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ABSTRACT 

Inference systems and search strategies E for 

IT- are distinguished from proof procedures (9 = 

The completeness of procedures is studied by studying 

separately the completeness of inference systems and of 

search strategies. Completeness proofs for resolution 

systems are obtained by the construction of semantic 

trees. These systems include minimal M -restricted 

binary resolution, minimal c -restricted M-clash resolution 

and maximal pseudo-clash resolution. Certain refinements 

of hyper-resolution systems with equality axioms are 

shown to be complete and equivalent to refinements of 

the pararnodulation method for dealing with equality. 

The completeness and efficiency of search strategies 

for theorem-proving problems is studied in sufficient 

generality to includa the case of search strategies for 

path-search problems in graphs. The notion of theorem- 

,proving problem is defined abstractly so as to be dual to 

that of and" or tree. Special attention is given to 

resolution problems and to search strategies which generate 

simpler before more complex?f'O , 

For efficiency, a proof procedure ( S , } requires 

an efficient search strategy ', as well as an inference 

system .S which admits both simple proofs and relatively 

few redundant and irrelevant derivations. The theory 



of efficient proof procedures outlined here is applied 

to proving the increased efficiency of the usual method 

for deleting tautologies and subsumed clauses. Counter- 

examples are exhibited for both the completeness and 

efficiency of a?ternative methods for deleting subsumed 

clauses. 

The efficiency of resolution procedures is improved 

by replacing the single operation of resolving a clash 

by the two aperations of generating factors of clauses 

and of resolving a clash of factors. Several factoring 

methods are investigated for completeness. Of these the 

m-factoring method is shown to be always more efficient 

than the Wos-Robinson method. 
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4ha ter 0 

The subject of this thesis is the completeness and 

efficiency of various theorem--proving methods. These methods 

apply primarily to resolution inference systems [39] and are 

investigated by means of theoretical, rather than experimental, 

studies. The theoretical methodology of these studies implies 

that they are oriented mainly toward automatic, rather than 

interactive, theorem-proving. Relationships between 

completeness and efficiency are remarked upon throughout the 

body of this thesis and are explored more thoroughly in this 

preliminary chapter, 

The theorem-proving methods investigated in this 

thesis include deletion rules, factoring restrictions and 

minimality, cx-ordering and M--clash restrictions. Chapters 

1 and 2 concentrate respectively on the syntax and semantics 

of resolution systems. In chapter 3, restrictions on the 

paramodulation method for dealing with equality [38] are 

studied and related, for efficiency and completeness, to 

the hyper--resolution method using equality axioms [20]. The 

completeness and efficiency of search strategies for theorem- 

proving problems are investigated in chapter 4. Parts of 

chapters 2, 3 and 4 have already been reported in [17], [20] 

and [21] respectively. 

The major function of this introductory chapter is 

to outline and defend a theory of efficiency for automatic 



theorem-proving. This theory incorporates conclusions 

formulated after the investigations of chapters 1-4 and 

is intended to provide a framework within which these 

investigations can be evaluated. For this latter reason 

we have chosen to place this chapter at the beginning, 

rather than at the end, of this thesis. 

Section 0.1 introduces and discusses the 

significance of a fundamental distinction between inference 

systems j , search strategies for I and proof 
procedures Relationships between the 

efficiency of proof procedures and properties of inference 

systems are investigated in section 0.2. Further 

investigations, in 0.3, relate the efficiency of proof 

procedures to the completeness of inference systems and 

search strategies. An earlier version of a part of this 

chapter was reported and discussed in a panel discussion at 

the Fourth Arnual Systems Symposium [19] . 

0.1 Proof Procedures, Inferenne Svsters and Search Strategies. 

A funaamental distinction, basic to the study of 

efficiency, is that between a system of axioms and inference 

rules ( and a proof procedure _ ( f , ) for obtaining 

proofs admissible for f by means of a search strategy 

In the case of resolution proof procedures, f is a function 

of input sets of clausas S0. Thus f = s0) consists 
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of the set of clauses S 
0 

together with resolution and 

possibly factoring rules. We also write = ?(SC) when 

SC is the set of axioms of a proof procedure ( r, L 
which derives theorems directly from axioms. Thus in 

general, an inference system f (SC) consists of an initial 

set of sentences SC together with inference rules r which 

can be applied to construct derivations from SC. (The set 

S0 may be fixed, when it consists of a given set of axioms, 

or may be a free variable, when it stands for a set of 

axioms supplemented by different special hypotheses and, 

possibly, by negations of theorems to be proved.) Derivations 

co,.istructible from sentences in S 
0 

by means of the rules 

are said to be admissible for The set S* of all 

sentences derivable from SC is called the search space 

determined by j (S0) . A search strategy for S is 
an algorithm for generating derivations admissible for f -in 
order to eventually generate a proof of a given theoxe m. 

Thus Z induces an ordering of occurences of sentences 

from S* defined by the sequence in which derivations of 

these sentences are generated by . We distinguish 

between an admissible derivation 6) of a sentence C and 

the set of sentences generated by 7 before obtaining a 

first proof of C. C contains only sentences necessary 

for proving C whereas will almost always generate, 

before proving C, proofs of sentences irrelevant to a 

first proof of C. Search strategies for resolution systems 
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include level saturation, unit preference [53], fewest 

components [50] and diagonal search (chapter 4). 

Although we restrict attention to proof procedures 

of the form ( , ), it sho%21_d be noted that not all 
proof procedures (,an be analysed as consisting of inference 

systems and search strategies I for generating proofs 

forward from axioms (or input sets of clauses) to theorems 

(or Q ). In general it is necessary to consider 

procedures 6 which generate proofs backwards 

from theorems to axioms of f by means of a search strategy 

The system is dual to an inference system in 

the sense that its operations are the inverse of inference . ^ 
rules r . The search space S* determined by consists 

of all sentences which can be used to derive the given theorem 

and is structured in the form of an and/or tree [49]. Beth, 

Kleene [18] and other researchers have observed that semantic 

tableau procedures obtain proofs constructible by means of 

Gentzen-type axioms and inference rules . The semantic 

tableau method consists of a search algorithm 15- for the 

search space S1 determined by a system f dual to It is 

interesting to note that Beth's original procedure employed 

an incomplete which resulted in the incompleteness of 

[29]. The Geometry Theorem-Proving lInchine [9] is an 
n 

incomplete procedure of the form ( S , ) employing incomplete 

n 
Given a system S or r it is often possible to 
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construct a corresponding dual system. A system 

dual to a resolution system 5 , can be constructed by 

including in the search space S* for .j all clauses which 

can occur in resolution derivations of the null clause. 

S* defined in this way is the set of all clauses 

constructible from a potentially infinite set of variables 

and from the predicate and function symbols occurring in 

S. For the system ,S of Slagle's program for symbolic 

integration [49], an inference system ?"(S0), dual to , 

can be constructed by defining SQ to be the set of 

integration formulae of some integration table and by 

defining fl to be a set of rules, inverse to those of T", 

for constructing new formulae from existing ones. The 

n 
search spaces S* and S* for a system and its dual need not 

n 
be identical. For the resolution systems `j and r above, 
S* C S*, whereas for the symbolic integration systems 

n 
and 5 C S*. (X C Y if X is properly contained 

in Y.) 

The notions of and/or tree problem (for systems 'f') 
and theorem-proving problem (for systems '-, chapter 4) are 

dual to one another and both generalise the tree (or graph) 

problem [8] of finding a path between initial and terminal 

nodes. Given a system Tor having constructed a 

syste,.a dual to the one given, it is possible to construct 

search strategies for the combined search space S* U S. 
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Such strategies have been studied for the tree problem and 

are referred to as bi-directional search. Many of these 

methods, including the cardinality comparison method of 

[32], extend to the more general situation. It is 

interesting to note that when the cardinality comparison 

method is applied to the resolution or integration systems 

and ',r"' above, it avoids generating objects in S* - S *1 

for the resolution example, and in Sk- S*, for the integration 

example. 

The remainder of this thesis is concerned explicitly 

with proof procedures of the form ( T-, 2 ). Despite this 

restriction, most of the remarks in this chapter apply 

equally to procedures ( , ) as well as to bi-directional 

procedures more generally. 

Proof procedures can usually be analysed 

in more than one way as inference system and search 

strategy. Set of support resolution can be treated as 

either a restricted inference rule determining a restricted 

search space or as a restricted search strategy for an 

unrestricted resolution rule. More generally, restrictions 

on derivations generated by 63 can often be incorporated 

into the definition of either S or The significance 

of an appropriate analysis ( § , ) of is related to 

the distinct notions of completeness which can be formulated 

for S , Land P. 



An inference system S (S0) is complete for a set 

of sentences S if, whenever SC implies a sentence C E 

then there exists a derivation of C from S 
0 

which is 

admissible for T-- '-r(SC) is refutation complete for 

(' if, whenever SC E E5 implies a contradiction then 

there exists an admissible derivation from S 
0 

of an 

effectively recognizable contradiction (e.g. 1J ). The 

existence of admissible derivations and therefore the 

completeness or refutation completeness of inference 

systems S is independent of search strategies for 

A search strategy I for r is complete for S if 
will eventually generate all derivations admissible for 

(assuming that F. can continue generating derivations 

after obtaining a first proof of a desired theorem). 

may be complete or incomplete independently of the complete- 

ness of . In particular r may be complete for 

but may be incomplete if ,. will not generate some 

derivation admissible for j ti Cn the other hand, 

may be complete when "r is incomplete, by virtue of 

exhaustively generating all derivations admissible for S a 

A proof procedure = ( -r (so), ; ) is complete for 

(refutation complete for Q5 ) if whenever S 
0 

implies 

C E Qf (SC E G and C some effectively 

recognizable contradiction) then 7 eventually generates 

an admissible derivation of C from SC. Thus 6) can 

be complete (or refutation complete) for G even when E- 



is incomplete for S : for example, when Cy. is the set 

of all sets of clauses, 63 = ( f , 57-.) is set of support 

resolution, S is unrestricted resolution and generates 

all and only those derivations admissible for which are 

compatible with the set of support restriction. However 

is incomplete for if is incomplete for and, 

equivalently, is complete for Q' if 0 is. The set 

Q' is usually the set Q5 * of all sentences constructible 

in the language of f . Situations where C C Q5k occur in 

the case of decision procedures which are incomplete for 5 
but complete for the decidable subset Q5. More generally 

all proof procedures incomplete for (y * are complete for 

some proper subset ( C (''* (e.g. ( _ A ). Unless 

stated otherwise, the set ( relative to which inference 
systems and proof procedures are evaluated both for 

completeness and for efficiency is taken to be the set for 

which 6) is expected to trove theorems. (More detailed 

discussion related to this topic is contained in the first 

part of section 0.3.) For the most part all remarks 

concerning completeness a?ply equally to refutation 

completeness. Unless stated otherwise, the term 

'Q completeness" is used to refer to both kinds of 

completeness. 

It is interesting to note that the original 

completeness proofs fcr unrestricted resolution [39], 
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hyper-resolution [40], clash resolution [42] and AN-clash 

resolution [51] are all stated directly for proof procedures 

z. ) where F can be interpreted as a complete level 

saturation search for These completeness proofs 

imply the completeness of the corresponding resolution 

system S and also of resolution procedures ( f , for 

any complete F' for The original completeness 

proofs for set of support [54], resolution with merging [2] 

and linear resolution [23], [24] are stated directly for 

inference systems ,f . All completeness theorems in this 

thesis are stated explicitly either for inference systems 

or f o:? search strategies. 

When analysing a procedure ?) for an inference 

system f and search strategy F. it is convenient to have 

incorporate the logical restrictions of l) and to 

have incorporate its heuristic restrictions. Suppose 

that a procedure 0 = ('1 T) is complete with incomplete 

Y. and suppose that there exists an equivalent procedure 

( D'' , 1) = ( S , ) such that is complete for 

The heuristic restrictions of P incorporated in 2- are 

transferred to logical restrictions in S '. In the 

Sr s 

following discussions we shall assume that proof procedures 

are analysed in a way which minimizes their heuristic 

restrictions. This convention implies that restrictions 

such as set of support, P1-resolution, etc. are incorporated 
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in the inference syster of resolution procedures. In 

general whenever = ( S , ) _ ( S ', ") and 

S ' * C S* then 61 = ( J' "' , ' ) is considered to be the 

preferred analysis of 6 If Z' is conplete for 

then the heuristics incorporated in Z' are restricted 

to imposing an ordering on the sequence in which admissible 

derivations are generated by Z'. 

The distinction between inference systems f and 

proof procedures 0 _ ( f , y) induces an additional 
distinction between measures of simplicity (or complexity) 

of derivations admissible for and measures of ease (or 

di`_'ficulty) of obtaining such derivations. A related 

distinction between notions of complexity and difficulty 

can be observed in the context of informal riathematics. 

Informally proved theorems almost always have `'sore than one 

proof (derivation), some of which are simpler than others. 

In particular it is not uncommon for early proofs of theorems 

to be more complex than later proofs. Indeed an important 

part of mathematical activity is concerned with just this 

simplification of complex proofs. It is not difficult to 

construct precise measures of complexity for informally 

obtained proofs. What is wanted is that such measures be 

compatible with intuitive notions of complexity. The 

number of distinct sentences occurring in a given derivation 

provides a pleasure of complexity which is approximately 
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satisfactory in this respect. A more appropriate measure 

might be the total number of distinct symbols occurring 

within the given derivation or perhaps some combined measure 

giving different weights to numbers of sentences and numbers 

of symbols. Measures formulated for informal derivations 

can be applied to derivations admissible for formally 

defined inference systems. For inference systems (such as 

resolution) which admit derivations () of tree-like 

structure, the largest number of sentences occurring in any 

one branch of (?) (level of C ) has often been treated as 

a measure of the complexity of 0 . The preced-ing and 

subsequent remarks suggest that a more appropriate measure 

might involve the total number of distinct sentences or 

symbols occurring in C. In any case, for the remainder of 

t1-is thesis it suffices for the most part to assume only 

that complexity of derivations is defined in such a way that 

no derivation is erer simpler than any of its subderivations. 

In this connexion we note that contractions and semi-contractions 

O t of derivations 6 (section 1.10) tend to be simpler 

(and never significantly lore complicated) than ® . 

The difficulty of informally obtaining a proof of 

a given theorem coincides with the total effort needed to 

obtain a first proof and includes work done on unsuccessful 

attempts. This effort can be quantified in a variety of 

ways: in particular, by the total amount of time expended 
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or by the total number of sentences (or symbols) constructed 

before obtaining a first proof. Similar measuros of 

difficulty can be applied to theorems proved by formally 

defined proof procedures. As a first approximation it is 

convenient to identify this difficulty with the total number 

of occurrences of sentences (or derivations) generated 

before a first proof. Compared with measuring difficulty 

in terms of time, this measure has the advantage of allowing 

comparisons of difficulty to be made among proof procedures 

and informal theorem-provers independently of the computer 

implementation of proof procedures. 

For the first proof of a given theorem, whether 

obtained formally or informally, measures of difficulty can 

be applied to measure efficiency. More specifically we 

shall regard a proof method as more efficient than a 

vethod 60 2 for proving a given theorem when the number of 

derivations generated by (YI before obtaining a first proof 

is less than the number generated by 02. This measure of 

efficiency allows comparison of proof procedures relative to 

a given theorem, it does not provide a direct means of 

evaluating for efficiency a single proof procedure which is 

intended to obtain proofs of theorems within some set of 

sentences 425 C W. For this purpose we shall assure 

that some informal proof method e* is given and assumed 

to be an ideal to which all formal proof procedures are 
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compared for efficiency within G . Thus, in particular, 

when we require of that formal difficulties coincide 

with informal difficulties, this requirement can be 

interpreted as imposing a norm that for all theorems 

in G difficulties are equal both for 6 and 6D', or 

more liberally that for all theorems in difficulties 

for 6) and 5)* differ by at most some given E (e may 

be allowed to depend upon n, the difficulty of proving the 

given theorem by means of 1.? *), or still more liberally 

that average differences in difficulties for theorems in 

4' are no greater than E (where E may depend upon n). 

Although none of these precise formulations admits an 

effective test for determining whether 6) meets the desired 

requirement, they serve the important function of clarifying 

the intended interpretation of the more imprecise formul- 

ation. We intend to identify the reauirement that a 

proof procedure (5) be efficient with the requirement that 

difficulties of proofs of theorems in (5 obtained by 

coincide with those of proofs obtained by P *. We intend 

further that this latter requirement be interpreted in the 

most liberal sense. Various objections to the identification 

of our requirement with that of efficiency can be countered 

by elaborating upon the choice of the informal method ( 

or by liberalising the tolerance function E. (We assume 

that tY * is never less efficient than any formal method 



For, in particular, 6) * can be assumed to be intelligent 

enough to be capable of employing the r.ethods of (P . 

Recall too that difficulties are measured in terns of the 

number of alternative possible subproofs examined before 

finding a first proof - and not in terms of time.) In any 

case we do not intend so much to define an absolute standard 

of efficiency as much as we intend to explicate in useful 

form the intuitive notion which we interpret as being 

relative to variable standards of human performance. The 

value of this explication depends upon its utility for 

founding the theory of efficiency presented in this chapter. 

As in the case of informal methods of proof, the 

efficiency of a proof procedure 6 = ( 1, ) is related 

to the complexity of proofs admissible for f u In 

particular, if .or a given theoi 1 admits no proofs 

containing fewer than n sentences, then n is a lower 

bound on the difficulty of proving the theorem by means of 

Jn' It has been common to confuse complexities of 

simplest proofs admissible for inference systems with the 

efficiency of proof procedures. This identification 

of simplicity with efficiency is a mistaken one since, for 

both formal and informal methods, not only may simple proofs 

be difficult to obtain but complex proofs may sometimes be 

easier to find than simpler ones. Similarly mistaken is 

the identification of efficiency with the degree to which the 
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ratio of the number of sentences occurring in a first proof 

to the number of sentences generated before finding that 

proof approaches unity. Relative to this measure a proof 

procedure is most efficient when it generates only sentences 

occurring in a srigle first proof - independently of the 

complexity of that proof which may be so great that it 

contains far more sentences than is tolerable by comparison 

with informal methods. Relationships between the complexities 

of proofs and the efficiency of proof procedures ( 1 , 7) 
depend upon several factors including the numbers and kinds 

of rc,dundant and irrelevant derivations admitted by T and 

the efficiency of the search strategy E. for T. Before 

investigating in section 0.2 properties of inference 

systems which are relevant to the efficiency of proof 

procedures, we conclude this section with several remarks 

concerning search strategies. 

Whereas proof procedures admit a notion of efficiency, 

no such notion applies to inference systems in the absence 

of search strategies. In contrast, the efficiency of a 

search strategy , for an inference system S can be 

studied independently DP- the efficiency of ( 3"', ,.). 

For a given S , a strategy " 
1 

is more efficient than 

L 2 when Z. generates fewer derivations than does E2 

before the generation of a first proof. A proof procedure 

6 = (S , E ) can be hopelessly inefficient even when 
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a. is most efficient for 7% Such a situation arises 

in the example of the preceding paragraph where S admits 

proofs of only intolerable complexity and L generates no 

sentences not occurring in the first and simplest proof of 

the given theoremw Although efficient search strategies 

cannot guarantee efficient proof procedures, efficient 

( , 'E 1) can be rendered intolerably inefficient by 

employing, instead of Z, an inefficient search strategy 
In a worst case, -2 might be an incomplete 

search strategy which, generrIting a potential infinity of 

irrelevant derivations, delays forever the generation of 

proofs. 2 might be complete but delay the generation 

of a first proof beyond some limit of tolerable difficulty. 

In any case the goal of constructing efficient proof procedures 

can be net only by the development of efficient search 

strategies. Since formally defined theorem-proving 

problems generalise the path-finding problem for graphs, 

it is reasonable to expect that methods employed to increase 

the eff icienty of graph searching can be extended to methods 

for theorem-proving. These methods include the use of 

learning, analogy, induction and other heuristic techniques 

studied in the field of artificial intelligence. The 

diagonal and upwards diagonal search strategies of chapter 4 

are intended to provide a theoretically sound framework for 

the extension of heuristic methods to theorem-proving problems. 
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Experience gained through research in artificial 

intelligence suggests that the efficiency of search 

strategies can be improved by simulating rsethods employed 

by intelligent beings. In the case of theorem-proving the 

simulation of intelligent methods suggests that search 

strategies should aim at generating simpler before more 

complex proofs while generating non-proofs in a selective 

order based upon intelligent estimates of their relevance 

to a simplest admissible proof. The suggestion that 

search strategies should attempt to generate simpler 

before more complicated proofs may be a controversial one. 

It is put forward here for three reasons: (1) The 

convention for analysing proof procedures in a way which 

minimizes their heuristic restriction implies that simple 

proofs which are not first generated by an efficient 

will tend to be inadmis'si,ble for 5 ; (2) within 

constraints imposed by logical considerations affecting 

efficiency, all else being equal, mathematicians seek to 

find simpler before more complicated proofs; (3) most 

importantly, proofs of increased efficiency for alterations 

to inference systems require the assumption that Z... 

generates, before all other proofs, the simplest proof 

admissible for This third point will be elaborated 

in section 0.2. 

It is interesting to note that certain inference- 
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related rules can be defined only in the eontext of search 

strategies. Deletion of variants and, more generally, of 

subsumed clauses is an important example in the case of 

resolution procedures: it is impossible to state that 

subsumed clauses ao not occur within a refutation 6) of an 

initial set of clauses S 
0 

without referring to the subsuming 

clauses which themselves need not occur either in 6) or 

SO. Both the completeness and efficiency of deleting 

subsuming clauses depends upon the sequence in which search 

strategies generatennresolvents of clashes. Completeness 

of deletion rules ,, for procedures IP is relative to 

the completeness of 6) . Q is complete relative to 

G if 6' , employing 6 , generates a proof of a 

theorem whenever , without (R , generates a proof of 

the same theorem. The completeness of deleting subsumed 

clauses has been proved relative to procedures ( S , ) 

where "., is level saturation and f is unrestricted 

binary resolution [39] or AM-clash resolution [481. Our 

own proof [17] fails because no regard is taken of the 

dependency of deletion rules upon search strategies. 

Completeness of the usual deletion rule for subsumed clauses 

is proved relative to ( S, ) for most resolution systems 

'S and search strategies Y- in section 1.11, where counter- 

examples are also exhibited for the relative completeness 

and efficiency of alternative formulations of this same 
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deletion rule. In this connexion we note that we have been 

unable to prove increased efficiency except for the case of 

deleting newly generated subsumed clauses. The relative 

completeness and increased efficiency of deleting tautologies 

is a simpler but not entirely trivial matter (section 1.12). 

For both deleting tautologies and subsumed clauses, proofs 

of efficiency are extracted from proofs of relative complete- 

ness and require the assumption that Y generates simpler 

before more complex refutations. 

The preceding remarks have attempted to indicate 

some of the more important relationships between the 

efficiency of proof procedures and the efficiency of search 

strategies. It is hoped that the distinction of inference 

system from search strategy will help to resolve some of the 

controversy concerning the use of 'complete' versus 'heuristic' 

methods in theorem-proving [41]. More specifically the 

development of efficient proof procedures can be served by 

a division of labour between logical studies of inference 

systems and studies of search strategies by the methods of 

operations research and artificial intelligence. These 

separate studies need to be co-ordinated by means of a 
theory which seeks to relate properties of inference systems 

and search strategies to properties of efficient proof 

procedures. 

