, several Japa-
nese researchers came to work in our group: Yuji Mat-
sumoto and Taisuke Sato from ETL, supported by the
British Council, Takeshi Chusho and Hirohide Haga
from Hitachi, and Ken Satoh from Fujitsu. These visi-
tors came for various periods ranging from one month
to one year. Many visitors also came for shorter periods.

Partly because of my heavy commitments, first to
Alvey and later to ESPRIT, I had relatively little contact
with Japan during the period 1985 to 1990. During the
same period, however, members of the Parlog group
made a number of visits to ICOT. Keith Clark and Steve
Gregory, in particular, both visited for three weeks in
1983. Keith made several other visits and participated in
the FGCS conferences held in 1984 and 1988. Jim
Crammond, Andrew Davison, and Ian Foster also visited
ICOT. In addition, the Parlog group had a small grant
from Fujitsu, and the LP group as a whole had a similar
grant from Hitachi.

My contacts with Japan increased significantly during
the 1990-92 period. In the summer of 1990, I was in-
vited by ICOT to give a talk at the Japanese LP Confer-
ence and to stay for a one-week visit. In addition to the
talks I gave about legal reasoning, temporal reasoning,
metalevel reasoning, and abduction, I interacted with
the groups working on knowledge representation. I was
interested in the work on theorem proving (TP}, but was
sceptical about the need for full first-order logic and
general TP problem-solving methods. My own work,
partly motivated by legal-reasoning applications, con-
centrated instead on developing extensions of LP. It was

COMMUNICATIONS OF THE Acm/ March 1993/Vol.36, No.3 B



10N PROJECGT

a challenge, therefore, to consider whether the ICOT
applications of more general-purpose TP could be re-
formulated naturally in such extended LP form.

This challenge helped me later to discover a duality
between knowledge representation in LP form, using
backward reasoning with if-halves of definitions, and
knowledge representation in disjunctive form, using for-
ward reasoning with only-if halves of definitions [6]. In-
terestingly, the model generation theorem prover
(MGTP) developed at ICOT, if given the disjunctive
form, would simulate execution of the LP form. I am
currently investigating whether other TP strategies for
reasoning with the disjunctive form can simulate gener-
alized constraint propagation [7] as a method of execut-
ing constraint LP.

I was also interested in the genetic-analysis and legal
reasoning applications being developed at ICOT. It
seemed to me that the genetic analysis applications were
of great scientific interest and social importance. More-
over, ICOT’s logic-based technology, combining the
functionality of relational databases, rule bases, recur-
sive data structures, and parallelism, seemed ideally
suited for such applications.

At that time, ICOT’s work on legal reasoning focused
primarily on case-based reasoning, and much of the
emphasis was on speeding up execution by means of
parallelism. Two years later, the work, presented at
FGCS8'92, had progressed significantly, integrating rule-
based and case-based reasoning and employing a sophis-
ticated representation for event-based temporal reason-
ing.

ICOT’s work on legal reasoning was undertaken in
collaboration with the Japanese legal expert systems as-
sociation (LESA) headed by Hajime Yoshino. I attended
a meeting of LESA during my visit, and since then my
colleague, Marek Sergot, and I have continued to inter-
act with LESA on a small international project con-
cerned with formalizing the United Nations’ Convention
on International Contracts.

This same visit to [COT coincided with the conclusion
of discussions with Fujitsu labs about a five-year project
for work on abductive LP, which started in October
1990. The following year in November 1991, Tony
Kakas and [ visited Fujitsu Labs to report on the results
of our first year of work. We also made a short visit to
ICOT, where we learned more about the MGTP, about
Katsumi Inoue’s use of MGTP to implement default rea-
soning (via the generation of stable models for negation
as failure), and about the application of these techniques
to legal reasoning.

In 1991, the program committee of FGCS'92 invited
me to chair the final session of the conference, a panel
with the title: “Will the Fifth Generation Technologies be
a Springboard for Computing in the 21st Century?”, I
was pleased to accept the invitation, but I was also appre-
hensive about undertaking such a responsibility.