We have assumed that the fundamental property 

which needs to be required of proof procedures is 
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that the difficulties of formally generated first proofs 

should tend toward those of informally obtained first 

proofs. We shall argue that a useful set of sufficient 

conditions for 6)= ( f ,:) to approach this goal is that 

(1) the complexities of simplest admissible 

formal proofs should be related to the 

complexities of informal proofs first 

constructed for theorems, 

(2) S should restrict as much as possible the 

admissibility of both redundant derivations 

and derivations irrelevant to a simplest 

proof, 

(3) Z should aim at generating simpler before 

more complicated admissible proofs, and 

(4) should generate derivations in a 

selective order determined by intelligent 

estimates of their relevance to a simplest 

proof. 

These four conditions have already been alluded 

to in preceding discussions. Conditions (1), (2) and (3) 

are further elaborated upon in section 0.2 and condition 

(4) is discussed in 0.3. 

0.2 Refinements and the Elimination of Redundant and 
Irrelevant Inferences. 

In this section we compare for efficiency procedures 
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( '3'', g) and ( 'S , G ) where -3"-f is obtained from S 
either by imposing restrictions on the inference rules 

of ' s or by omitting axioms from the axiom set S0 of S 

Following Luekham [24], "' is said to be a refinement of 

when S'* C S* where S'* and S* are the search spaces 

determined by 15-11 and 1`r respectively. By individually 

comparing for efficiency procedures (S 1 , E) and (?2, 

with where S , and are refinements of 

we can obtain indirect comparisons of efficiency for 

(11, I-) and (S 2, ). Furthermore, by extracting 

from criteria for refinements, we obtain criteria for single 

inference systems to admit extension to efficient proof 

procedures. We shall argue that if L is a refinement 

of and if 2 generates simpler before more complex 

proofs then ( "', ') is more efficient than ( 3", -) if 
the simplest proof admissible for "S is also admissible for 

is more efficient than if 
admits simpler proofs than 31-1 without admitting inordin- 

ately many redundant and irrelevant derivations not admitted 

by 

If ?'I is a refinement of ? ' then either j4-1 

eliminates redundant derivations admissible for ?-or 
(provided ''' does not eliminate all proofs of a theorem) 

' eliminates derivations irrelevant to a proof of the 

given theorem. The most obvious kind of redundancy 
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exists when a system radmits distinct derivations of the 

same sentence C (or of variants C and C' when is a 

resolution system). For resolution systems 1, another 

kind of redundance exists when 5 admits both a derivation 

of a clause 0 and a second derivation D' of a clause 

C' which subsumes C. Other relationships between derivations 

G) and G' can be attributed to redundancy. A precise 

characterization of these relationships is not necessary for 

present purposes. An irrelevant derivation is one which, 

for reasons other than redundancy, is not necessary for the 

construction of a proof. Redundant and irrelevant derivations 

may be eliminated either by restrictions which prohibit 

their generation or by deletion after generation. The 

second method is related to the first because deletion 

prchibits; the generation of derivations constructible from 

deleted derivations. 

The method of eliminating redundancies, which,as 

we shall observe below, need not always contribute to 

efficiency, is the principal method employed in this thesis 

for studying the improvement of inference systems. We shall 

argue that the potential improvement of eliminating 

redundancies and irrelevancies is related not only to the 

numbers of derivations eliminated but also to the complexity 

of the simplest proofs retained. In this connexion it is 

worth noting that systems which represent sentences as sets 
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of clauses omit redundancies caused in other systems by 

explicit rules (or axioms) for double negation, for 

commutativity, associativity and idempotency of conjunction 

and disjunction, for renaming bound variables, vacuous 

quantification ana for interchanging adjacent quantifiers 

of the same type. These redundancies are omitted without 

the expense of complicating proofs. 

The use of explicit operations for factoring 

clauses saves partial results obtained when attempting to 

resolve clauses. The method of marked factoring (section 1.6) 

eliminates without complicating derivations, redundancies 

aliowd by the Zoos--Rebinson method [531. The method of 

m-factoring (section 4.7) achieves similar results irhile 

also providing an effective means for implementing merging 

restrictions [2]. A restricted version of marked factoring 

(nucleus clauses un.factored9 section 4.6) reduces further 

redundancies with some attendant complication of derivations. 

(It is interesting to note that this method sometimes 

eliminates all refutations which lift ground refutations.) 

The method of section 2.9 for the unique decomposition of 

hyper-resolution clashes can be interpreted either as a 

means for eliminating redundancies from P1-resolution or 

as a method for implementing hyper-resolution while saving 

intermediate results. Under neither of these interpretations 

does this method complicate derivations. 
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For most resolution systems the retention of 

tautologies only introduces redunclances and complicates 

derivations (section 1.12). On the other hand, retention 

of variants and subsumed clauses generates redundancy - 

but sometimes simplifies derivations (section 1.11). 

1'iinimality restrictions (section 1.13), which can be imposed 

on a -restricted binary derivations (2.6) and on M-clash 

derivations (2.7), both simplify deriv,tions and eliminate 

many redundancies. M--clash restrictions complicate 

derivations; additional complication is caused by the 

t3+. -restrictions on M-clash derivations (2.7). Chapter 3 

establishes an equivalence between a refinement of the 

pararaodulation method for dealing with equality and the 

hyper-resolution method using equality axioms. This 

equivalence implies both equivalent numbers of redundant 

and irrelevant derivations and also equivalent complexities 

of proofs for the two systems. For both systems, initial 

trivialization of inequalities (3.4) restricts redundancies 

and retains simplest refutations. 

Almost certainly the most significant contribution 

to the elimination of redundant inferences has been the 

Prawitz method for restricting the instantiation of matrix 

clauses over the Herbrand universe [34]. This method, now 

incorporated in other Herbrand procedures [ 351, [22] , [14) 

(by means of the unification or matching algorithm). improves 
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efficiency by eliminating redundancies without complicating 

proofs. In the case of resolution systems, most general 

unification eliminates redundancies by omitting infinitely 

many ground derivations lifted by single general derivations. 

The Prawitz method also eliminates irrelevant derivations in 

a manner similar to that of the purity principle [39]. 

Clauses which cannot occur in proofs, because they contain 

literals which cannot mate with other literals in the initial 

set of clauses, are inhibited from generating irrelevant 

derivations. (In the pre-Prawitz Gilmore method [10] such 

clauses would not be distinguished from other clauses and 

wo.ild potentially need to be ins tanbiated in all possible 

ways over the Herbrand universe.) Methods similar to the 

Prawitz method have been conjoctured but not verified for 

the predicate calculus with equality [5], [28], [43], [38]. 

N-clash resolution eliminates both redundant and 

irrelevant derivations. On the other hand, linear resolution 

([23] and [24]) eliminates redundancies but no irrelevancies, 

since, as shown by Loveland, for any clause C derivable by 

unrestricted resolution there is a linear derivation 0' 

of a clause C' which subsumes C. The linear derivation 

6) ' is no more complicated than the derivation Q of C in 

the sense that it contains no greater number of applications 

of resolution. However Q ' can be muoh more complicated 

than (D if complexity is measured by resolution level. 



M-clash resolution eliminates irrelevancies because only 

clauses false in the interpretation M can be derived by 

the M-clash resolution rule. That M-clash xewolution 

eliminates no irrelevant derivations other than those of 

clauses true in :N is a consequence of the deduction 

completeness theorem 2.5.1. 

The elimination of redundant and irrelevant 

derivations does not, by itself, guarantee efficient proof 

procedures. Indeed it is even possible for a complete 

inference system 1', which admits neither redundant nor 

irrelevant derivations, to be incapable of extension to a 

procedure ( S , 
c 

) which proves informally easy theorems 

without great formal difficulty. Such an inference system 

would admit proofs of only great formal complexity. 

More generally if is a refinement of then ( S ', 'Z.-) 

may be less efficient than ( SY, t?-) if 7'" 1 does not admit 

the first proof obtained by C[,, which is admissible for S`. 

Under the assumption that ,S generates simpler before more 

complex proofs, (1' = ( S` ' ,) is more efficient than 

v' 

s 

= ( ', ) (or no less efficient) when .$ ' admits the 

implest proof admitted by (assuming also that the order 

in which generates derivations admissible for S ' 
coincides with the order in which Z generates derivations 

admissible for restricted to derivations admissible for j '). Under these assumptions, (j' generates the same first 
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proof 6D generated by 6) ; before generating 6), 6 generates 
all the derivations generated by Of and those derivations 

generated by 6' and not by P' are redundancies and 

irrelevancies not admitted by S '. If generates more 

complex before simpler proofs than (D ' may be more 

efficient than (P even when ' eliminates simplest proofs 

and very few other derivations. Such combinations of search 

strategies and refinements yielding more efficient proof 

procedures are pathological and do not seem to fit into any 

comprehensive theory of efficient proof procedures. For 

this and other reasons mentioned already in section 0.1, 

we shall compare inference systems relative to the assumption 

that they are incorporated in proof procedures with search 

strategies which generate simpler before more complex proofs. 

( S ', 7 ) can be more efficient than ( S , ) 

even when ' eliminates simplest proofs provided that ' 

eliminates sufficiently many redundancies and irrelevancies. 

The more ?" eliminates unnecessary derivations the greater 

s`'' may complicate simplest proofs while still improving 

efficiency. Suppose for example that S ' is a refinement 

of S and that Z. is a level saturation search strategy 

for Sv and Suppose that, for a given initial set 

of sentences S0, and T"' admit respectively d(n) and 

d'(n) derivations of level less than or equal to n. Then, 
d1(n) 

for each n, ' d' (n) < d(n) and r(n) ^ 
dd (n) is the fraction of 
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derivations of level less than or equal to..n admitted by f 
which are also admitted by Ir- t. If N and N' are the least 

levels of proofs from SO admissible for 'S and T -t 
respectively, then 6' is more, less or equally efficient 

to 0 depending on whether d'(N') < d(N), dt(N') > d(N) 

or d'(Nt) = d(N) (assuming for sim-,plicity, that £.. generates 

all derivations of a given level before generating a proof 

of that level). Thus ( 1 , Z) is more efficient than 

( s, Z) if N = N' or if N' > N but T t omits sufficiently 

many derivations for d'(N') < d(N). For classes of initial 
sets of sentences S0, estimates of the function r (as a 

function of n and S0) can sometimes be obtained by 

comparing derivations admissible for rand 'f". Other 

investigations can be made to estimate either d or d' and 

bounds on the difference between N and N' (as a function of 

S0 and of the theorem to be proved) can often be extracted 

from completeness proofs for 1 t relative to Similar 

studies can be done for other notions of complexity when a 

is a saturation search by degree of complexity. The functions 

d, d' and r and N' as a function of N vary widely with 

various properties of initial sets S0 and of theorems provable 

from S. For this reason calculations of these functions 

may be impossible in all but either worst or best cases or 

cases which can be considered typical for some class of 

theorems. 
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Despite the great difficulties of obtaining, for 

wide classes of theorems, Precise comparisons of the 

potential efficiency of refinements, certain important 

principles emerge quite clearly. If '3' ' refines 

and Z generates simpler before more complex proofs, then 

the greater the number of derivations eliminated and the 

simpler the proofs admitted by 1311, the more efficient 

is than ( 15-) . Both extended set of 

support in resolution [55] and the employment of lemmas in 

model elimination [22] extend inference systems, simplifying 

proofs and introducing redundancies and irrelevancies. Both 

excer_sions are motivated by the use of lex as and previously 

proved theorems to increase the efficiency of proving 

theorems in informal mathematics. 

It has been suggested that the efficiency of proof 

procedures can be improved by increasing the power of 

inference systems [27], [44]. This notion can be 

quantified by identifying the power of 3"` for a given 

theorem with the degree of cozlpplexity of the simplest proof 

admitted by Thus a system 
' 

is more powerful than 

when the simplest proof admitted by is simpler than 

the simplest proof admitted by 1" for the same theorem. 

In particular T is never less powerful than if 

extends f '. G8de1's results on lengths of proofs [11] 

show that many proofs can be greatly simplified by applying 



rules within a system of higher-order logic. Among 

resolution systems, unrestricted resolution admits the 

simplest proofs and is therefore most powerful, although 

not necessarily uniquely so. 

Just as i-efinomonts often ovor-complicate proofs, 

extensions often introduce too any redundancies and irrel- 

evancies. The problem of admitting too many derivations is 

especially acute for higher-order logic and first-order 

logic with axiom schemata. Gould's negative results [12] 

show that there is no algorithm for eliminating in higher- 

order logic the kind of irrelevancies eliminated by the 

unification algorithm in first-order logic. , .xicm schemata 

in first-order logic become axioms in second-order logic. 

For this reason Gould's results are not very surprising since 

extension of the unifi-G ation algorithm to higher-order logic 

would imply very strong restrictions on the instantiation of 

axiom schemata in first-order theories. Darlington's 

f-matching method [5] provides just such an extension of the 

unification algorithm to the restricted instantiation of 

axiom schema. For the schema of substitutivity for equality 

(which can already be restricted to a finite number of 

instances), the completeness of f-matching is equivalent to 

that of the paramodulation system conjectured to be complete 

by Robinson and ITos [38] . For the axiom schema of induction 

in number theory, f--matching may fail to provide instances 
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which are necessary to prove e,,Yen easy theorems. 

The difficulties encountered by various attempts 

to inhibit the generation of irrelevancies by logical 

restrictions on inference systems suggests that a plateau 

has been reached for improving efficiency by eliminating 

irrelevant derivations within complete inference systems. 

Further progress for improving efficii-ncy may be possible 

by employing incomplete inference systems. This 

possibility will be discussed in section 0.3. It should 

be remarked first that at least two research programmes can 

be formulated for increasing the efficiency of existing 

proof procedures without sacrificing the completeness of 

inference systems. The first programme involves the 

simulation in search strategies of intelligent informal 

methods for finding proofs. The second programme is that 

of constructing refinements of inference systeL_s with the 

explicit goal of oliasira-ting ^s many redundancies as possible 

while still retaining simplest proofs. The first proposal 

has already been discussed in the preceding section and will 

be exr=dned further in section 0.3 in connexion with 

discussions pertaining to the completeness of search 

strategies. With regard to the second proposal, it should 

be ro'narked that existing refinements of inference systems 

(e.g. resolution) admit inordinately large numbers of 

redundant derivations. Unlike irrelevancies, redundancies 
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can be recognized during the course of searching for proofs, 

It might be hoped that these redundancies can be recognized 

and eliminated before rather than after their generation. 

It seems reasonable to extract, from criteria for 

refinements and extensions, criteria for single inference 

systems 5 to admit extension to efficient proof procedures 

( T, T.). These criteria include requirements that 7- 
admit simple proofs and few redundancies and irrelevancies. 

For formal methods to compete with informal methods in 

restricting the generation of redundant and irrelevant 

inferences, it seems unlikely that first obtained formal 

proofs can be much simpler than those first obtained by 

informal methods. On the other hand, if formal 

complexities are much greater than informal complexities 

then formal difficulties will tend to be greater than 

informal difficulties. For these reasons it seems 

desirable that formal complexities of proofs should 

approximate those of informally obtained first proofs 

of the same theorem. 

Ye have already remarked that informally obtained 

first proofs of theorems are often more complex than later 

proofs. For an ideally efficient proof procedure ( , .), 

assuming that Z is complete for r and generates simplest 

admissible proofs before more complex proofs, the preceding 

remarks imply that the first proof generated by ( ir, ' 
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is likely to be tore complex than the simplest proof 

theoretically possible for a given theorem. This not only 

suggests the possibility of improving efficiency by the 

appropriate choice of refinements for proving given theorens 

but also suggests the merit of methods for obtaining simplest 

proofs of theorems after generating the more conplex and more 

efficiently obtained first proofs admissible for refinetents. 

A simple program for the simplification of complex' proofs 

can be outlined for resolution inference systems: 

Suppose that is a refinement of the unrestricted 

resolution system f . Suppose that 7., generates simpler 

before more complex refutations and that 6) and (' are 

the simplest refutations, of an unsatisfiable set of 

clauses SO, admissible for T' and'' respectively. Assume 

that ( -31-' 
1, ) is more efficient than ( S , Z) for 

refuting S0 and tnat ® ' is the first obtained refutation 

of S0. Zfiith few exceptions the following method will 
construct 0 (or an equivalently simple refutation of s0) 

from 0', generally with much less difficulty than would 

be involved in obtaining J directly by ( T-, Z). Although 

' may not lift a ground refutation, it can be verified 

that it is easy to construct both a ground refutation 

ao and a coxitraction 6) 
1 

of 0' which is a refutation 

of S0 and lifts 0 00 (4 0 and 01 can be constructed 

simultaneously from () ' by applying methods similar to 
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those applied to prove the contraction theorem 1.10.2 and 

to apply the m:irilmality restriction (section 1,13)- In 

the notation of 1.13, Do The set Sot of clauses 

which occur at tips of 6o constitute a truth-functionally un- 

satisfiable set of instances of clauses in So. E. applied 

to j (S0') will generate a simplest refutation "2 of S0'. 

02 can be lifted to obtain a refutation 1)3 of So. 

Generally )3 will be a simpler proof than 6)' and either 

will be identical to 0 or will be of a complexity equivalent 

to that of 0 . Similar methods can be profitably applied 

to the simplification of proofs in more general contexts. 

0.3 Completeness of Proof Procedures. 

Before examining relationships between completeness 

and efficiency it is necessary to recall that both complete- 

ness and efficiency are evaluated relative to the set of 

sentences G. within which a proof procedure (5) is expected 

to prove theorems. This explicit identification of the 

set c is necessary in order to avoid, when undesired, 

evaluation relative either to the possibly larger set G. 

of all sentences or alternatively to the set G°, the 

largest set for which is complete. For any proof 

procedure 61 such a set ° always exists and may in 

extreme cases equal either 0 or more likely 

may be properly contained in C"G, in which case LP is 

potentially required to prove theorems in - G ° which 
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are unprovable for (Q ; Qj'° may be identical to C ; 

or ( $ may be properly contained in G°, in which case 

although theoretically capable of proving theorems 

in ° - , is not required to do so, possibly becuse 

Q is known to be inefficient for theorems in & - 
or because sentences in - Q5 do not arise in some 

princi l intended application if P . In any case, for a 

given proof procedure the set (& 
0 

need not in general be 

effectively recognizable (i.e. recursive). In contrast it 

is important to require that sentences inG be distinguished 

from sentences in before a proof is attempted by 

In particular it is not adequate to specify that 6) is 

expected to prove, for instance, only easy c,r only difficult 

theorems, if no effective and efficient recognition algorithm 

exists and is employed for distinguishing such possible 

theorems. Without further qualification, i.;, will be 

implicitly assumed in the remainder of this section that 

proof procedures P are evaluated for completeness 

(and efficiency) relative to the set (25 for which 63is 

expected to prove theorems. It will be assumed that 

sentences in 
' 
- Q e7 effectively and efficiently 

distinguishable from sentences in Q' . Because of 

these assumptions, decision procedures for decidable 

subsets of * are evaluated as complete wIen they are 

intended to prove theorems in G and as incomplete if they 
are expected to prove theorems in ('. For the sane reasons, 

procedures 60 complete for Q5 * will be investigated for 
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relationships between completeness and efficiency, not 

necessarily relative toGy , but relative to the set Cr 

to which e is expected to be applied. 

All proof procedures, complete or incomplete, are 

limited in practice by an upper bound on the amount of 

effort available for generating a proof of a given 

theorem. Failure to obtain a proof by a complete 

procedure 6) within such finite limitations implies that 

the alleged theorem either is not valid or is valid 

but too difficult to be proved with the lin:ted amount of 

effort available. Similar failure by an incomplete 6) 

implies, as a third possibility, that the alleged theorem 

is valid but unprovable by (2 even with unlimited effort. 

For all practical purposes it is only this third possibility 

which distingu;_shes incomplete from complete proof procedures. 

(Indeed the existence of this possibility provides an oper- 

ational definition of incompleteness which coincides in 

extension with the definition of the first paragraph of 

this section. We shall attempt to determine whether the 

existence of this third possibility justifies evaluating 

complete procedures as always superior to incomplete 

procedures. 

Of all proof procedures we require only that formal 

difficulties tend toward the informal difficulties of first 
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proving theorems. (The degree to which a proof procedure 

approaches this goal can be evaluated independently of its 

completeness or incompleteness. Indeed it is wholly upon 

this basis that we intend to base our evaluation of the 

significance of incompleteness for efficiency.) Thus when 

a best (i.e. most efficient) proof procedure fails to obtain 

a proof of a given theorem within given limitations on the 

amount of effort available it can be inferred that the 

theorem is too difficult to be proved by any good proof 

procedure within the came limitations. It is important to 

notice that in this sense an incomplete procedure Of can 

be superior to,a complete procedure ?) . 0 may fail to 

prove, even with considerable but limited effort, theorems 

which are easy to prove informally with less difficulty, in 

particular, than that unsuccessfully expended by 6. In 

contrast, 9 f, because of its incompleteness, may be incapable 

of proving only inforna'.ly difficult theorems which are in 

any case too difficult to be proved by any efficient proof 

procedure within the bounds on effort available. Thus what 

matters for efficiency is not necessarily the frequency with 

which an incomplete procedure QI is expected to prove 

theorems theoretically unprovable for r - but, more 
significantly,- the frequency with which is expected 

(and unable) to prove theorems informally provable with less 

effort than that unsuccessfully expended by (Q r. More generally 



a complete or incomplete procedure fails to be satisfactory 

only when it fails to prove with a given bounded amount of 

effort a theorem which is informally provable with comparable 

effort. 

The longer that inference systems and proof procedures 

(such as those of [5], [28], [38] and [43] ) are conjectured, 

but not proved, to be complete, the less significant for 

efficiency is the possibility of their incompleteness. The 

increased suitability of these systems and pro^.edures is due 

not only to the increased likelihood of their completeness 

but pore importantly to the increased likelihood that in the 

case of incompleteness, only informally- difficult theorems are 

formally unprovable. Since successive attempts to disprove 

completeness will tend to eliminate simpler before more complex 

counter-exanple.., continued failure of these attempts increases 

the likelihood that, in the event cf incompleteness, only 

complex counter--examples exist. Increasingly complex counter- 

examples correspond to increasingly more difficult theorems, 

and therefore continuing failure to disprove completeness 

decreases the probability that easy theorems are unprovable.- 

`t'his decreased probability increases, in turn, the suitability 

of the given inference systems and proof procedures for automatic 

theorem-proving. It is an in'-eresting possibi_licy that more 

information may be available about the suitability of proof 

procedures which are conjectured but not proved to be 



complete than is available for proof procedures which are 

definitely known to be either complete or incomplete. None 

the less we shall argue that proof procedures = ( 1 , .) 
employing complete ?-are often at an advantage compared to 

procedures employing incomplete inference systems. This 

advantage is that completeness proofs for inference systems 

5 often yield information relevant to the efficiency of 

procedures ( ?'P ),namely that complexities of simplest 

admissible proofs relate to the complexities of informally 

obtained first proofs. 

It has already been noted that incomplete procedures, 

because of their incompleteness, are able to eliminate more 

irrelevancies than can be eliminated by complete procedtireso 

Almost certainly it is only this possibility of eliminating 

greater nunberq of irrelevant derivations which can account 

for an absolute preference for incomplete proof procedures. 

Indeed this reason accounts for the fact that decision and 

semi-decision procedures, complete for sets of sentences 

Gr C C x but incomplete for c *, can be more efficient 

than procedures complete for * when they are applied to 
r 

proving theorems in L`). In particular the incompleteness 

of resolation procedures, for deriving logical consequences 

from sets of clauses, is a property which cont---ibutes to 

their efficiency for obtaining refutations of unsatisfiable 

sets of clauses. (Bounds on the incompleteness of 
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resolution systems, relevant to efficiency, are established 

by Theorem 2.5.1.) The possible advantages of incomplete 

proof procedures are apparent when these procedures are 

applied to obtaining proofs of theorems which they are able 

to prove. The disadvantages of incomplete procedures arise 

when they are applied to proving theorems which they are 

incapable of proving. 