The panelists were Hervé Gallaire, Ross Overbeek,
Peter Wegner, Koichi Furukawa, and Shunichi Uchida.
Peter Wegner, an outspoken proponent of object-
oriented programming, was chosen to be the main critic.
In fact, all of the panelists and I were aware that the

5‘ March 1993/Vol.36, No.3 /COMMUNICATIONS OF THE ACM

FGCS technologies had made comparatively little impact
on the world of computing during the course of the
FGCS project. During the months preceding the confer-
ence, I thought about what, if anything, had gone
wrong, and whether the problems that had been en-
countered were inherently unsolvable or only short-term
obstacles along the way.

What went Wrong?

I shall consider the problems that have arisen in the
three main areas of FGCS, namely Al applications, LP
software, and parallel-computer architectures, in turn.

Perhaps it is the area of Al application which has been
the most visible part of the FGCS project. Not only were
the original FGCS targets for Al exceedingly ambitious,
but they were considerably exaggerated by some com-
mentators, most notably perhaps by Feigenbaum and
McCorduck in their book The Fifth Generation [3].

By comparison with the expectations that were raised,
worldwide progress in Al has been disappointingly slow.
Expert systems and natural language interfaces, in par-
ticular, have failed to capture a significant share of the
IT market. Moreover, many of the Al applications
which have been successful have ultimately been imple-
mented in C and rely significantly on integration with
non-Al software written in C and other imperative lan-
guages.

The FGCS project has suffered from the resulting
downturn of interest in Al In later sections of this arti-
cle, concerned with legal reasoning and default reason-
ing, [ will argue both that progress in Al has been
greater than generally appreciated and that there are
good reasons to expect steady progress in the future.

Despite the disappointments with Al, it is probably
ICOT’s choice of LP as the basis for the FGCS software
that is regarded by many critics as ICOT’s biggest mis-
take. There are perhaps four main reasons held for this
belief:

¢ LPisan Al language paradigm of limited applicability
¢ LP is too inefficient

¢ Concurrent LP is too remote from the forms of LP
needed for user-level programming

¢ LP cannot compete with the world-wide trend to stan-
dardize on programming in C

LP is an Al Language Paradigm. LP has suffered twofold
from its popular image as a language suited primarily
for AI applications. It has suffered both because Al itself
has experienced a decline of interest and because, as a
consequence of its associations with Al, LP is not nor-
mally viewed as being suitable for non-Al applications.

The contrary view is that LP is a language paradigm
of wide applicability. Indeed, one simple characteriza-
tion of LP is that it can be regarded as a generalization of
both FP and relational databases, neither one of which is
normally regarded as being restricted to Al applications.

The Al image of LP is probably more a retlection of
sociological considerations than of technical substance. It
certainly reflects my own experience with the Alvey pro-
gram, where the LP research community was isolated



from both the FP and software engineering research
communities.

The titles of the technical sessions of the First Interna-
tional Applications of Prolog Conference held in Lon-
don in 1992 give a more objective indication of the range
of applications of the most popular LP language, Prolog:

CAD and Electronic Diagnosis
Planning

Virtual Languages

Natural Languages and Databases
® Diagnostic and Expert Systems

® Advisory Systems

® Constraint Systems

® Analysis

¢ Planning in Manufacturing

® Information Systems

Many of these applications combine Al with more con-
ventional computing techniques.

In addition o Prolog, several other commercial vari-
ants of LP have begun to become available. These in-
clude constraint LP languages such as CHIP and Prolog
111, and concurrent LP languages such as Strand and
PCN. Deductive database systems based on LP are also
beginning to emerge.

ICOT itself has focused more on developing the un-
derlying enabling technologies for applications than on
constructing the applications themselves. In the course
of developing this technology it has employed its LP-
based software primarily for systems-programming pur-
poses. In particular, its use of the concurrent LP lan-
guages GHC and KLI to implement PIMOS, the operat-
ing system for the parallel-inference machine, PIM, has
been a major achievement.