In genergl it is to the r1isadvantage of incomplete 

proof procedures that usually little or no information is 

available concerning the extent or character of their 

incompleteness. In particular no such information has been 

reported for the interactive theorem-proving programs of the 

Applied Logic Corporation [14]. Certainly what should be 

required of incomplete procedures is that only very few 

if any easy theorems should be unprovable. Norton notes 

that this requirement fails to be satisfied by his incomplete 

proof procedure for proving theorems in group theory [31]. 

We have already remarked, in the preceding section, 

that completeness proofs for refinements 7"t of inference 

systems j often provide information about the comparative 
efficiency of proof procedures ( , L..) and ( '? I , z) . 
This information is easiest to obtain when completeness 

proofs for relative to ? proceed by transforming 
proofs 0 admissible for T into proofs 6) t admissible 

for ''Sy Comparison of the complexities of (1} and 0 ' 
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can be applied, by the method outlined in section 0.2, 

comparison of the efficiencies of and (21. Similar 

but more limited information concerning efficiency can 

sometimes be extracted from completeness proofs (for inference 

systems) which proceed directly by semantic arguments. In 

particular the application to completeness proofs of semantic 

tree construction exhibits a relationship between the 

complexity of resolution proofs and the complexity of a 

certain kind of semantic argument for establishing the sane 

theorem. More generally, completeness proofs for inference 

systems which can be interpreted as employing rules for 

Herbrand instantiation of matrix clauses (e.g. Gilmore [i0], 

Prawitz [34] , [351, and Lcveland [22] and Robinson resolution 

systems) indicate a relationship between complexities of 

simplest formal proofs and notions of complexity, invariant 

for these systems, based upon the number and truth-functional 

complexity of the fewest ground instances of matrix clauses 

necessary to reduce the proof of a given theorem to the 

proof of a corresponding theorem in propositional logic. 

That complexities of simplest proofs correspond closely to 

complexities of informally obtained proofs does not by 

itself imply that formal difficulties correspond to the 

informal difficulties of obtaining first proofs of theorems. 

For this stronger correspondence, it is necessary in addition 

that the inference system S admits few redundant and 
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irrelevant derivations while the search strategy .L finds 

simpler before more complex proofs, generating derivations 

in a discriminating order of relevance to a simplest proof. 

It seems that the problem of investigating inference systems 

'C for redundant and irrelevant derivations is no more 

difficult for incomplete than it is for complete 
.r 

0 

In contrast, the problem of relating formal to informal 

complexities of first proofs seems to be an easier one for 

complete. We shall argue that complete search strat- 

egies G- are likely to be more suitable thah incomplete 

for application to inference systoms in efficient 

proof procedures. 

We recall that proof procedures are analysed 

as consisting of inference systems . and search strategies 

the logical restActions of 'r are incorporated 

in '..- , heuristic restrictions are incorporated in and 

restrictions which are ambiguously logical or heuristic 

are treated as logical restrictions and incorporated in 

Relative to these conventions, we argue the case for 

complete search strategies L against that for incomplete 

Since arguments for incomplete seem to be based 

primarily on the paradigm of intelligent human behaviour 

as applied to finding proofs of theorems, we li.nit our 

arguments to those based on this same paradigm. ?Ie note 

that the case for complete search strategies can also be 
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be interpreted more generally as one for complete proof 

procedures. 

Characteristic of intelligent informal theorem- 

proving is the high degree of selectivity employed in 

exploring possibilities for proving theorems. This 

selectivity seems to suggest that informal search strategies 

so restrict the generation of derivations that they must 

almost certainly be incomplete. Contradicting this 

conclusion is the unlikelihood that an intelligent theorem- 

prover would completely eliminate, on purely heuristic 

grounds, a logically possible subproof of a given alleged 

theorem. This unlikelihood suggests that informal search 

strategies (and also proof procedures) are complete. The 

apparent contradiction can be reconciled by interpreting 

the selectivity of informal search strategies positively, 

as employing highly discriminating but not incomplete 

heuristics for ordering logically possible subproofs with 

respect to their expected relevance to a desired simplest 

proof, instead of negatively, as eliminating beyond 

reconsideration possible but unlikely subproofs of the 

alleged theorem. The heuristic for deleting clauses, 

which contain function symbols nested to a degree exceeding 

a given fixed bound [1], [53], is an application of the 

negative interpretation of selectivity. A corresponding 

application of the positive interpretation is a heuristic 
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which would give preference among clauses of otherwise 

equal merit, to clauses containing less function nesting 

over clauses containing greater nesting, without completely 

eliminating the latter clauses. (It is interesting to 

note that implementation of he positively interpreted 

heuristic improves the efficiency of diagonal search - 

assuming that complexity of derivations ',. is a monotonic 

incregsing function of the number of symbols occurring in 

.) Similarly, search strategies employing only the 

unit section of unit preference search [53] apply the 

negative interpretation of selectivity, whereas diagonal 

search strategies employing expected length of clause as 

a heuristic function (section 4.3) apply a positive 

interpretation. In general complete search strategies, 

employing positive criteria for discriminating between 

possible subproofs, simulate intelligent search methods 

more faithfully than incomplete strategies, employing 

negative criteria for rejecting candidate subproofs. 

Assuming that efficient search strategies are essential 

for the efficiency of proof procedures and that simulation 

of intelligent informal methods is indispensable for the 

efficiency of search strategies, it follows that complete 

search strategies are gore likely than incomplete strategies 

to serve the goals of efficient automatic theorem-proving. 
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0.4 Conclusion 

In this chapter we have investigated various 

notions and assumptions relevant to the efficiency of 

automatic proof procedures. In particular, we have argued 

for the utility of formulating distinctions between inference 

system, search strategy and proof procedure, distinctions 

between complexity and difficulty and assumptions relating 

formal and informal methods of proof. We have attempted 

to indicate that these distinctions and assumptions can be 

usefully applied within a theory of efficiency to 

(1) outline formal methods of evaluating refine- 

ments, extensions and single proof procedures 

for efficiency, 

(2) reconcile apparently conflicting intuitions 

regarding efficiency (e.g. concerning complete 

vs. heuristic methods), 

(3) distinguish intuitions on the basis of their 

being compatible with, incompatible with or 

logically implied by the theory and 

(4) suggest practicable programmes of research for 

improving the efficiency of proof procedures. 

It is hoped that additional evidence for the utility 

of this theory will be provided by the investigations of 

chapters 1-4. 
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Chapter 1 

This chapter is concerned with the syntax of resolution 

systems. Sections 1.1 - 1.5 examine the syntax of expressions, 

substitutions, unification, clash resolution and clash 

restriction. In section 1.6 factoring and resolution of 

factors are introduced as methods for improving the efficiency 

of implementing resolution rules. Derivations are treated as 

labelled trees (section 1.8) and useful properties of trees 

are stated in 1.7. In section 1.9 the trace of a search 

strategy is defined and is used in turn to define the efficiency 

of proof procedures and the completeness of deletion rules. 

These notions are applied in 1.11 and 1.12 to an investigation 

of the completeness and efficiency of rules for deleting 

subsumed clauses and tautologies. 

The contraction theorem (section 1.10) isolates and 

formalizes a useful method for constructing anu transforming 

derivations. It is applied in chapter 2 to construct derivations 

from semantic trees and. in chapter 3 to permute hyper-resolution 

derivations. The contraction theorem generalises the lifting 

lemma and indicates how deletion of subsumed clauses can 

simplify derivations. 

In section 1.13 a strong restriction on derivations is 

incorporated in the minimality condition. The preservation of 

minimality conditions under contractions implies that minimality 

is compatible with deletion of subsumed clauses. This same 

property is used in chapter 2 to prove the existence of minimal 

C)-.-restricted binary proofs and minimal M-clash proofs. 
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[ cessions. 

We assume familiarity with the basic concepts, of 

resolution theory as can be found, for instance, in 

Robinson's review article [ 42] . The following definitions 

are intended therefore primarily to establish the terminology 

and notation used in the sequel. 

Atomic formulae A are referred to as atoms. Literals 

L are atoms A or their negations A; in the first case L is 

said to be,ositive, in the second case negative. If L is a 

literal then by IL! we denote the atom A such that L = A or 

L = A, If L is negative we identify L with the atom ILI . 

A clause C is a set of literals. If C = { L1 , . ,L; 
is a set of literals then by C we denote, as in [3] , the set 

f } . It is convenient to follow the convention of 

[2] lettin,; U denote disjoint union. Thus CUD is defined 

only when C(D and then GUD = CUD. If a clause C contains 

no element, then we denote C by Q and C is called the null 

clause. C is a tautolo if for some literal L, both L,L E C. 

A clause C is positive (negative) if all its literals are positive 

(negative), otherwise C is non-2ositive (non-negative). We 

recall that a clause is interpreted as the universal closure of 

the disjunction of its literals. 

Function letters may have no argument places, in which 

case they are individual constants. An ex xession is a term, 

literal, clause or set of clauses. If an expression contains no 

variables then it is called a ground expression. 
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We note that the representation of sentences by sets of 

cl.auses is an important factor contributing to the efficiency 

of resolution systems. Rules for commutativity, associativity, 

and idempotenoy of disjunction and conjunction, for 

interchanging adjacent quantifiers of similar kind and for 

deleting vacuous quantifiers are all unnecessary* The 

elimination of these rules contributes to efficiency by 

shortening derivations and by reducing the number of 

sentences derivable from a given set of sentences. 

1,2 Substitutions. 

A substitution o- is a set of substitution coaonents 

t./ ,x where t, is a term and x. is a variable (as in [39] i 71 1 

t is not xi) . If a- = { t1,x1 , ..., tJx then the variables 

xi and te:r'ms ti (for 1 < i < n) are called respectively 

the variables and terms of c3°° a If the terms of o 

are ground terms then v- is called a round substitutions 

Fo:.' any expression X and substitution cr , the e cpressior 

x a- is well-defined and is the result of applying a- to X. 

Xa- is called an instalce of X. If C and D are clauses then 

C subsumes D, if C a° C D for some substitution c-% 

The following properties of substitutions are well known: 

(1) Given substitutions o-,i and m-2 their 
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composition 0- a° 2) is always well-defined and is 

such that X (a 1 02) = (X 
0- 1 

2 
(2) Composition of substitutions is associative, i.e. 

((a,- c"_2) a"3 _ (o - (a°'2 0-3)) for all aV 2 , 3, 
We may therefore omit parentheses for compounded 

substitutions in the usual way. 

(3) The emp substitution 6 _ 0 is an identity for 

composition, i.ee cr = co'- = fir- for all a" . 

(4) X a- = X if the variables of a do not occur in X. 

If C1 and C2 are clauses and C10- = 
02 

, C2 O 2_ 
C1 

for some a-,q and o-2 then C1 and C2 are variants (variants 

differ only by a systematic renaming of variables). Under the 

usual interpretation of clauses variants are logically 

equivalent. A set of clauses S= {C1,...$ Cn} is 

standardised if no twa distinct C. and C share common 

variables. Every set of clauses S is logically equivalent 

to a standardised set S' where S' may be obtained from S by 

appropriately replacing clauses in S by variants. Resolution 

conventions for standardising sets of clauses eliminate the 

usual rules for renaming bound variables. 

1j Unification. 

A set of expressions E is unifiable if Eo- is a 

singleton for some o- ; a- is called a unifier of E. A 

family _ { E1,..,En } of sets of expressions is 

sipultaneousj unifiable, if Eia- is a singleton for each i 
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and same cY- o A most eneral unifier (m.goue) of a set of 

expressions E is a unifier 9 of E such that if c°- also 

unifies E then (Y- = eA for some /\ o If E is unifiable then 

such an m.g.uo e of E exists; moreover we m 4y .ay insist, as 

we do in the sequel, that the variables of 0 and the 

variables occurring in terms of S all occur In E 

(see. [39] ) ® Similarly a most general simultaneous 

unifier (m.g.s.u.) of a family S is a simultaneous unifier 0 

of S such that if a° simultaneously unifies E then e°- 

4 A for some /( . If F, is simultaneously unifiable then such 

an mag.saue 4 exists and may be restricted as for the case 

of :a.gouas above. Notice that e is an r.ges.us of 0 
{ E I if any only if e is an mog.uo of E. It follows 

that we may restrict attention when desirable to statements 

regarding families s and their simultaneous unifiers and 

m,g.souos . We shall often refer to simultaneous unifiers 

more simply as unifiers, 

Algorithms for obtaining m.g.u.s and mDg,,,c.us of 

unifiable families are given in [39] and [43] . The 

refinement theorem below and its corollaries formalise many of 

the intuitive properties expected of m.g.sou.s Among the 

implications of corollaries 11.3.3 and 1.2.4 is that the 

problem of computing arbitrary m.g.s.u.s can be reduced, to 

that of consecutively finding m.g.u.s of sets containing 

just two expressions. Corollary 1936 is used as a lemma in 

verifying that resolvents of clashes can be obtained as 
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resolvents of factors. 

Let . and e l be families of sets of eirpres ions. 

is a refinement of . if for every Et E t there is 

an E E ?-I such that E' Ee Notice that if is unifiable 

then so is 'p,! (e.g. ary unifier of 6 unifies 2t )o 

Lemma 1 ,3.1. Given E unifiable and e_t a refinement of £ , 

let 
e1 

and ®2 be m.g.s.u.s of t and C,e respectively 

then 0102 is an m.g.scuo of 0 . 

Proof. e 2 unifies Z since e 2 unifies e 

and ( 01 ) 2 = e 1 e 
2 

If Cr- uni.fi,esE ther 

c° unifies t and o- = 01 1 for some A 1. Moreover A 

unifies e, e since (' Q,) A 1 = C, Cr- So / 
1 

= 

e2 ' 2 for some 2. But then a- = e 1 2 A 2) _ 

(e 1 e 2) A 
2 

Theorem 1 .V?. (Refinement Theorem). Let be unifiable 

an3 lei: be refinements of . Then 

e,1.$.©n8 is an m.g.s.uo of e where 

9i is an m.g.s.u of eo ..o 0 (eo= E.)p 

and e is an m.g.s.uo of tee ... e n 

Proof. It suffices to show that for all kg 0 < k C n , 

& 0... 6 kot is an m.g.s.ua of E- where 

e t is an m.g.s.ue of 0 .<. 8k 

For k = 0 this is trivial. Assume by way of induction hypothe- 

sis that the above is true for some k < no By the preceding 

Lemma 1.3.1' since Ok+1 ©0 ... ek is a refinement of 
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F' 0 ... 0 k s we have is hat 

0 k+1gr: is an mog.sou. of p .. ek where 

(Pt is an mogosouo of e90000 0k+1 . 

Thus letting ak+.,O4° be the m.g.s©uo e t of the induction 

hpothesi&9 

Q , . n Vk+1 
e" is an m, g a s au o of where 

e'p is an mogos.uo of .9o0. GkGk+' 

Corollary 1.,'. Let F', { E,,ro.0EnI be unifiable. 

Then e 1 9.. 0 is an m.g s ou e of where e i is an m.g.uo 

of E 
1 . e0 ..oe1.-1 ( 9a _ E). 

Proof. Let i - { Ei{ Then & is a 

refinement of and e i is an m.gos.um of i ®C e i-1 0 

So 61000 &n9t is an .og.s.uo of where er is an mogsou. 

of 1?01 0 0 a 
O n But each E is a singleton, so 

E e 
I 

o .. 9 is unified and 9 t may be taken to be E. . 

C orollary 1 . . . Let E { Xl, .069Xn } 'be unif.'iable 

where X1 1 Q o c sXn 
are express ions. Then 

e2.. Qn is an msgu. of E where 

i is an m.g.uo of { x19Xi{ 9I .rao e, i-1 

Proof. i = { { X1 . Xi { } is a refinement of 

{E{ for 2 <i <n, So 

e 2.. &n &I is an m.g.su. of where 

e t is an m. g a s .u. of ',,. a 2. 00 fin. 

But e2..o e is already unified, so we may let 
9a o 



Carollax 1 ri j. Bets 6, be a unifiable family and let 

be refinements of which share no variables. 

Then 

e 1.00 ®n 9 1 is an m.g.s.u. of 6, where 

G .is an mag.souz o,,Fl i and 

is an meg.souo of e'O1... e 

Proofo It suffices to show that 

E 3 = &i Go ... Q 
im , 

where 6C = F 

But since, for i J. and share no variables 

Oi = 6_ e j 
Note that corollary 1,,,3.3 is essentially the simultaneous 

unification theorem of Andrews' [ 2 ] and that Hart's 

Theorem [ i5 ] is essentially Corollary 1.3.3 stated for 

n.=2. 

1.4 Clashes 

A standardised set of clauses C= }A1 a O.-fin= B} 

is a clash if for '1 I < 
A. = E'1 U ACis Bi 

o 0 0 

B F.t U ®.. U Fn U BQ P. y 0 and 

F 
U 11' "PEn U Fn } is unifiable with 

m.g.s.ua e . 

The clause 

C = (k1U...J "On 
U BC) 9 

is the resolvent of (f . The clauses in C are the parents of 

Co B is called the nucleus and the clauses A. are called the 

satellites of (2, . The sets of literals Ei in 
1''i 

and. 
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in B are called the literals reso?vpd upon in 1V...U 
Fn 

Literals L e Ei and K E P. are said to mate in C 
& is called an m.g.s.u. of C G If n = 1 then the 

distinction between the nucleus and satellite of C is 
ambiguous and C and its resolvent C are said to be binary. 
Note that e may contain ariants of the same clause. 

The definition of clash given above coincides with 

Brown's definition [ 3 ] and differs from the definition 

of latent clash given by Robinson in [ 42 ] 

1.5 Clash Restriction. 

Robinson includes in the definition of latent clash 

restrictions similar to the restriction below. This 

restriction is not included in the definition of clash above 

since in section 3.3 we invos':igato the completeness of a 

resolution rule for clashes which are not necessarily 

restricted. 

Let e= { E U D1. ,...,F U D be a clash 

with m.g.s.u. 4 where E. is the non-empty set of literals in 

Ei U Di. resolved upon in . Then C= (1) 
1 
U...U Dm) @ is 

vhe resolvent of `.'-,. . 6. is r'r. stricted if 
L E Eiei implies L A C. 

The motivation for introducing the notion of clash restriction 

is twofold 

(1) If C is restricted then the resolvent C of e, can 

be obtained from e by a sequence of binary 



resolutions. 

(2) The sequence of binary re s olvents of (1) contains 

no tautologies if neither C nor any of its parents 

in C`° is a tautology, 

If C is not restricted then either (1) or (2) may fail to 

hold,. Fcr example if JA 1,1;2 s B) where 111= { L1 , L2} 

A2= { L2 , L,1 } and B = { r, A-) then C --B cannot 

be obtained from e by any sequence of binary resolutions. 

If C _ 1.4 
-i$A28 

B} where Al = { L1,L2 } , A2 = 

{ L2,L1 } and B ={11,12} then C = A1=A2 can be obtained 

from C by a sequence of binary resolutions, but not without 

inia oducint; tautologous resolvents. 

The importance of (1) and (2) stems from the desirability 

of replacing clashes by sequences of binary resolutions. This 

point is taken up again in sections 2.8 and 2.9. 

1.6 Factoringo 

It is often convenient to regard as two consecutive 

operations the single operation of resolving a clash C: 

first each clause in 0 is replaced by a factor and then the 

resulting set of factors c2t is resolved in such a way as to 

obtain the resolvent C of e . The principal motivation 

for considering factoring is to increase bhe efficiency of 

searching for refutations. 

Several notions of factoring are possible and are 

studied in greater detail :.n Chapter 4. The following 



definitions are sufficiently general for present purposes and 

are equivalent, by the refinement theorem and its corollaries, 

to the definitions given by T7os and Robinson in [ 53 ] . 

If C = C1o .4JC is a clause and 8= { C1,...,Ci } , 

i n9 then Fi is called a Xartition of C and a complete 

artition of C if i = n (i.ee if C = V,e,) a Let sbe a 

unifiable partition of G with m.g.souo A then C e is a factor 

of Co Resolution of factors is defined as for clauses in 

general with the restriction however that the sets of literals 

Ei and F. resolved upon (in the notation of the definition 

&i.ven in section 1 .4.) are singletons. In other words a 

standardised set of factors (1= { A1, o o.,An,B } is a clash 

if for 1 < i < n 

A1= { Li} V' Abi, 

B = { K1, .. o,Kn} U B 0 and 

{L1 ;,n-Kn} } is unifiable. 

Then C = (A01 U. &j On V B0)6 is the re s olvent of 0 where 

e is an m.g.s.ut of c . 

The following more restrictive notion of factoring is 

equivalent to that introduced by Hayes and Kowalski 

in [ 17 ] . Let C be a clause and lot {C1,...,Cml 

be a unifiable partition of C with m.g.s.u. e . The pair 

D = (u (Fe ), CO ) is called a marked factor of Co The 

setU (b) ) is called the set of distinguished literals 

of D. It will usually be the case that we identify the 

marked factor D with its second element C4 A marked 



factor cannot be factored. Resolution of a set Cof marked 

factors is defined only for the case where the literals 

resolved upon in C are all and only the distinguished 
literals of factors in (a . A marked factor is a 

satellite factor, if its set of distinguished literals is a 

singleton. Thus satellites of a clash whose elements are 

marked factors are satellite factors. 11 marked factor 

(tJ(E e ), C e) is an f or (idem-factor) of a clause C 

if & is already unified (i.e. if 4 = E andU(P,) 0 ( C). 

If a clause C contains n distinct literals then it has 2n 

distinct i-factors and n distinct satellite i-factors. 

The following theorem justifies replacing the operation of 

clash resolution by the two operations of generating factors and 

of resolving clashes of factors. 

Theorem '6.' o Let {.e`1,99,An,BJ be a clash with 

resolvent C where for t C i< n 
. 

= Ei A 9 Ei O P 

0 . 
L= F1U...FnU B C, Fi 4 O F 

EUF9,EnU F and 

C = (L0JUUA.Cn U B0 )e where & is an m.g.s.u. of , 

then ' 9 a , ,l 1$ ..., 'i' n., B y } is a clash of marled Factors 

with reso] ent C where for 1 i < n 

o r 
B' = ( (FU..0UFn) 8n+1 , B e 

'n+1 F1 t...,T+'nJ and 

6j is an m.g.s.u* of for 1 C. j < n + 1. 



(ai' is restricted if e/ is. 
Proof. Because e is standexdised all of the IZ, , j 
j < n + 1, are refiner..ents of F which share no variables, 

By Corollary 1 o3 5 of the refinement theorem the m.g.s.u., 

of e, may be taken to be e,i o.. n6' where et is an 

m. go s.u. of gel ... a n+1 

For 1 i < n, let 

Li} = Ei@i { Ki} = Fien+I, a` d 

{ {L1, { Ln,Kn} } 

Then 09 
,I ... ®n and & t is an m. g. s eu. of ' . 

t1 
Therefore et is a clash and its resolvent is 

C _ (AQ1 ©1 U ... U 1'. 
on 

p U Bp a n+1) at 

(j.01 e 
1 

000 g n+l 
Uea U AOn eI .0 Vn+1 U B0&1,ue 9 n+1}Q t 

(lc U o.o U ACn U B01) e I ... e n+i e f t 

=C 

Suppose that C is restricted and that C' is not. 

Then for some L' resolved upon in e, Lt 8' E C. But L' = 

Li or L' = K. for some i. Therefore for some L resolved 

upon in (3a L' = L e j = L e 1... a n+1 for some j, 1 < j C n+1 , 

and L e = L19? e C. It follows that C is not 

restricted, contrary to the assumption. 

The refinement theorem and its corollaries suggest 

various ways of computing an m.g.scus e of a clash a. 
In particular the computation of 6 can be reduced first to 

the canputation of the m.g.s .u.s a i , 0 
.O rf G n+i and e' 



of the theorem above. Thia particular reduction is an 

attractive one because each e 
i 

can be computed independently. 

It does not seem unreasonable to assume therefore that the 

effort involved in resolving a clash C is equal to the 

effort involved in generating and resolving the corresponding 

set of marked factors (a4. In searching for refutations it 
is usual for variants of the same clause to occur in several 

different clashes. By storing the factors generated in 

resolving a plash it is not necessary to recompute them when 

they occur in other clashes. Thus by a suitable implementa- 

tion of factoring it is possible both to simplify the 

programming ana to increase the efficiency of clash 

resolution. 

l.7 Trees. 

J tree is a pair (Ts) where T is a non-empty set of 

elements called nodes and s is a function s T -+ T such 

that: 

(1) s-1(N) is finite for all N c T (ioe.(T, s) is 

finitely bra .ching&) 

(2) s (N0) = N0 for exactly one element N0 e T 

called the root of (T, s) and denoted by r(T). 

(3) Define s0(N)=N and sn+l(N)_ (,n 
(N)),, Then 

for all N e T there is an n > 0 such that 

n( s N) = r (T). (i.e. well-foundedness: if X h 0 

is a subset of T then there exists an N e X 



such that N = r(T) or s(N) A X). 

(I+) s(N) = N if and only if n = 0 or N = r (T) 

(i.e. T contains no loops). 

If N E T and s-1(N) = 0 then N is a jiR of (T., 

otherwise N is an interior node of (T,s). when, as is usually 

the case, there is no possibility of confusion we supress 

reference to the function s and refer to T itself as though it 
were the tree (T,s). It is sometimes convenient to think of 

trees as growing upwards* Thus r(T) lies above no nodes in T 

and tips of T lie below no nodes in T. 

A branch of a tree T is a set 6 C T such that 

(1) r(T) e e 
(2) N E 6 implies s(N) e 5 and 

(3) N E 03 implies s-1(N) 0 j contains at most one 

element. 

A branch is complete if 
(3') N E 8 implies s-1 (r) (1 cb contains exactly 

one element unless s-1(N)= O . 

Notice that any node N E T determines a branch 0j of T, 

b = { sn(N) n=4,1, ... } Every branch of T contains 

at most one tip. 

Given a tree T and node N E T let TN be `he smallest 

subset of T such that 

(1) N E TN and 

(2) N' E TN implies that s-1 (N') C TNo 

Thus TN consists of the node N together with all nodes of T 



lying above N. TAT has a natural interpretation as a subtree, 

(TN,s') of T where s'(N)=kr and s'(N')=s(N') for N' A N 

TN is called the subtree of T rooted in N. Notice that 

T r(T) 
Given a tree T a cut through T is a non-empty set X C. T 

such that X f7 t'3 is a singleton for every complete branch 

C T 9 
i.e. X contains exactly one node from every 

complete branch 63 of T. If X is a out through T 

then X determines a subiee (T/X, s') where T/X= { sn(N) 

N e X , n=1,2,.., } and s' is the restriction of 

s to T/X. Note the following r operties of cuts. 

1 . .1 . If X= { r(T) { then X is a out and T/X = r(T) 

1.7.2. If T is finite and X= { N:NeT and s'(N)=O } 

then X is a out and T/X = T 

1q . . X is the set of tips of T/X. 

1 (Kt r ig's Lemma)* If X is a cut through T then 

T/X is finite. 
Proof: Each complete branch Q) in T/X is 

finite since each such 63 contains a tip in T/X, 

i.e* the unique element of 06 ( X Suppose 

T/X is infinite then we can construct an 

infinite complete branch Ujo of T/X as 

follows: 

r (T/X) = r(T) e 43 G. If N e 630 ;then 

the subtree of T/X rooted in N is infinite. 

Since s-1 (N) is finite the subtree of T/X 



rooted in some Nt E s^1 (N) is infinite. 

Let N' E 10 . Then Go is infinite and 
V-DO 

contains no tip. 

1 . . If X is a cut through T and X { r(T) I then 

s-11(N) C X for some N e T. 

Proof: Suppose for every N e T there is an 

N' E s-1 (N) such that N' E X. Then construct 

a complete branch OjQ of T such that 0C n X 

as follows: r(T) E VO. If N E 63 and 

N' E s-1 (N)$ Nt , X. then N' E G 0. Then 

x n gQ = $ and therefore X is not a out through 

To 

1.8 Derivations, 

Let T be a tree and c a function defined on the nodes of 

T having clauses as values. For X C T define c(X) 

{ c(N) N e X 
} 

A pair 6, = (T,,c) is a 

derivation relative to given logically valid inference rules, 

if for all interior N e T, c(N) can be obtained from 

c(s-1(N)) by a single application of one of the given inference 

rules. If X is the set of tips of T, if c(X) C S and if 
C=c(r(T)) then 6) is a derivation of 

then (D is a rePatation of S 

from S. If C = Q C 

We also say that 0) is a 

3erivation from S (or refutation of S) when 0 is a derivation 

from a set St (refutation of S') and S' consists of variants 

of clauses in S. (This convention is necessitated by the 



decision to consider as clashes only standardised sets of 

clauses). If X is a cut through T and c(X) C S then Q)' 

(T/X,c'), where c' is c restricted to T/X, is a derivation 

from S of C =c(r(T))=c'(r(T/X)) and S logically implies C; 

if C = t then S is unsatisfiable. In order to simplify 

notation we usually write m'_ (T/X,c) instead of 6) 

(T/X,c'). Similarly for N e T we denote the derivation 

N=(TN, 0), where c' is c restricted to TN by writing 

N=(TN,c) Q 

Until section 238 we use the term" derivation"to refer 

to clash derivation. ® = (T,c) is a clash derivation 

if for all interior NET, c(s-i (N)) is a clash and c(N) 

is its resolvent, Given such a derivation (T,c) and N 

interior to , c(s(N)) is said to be the clash at at N. 

If N' E s-i (N) then the subset of c(N') of literals resolved 

upon in c(s-1(N)) is called the set of literals resolved upon 

at N' e If c(N') is a satellite of the clash c(s-i (N)) then 

N' is called a satellite node of 0 . Similarly if c(N') is 

nucleus of c(s-1(N)), N' is called a nucleus node of 6) . 

If N E T then an occurrence of L E c(N) descends from the 

same occurrence of L E c(N); If WE s-1 (N), if A is the 

m.g.s ou. of the clash at N, if L'® = L E c(N) for LIE c(10) 

not resolved upon at N and if the occurrence of Lt in c(iN') 

c1.escends from an occurrence of L" in c (N"), then the 

occurrence of L in c(N) descends from the occurrence of 

L" in c(N"). 



1.9 Search Strate 

'.7e distinguish betweon complete inference systems and 

complete proof procedures. 1. refutation complete inference 

system is a set of effective inference rules which when 

applied to ar. unsatisfiable sot of clauses S0 yields a 

refutation of S0' Tho refutation completeness of a 

resolution rule P. can be formulated as an assertion that 

for any unsatisfiable set S0 there exists a refutation 6) 

such that each resolvent of a clash in 0) is obtainable by an 

application of GZ - i' refutation complete proof procedure 

is semi-effective methoa for eventually obtaining a 

refutation of a set of clauses S0 when S0 is unsatisflable. 

Thus a proof procedure consists both of an inference 

system and of a search strate{r for obtaining refutations 

within the system of inference rules. 

The usual statements of completeness for resolution 

systems implicitly assert the completeness of a particular 

class of resolution proof procedures. It is easy to invent 

British fl iseum methods for searching resolution refutations. 

Such methods might, for instance, enumerate all resolution 

derivations rejecting those which were not refutations of a 

given input set S0 continuing until a first such refutation 

ore found. At any given time only one derivation might be 

under consideration, Such search strategies would be 

extremely inefficient and much of the efficiency of resolution 

derives from the efficiency of the search strategies associated 

with it. 



We shall say that an arbitrary set of clauses 

e is a clash if some standardised set & of variants of 

clauses in eiis a clash. The resolvent of e.is identical 

to the resolvont of e'. Given a set of'clauses S and a 

resolutions rule Qr let q(S) be the set of all resolvents C 

of clashes 0C S, where 0 is an admissible set of 

premises for application of the rule q . For a given input 

set of clauses S0 let O0 (s0) 
= S0 and for n > 0 

O (S0) ={ C : C E 0( n 
O 1 

0 

k ( (50) 

and C 
n v 1' 

V, 1 (S 0) { i = 0 

- 

thus C E Ok 
n 

(S0) if and only if there is a derilration 6) of 

C from S0 such that each application of resolution in 0 is 

an application of R and such that n + 1 is the number of 

distinct nodes in the longest complete branch of 0 . The 

00 
6 

(S0) is called the search space for SO . set V i 
Given a set of clauses S0 a resolution procedure 

(resolution rule Q plus search strategy) generates a sequence 

of clauses ( C1 2000.4 Cn, ...) from the search space for S0. 

This procedure either terminates without generating the null 

clause, terminates when some first C = Q or does not 
n 

terminate and .io c 
n 

= D,. In all of these cases we may 

imagine that the procedure continues until all of the clauses 
00 

in 
i 
V 

0a. 
(SO) have been generated. The resulting (finite 

or infinite) sequence ( C1,..., Cn, ...) is called the trace 

for S0 of the given proof procedure. Necessary conditions 



that a sequence ( C1,..., Cn,...) be a trace for a set of 

clauses S 0 
of a proof procedure o, consisting of a 

resolution rule 6 and search strategy, are that 

(1) for every Cn, n > I., either Cn E S0 or 

C is the res olvent of a clash 
n 

G'= { C 

n1 

,..., Cnm{ such that 0n E CRI(a) 

and ni < n for all i , 1. < i < m, and 

(2) if e ; {C ,..., Cn { is a clash with 

resolvent C then C = C for 
n 

some n > max { n.l , ..., n 
m{ 

(provided that no Cn has been deleted). 
i 

A search strategy is a de, th saturation strat 

if for every trace ( G.1,.9., Cn,...) 

Ci e 
n 

(SQ) , C. E 
m 

(SQ) and i <j imply n < m. 

Depth saturation has the appealing defining property of 

generating simpler derivations before more complicated ones. 

What is more desirable is that simpler refutations be 

generated before more complicated ones and that derivations 

which can predictably contribute to simpler refutations be 

generated before derivations which can predictably contribute 

only to more complicated refutations. This last property 

partially defines the family of diagonal search strategies 

studied in chapter L. 

If a resolution procedure includes deletion rules 

(e.g. deletion of variants, subsumed clauses, tautologies,etc.) 



then w e include in the trace I for any set S C all clauses 

rejected by the doletion rules but include no other clauses 

obtainable by derivations from such clauses after their delet- 

ion. Thuz if (C1,..., Cn,...) is a trace T and the clause 

C. is deleted immediately after the generation of the clause 

Cj then i < j and at most only the clauses Ci ,Ci 
1 
,9.,C 

in T are obtainable by derivations containing C i . This 

convention allows us to treat the number n - 1 of clauses 

occurring before the first C n = Q in the trace(C1,...,Cn,...) 

of an unsatisfiable set S0 as a measure of the difficult,y of 

refuting S 
0 

by the given proof procedure. This measure is 

a first approximation which C-oos not take into account, for 

instance, the effort involved in testing for the applicability 

of the deletion rules themselves. It might be agreed, that, 

given a program which implements a proof procedure, a more 

appropriate measure would be the total time taken to rofuto 

S0. Such a measure would however more accurately quantify 

the effort expended by the program than it would the effort 

expended by the proof procedure itself. In fact, given such 

a program, an ideal measure would be the total cost involved 

in reputing S0 (including charges for use of a computer, and 

for writing and maintaining the program). In any case it is 

important to note that the difficulty of refuting an unsatis- 

fiable set SQ is completely independent _ o4 the complexity 

of a refutation of SQ. The complexity of a derivation 

0=(T9c) can be measured entirely in terms of intrinsic 



properties of ®(i.e. the number of nodes in T, the length 

of the longest complete branch of T, etc.), whereas the 

difficulty of,refuting a set of clauses S0 has to be 

measured in terms of the total effort expended to obtain a 

first refutation of SO. The purpose of developing more 

efficient theorem-proving methods can be met only by reducing 

the difficulty involved in refuting unsatisfiable sets of 

clauses. Thus much of the research in automatic theorem- 

proving, involved in reducing the complexity of derivations, 

is unrelated to the principal goal of theorem-proving research. 

A deletion rule is compatible with a proof procedure cP 

(complete relative to (P ) if whenever T,, is the trace for 

some S 
0 

of P, r2 is the trace obtained by applying the 

deletion rule to clauses in T', and some Cn in T, is 

then some C' nt in 12 
is Ca.. A deletion rule may be 

complete yet fail to be efficient if n' > n. 

are the first occurrences of 13 in 

n nt 

and 12 respectively 

then a sufficient condition for the deletion rule to increase 

the efficiency of refuting S 0 (ignoring the effort involved 

in applying the deletion rule) is for n' to be less than n. 

In sections loll and 1.12 we investigate the completeness and 

efficiency of deletion of subsumed clauses and tautologies. 

1.10 Contractions. 

The lifting theorem asserts that given a derivation 

(Tic) and given for every tip N CLT a clause AN which has 

c(N) as an instance then there exists an isomorphic derivation 

, 
If C and c r 
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it = (T,c') from S' = fANs N E T is a tip) such that if 

S' is standardised then c(N) is an instance of c'(N) for all 

N c T and c'(N) = AN for N a tip of T. The contraction 

theorem is obtained by generalising the lifting theorem, 

allowing AN to subsume c(N) when N E T is a tip. The 

resulting derivation ()' from S' of a clause which subsumes 

c(r(T)) is then a contraction of . The contraction 

theorem yields the lifting theorem as a special case and in 

its more general form is used for applications later in 

chapter 1 as well as in chapters 2 and 3. We note that 

our generalisation of the lifting lemma was motivated in 

part by Brown's generalisation in [ 3] . 

A set of clauses tom' subsumes another set of clauses 

if for some substitution o°- and every l. E , there is 

an unique ,'I' E CI such that A' o- C A. We also require 
unj%"e 

that for every A' E there be anAA E such that 

A' C- C A. Thus o-- induces a 1-1 correspondence between 

clauses At E and A E such that A' o- C A. 

if 

Let C, and ("?' ' be clasheao Then c,' covers 

(1) C ' subsumes some subset of (3 (let o- be such 

that A' o- C A for corresponding 11' E (3' and 

A E(, ), 

(2) A' E .' is a satellite (or nucleus) of 
if and only if A' o° is a satellite (nucleus) of a 
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(3) the resolvent of et subsumes the resolvent 

of C , 
(4) e' is restricted if e is and 

(5) if At al?' then L e Gt is resolved upon 

in C' if and only if L o- C tcr-t is resolved 

upon in e . 

e' weak]y covers ( if (1), (3) - (5) above hold for G and 

et. The notion of covering here is only weakly related to 

Sibcrt's notion defined in [ 48 J. The lemma below is the 

local version of the contraction theorem and is used in 

se :tion 1.11 to study the subsumption strategy. 

Lemma 1.10.1. Let a be a clash with resolvent C ant: let 

e' subsume 0. Then either 

(1) some C' c e' subsumes C or 

(2) some subset of e' is a clash and 

covers 01 . 

If e is a set of instances of clauses in 3',, then et' _ 

and C is an instance of the resolvent of (2.' . 

Proof. Let C = { Al , ..., 11n, B } and 

{111',..., lnt, B'} . Let a- be such that 

lli o-- C -i and B' o-- C B. For 1 < i < m let 
. 

Ai = Ei U 11Oi, Ei 7( 0 , 
. 

B = F1 U ... u Fm U BO , Fi 0 , where 

e _ { E1 U F1 lee., Em U fm } and 

C (LO1 U ... U 
AOm 

U B0)6 where a is an 

m.g.s.u. of 0 . 

Lit 



Case 1 . If L. o'" AQi for some i then 

A! a° C C so T,.' subsumes C. Similarly if B' a- 
1 1 

C B then Bt subsumes C. 

If case (1.) does not apply then Case 2 

B' a°- l1 (F1 

for 1, S 

necessary). 

.ti ! 
. 

1 

U .. U Fm) A 0 . Lssume that B4 a- n F. , 0 

< m (by rearranging subscripts if 

For 1 < i < m' let 

E! U T.'Ci , El 1 
O . O FU UFm' U BC' ,F it 

{ E'1 U P' U F' 

Ei'cr C Ei , Fi'a- C F 
i ' 

AQlo- C .Ci and BO" C BC 

Notice that o- e unifies E'. Let ®' be an m.g.s.u. of 

then o-6 = e'/ for some A. The resolvent of 

C, _ (A01' 
U ... U `fl?m' 

U BQ' } of 

C' subsumes C since C'( C C (because 

A I ie' A = A4ia- 9 

BD' 9' Ba' a- e 

C 

C 

T.1L ie C 

where 

0 and 

Bp e (z C). 

That a literal L is resolved upon in e:1 if and only if L is 

resolved upon in C follows from the fact that 

E.'a- C E and F.'o- C F. 
1 1 1 1 

Suppose e."'' is not restricted. Then for some i either 

'e' C C'. 'e C C' or F E i i 

But then 

B tot/ Ei' a0 G C',K = C and E. 9 C C or 
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Fi' 6',( = F' or- & C C',( = C and Fib C C 

and e is not restricted. It follows that C" covers C. 

In case each A. is an instance ofA .' and B is an instance 

of B' then case (a) does not apply, m' = m ; so ell =(31 

and since all inclusions become equalities CIA = C, i.e. C 

is an instance of C'. 

Let d = (T,c) and t)' = (T',c') be derivations. We 

define the notion, contracts 0 (also ),31 is a 

ccntraction of `1 ), by induction on the number of n of 

nodes in T 

(1) If n = 1 and T = {NO}, then T' _ {N'O} and 

c' (NO') subsumes c (NC). 

(2) If n > 1 then let N 
0 
= r(T), s-1(NC) _ {N19...,Nm}, 

= c(s-1(N0)) and (TN N. 
1 < i < M. 

One of (a) and (b) holds. 

(a) contracts some Ui and c' (NO') subsumes 

c(NO), where NO' = r (T'). 

(b) Let NO' = r (T'), then s-1 (N 
0 

') , . Let 

s-1(N0 1) - {N1'9..., N' m,}, 

= c' (s1(NO') and 

' 

= (T' N, , c ' ) , 1< i < m'. Then 
i 

contracts Q i for all i, 1 < i < m'< m 

(after rearranging subscripts if necessary) 

and (w.' covers e. 
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Thus if 6) is a derivation of a clause C from clauses S, 

if 6)= is a derivation of C' from S' and if('' contractsC, 

then C' subsumes C and each clause in S' subsumes a clause 

in S (provided S' = {e' (N') : N' e T' is a tip) ). 

Associated with every contraction 6)' _ (T' c' ) of a 

derivation 6) = (T, c) is a I - I mapping V: T' -' T 

such that for every N'E T' the clash c' (s(N') ) covers 

the clash c (s(N) ). The mappingiis defined (using 

the notation in the definition of contraction ) by induction 

on the number n of nodes in T: 

(1) If n = I then (N5) = NQ. 

(2) If n >1 then 

(a) If V contracts some with associated 

mapping then is also associated . 1 

with the contraction M' of G, otherwise 

(b) If 7i is associated with the contraction 

of D, for i then 
1 1 

'(NC') = NC and 

t(Nr) = li (N') for N' E T, nT'N,. 

Examples. 

( i ) Let 6 =(T,c) where T = {No ,...,N1C{ and whore 

the functions on T is defined by the diaer^.m 

below and c is defined by the following 

equations. 



;` N8 / N9 N10 

c(N0) 

c(N1) 

c(N2) 

e(N3) 

c(NN) 

c(N5) 

1 

f 

N 
5 

_ {P (b)} 

_ r (a), P (b)} 

Q (Y), P (Y) f 

={P (a), (b) } 

{Q (b), P (a) } 

_ (b) P (b)) 

' N 
6 

N2 

1-111.11 

Nom./ 

C(N6) 

C(N7) 

_ (a)} 

_ (a), P(a), (b)} 

C(N8) 

e(N9) 

c(N10) 

_ {P (b)} 

_ {Q (a), Q(b)1 

{P (b), Q(x), (x)1 

Let Q' = (T',C') where TI ={N0 N2, NN, N7, N83 N10} and 

where s on T' is defined by the diagram below and c' is 
defined by the following equations 

N2 

c' (N0) = {P (b)} C' (N7) = {P (z), Q (b)} 

c' (N2) = {Q (Y),P (y)} c' (N8) = {P (u)} 

C' (Nh) = {P (v)} ct 
(N10)= {P (b), P (v) j 



Then Q' contracts d and f"(N.) = N. for all Ni e T' where 

is the mapping associated with the contraction. 

(2) Lot O, OD land be defined as in example (1) . 

Lets" = (T", c") wh-)re T" _ {N4, 
N8' N10} 

where s on T" is defined by the following 

diagram and c" by the following equations. 

and 

N10 c" (N4- ) = t 
r 

G" (N8) _ {P (u)} 

c" (N 0) _ {1 (w) } 

t 

then 6" is a contraction of both Q and ®'. 

The associated mapping -'' is defined by tl (Ni) N. 

for all N. s T" , both for the contraction of QD by 

(D" and of 0)P by at* 

Theorem 1.10.2 (contraction theorem). Let 6 = (T, c) 

and for every tip N let 1' be a clause which subsumes c(N). 

Let S = { L.: N eT is a tip } be standardised. Then there 

exists a contraction 63' = (T', c') of 0 which is a derivation 

from S. If each c(N) is an instance of .'. , when N is a tip, 

then T' T and Of lifts dD . 

Proof (by induction on the number n of nodes in T). 

If n = I then T = N0 . Let T' = T and of (N0) =.N. 

Suppose that n>1 and that the theorem holda for derivation 

troes containing fewer than n nodes, let N0 = r (T) and 

s1 (N0) { N .., Nm} . Lpt _ (TNC'c) . Since each TN 
1 1 



contains fewer than n nodes, by the induction hypothesis, there 

exist contractions 6 ' _ (T.', c,') Of O . Each O3' is a 

derivation from S and since S is standardised no clause in 

0. ' shares variables with any clause in for i ' 3 . 

Let Ni' = r (Ti'), J< i <m, let 

_ {o (N1),..., C (Nm)1 and 

{c1' (N1),.., ctm(N'm) { . 

C is a clash with resolvent c (N0) and c.(N.') 
1 3. 

subsumes c (N i ) for each i,1 < i < m. (j is standardised. 

By the preceding lemma either 

(1) some c i t (Nti) subsumes c (N0) or 

(2) some C" C 01 is a clash with resolvent b' 

and C" coversO'. Let' = {c '(N '),..<,e ' (N' ) }. 
1 1 m m 

Case jlj Let ID' _ ' . Then Q)' is the desired contraction 

of 6.. 

Case 2 Let dY = (T',c') be defined as follows: 
4 . 0 

T' Not} U T1' U ... U T'mf 

s-t (NO') _ {N,..., Nr'i,) , 

c' (N0') = C' and 

c' (N) = c! (N) for AT e T' n Tit . 

Then 0' is the desired contraction of GD . In case each 

c(N) is an instance of 1, for each tip N then by induction 

hypothesis each Ti' = TN and 4)i' lifts 6).. Therefore 

case (1) does not apply and C'.1 . If we let N0' = N0 

then T' = T c (N) is an instance of c'(N) for each N and 

OV lifts (D . 
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The fact that the contraction lemma provides information 

about the completeness and efficiency of subsumption suggests 

that a similar theorem might serve the same purpose for 

deletion of tautologies. In section 112 we show that for 

any derivation from clauses S, where O possibly contains 

tautologies, there exists a derivation(' from S where 

contains no tautologies and Of is a semi-contraction of 

The definition of,semi-contraction is obtained by 

replacing the condition that C?' covers e (in (2b) of the 

definition of contraction) by the weaker condition that Qom' 

weakly covers C . Thus every contraction is a semi- 

contraction but not conversely, Lssociated with every 

semi-contraction D' of a derivation 6) is a mapping it 
defined as for contractions. 