LP is Too Inefficient. This seemingly straightforward
statement is ambiguous. Does it mean that conventional
algorithms written in LP languages run mefficiently in
time or space? Or does it mean that program specifica-
tions run orders of magnitude more inefficiently than
well-designed algorithms?

The first problem is partly a nonproblem. For some
applications LP implementations are actually more effi-
cient than implementations written in other languages.
For other applications, such as scheduling, for example,
which need to run only occasionally, efficiency is not the
main consideration. What matters is the increased pro-
grammer productivity that LP can provide.

In any case, this kind of ‘low-level’ inefficiency can
and is being dealt with. The Aquarius compiler [9] and
ICOT'S PIM are among the best current examples of
what can be achieved on sequential and parallel imple-
mentations respectively.

The second problem is not only more difficult, but has
received correspondingly less attention. The possibility
of writing high-level program specifications, without
concern for low-level details, is a major reason many
people are first attracted to Prolog. However, many of
these same people become disillusioned when those
specifications loop, even on the simplest examples, or
when they run with spectacular inefficiency. Few enthu-

siasts persist to achieve the level of expertise, exempli-
fied in the book by Richard O’Keefe [8], required to
write programs that are both high level and efficient.
When they do, they generally find that Prolog is a supe-
rior language for many applications.

Seme critics believe that this second efficiency prob-
lem results from the LP community not paying sufficient
attention to software engineering issues. In reality, how-
ever, many LP researchers have worked on the provision
of tools and methodologies for developing efficient pro-
grams from inefficient programs and specifications.
Indeed, this has been a major research topic in our
group at 1G, in the Compulog project, and in Japan. Per-
haps the main reason this work has had little practical
impact so far is that it applies almost entirely only to
pure logic programs and not to Prolog programs that
make use of impure, nonlogical features. Either the the-
oretical work needs to be extended to the more practical
Prolog case, or a much higher priority needs to be given
to developing purer LP languages and purer styles of
programming in Prolog. I believe it is the latter alterna-
tive that is the more promising direction for future
work.

Concurrent LP is Too Remote from other Forms of LP.
This is possibly the biggest criticism of the ICOT ap-
proach, coming from members of the LP community it-
self. It is a criticism borne out by the gap which has
emerged in our own work at IC between the concurrent
form of LP used for systems programming in the Parlog
group and the forms of LP used for AI, databascs, and
other applications in the rest of the LP group. Moreover,
when the Parlog group has concerned itself with high-
level knowledge representation, it has concentrated on
providing object-oriented features and on practical mat-
ters of combining Parlog with Prolog. Thus the gap that
developed between the different forms of LP investi-
gated in our group at IC seemed to mirror a similar gap
that also occurred at ICOT.

Indeed, it can be argued that the logical basis or con-
current LP is closer to that of mainstream process mod-
els of concurrency, such as CCS and CSP, than it is to
standard LP. From this point of view, the historical basis
of concurrent LP in standard LP might be regarded as
only a historical accident.

There are counterarguments, however, that seek to
reconcile concurrent LP with standard LP and standard
logic. Currently, the most popular of these is the pro-
posal to use linear logic as an alternative foundation for
concurrent LP. ICOT has also made a number of prom-
ising proposals. The most original of these is to imple-
ment MGTP in KLI and to implement higher-level
forms of logic and LP in MGTP. Two other promising
approaches are the Andorra computational model of
David H.D. Warren and Seif Haridi and the concurrent
constraint LP model of Michael Maher and Vijay Saras-
wat.

It is too early to foresee the outcome of these investi-
gations. However, no matter what the result, it seems
reasonable to expect that the affinity of concurrent LP
both to standard LP and to mainstream models of con-

COMMUMNICATIONS OF THE AcM) March 1993/Vol. 56, Ne.3 51



ITON PROJECT

currency will prove to be an advantage rather than a
disadvantage.