In order to apply the generalised version of the lifting 

lemma and to obtain information about the completeness of 

deleting subsumed clauses and tautologies we need to examine 

some of the properties preserved under contractions and semi- 

contractions. We note that if (S1' _ (T',c') is a semi- 

contraction (contraction) of a derivation Q) = (T, c) then 

1v10m3. 6' is a refutation if0)is, 

1.10.14-. Q' is binary if 40 is, 

1.10.5. for all N E T',c'(N) is not a tautology 

if c (t (N )) is not, where ''is the mapping 

associated with the contraction 0' of 6) (thus 

CU' contains no more tautologies than ()) and 
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1.10.6. if ®" is a somi-contraction (contraction) of 

(D' then 0" is a semi-contraction (contraction) 

of 6) . 

The following properties are noted in the sequel: 

1.10. . ()t is minimal if l) is (Theorem 1.13.2). 

1.1008. If 0' contracts 6) and the clash at 'N) is 

an M-clash then the clash at N is an M-clash 

as well (remark preceding Theorem 2.4.1 ). 

1.10, . If N is inferior to T', e,' = c' (s-1 (N) ), 

e 
(s..1 (''(N) ) and A' E S' subsumes 

A e&then At is O(- restricted if A is 

(remark preceding Theorem 2.6.1 ). 

1.11 Deletion of Subsumed Clauses. 

Strategies for deleting variants and subsumed clauses would 

seem to be promising first ctndidatos for establishing ri4:orous 

proofs of efficiency in theorem-proving. Our attempts to 

obtain such results have uncovorod unexpected problems not 

only for efficiency but for completeness as well. In 

particular our proof for the completeness of subsumption in 

[ 17 ] is not to the point, while Sibert's proof [ 48 ] 

applies only to a very inofficiont version of depth saturation 

search. In fact counterexample (1) below shows that a 

certain strateKr for deleting variants is incomplete for 

P1 - resolution. 

In the counterexample below we make use of the following 

s &21e depth saturation strata 7 which is defined only for 



binary resolution rules is defined by specifying the 

trace T= (c1,..., C, ...) for an initial set of clauses S 0 

of the proof procedure determined by 5 and a given binary res- 
olution rule R: 

(1) Let C1,..., Cm be d .stint clauses in SC where 

S 
0 

= {C 1,...) Cm} . 

(2) Let p0 = 1 and q0 = 2. Suppose that pi and qi 

are defined but that p. and qi+1 are not. 

Suppose that C1,.., Cn are defined and that 

C 
1 

is not. Let C _ {C pi .9 
Cqi} . 

R(C) 
If 

R(,,') A 5 then let Cn+,1, .p, Cn+k be distinct 

clauses ir: j 1(C) where 6 (e) = n+ 1' 
.. ' 

Cn+k} . 

(a) If pi + 1 = qi then let pi+1 = 1 and qi+,=q,- +1 

(b) Otherwise let p. 1; pi+ i and 9.i+1 
_ qi 

Exam les. The following examples are used in establishing 

counterex,mples 1-3 below, 

(1) Let the initial set of clauses S 
0 
be {C1,..., C4} 

where C1 = {P (a,b)} , 0 2 = {P P (f (x), Y) } , 

C3 = { 
P (x)Y), Q (Y) } and C. (b)} . Let A be 

P1 - resolution, Let = (C1,..., Cn,...) be the trace 

for S 
0 

of 0 and L. Then 

C5 = {P (f (a), b)} is the resolvent Of {C1' C2} 

C6 = {Q (b)} of {C,1, C3} , 

C7 = { P (f(f(a)) . b)} of , C5} , 

C8 = {Q (b)} of {C3, C5} and 
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. C9 = Q of { C4, C6} . 

It is easy to verify that for all n > 2 , 

C3n+1 {P (fn (a), b)} , 

{Q (b)} and 
C3n ± 2 

C3n + 3 

(2) Let S0 be {C,,..., C5} where C1 = {G (y), P(y)} , 

C2 = {G(f (x) ) } , C3 = {P (f(a) )} , C4= {P (f(b) ),P(a)} 

and C5 = {P (f (a) )}. Let Rbe binary resolution and 

let r = ( C19..9 C,...) be the trace for S0 of OZ and y_. 

Then 

C6 = {P(f(x) )} is the resolvent of {C1, C4} 

C7 = 

C8 _ 

{G (f(b) ), P (a)} of {C 1, C4} 

{G (f(a) )} of {C1, C5} , 

P 

C9 = a of {C3, C5} , 

C10 = {P (a)} of {C4, C6} s 

C 1 1 = C4 of {C5, C 
61 

, 

C12 
= {P(a)} of {C2, C7} and 

C13 = CJ of {C1, C$} 

C is undefined for n > 11+. 
n 

Subsumption is admissible for a resolution rule R if 
whenever O is a clash with resolvent C e R( ,) , (?,' a 

clash with resolvent C' and C' covers i then C E 0"x,1( Gar) 

In particular subsumption is admissible for (, if J6 is 

preserved under contractions (i.e. if whenever 0' contracts 

0 and every application of resolution in d) is an application 

of R then every zppl:,oatipn--of rosOlu.tion irk L is an application 

of QR). 



Theorem i 1,1.1 states that if subsumption is admissible 

for 6 then simple deletion of subsumed clauses (defined below) 

is complete relative to 6 and to arj search strategy Z for (R, 

Let Tj be the trace for a set of clauses Sc of a proof 

procedure 60 . We define the trace T2 for S 
0 

of P with a given 

deletion rule by specifying which clauses in 
T1 

are 

generated in 
12 

and which of these clauses in 
12 

are deleted 

in 
T2. 

The order of clauses in 
r2 

is the order inherited 

from j 
1 

. Thus if the n-th clause Cn in 
T1 

is generated in 

T2 
then Cn is the n'-th clause in 

i2 
where n's n and n-n1 is 

the number of clauses generated in r1 before Cn but not 

generated in T2 
before Cn. 

Let 
11 

= ( C1,...1 C,...) be the trace for a set 

of clauses S 
0 

of a proof procedure (P. The corresponding 

1:race 
I2 

of P with simple deletion of subsumed clauses is 

defined inductively : 

(1) If 
Cn 

in 
T1 

is in SC then Cn is generated in 12. 

(2) If Cn in 
T1 

is the resolvent of a clash 

C = { C , . . . , Cnm; , ni < n, then Cn is 

generated in 
f2 

if and only if each C is 

nj 
generated and not yet deleted in 

T2- 

(3) If Cn is generated in 
T2 

then 

(a) if C 
n 

is subsumed by some C i , i < n, generated 

and yet undeleted in 
T2 

then Cn is deleted, 

(b) if Cn properly subsumes some Ci, i < n, 

generated in2 then Ci is deleted. ( C 



Properly subsumes D if C subsumes D but D does 

not subsume C ). 

Counterexample 1 provides an example of a well-defined 

strategy for deleting subsumed clauses. This strategy is 

incomplete as is the strategy which is derived from it by 

limitation to the deletion of variants. 

( 1 ) . Let deletion of subsumed clauses 

be defined by replabing conditions (3a) and (3b) in the 

definition of simple deletion by (3a') and (3b') below. 

(3a') If Cn is properly subsumed by some C.,i< n, 

generated and yet undeleted in 
12 

then Cn is 

deleted. 

(3b') If Cn subsumes some C., i < n, generated in 
12 

then C. is deleted. i 
That this deletion strategy is not complete can be 

verified by taking the SC, 6 and ,£ of example (1). 

(Note that subsumption is admissibly; for k .) SC is 

unsatisfiable and Q is the 9-th clause generated in 
Ti. 

Applying the deletion rule defined above we obtain the trace 

For n<8, 

generated. 

C'n 
= Cn and C' is deleted when C'8 is 

6 

For n.>8, when n is even, C'n = 

deleted when C'n is generated. 

For n>9, when n is odd, C'n 

is never deleted# 

f O,(b)} and C' n-2 is 

{ P(f 2 (a),,b) { and 



Thus no Cri in `r2 is the null clause. 

Theorem lell.1. Let subsumption be admissible for a 

given resolution rule q O. Then subsumption is complete 

relative to q and any search strategy Z for P . 

Proof. Let r1 be the trace for a set of clauses SC of 

and Y_. Let 
12 

be the corresponding trace with simple 

deletion of subsumed clauses. It suffices to show that for 

every Cn in Ti there is a clause Cn, generated in T2 which 

is never deleted in r2 and such that Cn, subsumes Cn. (C n, 

is never deleted .n 
T2 

if Cnt is not deleted after the 

generation of Cm in 12 
for all m> n'. 

We observe that thero exists no infinite sequence of 

clauses Cn ,., Cn ,..o such that Cn properly subsumes 
1 3. i+1 

C From this observation it follows that for every 
n. i 

clause Cm generated in 
12 

thore exists a clause Cm, generated 

and never deleted in 
12 

which subsumes Cm The proof now 

procedes by induction on n r the index in of the clause 

Cn. If n = 1 then C1 is generated in 
T2 

and is subsumed by 

some C1, generated and never deleted in 12. 

Suppose that n >1 and that every Ci , i< n, is subsumed 

by some C., generated and never deleted in T2. If Cn is not 

a resolvent then Cn is generated in T2 and is subsumed by some 

Cn, generated and never deleted in r2. If Cn is the resolvent 

of C _ {C $Q..$ Cn } , n. < n, let C! = {C n, , ..., Cn, } 
1 m 1 m 

where each C , subsumes C and is generated but never 
n i ni 



deleted in r2. Then e' subsumes e* By the contraction 

lemma either some C n' subsumes C or some ?' C &,' covers 
°°- 

( a In the first case we are through. In the second case, 

by the admissibility of subsu-nption and the completeness of the 

trace 
129 

the resolvent of C" is generated in 2 and is some 

C n4. C n' 
subsumes C 

n 
and some never deleted C n" generated in 

T2 
subsumes Cn, and therefore subsumes C n. 

As can be seen by examining the proof of theorem 1.11.1 

simple deletion of subsumed clauses need not be efficient, even 

ignoring the effort involvod in applying the deletion rule itself. 

Counterexample (2) shows how this deletion rule can hurt efficiency 

by delaying the generation of the first null clause. 

Counterexample j2L Take the SC , 6?, and of example (2). 

Then the tracel1 for SO of Q and ._ is the trace T of example 

(2). SC is unsatisfiable and the first instance of 0 in T, 

is CO. If 
12 

= (C1' ,...,, C'n9...) is the trace for SC of 61 

and _with simple deletion of subsumed clauses, then the first 
instance of Cl in T2 

is C,' C. Moro particularly: 

For n < 8, C' = C and C' is deleted when 
n n 3 

C'8 is generated, 

C9 is not generated in 
i2 

since C'3 has been deleted 

and therefore { C3 .4 
C is not resolved in T2. 

C9 = {P(a)} , the resolvent of {C' , C'6} and 

C'4 and C'7 are deleted when C'9 is generated. 

C'10 is the resolvent of {C'5, C'a} 

Counterexample (2) suggests that it might be possible to 



remedy the inefficiency of simple deletion by replacing 

deleted clauses by the clauses which subsume them. In other 

words if the search algorithm would generate the resolvent 

C of the clash C = {C ,..., C 
} 

but certain C are 

nI n 
in ni 

deleted and subsumed by undeleted C , then examine the set ni 
Q,,' = {C , , ... C , { and if some C e' is a clash 

n1 nm 

then generate its resolvent C' in place of Co Admittedly this 

procedure is quite difficult to define precisely for arbitrary 

search strategies. But for the case of simple depth 

saturation there is no problem. However counterexample (3) 

slows that even in this case efficiency cannot be guaranteed 

since the replacement procedure may lead to the premature 

generation of resolvents. 

Counterexam 1e_(_3) Let . be simple depth saturation. 

Then Y_' (.,5-:with the strategy of replacing subsumed clauses) 

is defined by (1) and (2) in the definition of 2. and by (3) 

below. 

(3) Suppose that C 
n 

has just been generated. 

(a) If C 
n 

is subsumed by some undeleted 

Ci, i < n, then delete Cn. 

(b) If C 
n 

properly subsumes some undeleted Ci, 

i < n, then replace C. by C (i.e. lot 
i n 

C. assume the new value C ) . i n 

It is easy to verify that £' is complete with resolution rules 

R whicr admit subsumption. The reader will note that 

redundancies are introduced by condition (3b) since a 



clause C may now occur in several positions C. 
1 

and therefore 
7. 

the resolvent of the same clash may be generated more than 

once These redundancies can be eliminated without losing 

completeness by modifying; (3b). However even with such a 

modification the counterexample below continues to hold since 

no such redundancies are actually introduced in this example 

by applying 7,' unmodified, 

Let S 
0 

andf, be the S 
0 

and A of example (2) and let 
T2 = (C1',aso9 C'n,ose) be the trace for SC of6 and Z's 
Then C'10 is the first instance of Q in 

T2 
whereas C9 is the 

first instance of 0 in T,- 
For n<7, C'n = Cn but C3 assumes the new value 

C6 = {P(f(x) )} when C6 is generated. 

C' 8 = I P (a)} , the resolvent of IC 
3 

, C41 , which 

was not a clash in T1s C'4 and C'7 assume 

the neu value C ' 8. 

C ' 9 C 8, the resolvent of { C' 1, C' { 

C'1,C t3 , the resolvent of {C'3, C'5} 

Suppose that subsumption is admissible for a resolution 

rule (R , Let Z be a search strategy for 6 and let I 
( C1,,.., Cn,...) be the trace for a set of clauses SC of 

QZ and Y- , 'We say that subsumption is monotonic in 
.r 

if 

whenever a clause Cn in T is the resolvent of a clash C 
{ Cn , ..., Cn } and whenever(_"' = {C n' , ... Cn' } covers C' 

m m' 
where C subsumes C and ng, < n. then if C is the n'. n. 1 1 n' 

1 1 
resolvent of C;" then n' C no If Lis simple depth 



87 

saturation and if subsumption is admissible for a binaxy 

resolution rule 62., then subsumption is xonotonic in any 

trace T of A and Z If ig admits subsumption and . is 

a diagonal search strategy for O , then subsumption is 

monotonic in any trace of lRandEwith a possible exception 

for the case of clashes c' and C',' (as above) where a clause 

C i subsuming Gcontains more literals than C 
n i ni ni 

Counterexamples (2) and (3) show that monotonicity of 

subsumption does not guarantee efficiency either for simple 

deletion or replacement deletion of subsumed clauses. 

Theorem 1.11.2 implies that monotonicity of subsumption is a 

sufficient condition for the efficiency of deleting newly 

generated subsumed clauses* This strategy includes as special 

case the ordinary strategy for deleting variants. 

Let Tt = (C1 $..., Cn9...) be the trace for a set of 

clauses S0 of a proof procedure (. The trace 
T2 

of 

with the deletion ofnewl £eneratec subsumed clauses is defined. 

inductively; 

(1) 

(2) 

(3) 

If Cn in Tt is in SC then Cn is generated in T2 

If Cn in Tt is a resolvent of the clash 

( = {CI' 960m, Cn I , n i < n, then Cn is generated 
t m 

in T2 if and only if each Cn is generated and i 
undeleted in 

T2- 

if Cn is generated in T2 then Cn is deleted. if and 

only if C 
n 

is subsumed by some Cx.., i < n. 
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Theorem 1.11.2. Given a proof procedure 9 and 

an unsatisfiable set of clauses SC9 let 
T1 

be the trace 

for SC of and let T2 be the trace for SC of ,' with 

deletion of newly generated subsumed clauses. If subsump- 

tion is monotonic in T1 
and if Cn is the first instance of 

in `r1, then some C' n, = 0 in T2 and n' < n. 

Proof. We show by induction that for all n > 1 

there is an n' < n such that C' n, in T 2 is undeleted ahd 

subsumes Cn in Ti. 

If n = 1 then C1 E S0 and C1' E S0 are identical, 

Cis undeleted and subsumes C1 Suppose that for a given 

n > 1 each Ci, i < n, is subsumed by an undeleted C'i i' < i. 

If C E S0 then Cn is generated in 12 
and is some C'n, in. 

T2 

where n' < n. If C' is deleted then some undeleted C' n, i 

for i < n' subsumes C1 n'. But then C'i subsumes C. and 

i < n. If Cn is the resolvent of (` = {Cn ,..,C it 
1 m 

ni < n, tiion C"' _ { C' n' , ... , C' n, } subsumes (2) where 
m 

C' , is undeleted and subsumes C and n'.< n.. But then 

by the contraction lemma either some C'n, subsumes Cn or 

some 3'' C C?' covers a . In the second case the 

resolvent C' n, of (s" subsumes Cr and n' < n. If C' n, is 

deleted in T2 then score (" i subsumes C'n, and Cn where 

i< n' <n. 
Theorems 1011.1 and 111.2 and counterexamples (1)-(3) 

do not constitute a thorough analysis of deletion rules for 

subsumed clauses. 1. more satisfactory analysis would probably 

involve comparing the number of clauses omitted by the deletion 
rules with the number of new clauses introduced before the first 



rules with the number of new clauses introduced before the 

first instance of U . It is quite possible for deletion to 

delay the generation of 11 and yet compensate by omitting the 

generation of more clauses than are introduced by this delay. 

It might be hoped that such an approach would also be applicable 

to other more difficult problems of efficiency in theorem- 

proving. 

1.12 Deletion of Tautologies. 

If C1 .., Cn,..a) is the trace for SC of a proof 

procedure then the ordinary rule for deletin Itautol can 

be defined by specifying which clauses Cn in are generated 

and which of these are deleted in the corresponding trace 
12 

of 6) with deletion of tautologies. 

(1) 

(2) 

If Cn in T, is in S0 then Cn is generated in r2. 

If Cn in l, is the resolvent of C = {Cn ,..e,Cn } y 

'I m 

n. < n, then Cn is generated in 
12 

if and only if 
each Cn is generated and undeleted in T2. 

1 
(3) If Cn is generated in T2 then Cn is deleted in T2 

if and only if Cn is a tautology. 

Theorem 112,2 implies that if 0 is any resolution rule 
preserved under semi-contractions then deletion of tautologies 

is compatible with a and any search strategy for Q. 

Equivalent-ly deletion of tautologies is compatible with O. 

and E if whenever C is a clash with resolvent C E (R1 ( C)) 

(° is a clash with resolvent Cf and ( weakly covers e, then 
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C' E 6 (lam') . 

Suppose that a resolution rule R is preserved under 

semi-contractions. LeAbe the proof procedure determined 

by R and a search strategy Ffor sand let r =(C1,,..,Cn,.,.) 

be a trace of 6). Then weak covers are monotonic in T if 
whenever a clause Cn in I is the resol.vent of a clash 

{Cn ,...,CnI and whenever _ {Cn, 00,Cnt { weakly 
1 m 1 m t 

coversC'where Cn, subsumes Cn. and nri < n. then if Cn, is i i 
the resolvent of (j then nt< no Theorem 1.12.3 implies that 

monotonicity of weak covers is a sufficient condition for the 

of :ficiency of deleting tautologies o 

Lemma 1.12.1. Let e be a clash with non-tautologo.u 

resolvent C and let D E e be a tautology. Then either 

(a) some C' E Cl subsumes C or 

(b) some subset 0' C v, D X (3t, is a clash with 

rosolventt C' subsuming C and e weakly covers Ca. 
. 

Proof, Let D = {L, L} U D0= Let C={1'11n,B1 
0 tl 0 

where I.. = E. U 1%i , B = F1 us** U Fn U BO, Ei Fi 

and c = (1-,01 U ... U 110nU B0) e where 0 is an m.g.s.uo of 

= {E1 U .1 

1 
,..., En U Fn} . Since C is not a tautology 

at least one of the literals L or f is resolved upon in D. 

Thare are three cases to consider. 

Case(aD is the nucleus B of e and only one of L or 

L is resolved upon in D. We may assume that L is resolved 

upon and that I E 1. Then 111 subsumes C. For since 



E1 e = 
F1 

8 = {L e, and since L e B0, L e E' B0e and 

E1 e B 
0 

e . 5o ;I18 C BOG, U 1101 e C C. 

Case (b1i. D is the nucleus B of e and both L and 

are resolved upon in D. Vie may assume that L e F1 and L 

Let e' = {i,1 a 1121 

because 

and 01 ' = {E1 U E2; 

E1 e F19 = {L 8{ and 

0 9 unifies e.' 

E2e = F2e = {L 91 

Let e' be an m.g. s Au. of '' and let e 

resolvent of Qr is 

C? = (A01 U 
A02) e ' and 

C' 9'' = (1101 UL02) 9 C C. 

9'e". The 

So C' subsumes C. Suppose C is restricted and (?i is not. 

L 

E F 
2` 

Then either L G' or L 9' is in C'a But then L e or f 9 is 

in C' & II C C and (.' is not restricted. 

Case (b2). D is a satellite of . Suppose that L 

is resolved upon in D and that D is 111 Then L e E1 . Let 

e' = C -- {D } and (j = e- {E1 
UF1 

{ . Then e unifies j . 
Let 9' be an m.g.s.u. of E and let e = W6 ". The resolvent 

of('; is 

C' _ (F1 U 1,02 U ... U 
On 

U B0) e ' 

C' subsumes C since 

E1 e = F1 0, _ {LC-{ and F1 e = {Le{ C A01 e , so 

C' 9" = F1 e U 
(1102 

U ..U 
AOn 

U B0) e 

C 1101 8 U (A 02 U ... U .,.0n U B0 ) A= C. 



is not restricted since EP, E F1e and f e E C, 

Theorem 1.12.2, Given a derivation 0= (T, c) from S 

of a non-tautology c(r(T) ) there exists a derivation 

(T',c') from S of a clause which subsumes c(r(T) ). is 

a semi-contraction of 0 and(D' contains no tautologies. 

Proof (by induction on the number n of tautologies in 

If n = 0 then take m' = G. Otherwise n >0 and we 

assume that the theorem holds for any derivation containing 

fewer than n tautologies. Let e be a clash in 6) containing 
at least one tautology D, i.e. e = c(sr1(N0) ) for some 

N0 E T and D = c(N') for some We s-1 (N0). Choose N0 such 

that c (N0) is not a tautology. By the preceding lemma either 

case(l) some C' = c (T?.) E e subsumes c(N 0), or 

case some e C e , D is a clash, and 

c3' weakly covers (e . 

In either case let T 
0 

be the subtree of T obtained by ignoring 

all of T lying above N0 (i.e. TO = (T - TN ) U {N0} ) and let 
0 D = (TO,c). dissociate with every tip NETS a clause l.,N which 

subsumes c(N) : = C' and i1N = c(N) for N N0. By the 
0 

contraction theorem we obtain a contraction (0' = (TO',c © ) 

of 0 Le-t NO' c TO be the tip corresponding to N 
0 

(i.e. NO' (N0) where 4' is the mapping associated with 

the contraction ZDO of f0) . Then c0' (NO') _ 
N 

C' 
0 

Ii case (1) let 0Y (T",c'') be obtained by identifyinG 

N0' in T0' with N. in TN ( cYc(N0') = c(Ni )--C'). In case 

(2) let 6)" be obtained by grafting the derivation trees TN 



to the node N0' in T 
0 

1 where N Es-1 (N0) and c(N) 

More precisely let 

T" = T0' U [N :NETN. and c (N.) Eel} 
i 

C'' (N) = c (N) for N E TN. 
1 

c'' (N) = c0' (N) for N E T t 
-1 

s (N0' IN i : c (N.) E e 

In both cases, we obtain a semi-contraction Cpt' of 4). 

(fi is a derivation from S and Y' contains fewer than 

n tautologies (by 1.10.3)- By the induction hypothesis 

there exists a semi-contraction j of Qj" such that C1' 

contains no tautologies and is a derivation from S of a 

clause subsuming c (r(T) ), By tha transitivity of semi- 

contractions Ot is the desired semi-contraction of (0. 

Theorem 1.12.. Given a proof procedure 9 and an 

unsatisfiable set of clauses S0, let be the trace for SO 

Of 6l and let 
T2 

be the trace for S0 of (P with deletion of 

tautologies. If weak covors are monotonic in T1 and if Cn 

is the first instance of 13 in 
11 

, then some C' n' = [2 in 
T2 

and n' < n. 

Proof. The proof is similar to that of 1.11.2. To show 

that for all n>1 there is an ne < n such that if C in 
°` n 1 

is not a tautology then C'nt undeleted in 
r2 

subsumes Cn. 

If n = I then C1 E SO and CI E S0 are identical,, C1 t 

subsumes C1 and is undeleted in 
T2 

if C1 is not a tautology. 

Suppose that for a given n>1 each non-tautologous Ci,' i< n' 

is subsumed by C!, ,, i'< i9 undeleted in ,12. If CnE S0 then 



Cn is generated in 
12 

and is some C'nt in 
12 

where n' < ne 

C'nt subsumes Cn and is undeleted if Cn is not a tautology. 

If 0n is not a tautology and is the resolvent of C = 
{ C ,019 C 

n} 
, n.< n, then either some non-tautologous 

xi i 
or some (?' C (weekly covers O and (mot 

I 
C subsumes C 

n ' n, i 
contains no tautologiese In the first case some undeleted 

C? subsumes C and also C where n' <n. < n9 In the 
n! n. n i-- i 

second case {Ctnt nt where C'nt 
'I m' 1 

subsumes C 

ni 
and n' i 

< n 
i 
,, subsumes 3 and each C ' 

n' e (a " 
-i i 

is undeleted in i2 if C'nt is the resolvent of e then 

n'< n and either some C' n! 
subsumes C' n' and C 

n 
where 

i 
nS' <n' < n or some subset of covers e" and 

therefore weakly covers L' and therefore the resolvent of 

C''' undeleted in r2 is some C'nt t in 
'r2 

where n''< n since 

each nt i < n. for C' E 

1 

'IC'I Minimal Derivations. 

In sections 1I.9-1112 we adopted the convention of calling 

an arbitrary set of clause;; a clash if some standardised set 

'21' of variants of clauses ineis a clash. In this section 

it is convenient to revert to the moro restrictive definition 

of clash, reserving the torm for standardised sets of clauses, 

We introduce the notion of a ground clash e which is like a clash 

of ground clauses except that in this case we allow that C 
contains variables me, is not standardised. More precisely, 

is a .4°rou ld clash if eis of the form {X11 , ...,1n D1, where 



Al = {L1{ U .1.01, ...' 1,n {Ln } U 
AOn 

B 1,..., Ln{ U B0. 

The resolvent of e is C = 
2.01 

U.>. U L1On U B0 

Notice that given an arbitrary clash e with m.g.s.u. & 

and resolvent C, the set of clauses O e is a ground clash 

with resolvont C p r ovidecl that for no .t e G and no L,L ! E L , 

where L is resolved upon inCand Ll is not, does L®= We o 

Thus in particular e& is a ground clash if L' is restricted. 

A derivation (T,o) is mound derivation if, for every 

interior NET, c(s(N) ) is a ground clash with resolvent 

c(N). Thus every derivation from a set of ground clauses 

it a ground derivation but not conversely. 

Given a derivation _ (T,c), lot the pair di=(T 

be defined by letting 

c(r(T) ) = c(r(T) ) and, for N r (T), 

c(N) = c(N) e, 000 Gn where &i in the m.g.s.u of the 

clash at si(N) axid whore sn(N) = r (T),sn_l(T) A r (T). 
If m is a derivation then it is a ground derivation lifted by 

(Do However may not be a derivation even if every clash 

in 6) is restricted (witness Andrews I counterexample [ 2 1 ). 

Theorem 1.13.1 implies that a necessary and sufficient condition 

for CD to be a derivation is that 6) contract some ground 

derivation CD!. 

la derivation (D = (Too) is standardised if, for all 
N;NIE T such tnat Tj TN!= 0 , c(N) and c(N!) share no 

variables, 1,, derivation 0 may fail to be standardised even 



though en.ch clash in 6) is starxlardi.sed (since literals 
resolved upon in disjoint subderivations of(D may contain 

common variables). It is easy to verify that if 0 _ (T,c) is 

a derivation (but not a ground derivation) then the derivation 

W = (T,c') obteined by applying the contraction theorem 

to ® and the set S' is a variant of c(N), NET a 

tip} , where S' is standardised, is standardised and equivalent 

to M in the sense that c' (N) is a variant of c(N) for all 
N eTo 

.0! . If (Z= (T,c) is standardised and Theorem 1. 

contracts (or semi-contracts) a ground derivation 0' = 

(T°,c') with associated mapping 't , then i5 is a ground 

derivation and contracts (semi--contracts) 60' with mapping 

For some /*, ant for all N ET, 

c (N) /. C c' ("' (N) ) e 

Proof (by induction on the number n of nodes in T'). 

We prove the theorem for the case where 6) contracts '. The 

proof is identical when (A is a semi-contraction of Of If 
n=1 then, for some N0 and N0' , T' = {N} , T = { N. } and 

(N0) = N0' is a ground derivation and since 

c (N0) subsumes c' (N0') (N0),( C c' ('(N0) ) for 

some 

lissume that n>1 and that the theorem holds for any 

derivation coritractin, a ,round derivation which contains fewer 

than n nodes. Let Not = r (T'), N0= r(T), s-1(N0')= 

{N0and4j'i 
(T'DT, , c'), 1.i gym'. If i 



s-1(NO) 0 , let s-1 (N0) _ {N1 , ..., N} and c) 

Suppose that QD contracts some ' with mapping; and 

that c (N0) subsumes c'(N0), Since T' 
N' 

contains fewer than 

n nodes, C) is a ground derivation, contracts (D.' with mapping 

I- and, for all N E T, c(N) ,/( C c' (t(N) ) for some /\ . 

Since c(N0) = c(NO) subsumes c'(NO'), contracts 6' with 

mapping 't 
If 0 contracts no Q. ' then S-1 (NO) m <ni' , 6 

contracts (D! with associated mapping". is the 

restriction of "'to 
TN. 

) e = c(s-1 (N0) ) covers,' _ 

1 
c'(s(N0') ) and '"(NO) = NO'o Let & be the m.g.s.u. of 

By induction hypothesis eaohi = (TN j, 

where ci (N) 0 = c (N) for N ETN , is a ground derivation 
I 

which contracts' with mapping 'ti and, for some i and 

all N E TN ci (N) i C Let 

Since e covers C.', d) is standardised and e! is a ground 

clash, o- unifies & and therefore <r = e/\ for some t)ut 

then -c(N)/\ C c' ( t (N) ) for all N E T. 
ti 0 is a ground derivation which contracts 6S)' with 

associated mapping' "if for every NET, N r(T), 
c(s..1 

(N) ) 

is a clash which covers c" (s_1 ('^(N) ) a But in general 

whenever a clash C, covers a clash e!'with associated 

substitution a- then e is a clash;,hich covers e with 

associated substitution / when & and /( are such that o- _ eA 

But this property clearly holds for the clashes Band e' at 

NO and M'' (NO) as well as for the clash ci(s-1(N) ) and. 
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( s ( L (N) ) ) when N e Ti . Therefore is a ground' 

derivation and contracts O' with mapping t- 
1, notion similar to that of minimal derivation was 

introduced by Loveland for the case of binary ground derivations 

in order to prove the existence of linear refutations 

containing no tautologies [52] o The existence of various 

kinds of minimal derivations and refutations is proved in 

Chapter 2 by using Theorem 1.13,2 below. Implementation of 

the minimality restriction serves several functions: it 

provides a method for effectively applying the clash 

restriction, rejects derivations which do not lift ground 

derivations and tends to retain only the simpler of equivalent 

derivations. This last property can be stated precisely 

for the case of a minimal refutation 4J of a set S, by saying 

that the number of distinct nodes in the longest branch of D 

is no greater than the minimal number cf distinct atoms in 

any set S' of ground instances of clauses in S. Clearly 

the retention of only the simpler of equivalont derivations 

is important for efficiency. 

11 ground derivation (D = (T,c) is minimal if for no 

NETS Nte T lying above N, L' E c (N') resolved upon at N' and 

L E C (N) does I L' I = I L I An arbitrary derivation 

(T,c) is minimal for no N ET, N' E T lying above N, 

Lt E c (N') resolved upon at N' and L E c (N) does 

I L'&1 00. n j= 
IL k+1 .. & 

I where e is the m.g.s.u, of 

the clash at s1 (N'), where N = ak(N'), sn(N)=r(T) 
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and sr-1(N) L r(T) 

It is easy to verify that a derivation D is minimal 

if and only if is. 

The following is a simple, if not most efficient, 

method for implementing the minimality condition: 

(1) Associate with every derivation (D = (T,c) of 

a clause C the history (T,a) of 

literals resolved upon in i.e. 

(a) if T = {ND} then a(N0) 

(b) if NC = r(T), s-1(NO) _ {N1,...,Nm 

#i = (TN ,ai) is associated with = (TN ,c), 
3. 3. 

El isihe set of literals resolved upon at Ni 

and e is the m.g.s.u. of the clash at NC, 

then @* = (T, a) where 

a(NO) = c, , a(N.) = Ei 0 and 

a(N) = ai(N) for N E TN - {Ni} . 

(2) Reject, as incompatible with the minimality condition, 

a clause C obtained by a derivation 0 with 

associated history }* _ (T,a) if either 

(a) for some L E C, N' E T and L' E a(N'), 

ILI=(L' I or 

(b) for some N E T, N' E TN, 

L E a(N) and L' E a(N') 

ILI=IL' 1. 

Notice that condition (2a) generalises the clash restriction. 

Theorem 1.13.2 below allows us to infer that a 
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derivation 0 1 is minimal if it lifts a minimal ground 

derivation (D. 

Theorem 1.1 .2. Ifs' = (T',c') is a semi-contraction 

of 6) = (T,c) and if 6) is minimal then & is minimal, 

Proof. Let * be associated with the semi-contraction 
ti (}' of () . (,D is a minimal ground derivation. It is easily 

verified that 0j' is a semi-contraction of with mapping 

By 1.13,1, is a ground derivation, contracts 6 with 

mapping * and, for some A and all N e T' , c' (N) /\ C c (tN) ) . 

It suffices to show that 45v is minimal. If b9 is 

not minimal then there exist N,N'ET, N' lying above N. 

L' E ' (N') resolved upon at N' in axed L E c ' (N) 

such that I LI = I L' I But then 'J^ (N') lies above *(N) 
in T. L is resolved upon at t (N' ) in 0, LA E c('r(Ai } } 

and I L,< L',. contradicting the minimality of 

Theorem 1.13.2 ensures the compatibility of deletion of 

tautologies and of simple deletion of subsumed clauses with 

proof procedures implementing; min.i.mality and a resolution rule 

Q which is preserved under semi-contractions , in the case of 

tautologies, and contractions, in the case of subsumed clauseso 

However it is necessary to modify the rule for simple deletion 

of subsumed clauses in the following way : Let '' 

(C1,9 ...,Cn*...) be a trace for a proof procedure implementing 

minimality and simple deletion of subsumed clauses. suppose 

that Cn has just been generated* If Cn properly subsumes some 
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i < n, then Ci is deleted. Let the history 

n, associated with the derivation of Cn 

assume the new value (T,a) where T = 
{N0{ and a(N0) 

= 0 
Similarly if some Ci, i < n, subsumes Cn then Cn is 
deleted and the history *i, associated with the 

derivation of Ci , assumes the new value (T,a) where 

T = {N 0 1 and a(N0) _ . 
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CHAPT] R 2. 

Chapter 2 is concerned primarily with the application of 

semantic tree constructions to obtain completeness theorems 

for resolution inference Systems (see [ 43 ] and [ 17 ] } 

These applications are limited to the first order logic 

without equality. With the exception of section 2.5 most of 

the results of 2.2 - 2.7 were obtained in collaboration with 

P.Jo Hayes and were reported in [ 17 ] . Section 2.5 

establishes the de3uction completeness theorem proved by 

Slagle, Chang and. Lee in [ 52 ] . A somewhat weaker 

theorem was proved independently by the author and was 

presented in [ 20 ]. The completeness theorems of 2.3 - 

2.6 improve those reported in [ 51, ] , [ 17 ] and [ 52 ] 

by imposing the minimality restriction on derivations, In 

section 2.8 we irrrestigate clash-like sequences of binary 

resolutions (pseudo-clashes) which are then applied in 2.9 

to establish the completeness of a modification of p1- 

deduction (reported in [ f'7 ] ) which is more efficient 

than either P1-deduction or hyper-resolution. Section 

2.10 establishes the completeness of maximal pseudo-clash 

resolution. The analogous theorem fails for maximal clash 

rasolutione 



a'A Herbrand Into rotations, 

We recall that the intended interpretation of a clause 

is the uni-*ersal closure of the disjunction of its elements, 

Sets of clauses are interpreted as conjunctions of their 

elements. We assume acquaintance with the fact that a sot of 

clauses is satisfiable if and only if a corresponding sot of 

clauses is satisfiable. A readable introduction to the 

necessary preliminaries is Davis' [71 . This 

section is concerned with establishing the definitions and 

propositions necessary to reduce the study of the semantics of 

sets of clauses to the study of Herbrand interpretationso 

Given a set of clauses S, the Herbrand universe of S, 
c}round 

H(S), is the set of allAterms constructible from the function 

letters which occur in S (augmented by a single constant if 
Sa contains no constants). The Herbrand base of S, H(S), 

is the set of all ground instances over H(S) of all atoms 

which occur, in clauses of S. i.e, 
n 
H(S) = (' u J0 s e C E S, 4,T=- t1,/x1,...,t/xn 
tie H(S) and f, L f C3' is a ground atom } . 

(In the sequel, when a set of clauses S has been fixed and 

C c17 is said to be a ground instance of C E S, it will be 

understood that the terms ti of C3` all belong to H(S) . ' o to 

that if S is a finite sot of ground clauses then H(S).is finite 

although H(S) may be infinite. 

If K is a set of ground atoms then a set of literals <1 

is an assignment to K if 
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(1) L E Ca implies I L E K , and 

(2) L CQ implies L A 0- 

An assignment C to K is complete if 
(3) L K implies L E QZ or L E C?. 

Given a set of clauses S a complete assignment 0 to 

H(S) is called a Herbrand int etation of Sd Any 

Herbrand interpretation & of s determines an interpretation of 

S in the usual sense as follows: 

(1) H(S) is the universe (domain) of the interpretation. 

(2) The denotation f* of f, a function letter occurring 

in S is given by: f*(t1,...,tn)= f(t1,...tn),tiE H(S). 

(3) The denotation Pte' of P. a predicate letter occurring 

in S is given by: P* (t19 ..., tn) if and only if 
P(t1,...,tn) E 4X e 

Notice that P(t1,...,tn) in (3) above, need not belong to 

H(S). As a result if S is a finite set of ground` clauses and 

H(S) is infinite then the interpretation corresponding to Ce is 

infinite. It is the interpretation given by (1) - (3) above 

which we have in mind when we refer to a clause or set of 

clauses as being satisfied by a Herbrand interpretation. 

Given any interpretation M of a set of clauses S we 

denote by M V- S the relation of M satisfying S. If S= { C1 

then we ai<o write M F C. 'We let the symbol -7 denote 

lcgical negation 

Proposition 2.1 . i ./ 
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oosition 2.1.1. Given a set of clauses S and a 

Herorand interpretation 11 of S 

() M 1= S if and only if m C C O- 0 for al1 ground 

instances C O' of a clause C E S. 

(2) M ( -r S if and only if C o- C M for some ground 

instance CO-of a clause C E S. 

Proof, It suffices to prove (1) since (2) is just the 

^ontrapositive of (1). Suppose M = S then MV- C for all 
C E S. But then M r C C-r" for all ground instances C Cr of C 

(since C is interpreted as universally quantified and the domain 

of M is H(S)). M Co implies that M { L} for some L E 

C Cr- and therefor. e implies that m fl CCr" = { L I T 0 . 

Conversely if m n c ar / 0 for all C E S and for all 
ground instances CC- of C then M C and therefore M S. 

Pro osition 2 I Given a set of clauses S and a Z:. o 

model.M of S (i.e. M*S) there exists a Herbrand model Mt of 

S (ie. MY -S) . 

Proofs Note first that if S contains an individual 

constant then every t EH(S) denotes some element t* in the 

domain of M. If S contains no such constant and b is the 

constant symbol introduced into H(S) than let b* be some 

arbitrary element of the non-empty domain of M. Then in 

this case as well every t E H(S) denotes some element t* in 

the domain of 14. 

If L EIl(S) then L=P(t,ly..d,tn) for some P occurring in S 

and t1 b o . 9 to E H(S). But then L? = P* (t' ... t, tri) is either 



true or false in M where P* is the predicate in M denoted by P® 

f. 
Let M? be the complete assignment to H(S) where for all L E 

H(S) 

L E M' if and only if L* is true in M., 

L e Mt if and only if L* is false in M. 

Suppose M V S and L1' F -i S. Then C Q" C 
M' for some 

C E S and some ground instance C Cr of C e But then L E Mt 

f or each L E C 0- and theref ore each such L* is false in M. 

If C= C(xi9...Pxn) and C 0 = C(tI,...9tn) then, since 

C*(-bI*y.@.yt* ) is false in M9 C is also false in M and 

M F -S. 

Corollary 2Z1.3. A set of clauses S is unsatisfiable if and 

only if S has no Herbrand models. 

Proposition 2.1 .4a Lot S be a set of clauses and S' an 

unsatisfiable set of instances of clausea in S. Then S is 

unsatisfiable. 

]Proof. If S is satisfiable then M S for some Herbrand 

model M of S. But then M ( CO 0 for all C E S and all 

ground instances C 0' ® But each ground instance C'O'' of a 

clause C t E S' is a ground instance C O of a clause C E S 

,,ore C' = Ce and O-= eO-' ) . Therefore M( C' 0'' 0 1 

for each ground Instance C' 6'' of each C? E S' and therefore 

M' is a Horbrand model of S' where M' C M is the subset of 

M which is a comple'be assignment to H(S'). 
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2o2 Semantic Trees. 

The notion of a semantic tree was introduced by Robinson 

in [44] 1CO obtain extensions of resolution for first-order 

logic with equality. The semantic trees studied below are, 

however, limited to first-order logic without equality. 

We extend Robins on's original definition of failure and concorn 

ourselves more with establishing specific applications than 

with extending the general theory. Further research on 

semantic trees is reported on in Robinson's recent over-.view 

of the orem-proving [461. 

Let K be a set of ground atoms, T a tree and Cp a 

function defined on nodes of T having assignments to K as 

values. If X is a subset of T let a7(X) = { Q(N) : N E X }` b 

Then _ (T, 62) is a semantic tree for K if 
(11) a- (NQ)= 0 for N0 = r (T) , 

(2) 0-(s(N)) C 62(N) for N r (T), 

(3) ( ( 1) 1.s a complete assignment to K for 6 a. 

complete branch of T and 

(13) for N E T such that s-1 (N)= { N1,..+?Nn } 

B1 V o o. V Bn is a tautology where Bi is the 

conjunotio4i of tllGr literals in CQ(Ni)- W (N). 

Note that because our convention of considering trees as 

growing unvvard, the orientation of semantic trees in this 

paper is opposite to their orientation in [17] . If 
K = H(S) for some S then (,((* is a Herbrand interpretation 

of 3 if 63 is a complete branch of a semantic tree for K. 
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That conversely for every Herbrand interpretation M of S there 

exists a complete branch of £ such that G2(03) = M is 

a consequence of the following 

Proposition 2.2.11 . If 8 = (T, OZ ) is a semantic tree 

for K and. M is a complete assignment to K then M = (. (63} 

for some complete branch l3 of 

Proof. Given M construct 3 as follows: r(T) e 

If N e 6 and s-1(N) = { N1, ...,Nn { then since E is an 

interpretation of 
B1 

V ®.. V Bn, where Bi is the conjunction 

of the literals in LT (Ni) - CA(N), and since B1 V ... V Bn 

is true in M. some B. rlorooveris true in M and therefore each 

literal in (,Q (N.) .. q(N) is true in M. So (. (N. )- Q(N) C: Ma 

Let Ni e 6 . If (3 is the complete branch of T defined in 

this way then J ( 3) C M. But M C and 

M= QZ (t'3) since CZ? (6 ) is a complete assignment to K. 

Clash Trrees. A semantic tree 8 = (T, c ) for a set 

of ground atoms K is a clash tree when for any N E T, 

s-1(N) = { N19...,Nm+1I implies that 

(Ni) = (N) U { L{ , 1 i m and 

(Q (N 
m+1} (N) U. {L1,,m.., Lm 

for some L1,...,sm such that L1 I,..., I Lm) E K. 

The nodes N1 ,... 
Nm 

are satellite nodes and m-1 a nucleus 

o e of All of the clash trees investigated in this 

paper will be one of the two following kinds. 

B1*_1a... Semantic Tree for Ordered K. Let K be a 

totally ordered (Finite or infinite) non-empty set of ground 
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atoms, K= { L1, ...,Ln, . *. where i < j implies that Ai 

precedes A in the given ordering of K. The binary semantic 

tree = (T. CP) for K ordered in this way is given by: 

(1) a(r (T)) = 0 0 

(2) If N E T and&(N) is a complete assignment to some 

K' C K then 

(a) If KT = K then s-1(N)= 0 , otherwise 

(b) If K' = {Li2Li+1,...Ln,.e.} then 

p1 s (N) =I N1,N2} for some N1 , `,2 e T and 

LT (Nt) = J (N) U { Li}` 4'(N {Li} 

Note that if K' is an initial segment of K and if M' is a 

complete assignment to K° then M' = tk(N) for some N E T. 

MClash Tree for K. i Lot K be a finite set of ound 

atoms and M a completo assignment to K, then the -M-clash tree 

) for K is defined by: 

(1) (r(T)) = 0 . 

(2) if N e T and CQ(N) is a complete assignment to some 

K3 C K then 

(a) If K' = K then s-1(N) = 0 otherwise 

(b) (Q (N) C M. Let M - CA(N) = {L1,..#fLm' 

Then s-1 (N) _ { N1 , ...Nm,..,) for some N,,, . Q.,NM e 

and 12 (Ni) _ (,Q (N) U {Li} for I'< i < ms 

(Nm+1) = r (N) U { L1, ...hm} 

We need to verify that given K and N the M-clash tree for K 

actually exists. For this purpose it suffices to verify that 

C( (N) C M whenever CLA(N) is a complete ass'dgnment to K' C K. 
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Suppose this is not the case, then because T is well-founded 

there exists a lowest interior node N0 such that 0- (N0) M 

(i.e. &,(,,1 ) M and 0 (s (N0)) C M). N0 A r (T) since 

QZ ( r (T)) C M. But Ql (s(N0)) C M implies that either 

(N ) = fQ(s(NO V {Li} , for some LiEMa-(N),or 

fQ(No)=s(N©)) C {La®®.yLm}' for M- .(N) 

{LI90$PLmI 

Tn the first case 6Q (NO) C M, in the second case KJ = K. It 
follows that the M-clash tree for K does in fact always exist. 

Note that if KV C K and M' is a complete assignment to 

KI then M° = 0 (N) for Nome N E T. 