LP Cannot Compete with C. The FGCS focus on LP has
had the misfortune to conflict with the growing world-
wide trend to standardize on Unix as an operating sys-
tem and C (and extensions such as C++) as a program-
ming language. C has many virtues, but perhaps its most
important one is simply that more and more program-
mers are using it. Like the qwerty keyboard and the VHS
video system, C is not necessarily the best technology
available for its purpose, but it has virtually become the
standard.

Thus LP, in order to succeed, needs to integrate as
smoothly as possible with other systems written in other
languages. For this purpose, the Prolog company, Quin-
tus, for example, has developed its own macrolanguage
with a C-like syntax that compiles into Prolog. In a simi-
lar spirit, Chandy and Kesselman [1] have developed a
language, CC+ +, that is partly inspired by the concep-
tual model of concurrent LP but is an extension of C.

These and other adaptations of the LP ideal might
offend the purist, but they may be necessary if LP is to
integrate successfully into the real world. Moreover, they
may only prove that the procedural interpretation of
logic, which is the foundation of LP, has greater applica-
bility than is normally supposed. Not only can logical
syntax be interpreted and executed as procedures, as is
usual in most implementations of LP, but suitably well-
structured procedural syntax can also be interpreted as
declarative statements of logic.

Problems with Parallel Inference Machines. In addition to
these criticisms of LP, the ICOT development of special-
ized hardware, first the personal sequential inference
machine and then the parallel inference machine (PIM),
has also been judged to be a mistake. Not only do spe-
cialized machines to support LP go against the trend to
standardize on Unix and C, but they may not even bring
about an improvement of efficiency. The failure of LISP
machines is often cited as an analogous example, in
which the gain in efficiency obtained by specialized
hardware has been offset by the more rapid progress of
implementations on increasingly efficient general-
purpose machines.

Undoubtedly, ICOT’s decision to base its software on

“specialized hardware has restricted the accessibility of

ICOT’s results. It is also a major reason why the project
has been extended for a further two years, to reimple-
ment the software on standard machines, so that it can
be made more widely available.

But the view that the FGCS machines are special pur-
pose is mistaken. ICOT has discovered, as have other
groups, such as the FP group at IC, that the techniques
needed to implement declarative languages are very
similar to those needed to support general-purpose
computation. As a result, ICOT has been able to claim
that PIM is actually general purpose. Moreover, the con-
current LP machine language of PIM can also be viewed
as supporting both a mainstream model of concurrency
and a mainstream approach to object-oriented program-
ming. Viewed in this way PIM and its operating system
PIMQOS are the first large-scale implementations of such
general-purpose mainstream approaches to the use of
concurrency to harness the potential of paraliel compu-
tation. As a consequence, it is quite possible that the
FGCS project has attained a worldwide lead in this area.

The Longer-Term Outlook
The FGCS project has taken place during a time of
growing disillusionment with innovation and of increas-
ing emphasis on applications, interfaces, and the stream-
lining and consolidation of existing technologies. The
move to standardize on Unix and C and the rapid
growth of graphics and networking exemplify these
trends.

It is difficult to predict how the growing influence of
C will affect the development of higher-level languages
in the longer term. Perhaps concurrent LP-inspired lan-
guages on parallel machines will one day displace C on
sequential machines. Or perhaps it will be adequate sim-
ply to standardize on the interfaces between programs
written in higher-level (and logic-based) languages and
programs written in C and other imperative languages.

But no matter what the future of present-day systems-
programming languages, computer users must ulti-
mately be allowed to communicate with computers in
high-level, human-oriented terms. My own investiga-
tions of the formalization of legislation [5] have con-
vinced me that LP provides the best basis for developing
such human-centered, computer-intelligible languages.

The FGCS project has taken place
during a time of growing
disillusionment with innovation
and of increasing emphasis on applications, interfaces, and

the streamlining and consolidation of

existing technologies.

58 March 1993/Vol.36, No.J / COMMUNICATIONS OF THE ACM



More than any other form of communication in natu-
ral language, legislation aims to regulate virtually every
aspect of human behavior. As a result, laws can be re-
garded as wide-spectrum programs formulated in a styl-
ized form of natural language to be executed by people.
For this purpose, the language of law needs to be highly
structured and as precise and unambiguous as possible,

so that it can be understood the way it was intended, and -

so that, in a given environment, execution by one person
gives the same results as execution by another.