Failure. Let 8= (T, 0 ) be a semantic tree for some 

set- , of ground atoms K and let :1 be a set of clauses. A 

clause 0 E S fails at N E T, if Ccf` (N). Note that 

(1) C fails at r(T) if and only if C = q . 

(2) If K = H(S), 63 is a complete branch of 4 and 

C fails at N E 63 , then CQ( 63) i ' G. 

(i) If C fails at N then C is not a tautology. (If C 

were a tautr7.ogy and Ca" -C M (N) then C o- 

would be a tautology and (Q (N) would contain 

complementary literals.) 

C-) If C fails at N then C subsumes the clause GF N . 

C E S fail r. openly at N E T if C fails at N and either 

N: r(T) or C does not fail at s (N), A node N c T is 

free for S if no C e S fails at N. A node N E T is a 

failure point for S if some 0 E S fails at N and either 
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N = r(T) or s (N) is free for S. If N E T and TN is the 

sub cree of T rooted in N E T then a cut X through TN is a 

frontier oa.' TIC for S if every node in N is a failure point for 

S. This closed for S if some cut X through TN is a frontier 

of TN f ox° S. If N= r(T) and TN is closed for S then we also 

say that is closed for S. 

Proposition 2.2.2. If TN is closed for S then TN is 

closed for some finite set S r of ground instances of clauses 

in S . 

Proof* * Let X be a fronti exr for S. X is finite by 1 o7.4. 

For e ach N E X let C'N be some ground instance of a clause 

C E S which fails at N (ieee C'N= C e- where C 0 C d7 (N)). 

Then S' C'N N E X $ is finite and X is a frontier 

for So 

Procosition 2.2. . If some semantic tree (T, CQ ) 

for some K is closed for S then S is unsatisfiable. 

Pro oi. Let KI = K n H(S), and let M be a Herbrand 

interpretation of S. Let 1.11 C M be the complete 

.assignment to K' contained in M and let M" be any extension 

of M I to a complete assignment to K. Then M" = CR ( 63 ) for 

some complete branch cf T. Since 9j is closed for S. 

C C Q (63) for some ground instance of a clause 

C e S. But then C o- C M' C M. so C and therefore S is 

false in M. Because M was an arbitrary Herbrand interpre- 

tation of S, 3 is unsatisfiable since it has no Herbrand 

models 
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Proposition 2.214. Let S be unsatisfiable and let 'J 

(To 0-) be a semantic tree for H (S). Then 8 is closed 

for S. 

Proof., We need to :show that some cut through T is a 

frontier for S or equivalently that every complete branch 

3 of T contains a failure point for S. Let 6 be such a 

branch then the unsatisfiability of S implies that QZ (45) J -' ;' 
i .e. C o- C G2, (B) for some ground instance of some 

C E S. Since (3 is well-founded either r(T) is a failure 

point for S or there exists a node N E t3 such that some 

C E S fails at N but no DES fails at s(N). In either case 

contains a failure point for S. 

Cor olla 2.2-5 y (Herbrandts Theorem). If S is 

unsatisfiable then some finite set S2 of instances of clauses 

in S is unsatisfiable. 
. 

Proof. Let 8 be the binary semantic tree for H (S) 

ordered iii some way0 Then 8 is closed for s and is 

therefore closed for some finite set St of instances of 

clauses in S. It follows that Sf is unsatisfiable. 

2.3 Semantic Trees and Derivations. 

Let 8 = (T, c) be a semantic tree and S a set of 

clauses, NET is as inference node for S if s-1(N) is a set 

of failure points for S. 

Proposition 2,3-,,, If (T, 0-) is a semantic tree 

and TN is closed for S where N 6 T. then either TN contains 



an inference node for S or some C e S fails at N. 

Proof,, If no C E S fails at N and X is some frontier 

of TN for S then by 1.7059 since X, N1, 
s-1 (N') S X for some N' E TN But then N4 is an 

inference node for S. 

The following theorem and its first corollary provide 

the basis for two methods of applying semantic trees to 

establish the completeness of resolution inference systems. 

Theorem 2.3.2. Let 8 = (T, CC ) be a clash tree and 

lot TN It N0 E Tg be closed for a set of clauses S. Then 
0 

there exists a derivation (g) = (T'9c) from S of a clause C 

which di.ls at N0. There is a 1-1 mapping '{": T' -i TN such 

that 

(1) 

0 

If N E T'is a tip then c(N) e S fails properly 

at (N) and (N) is a failure point for S in TN 

0 

(2) If N e T$ is an interior node then 4^(N) is 

Interior to TN If e is the clash c(s^1(N)) at 
0 

N with resolvent c (N) then 

(a) is restricted. 

(b) the satellites of i. fail properly at 

satellite nodes of sr1( (N) ), 
(c) The nucleus of fails properly at the 

nucleus node of S-'( t (N)), 

(d) c (N) fails at 1° (N) and 

(e) If A e (,a fails properly at N' E 

a (" (N)) and A o- C M (N') then 



LEA 

(3) 

(4.) 

is resolved upon in C if and only if 
r Cr- C Q (N' ) -- (Q (N) . 

No o(N), for N E TIP is a tautology. 

6) is minimal. 

Proof. Let X be a frontier of T,, for S. Let QD 

(TN /X, e') be the ground derivation defined by c' (N) N 

0 
for all N E TN /X. The definition of clash tree guarantees 

0 
that if N is interior to TN,X then c' (8-1(N)) is a restricted 

0 
clash with resolverit c'(N). Thus 0 is a derivation. The 

conditions on assignments that they contain no complementary 

licerals implies that ®' contains no tautologies. The 

condition that Q2(s(N)) C G(N)2 for N interior to T, 

implies that (J' is minimal. 

For every tip N C TN/X (i.eo for N e X) let AN E S 

0 

be a clause which fails at N (i.e. , F- C 0 (N) for some 

o-- ). Then AN subsumes c' (N). Let S' = { A.: N E X I 

be standardised. By the contraction theorem there exists a 

derivation D = (T', c) from S' and therefore from S of a 

clause which subsumes c' (N0)0 i.ee of a clause which fails 

at N0. 0 is a contraction of (D' and therefore Qj contains no 

tautologies and is minimal. If `*' is the mapping 

associated with the contraction then (3 satisfies properties 

(1) and (2) of the theorem. 

Corollary 2 . . Let J ^ (T, Q1) be a clash tree 

and let N0 e T be as: inference node for S. Then there 

exists a clash , such that each clause in e is a variant 
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of a clause in $ and 

(a) e is restricted, 

(b) the satellites of u° fail properly at satellite 

nodes of s-1 (N), 

(c) the nucleus of 0, fails properly at the nucleus node 

(d) 

(e) 

of sy1 (N), 

the resolvent C of e fails at N. 

if A E e, fails properly at N9 e s-1 (N) and. 

1 a- a(Nt) then L E A is resolved upon in Q. 

if and only if L o-- C ( (Nt) - CF(N) and 

(d) neither C nor any of the clauses in e, are 

tautologies. 

P.roof. TN is closed for S. The corresponding 

derivation (bt of a clause -which fails at N consists of just 

the single clash C 
.14. If S is unsatisfiable then there exists oroll2Ev 

a minimal binary refutation of S containing no tautologies. 

Proof. Let 8 =(T, CQ ) be the binary semantic tree 
n 

for H (S) ordered in some ways Theorem 2.3.2 guarantees the 

existence of a minimal refutation 6) of S containing no 

tautologies. Since s-1 (N) contains exactly two elements for 

N interior to T, 09 is binary. 

A theorem similar to corollary 2.3.4 was proved by 

Loveland in [ 23 ] for the case of ground sets of 

clauses S. In section 206 we shall see that corollary 2.304 

can be strengthened by introducing the notion of CK-ordering 



in order to make use of the ordering of H(S) in the proof of 

2 03.?. 

2 It M-Clash Derivations. 

Let S be a set of clauses, M a Herbrand interpretation of 

S and e a clash with satellites J ,,..,An, nucleus B and 

meg.s,u. 0' . Then ' is an M-clash If 
(1) 11.1 d` ,..`r - An e and C are false in M, 

(2) DES and B & has an instance B e X true in AT,, 

{ L: L@ A E B@ A n MI is the subset 

of literals in B resolved upon in 

(3) C is restricted. 
A clash derivation (0 is an M-clash 

U' and 

derivation if each clash 

in d) is an M-clash, The definition of M-clash introduced 'by 

Slagle in [ 51 J is less restrictive and is generally 

easier to apply, Conditions (1) and (2) above are replaced 

by 

(17) A1, ,,A and C are false in M and 

(2$) B has an instance true in M. 

The following theorem is a third corollary of Theorem 

2a3.2, Because 2.3.2 was proved by applying the contraction 

theorem, the proof of Theorem 2.1..1 is equivalent to a proof 

that 11-clash derivations are preser'ed under contractions. 

Theox-,;-,. _g.4 ,*I,, Let 9 = (T, CX ) be an M--clash tree and 

let TN 
-' N© 

E T, be closed for S. Then there exists a 
0 

minimal M-clash deri'v'ation m t = (T t 9c) from S of a clause which 
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fails at N0. 4)' contains no tautologies. 

Prof. Lot' = (TI.. c) be the minimal derivation 

containing no tautologies of Theorem 2.3.2 corresponding to 

TN . Let t ; ' T' 'T, 
N 

be the associated mapping. It 
3 0 

suffices to show that if N e Tz is interior to T' and if 

C = { &I 9 o o s ytin9 B} is th4 clash at N then C is an 

M-clash., 

Let N7 (N) o The satellites Aj a ... ,lln of 

fail properly at satellite nodes Nj t i... 9Nnt of s-1(Nf ) 

and. the nucleus B of 0 fails properly at the nucleus node 

N? 
n+111 

of s~1(N' ). Since C is standardised there is a single 

substitution such that 

Aiv- C CQ_ (Nand c (n+'1' ) 
But then cr- unifies e and therefore o = &/ for some /. 

where ID is an m.g.s.uo of C . The resolvent C of 

fails at N' which is a satellite node of 8. Thus .&&Q ,...,ono 

and C fail at satellite nodes of o But if a clause D 

fails at a satellite node N" of then for some substitution 

s D /\ C cQ (N"`) C M. i.e. D is false in M. 

B 9 C 0 (10 n+1 and L E B is resolved upon in C if 
and only if 

175 A, C CQ (Nn , )-UN') C i.e. if and only 

if 
L a/ B C1 M. 

The instance B' e 1K of B is therefore true in M. Since 

Nn, is a tip of T0, B e S. 42- is restricted and 
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therefore .. is an M-clash and Q) is an M-clash derivation. 

Core 2.4.2. If S is unsatisfiable and m is a 

Herbrand interpretation of S then there exists a minimal 

M--clash refutation of S containing no tautologies. 

Proof. Let S' be a finite unsatisfiable set of ground 

instances of clauses in S and let K be the finite set of ground . n 
atoms occurring in clauses in S'. Then K = K (S') C R-(S ) 

and some subset Mt of M is a complete assignment to K. 

Since St is unsatisfiable, the M'-clash tree 3 = (T, 'V) for 

K is closed for St and is therefore closed for S. By 2.1..1 

( setting NO=r(T) and MI be the M of 2.141) there exists a 

minimal Pd ..clash refutation 0) of S containing no tautologies. 

But since Mt C M, is also an M-clash refutation of S. 

Remarks. 

It is the existence of TM?-clash derivations satisfying 

conditions (1) and (2) rather than (1t) and (2') which is 

necessary to justify the completeness of extending 14-clash 

resolution to systems which employ factoring. If (St 

I A.1,...,An9 B I is an 11-clash with resolvent C and 

m.g.s.u' ® then there is a set of factors C. ' _ AI .. 
An', B'} with resolvent C and m.geseu. ®t where 

Ai Ai @i , B' = B 0n+'1 and 

n+1 

The clash is restricted, each Air ®t = Ai 61 is false in M 

and B' &' =B& has aa instance Bt 4 1/ true in M. The 

literals L' E Bt resolved upon in t S are precisely those 
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j h .. L' O f A E Mw ThusE j is an M-clash literal s f<, whc 

with resolvent Cm 

(2) M-clash resolution is a theoretically interesting 

resolution method. Its potentiality for efficient theorem- 

proving however seems quite limited. To implement M-clash 

resolution for a given Herbrand interpretation M it is 

necessary to find efficient procedures fcr determining both when 

clauses are false in M and when clauses have instances time in 

M. Such procedures exist forvery few Herbrand interpretations. 

For example' suppose that S0 is a set of clauses repres- 

enting the axioms for group theory and the negation of some 

proposed theorem. Suppose that 1110 is some finite group of 

small cardinality. First it is necessary to extend M0 to a 

Herbrand interpretation M by introducing denotations far 

the Skolem function symbols of S© It is then necessary to 

provide an algorithm for deciding when instances of clauses C 

over H(S0) are true or false in M. In most cases this will 

have to be done by enumerating all ground instances of C and by 

individually deciding the validity in M of each such instance. 

This process will in general be a very lengthy one even for 

models M0 of small cardinality. 

(3) Perhaps the most interesting use of M-clashes is for 

establishing connections among hyper-resolution [ 40 ] 

renaming [ 25 ] and set of support. As noted by Slagle 

[ 51 ] all of these resolution methods are examples of 

M-clash resolution. 
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Hyper-resolution is obtained by choosing as the Herbrand 

interpretation M, for a given set of clauses S0, the set 

M= H where H= H(S0). Although M is unually infinite, this 

case of M-clash resolution is especially easy to apply since 

a clause A is false in M if and only if it is positive. A 

clause B has an instance true in M if and only if it is non- 

positive; precisely the negative literals in B are resolved 

-xpon in any M-clash (hyper-resolution clash) . containing 

B as nucleus. 

Let _l.,, { P1,...,PnI be the set of all predicate symbols 

occurring in a given set of clauses S0. Let ..t= { P1 s...Pm}, 

0 < m < n;, be a subset of J and let 

M= { L : L E H(S 0) and L=P1(tI ,...t }}, i < m}. 

O n 1 
U { L : L E H (S0) and L=Pj(t1,...tni ), m< j <. n{. 

Then M is a Herbrand interpretation of S. In this case 

M-clash resolution is equivalent to hyper--resolution after 

renaming, ice. after replacing in SO each literal L e C E 
SO 

by L when L = Pi(s1,...ysn) and PiE J\ 

S, y Given a set of clauses S0 and a satisflable subset St c: 

let M be a Heabrand model of St. Then the satellites and 

resolvent of every 111-clash C, = {A,, ..,A n ,B } are false 
i 

in M and therefore do not belong to St . Since .'. is 

restricted the resolvent C of L,,° can be obtained by resolving 

a sequence of binary clashes C1,..., e where C1= 

{ 
'1,B} 

and for 2 < i < 1, C-i = { A1,Ci-1 } where 0 i-1 is the 

resolvent of ei 1 (see section 2.8 below). The resolvent, 
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of , is C and no two clauses from St are resolved together to 

obtain C. This last condition that no two clauses from S' 

are resolved in a binary clash can be interpreted as the 

definition of the set of support resolution method. 

Deduction Completeness. 

Much of the efficiency of resolution derives from the 

fact that it is not a complete rule for deriving logical 

consequences. More precisely, given a set of clauses S0, 

the process of searching for a refutation of S0 is accelerated 

gay nou generating certain of the logical consequences of S0 

along the way. 

Theorem 2.5.1, which generalises the subsumption theorem 

of [ 20 ] and the deduction completeness theorems of [ 52 ] 

prov:+.des information about the extent of deduction completeness 

for resolutions Theorem 2i,5.1 is used to establish the 

permutatic.: theorem of Chapter 3 
Theorem 2.51. Let S be a set of clauses, S , and 

C a clause which is not a tautology, logically implied by S. 

(1) There exists a minimal binary derivation 01 from 

S of a clause D which subsumes Co 

(2) If M is a Herbrand interpretation of S and if C is 

false in M then there exists a minimal M-clash 

derivation (D. from S of a clause D which subsumes Co 

(3) Neither tD 1 nor Q)2 contain tautologies. 

Proof If S logically implies C, then S U -I C is 
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u n s a t i s f i a b l e . Let C = IL , (x, 9 ... 9'n) s .. (xl $ ...9xn) I 

where x1p o. oxn are all the variables occurring in C sand. 

Li(x1 9.o.9xn) indicates all occurrences of these variables in 

Li E C. - C is logically equivalent to 3 x1 s ..,xn 
(L1(xl 9...9x n) & ... & ,m(x1,q®.sxn)). Let al9...an be 

constant symbols not occurring in S U -¢ C and let C)* 

{ {L1(a, g...,an)} y...y {Lm(a,9...9an)} } 

then S0= S U (-,C)* is unsatisfiable. 

(1) Let a = (T9 (Q) be the binary semantic tree for 

H(S0) ordered in such a way that the atoms IL1(aja...an)I , 

90009 Ixm (ai8...,a11)I precede all others in the ordering 

A 
of H (SC). Them, because C is not a tautology there exists a 

node N E T such that CT (N) = U ( -7 C )*. TNis closed 

for S0 unless some clause D E S0 and therefore D E S 

fails (improperly) at NQ In this case let D =(Tt,c)' where 

T' = { NC{ and c (N6) = D. If TN is closed for So then it 
is closed for S since no clause in ('' C)'w fails in T,,,)* In 

this case also, by Theorem 2.3.2, there exists a minimal 

binary derivation 0) of a clause D which fails at N. We 

shall show that any such clause D subsumes C. But first: 
(2) Let C be false in M. Then -C/-, C M for some 

ground substitution /, = { t1 /X1 9...9tJxI where ti e 

H(S). Ex+end. M to a Herbrand interpretation M* of S 
0 

by 

defining 

L (a, , ..r n) E M* if and only if L (t19 ... 9 tn) E Al and 

L (a,,.*,,An) E M* if and only if L (t1 y...;tn) E M. 
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M* contains no complementary laterals and contains either L 

or L for each L E H(SC) Therefore M* is a Herbrard 

interpretatioiz of SC and PI C M*. Note moreover that 

C ( C M implies that U (--r C)* E Tom. 

Let St be a finite unsatisfiable set of ground instances 

and let M' C M* be the subset of M* which of clauses in S p 

is a complete asrignnent to the atoms occurring in clauses 

of SQ Let _ (T, CQ) be the MT-clash tree for SC'. 

is closed for Spy and therefore for SO. Since C is not 

a tautology, 4-7(N) = U (- C)* for some N e T. Either 

some D e S fails at N or TN is closed for S. In either 

case there exists a minimal M'--clash derivation 6) =(Te, c) 

from S of a clause D which fails at N. ;) is also an M*- 

clash derivation of D since MT C M'. 

Thus each satellite and resolvent of a clash in O) 

is false in M* and each nucleus has an instance true in M*. 

But no clause A = c (N' ), T?' E T', contains any of the 

constants a1,...,an. If o-* is a ground substitution all of 

whose terms belong to H(S0) let c- be the ground substitution 

which differs from a-* by having the term ti whenever a-` has 

a1. Then 

.a a- * C II* if and only if A a- C M and 

A r r - * n P, * , if and only if A a- fl m - . 

Thus each satellite and resolvent in 6) is false in M and 

each nucleus in 0 has an instance true in M and therefore 

is an M-clash derivation of D. (For M-clashes as 
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by (1) and. (2) instead of (1t) and (2t) in suction 

2.1+ a slightly more detailed argument along the same lines as 

above is needed) 

(1) and (2) concluded: It remains to show that if a 

clause D fails at a node N, where GQ(N) = U (-7 C)*o then D 

subsumes Ca But 

D e° * C 0(N) = U (-i C)* for some o- 'e 

Let o-- differ from d- * by having xi whenever a-* has ai in any 

of its terms, for each j, 1 < i < n.. Then D cr C IL1(x1,,.., n) 
,us.Lm(x1,..®,xn)} , i.e. D subsumes C. 

It should be noted that Theorem 2.5.1 does not settle the 

problem of generating consequences from assumptions by 

resolution. That this is so is due to the fact that if A and 

B are sentences of first-order logic, if J. implies B and if 
J and B* are the sets of clauses corresponding to .L,. and B, 

then it is not generally true that A1* implies B*m i. _ 

-3y V x Pz,y) and. B V x 3y P(x,y) provide a sample 

counterexample. 

2,6 ex-prderin and Bina Resolution. 

Let S be a set of clauses and < A a total ordering of 

H(S). (Write L1 
<11L2 

for L1 < 
A 

L 
2 

and not L2 < L1 

The notion of .L-restriction, which extends Slagle's definition 

[ 51 ] , proviCes the basis for studying the completeness 

of the more effective restriction (called A-restriction in 

[ 17 ] and at-restriction in [ 20 ] 
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Let 0 = (T,c) be a derivation and let N e T, N ,A r(T). 

Then c(N) satisfies the striction if 

I L® A I >> I LteX I for some , for L e c(N) 

resolved upon at N, for L' E c(N) not resolved upon, 

at N and for e m.g.s.uo of the clash at s(N). 

The weaker restriction that 

I L a - I > A ILt o 
1 

for some cr-, for L e c(N) 

resolved upon at N and for L' E c(N) not resolved upon 

at N 

(as in the case of the corresponding weakening of the M-clash 

rule) is not sufficiently restrictive to justify extending 

L,-restrictions to clashes of factors (compare remark (1) section 

2.4 ). 

The following theorem translates the ordering for binary 

semantic trees into A.-restrictions on the corresponding binary 

derivation. The second half of the proof of 2.6.1 is 

equivalent to a demonstration that o(-restrictions are 

preserved under contractions. 

Theorem 2.6,1* Given S unsatisfiable and I& a total 

ordering of H(S) there exists a minimal binary refutation 

(T,c) of S such that 6) contains no tautolouies and, 

for all N E Ty N A r(T), c(N) satisfies the .L- 

restriction. 

Proof'. Let S1 be a finite unsatisfiable set of instances 

of clauses in S. Then H (at) C H(S) and L. totally orders 

S ? . Let = (T 1 00) be the binary semantic tree for H(S 
1 
) ^ 
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ordered by A. Then 8 is closed for St and therefore for 

so 

Let 0) = (T,e) and "; T T' be as in Theorem 2.3.2 

where N©= r(T' ). Then 6) is a minimal binary refutation of S 

containing no tautologies. Let N e To N r(T). Then 

C = c (N) fails properly at some node N' a s-1("'(s(P;}}, 

Nt e Tt. Therefore C a- C 0. (N') for some ground 

substitution o- . If L e C is resolved upon at N and 

L' e C is not resolved upon at N then 

IT o- (Q(N1 - Q2(s(N')} and Lt e C_(s(Nt}}+ 

But by the construction of >A } t o ! 

i.e. ! L or- ! <A ! Lt '6"°! . But o- &, for some X 

where e is an m.g.s.ue of the clash at s(N). Therefore 

c(N) satisfies the A-restriction. 

In general 4-restrictions may be very difficult to verify, 

What is wanted is a notion of ordering and corresponding 

restriction which applies directly to literals occurring in 

clauses of derivations instead of to literals occurring in 

ground instances of such clauses. The P-orderings of 

Slagle [ 51 ] meet this requirement and are particularly 

easy to apply. 

Given a set of clauses S and PI ,...,pn and ordering of the 

predicate symbols occurring in S, let the partial ordorirg 

< of H(s) be defined by 

L < PL' if and only if L = Pi(t ,...,tn+} and 

L' = Pj(t1,.eo,tn ) implies 1' < i < j < k. 
J 

HCS) is -the set Of a.tl cctt, s o6atned y ns4Ktlalnq b 
WLC4rl$ sf t ,J 5ct,S-(-- 1'_ucktan.3 -b& cito mp&- fo rw &tk@ occ. sq Ih s. 



The partial ordering <P is called a P-orderin for S 

The P-rest:+:-iction corresponding to a P-ordering <P is 

defined as follows: Let (D= (T,c) be a derivation and let 

N E T , N A r(T). Then c(N) violates the P-restriction 

if 

I L I <P I Lt I for L e c(N) resolved upon at N and 

Lt E c(N) not resolved upon at N. 