Such precision needs to be combined judiciously with
“underspecification,” so that law can be flexible and can
adapt to changing environments. These seemingly con-
flicting requirements are reconciled in law by defining
higher-level concepts in terms of lower-level concepts,
which are then either defined by still lower-level con-
cepts or left undefined. The undefined concepts either
have generally agreed common-sense meanings or else
are deliberately vague, so that their meanings can be
clarified after the law has been enacted. This structure
of legal language can be reflected in more formal lan-
guages by combining precise definitions with undefined
terms.

Although legal language is normally very complex, its
resemblance to various computing language paradigms
can readily be ascertained, and its affinity to logic and
especially to LP is particularly apparent. This affinity
includes not only the obvious representation of rules by
means of conclusions and conditions, but even the rep-
resentation of exceptions by means of LP’s negation as
failure. Nonetheless, it is also clear that to be more like
legal language LP needs to be extended, for example, to
include some form of explicit negation in addition to
negation as failure, to amalgamate metalanguage with
object language, and to incorporate integrity constraints.

The example of law does not suggest that programs
expressed in such an extended LP language will be easy
to write, but only that they will be easier to read. Very
few users of natural language, for example, acquire the
command of language needed to draft the Acts of Par-
liament. Perhaps the future of application-oriented
computer languages will be similar, with only a few
highly skilled program writers but many readers.

There are other important lessons for computing to
be learned from legal language and legal reasoning:
about the relationship between programs (legislation)
and specifications (policies), about the organization and
reuse of software, and about the relationship between
rule-based and case-based reasoning. ICOT has already
begun to explore some of these issues in its own work on
legal reasoning. I believe that such work will become in-
creasingly important in the future.

Default Reasoning

Perhaps the most important extension that has been
developed for LP is negation as failure (NAF) and its use
for default reasoning. In my opinion this development
has great significance not only for knowledge represen-
tation in Al but also for the application of logic in every-
day life outside computing.

Until the advent of logics for default reasoning, for-
mal logic was largely restricted to the formalization of
statements, such as those of mathematics, that hold uni-
versally and without exception. This has greatly inhib-
ited the application of logic in ordinary human affairs.
To overcome these restrictions and to reason with gen-
eral rules such as “all birds fly,” that are subject to end-
less exceptions, Al researchers have made numerous
proposals for logics of default reasoning. Although a
great deal of progress has been made in this work, these
proposals are often difficult to understand, computa-
tionally intractable, and counterintuitive. The notorious
“Yale shooting problem” [4], in particular, has given rise
to a large body of literature devoted to the problem of
overcoming some of the counterintuitive consequences
of these logics.

Meanwhile, LP researchers have developed NAF as a
simple and computationally effective technique, whose
uses range from implementing conditionals to repre-
senting defaults. These uses of NAF were justified as
long ago as 1978 when Clark [2} showed that NAF can be
interpreted as classical negation, where logic programs
are “completed” by putting them into “if-and-only-if”
form.

The development of logics of default reasoning in AI
and the related development of NAF in LP have taken
place largely independently of one another. Recently,
however, a number of important and useful relation-
ships have been established between these two areas.
One of the most striking examples of this is the demon-
stration that NAF solves the Yale shooting problem (see
[6] for a brief discussion). Other examples, such as the
development of stable model semantics and the abduc-
tive interpretation of NAF, show how NAF can usefully
be extended by applying to LP techniques first devel-
oped for logics of default reasoning in AL ICOT has
been a significant participant in these developments.

The example of default reasoning shows that much
can be gained by overcoming the sociological barriers
between different research communities. In this case
cooperation between the Al and LP communities has
resulted in more powerful and more effective methods
for default reasoning, which have wide applicability both
inside and outside computing. In my opinion, this is a
development of great importance, whose significance
has not yet been widely understood.

Conclusions
I believe that progress throughout the world in all areas
of FGCS technologies during the last 10 years compares
well with progress in related areas in previous decades.
In all areas, LCOT’s results have equaled those obtained
elsewhere and have excelled in the area of parallel-
computer architectures and their associated software.
ICOT’s work compares well with that of other national
and international projects such as Alvey and ESPRIT. If
there has been any major mistake, it has been to believe
that progress would be much more rapid.

Although the technical aspects of FGCS have been
fascinating to observe and exciting to participate in, the
sociological and political aspects have been mixed. On

COMMUMICATIONS OF THE AcM /March 1993/Vol.36, No.3 59



-
TION PROJEGT

the one hand, it has been a great pleasure to learn how
similarly people coming from geographically different
cultures can think. On the other hand, it has been disap-
pointing to discover how difficult it is to make paradigm
shifts across different technological cultures.

I believe the technical achievements of the last 10
years justify a continuing belief in the importance of LP
for the future of computing. I also believe that the rele-
vance of LP for other areas outside computing, such as
law, linguistics, and philosophy, has also been demon-
strated. Perhaps, paradoxically, it is this wider relevance
that, while it makes LP more attractive to some, rnakes it
disturbing and less attractive to others. W

References

1. Chandy, K.M. and Kesselman, C. The derivation of compo-
sitional programs. In Proceedings of the Joint International Con-
ference and Symposium on Logic Programming (Washington,
D.C., Nov. 1992). MIT Press, Cambridge, Mass., pp. 3-17.

2. Clark, K.L. Negation as Failure. In Logic and Database, H.
Gallaire and |. Minker, Eds. Plenum Press, New York, 1978,
pp- 293-322.

3. Feigenbaum, E.A. and McCorduck, P. The Fifth Generation.
Addison-Wesley, Reading, Mass., 1983.

4. Hanks, S. and McDermott, D. Default reasoning, non-
monotonic logics, and the frame problem. In AAAT-86. Mor-
gan Kaufman, San Mateo, Calif., 1986, pp. 328-333.

5. Kowalski, R.A. Legislation as logic programs. In Logic Pro-
gramming in Action, G. Comyn, N.E. Fuch, and M.]. Ratcliffe,
Eds. Springer-Verlag, New York, 1992, pp. 201-230.

6. Kowalski, R.A. Logic programming in artificial intelligence.
In IJCAI-91 (Sydney, Australia, Aug. 1991), pp. 596-603.

7. Le Provost, T. and Wallace, M. Domain independent
propogation. In Proceedings of International Conference on Fifth
Generation Computer Systems (Tokyo, June 1992), pp. 1004—
1011.

8. O’Keete, R. The Craft of Prolog. MIT Press, Cambridge,
Mass., 1990.

9. Van Ross, P. and Despain A.M. Higher-performance logic
programming with the Aquarius Prolog compiler. IEEE
Comput. (Jan. 1992), 54-68.

CR Categories and Subject Descriptions: C.1.2 [Processor
Architectures]: Multiple Data Stream Architectures (Mulu-
processors); D.1.3 [Programming Techniques]: Concurrent
Programming; D.1.6 [Software|: Logic Programming; D.3.2
[Programming Languages]: Language Classifications—
Concurrent, distributed, and parallel languages, Data-flow languages,
Nondeterministic languages, Nonprocedural languages; K.2 [Com-
puting Milieux]: History of Computing

General Terms: Design, Experimentation

Additional Key Words and Phrases: Concurrent logic pro-
gramming, Fifth Generation Computer Systems project,
Guarded Horn Clauses, Prolog

About the Author:

ROBERT KOWALSKI is a professor of computational logic at
Imperial College. Current research interests include logic pro-
gramming, artificial intelligence, and legal reasoning. Author’s
Present Address: Imperial College Department of Computing,
180 Queen’s Gate, London, England, SW7 2BZ; email:
rak@doc.ic.ac.uk

BO March 1993/V0L 36, No.3 / COMMUNICATIONS OF THE ATM