Otherwise c(N) satisfies the P-restriction. Given a 

P-ordering and a clause C there may be several litorals L in C 

why.ch contain the same predicate letter and such that L >PLr 

for all Lt E C. In this case the P-restriction imposes 

no restriction on which one of these literals L are to be 

resolved upon when C occurs in a clash. 

The notion of O *restriction includes the ease of 

P-restriction and allows a stricter limitation of the literals 

which can be resolved upone Let < be a partial ordering 

0 
of H(S) then , is an ordering for S, if for any L1,L2 E 

a 
H(S) and for any substitu tLon tr- 

L1 a L2 implies L 
1 
0- <a L2 a- 

Let = (T,o) be a derivation and let N E T, N r(T). 

Then c(N) violates the -restriction if 

I L e I < IM t 8 for L E c(N) resolved u--)on at N 

for Lt E c(N) not r esolved upon at N and for & 

M.6. 3.U. of the clazh at s (N). 

Otherwise c(N) satisfies the cat-restriction.O or;terings. can 

often be convoniontly represented by finite sets of inequality 
schemes. 
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&ama?les. 

(1) If the atoms P(a), P(f(x)), P(g(y)) and Q(y) or their 

Complements occur in a set of clauses S then the inequalities 

P(a) <a P(f(t1)) < 
CK 

P(g(t2)) and 

P(t1) < 
CX 

Q(t2), for all terms t1 and t2, 

determines ancX ordering for S. If C= {F(x),P(a),Q(f(x)) } 

then the cK--restriction for C implies that Q(f(x)) may not be 

resolved upon in C. If C= {P(f (x),F(a),Q(f(x))} then only 

P(a) may be resolved upon in C. 

(2) The condition, 

I-(t) << P(f(-t)), for all terms t, imposes antic-ordering 

for any set of clauses containing P and fe However the 

condition 

p(t1) <0 P'(f(t2)), for all terms t1 and t2, does not. 

(Because P(t1)< P(f(t2)) implies that P(f(x))<(f(x)), which 

violates the reflexivity of partial orderings). 

(3) In systems which incorporate the use of marked 

factorsC(restrictions can serve to restrict the generation of 

factors of clauses. Let 
oC 

be the o(-ordering of example (1) 

and let C = { P(x)9P(f(y)), P(g( z )) { e Then C has a total of 

5 marked factcars (3 of them i-factors). Only 3 marked 

factors of C are compatible with theC(restriction. 

Lemma 2.6.2* Given a set of clauses S and SCC ax_ 

A 

O(-ordering for S, there exists a total ordering A oP H(S) 

such that for any derivation ()= (T,c) from S. for any N C T, 

N A r(T).. 
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c(N) satisfies the m -restriction if and only if 
c(N) satisfies the A-restrictions 

Proof Given S and < there is at least one total 
A 

ordering < A of H(S) which is compatible with E 
Ce 

i.e,, such 

that 

L <A L' whenever L <CK L' and L, L' a H(S). 
A 

(Just extend the restriction of <0( to H(S) to a total 

ordering of H(S)). Let tD=(T,c) be any derivation from S 

and let -c(N), N E T. satisfy the A-restrictbn. If c(N) 

violates the &,-restriction then 

f L 6,1 < I Li G I for some L E c(N) resolved upon at N, 

for L' x c(N) not resolved upon at N and for & m.gs.u. 

of the clash at s(N). 

But then IL ® /( 
I o C I L'a1( I for all 4 ahd 

therefore IL e Al <A I L' I for all ground 

IL9A1, IWAI E H(S) 

It follows that c(N) violates the A--restriction contrary to 

assumption 

Corollary 2.6..3. Given S unsatisfiable and an 

c<--ordering for S there exists a minimal binary refutation 

e = (T,o) of S such that (D contains no tautologies and, 

for all ld E T, N r(T), c(N) satisfies the cc-restriction. 

Proof. Let < be the total ordoring of H(S) A 

corresponding to < by 2.6,.2G Let 6) be the refutation 

of S for <A of M,i. They by 2.6,2 each c(N), NA r(T), 

satisfies the -restriction. 
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. 0 rderin& and M-clashes 

Corollary 2.7.2 was proved by S1agle [ 51 ] for the 

case of PM-clash resolution. Theorem 2.701 is proved by 

modifying Slagle's argument. 

Theorem 2.7.1. Let S be unsatisfiable, M a Herbrand 

interpretation of S and <A a total ordering of H(S). There 

exists an M-clash refutation 47 of S such that 0 contains no 

tautologies and each satellite clause in 6) satisfies the 

A-restriction. 

Proof* Let _ (T, CZ) be an M2-clash tree closed for 

S where M° C T,Z. ( V exists by the construction in the 

proof of 2.4.2.) The proof is by induction on t;he number n 

of nodes in T free for S. If n=O then ;l e S and 63 = 

(Tt,c), where TI = { N0} and c(N0) = Q , is the 

desired refutation of S. Suppose that n > 0 and that the 

theorem holds for any St such that 8 is closed for St and 

such that the number of nodes in T free for St is less than n. 

Let M = { L1 , . e.'L I where I Li' < 
A 

1 Li I 

for i < j. Construct M" C MI as follows: 

J,j 

0 

H9'i+1 
= M. if i U 

{ 
Li+1} falsifies some A E S., 

i.ev if 1) a- C M;!!." U { Li+1} for some c" - I 
otherwise 

M" i+1 = 
M" i U 

{ L . 
+1 

} 

M" = M" . 
m 
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M" falsifies no clause in S (since no M"i does). MMtt - 
PITY 

since MY falsifies some clause in S. Let N E T be such that 

(Q(N) = MO. Let s-1(N) N1,°°9Nk+1} where Nk+1 

is nucleus. 

Nk+1 is a tip of T and therefore (Q(Nk+1) falsifies some 

B E S. Moreover B fails properly at Nk+1 since B does not 

fail at N. Each satellite Ni, I < i < k , 

failure point for S since 

is a 

'b 

(Ni) -- { L } U M(N) = {L} U M" for 

some L e MI, 

Thus N is an inference node for S and some set C of variants 

of clauses in S is a clash satisfying conditions (a) - (f) 

of 2.3.3, Let C be the resolvent of (7, and e an meg.s.u, 

of C. , Each satellite A E C satisfies the A--restriction.. 

Fog if E C A is the set of literals in A resolved upon in Q. 

then for some A 

.k9A C {L} U M"- for some L=L. E M, 

{ L } { Li} and 

L' e,. E M' for all LY E .A-Bs 

But., by the construction of M"., A may be chosen such that 
0 

M. U { L. } falsifies A. So if L2 E Y.-E 

then L'A E M" 
i+1 

and therefore Lt9&A = {L 
J 
.} 

for some J< i and I E e K I >A J L ' e A I . So 

the clause A in C, satisfies the A-restriction. 

Let i0C = (T,co) be the derivation of C from ., i.e. 
T©. = {r(T0)} U z '(r (T0))s c0 (r(T0)) = 
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0 0(8 -1(r(T0))) = C o 6) 
Q 

is an TA-clash derivation containing 

no tautologies and every satellite in 0)0 satisfies the A--res- 

triction. 

Let S' = S V { C I . Then J is closed for S' 

and has fewer than n nodes free for Se (since C fails at N). 

By induction hypothesis there exists an M--clash refutation 

01 = (Ti,c1) of S' such that @1 contains no tautologies 

and each satellite in 6)1 satisfies the hr-restriction, Let 

(I _ (Tt,o) be obtained from ()0 and 6) 
1 

by identifying 

any tip N of T.. such that o1(N)=C with the root of a copy of 

0 
. Then 4) is the desired refutation of S o 

Corollary 2.7,2. Lot S be unsatisfiable. M a Herbr4nd 

Interpretation of S and ,< ano(--ordering for S. There 

exists an M-clash refutation 6) of S such that ID contains 

no tautologies and each satellite in 0 satisfies the 

A-restriction 

Proof. By Theorem 2x7.1 and Lemma 26.2, 

2.7.2 cannot be improved either by insisting that nuclei in 

also satisfy the W-restriction or by requiring that 6) bo 

minimal. Lot S = { 

L1 sL2{ s { L1,L21 f 'E22 L,1J 

{L1 qL2} 
{ s M { L1 ,L2{ and L1 <A L2. Then S is 

unsati.sfiable but no refutation of S exists having either of 

the two properties mentioned above. 

2.8 Pseudo-clashes. 

For a variety of reasons it is usually desirable to 
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reduce the problem of searching for clash refutations to the 

problem of searching for binary clash refutations (goo e.g. 

section 2G9). This reduction, w}:ioh can be obtained for 

restricted clashes, is investigated by introducing the notion 

of pseudo-clash. In section 2.1O we prove the completeness 

of resolving maximal pseudo-clashes (the corresponding 

completeness theorem fails to hold for maximal clashes.) 

Let C be a standardised sequence of clausE:s 

(A1 y ...,A.n, B) 
. 

A i = E U A0i 

B = 'FI U 

For 1i < i < n, let 

Fi A 0 , 

Fn U BO = Fi s 

Let COB and suppose { 1.i+ 
S 

Ci} 

C i+1 

is a clash with resolvent 

(0 -< i < n.»1) whero the literals resolvred upon 
n 

in Ai+11 are Eand in Ci the descendants of Fi+1. Then 

is a rPudo-clash on F o» with resolvent C=Cn. The 

clauses Al p.a.,An are the satellites and B the nucleus of 
n n 
C . is restricted if none of Cj....o$Cnw1 are tautologies 

when none of L1,...p1'dn0 B and C are tautologies. A 

derivation 0 = (T,,c) is a 2 eudo-clash derivation if 
s(N) 0 implies that some sequence e consisting of the 

clauses o(s"1(N)) is a pseudo clash with resolvent c(N). 

heuarks 

Cl) To every p,,eudo-clash C there corresponds a binary 

derivation of the resolvent C of from the clauses in 
A 

a (see the figure on next page). The literals resolved 

upon at interior nodes of the derivation all descend from 
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h 
literais in the nucleus of C . 

Therefore to any pseudo- 

clash derivation 6) there 

corresponds the binary 

derivation (dt obtained by 

"decomposing" each pseudo- 

clash in 6)d 
n 

(2) If is a ground pseudo-clash then A = { L)I U 4,OV 
0 

B= {L1,. ,.,LnI UBC y 1; < i < n and 

C = (AOi - FE23 ",otXn}) U 000 

U 
(aOi 

- { 

i+1 
sloe* ,Ln U 0 00 

U.1On U B0. 

If none of Also...-An, B and C are tautologies then, for 

t <i<12 none of L. ,...L n 
belorg to Ai . (since i+i 

1,.,,zn} C C C. and l.O.L C Ci ) . Conversely, { Li+1 

none of Li+1,..,'Ln belong to A. for all is 1 < i < n, tthen 

(3 is restricted. 

(3) If '. (11®®ynt, Bt} is a ground pseudo-clash with 

resolvent C' and if L1 
t,...,1111t and B1 are all instances of 

41$000,An and B respectively then (by the contraction theorem 

applied to the binary derivation corresponding to (_Z' ) e 
(Al,,.o,,A.n,B) is a pseudo-clash and Ct is an instance of 

C, the resolvent of ' , Moreover 0, is restricted if et 

is. 
(4} , = (A1, yAn9B } is a pseudo-clash if and only if 
(o { Al , ... y11n.43 { is a clash. If 3 is a clash with 
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m.g.s.ti. () then tho resolvent of C is 

(A01 U .. U on 
U BO) e 

However the res olvont of is 

(AOT0 
- {F2Jq.0.'FnI e ) 

U (J & .. 
f Fi+19 

Q ..)FnI A. 

U 
AOn 

& U B0® . 

) 

U ... 

U ... 

Theorem 2.841 below implies that if el = 
f AlP..{PAn,B 

is arj restricted clash with resolvent C and if (A (1 $ e o e sA n} 

is any permutation of the sequence (A1,...ytln) then 

(A-,T(1,)9. z r11fi(n) fB) is a restricted pseudo-clash with 

resolvent C. If (A1 , .."An,B) is a pseudo-clash 

then , w = {A1j6093AniBj is a clash; however even if C!, 

h 
is restricted the resolvent of may differ from the resolvent 

of e 
Theorem 2.801 .Let c. (119 ...9l n,B) than e is a 

restricted pseudo-clash if e = L1,4.4-aAn,B1 is a 

restrictea clash and if B @ is not a tautology where e is an 

m.g.s.u. of ( . The resolvent of {r, is the resolvent of Co. 

Proof. We use the notat.1on in the definition of pseudo- 

clash above. Lot E 1 U F v owl pEn U Fn and Fi = 

{Ei IfCis a clash with resolvent C then ands 
are uniffable for 1 < i < n. The substitution 0 

1 
f..9en 

is an m.g.s.uo of e where 
6i is cn m.gas,uo of E f p gi 1 0= } and 

C (A1U...U AOn U BO) 4 1... 4 n. 
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Suppose t'_ at C is restricted and that none of 1,1'...,`npBgC 

are tautologies. It suffices to show that, for 0 < i < n., no 

C i is a tautology and 

Ci = (1`01 U...U i O. 
'.J Fi+1 U...U Fn U BO ) 90... g d 

The proof is by induction on i. If i = 0 then C0=B= 90 

and CO is not a tautolor. Suppose that the equation for Ci 

above holds for a given i (0 < i < n) and thct Ci is not a 

tautology. We need to show that Ci+1 is not a tautology a,d 

that 

C 0 _ (A U...U .l. F. U.U F 
+1 01 Oi+1 1+2 n 3,+ i 

But Ci+1 is the resolvent of -+1 and Ci where the literals 

E i+1 
are resolved upon in A i+1 

and the litorals F 
i+1 

$ 
0 
a.. 9 

are resolved upon in C 
i 

. But because (3 is standardised 

E. Eit1 & ... ®i So 9i+1 is an m.g.smu0 of 

Ei+1 U 
Fi+1 ®0... 6i }' and 

Ci+1 = 
.41Oi±1 9 

i+11 
U 

(Ci i+1 
Fi+1 

0 ° 1+1). 

Since C is restricted 

C. 9 
i+1 

.. 
Fi+1 

90 A.. 6 i+11 

(1101 Uf...tj L * U F4+2 Uoc,.UFn U BQ) ... 
G. 

Since 
i20 i+191+1 = 

11.0 9i+1 

Ci+1 
(A01 

U...U LQi+1 
U Fi+2 U...U Fn U BC) 6, 0...0 

+11. 

If Ci+11 
is a tautology then so is Ci+1 a 

i+2 .. 9n= C' U C' 

where C' (PC1Uy..U tQi-1 
U B0) 00,.. 9n and c" _ 

(F i+2 V. ..u Fn) 9Q.. 9n. But C' C C.. so C' Is not a 

tautology. C r' C B. 
00 

...4n i so C"is not a tautology. 

Therefore V U C" is a tautology only if 
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Fj 0... 0n ll X 0 for X -AOk e0... 9n or for 

X = B0 00 .4a en for some j and k such that i + 2 n 

and 1; < k i + 1 . But then (,' is not restricted contrary 

to assumption. 

Theorem 2.8.1 fails to hold without the assumption that 

B9 is not a tautology* Therefore 2.8.'1 does not fully 

justify the second half of remark (5) above. On the other 

hand it is not difficult to verify that all completeness 

theorems which assert the existence of derivations fQ= (T,c) 

containing no tautologies continue to hold under the stronger 

restriction that no c(N) 6 is a tautology for N E To N A r(T) 

and 6 m.g.s.u, of the clash at s(N). (In fact these 

theorems hold under the still stronger condition that no 

c(N) 91. , 0 is a tautology where N A r(T)., e i is the 

m.g.s.u* of the clash at s1(N) and sm(N) = r(T), sm+l(N) ,r(T)). 

For this reason the completeness of searohing for restricted 

clash refutations containing no tautologies is not lost by a 

corresponding search for binary refutations containing no 

tautologies. `ire shall ignore these complications in the 

following sections 

2.9 H:ypera=resolution and P,,-resolution. 

A clash . is a PPS and i,ts resolvent C is a 

P esolvent If E is binary and one parent of C is positive. 

The completeness of PI--resolution follows from the completeness 

of hyper-resolution, for given any hyper-resolution derivation 
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each hyper--resolution clash C in 0 can be replaced by 
ea . 

a p seudo-clash and can be replaced by a P1 --derivation 

of the resolvent of e. 

Search strategies for hyper-resolution have the advantage 

over those for PI-resolution that they avoid the redundancy 

involved in calculating the nt hyper-resolvent pseudo-clashes 
n 

associated with a hyper resolution clash e having n 

satellites. On the other hand search strategies for PI - 
resolution have the advantage of computing hyper-resolvents 

incrementally and of saving the intermediate resolvents for 

resolution with possibly other positive satellites. More 

precisely if (A1sedejAn9B) is a hyper-resolution 

pseudo-clash with resolvent C and associated sequence of Pi- 

resolvents C19 m..1Cn= C then each C. can be used as an intera- 
n 

mediate resolvent for some hyper-resolution pseudo-clash CY 

(A1 .9e pA.iq lip 
1 

9 . nB) without recalculating for ( the 

intermediate resolvents C19oo.vCi already calculated for Q, 

A second point in favour of P1 resolution is that the problem 

of developing search strategies for binary resolution systems 

is much better understood than the corresponding problem for 

clashes of larger oardinalityo 

The following version of P1-resolution incorporating the 

use of marked factors offers the advantage of both PI -resolution 

and hyper-r.-solution without being subject to any of the dis- 

advantages of either.. 
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(1) An input positive clause is factored as a 

satellite clause. 

(2) An input non-positive clause B is factored as a 

nucleus clause for hyper-resolution (i.e. generate all 

factors B 6 of B where a is an m.g.s.u. of a unifiable 

complete partition of all the negative literals in B). For 

each such factor Bt of B choose a total ordering of the 

negative (i.e. distinguished) literals in B'. 

(3) Resolve a positive factor on its single distinguished 

literal with a non-positive factor on its first remaining 

negative literal. 

(4) Factor a positive resolvent as a satellite clause. 

Let a non-positive resolvent be its own trivial i-factor and 

let its first distinguished literal be the next remaining 

distinguished literal descending from its non-positive parent. 

Clearly the device of choosing a unique total ordering of 

the negative literals in non-positive factors amounts to 

associating a unique pseudo-clash with every hyper-resolution 

clash. The generation of factors of positive clauses can be 

further restricted by choosing an cC-ordering and then only 

generating those satellite factors compatible with the 

ccrestriction. The method of decomposing hyper-resolution 

clashes outlined above can be extended to hyper-resolution 

after rena:i.ng without any complications. P. system employing 

renaming, u-ordering and (1) - (4) has been suggested by 

Darlington [ 6 ] for application to information retrieval. 



Darli ngton° s system also incorporates Meltzer's device of 

using renaming to simulate set of support- [ 26 ] 

2.10 Maximal Pseudo-clash Refutations, 

Part (a) of Lemma 2.10x1 is used in the proof of Theorem 

2.10.2 which asserts the Oxistence of maximal pseudo-clash 

refutations, Part (b) 3s used in Chapter 3 to prove a 

permutation theorem for paramodulation refutations. 

Lemma 2.10.1. Let S V J BI be an unsatisfiable set 

of ground clauses whore B = {L1p.o9sLn} is not a tautology* 

(al) For 1 < i < n let IRi be the set of rosolvents of 

restricted pseudo-clashes (A1 a..,AipD) 

on Di = (L1, ...,Li} where Al E S are not 

tautologies 

(bi) For 1 <i < n let R. be the set of resolvents of 

clashes e= {A 
1 
p...,AiBj where Al,.., pA i e S 

are not tautologies and the set of literals resolved 

upon in B is {L1,...,Li} . 

then 

(aii) Si = S U Ri is unsatisfiable for all i, 1 < i < n, 

and 

(bii) Si = S V Ri is unsatisfiable for all i, 1 < i < n. 

Proof. (a) By induction on i. Extend the definition 

of Ri and 
S. 

tot he case i = 0 by letting 0 _ {B} . Then, 

since S0 = S ' U { B (aii) holds trivially for i _ O. 

Suppose that (aii) holds for a given i. Then we want to show 
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that Si+i is unsatisfiable assuming that S. is unsatisfi.able. 

But Ri+1 is the set of non-tautologous binary resolvents 

of clashes Ci} where 
Li+1 E S and Ci E R. are not 

tau';ologies and where Li+1 is the literal resolved upon in 

C.. Si+1 
(Si Ri U Ri+1 It suffices to construct a semantic 

tree which is closed for Si+1 . Let 8 = (T,() be an binary 

semantic tree for the set of atoms in Si ordered with Li+1 

last. Then S is closed for S. and any clause C. E R. 

which fails in 3 fails properly only at a tip of T (since Ci 

contains Li+1 and 
Li+i / &(N) if N is not a tip of T). 

Suppose 8 is not closed for Si+1 . Then some complete 

branch 61 of does not contain a failure point for Si+1 

But then some C i E R. fails properly at tho tip N1 of A1, 

Let N = c(N1) and s-1(N) N1 ,N2 } . Then some 

E S fails properly at N2(since the complete branch 6 2 

differing from 631 only in the tip N1 contains a failure 

point Poi S)- By 2.3-3. the resolvent C E 'R i+1 
of 113+i and Ci fails at N on contrary to assumption. So 

8 

where L E A1,..., Li 

Let 9 = (T,V) be a binary semantic tree for the set of atoms 

in so = S6 l . Then 8 is closed for S. Suppose 8 is not 

closed for some Si, 1 < i-< n. Then some complete branch 

6 of. 8 contains a failure point for SC but not for Si. 

is closed for Si+1! and 
Si+1 

is unsatisfiable, 

(b) Ri = {C : C 
(n1 - { L 1} U ...U (L' 

U (B - {L19...,LiI ), f-,r G1,...,s.i E S 
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Therefore B fails on 6 and { 1$ 0 .. PLi} C CQ ( 43) . 

Le-u be the complete branch of 8 which differs from 63 

only in L ., ioe. (Q ( 63 .) _ ( C ((3) -- { Lj}) U IL 
i1o 

for 1 <J< i. Then each b3 j 
contains a failure point for 

S. Let :L.j E S fail on (8j. If L j j t j for some j then 

A fails on d3 already and so contrary to assumption 6 
contains a failure point for S and therefore for S 

1 
S. There- 

fore Lj E A.. Let 

C = (A1 - { L1 } ) U... U (Ai- { Li} ) 

U (B - {L1,,..a9Li} ) . 

then C E Ri and C fails on 6 i.e. C C CQ( 63) since 

A (: 3) - Lj }) U ILJ) and 

A _ {Lj} C c(0 and 

B -L1$...,Li C C2(03) . 

Therefore 63 contains a failure point for S It follows 

that 8 is closed for S. and that S. is unsatisfiable. 
3. 1 

The,;rem 2.10.2. If S is unsatisfiable then there exists, 

a refutation 6D (Tic) of S such that O is a pseudo-clash 
n 

derivation and the sequence B of literals resolved upon in the 
n 

nucleus B of any pseudo-clash in OD contains all the 

literals in B. ) contains no tautologies and every 

pseudo-clash in is restricted. 

Proof. By the contraction theorem it suffices to consider 

the case ur:;zere S is a set of ground clauses. The proof is 

by induction cn the total number n of distinct atoms contained 

in S. If n = 1 then S C { {L}, {L} , {L,L} } for 
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sc.e atom L. The derivation l) consisting of the pseudo- 

clash C . ( {LJ, {L) with resolvent Q satisfies the 

theorem. Suppose that n>1 and that the theorem holds for 

arx,;- unsatisfiable set containing fewer than a total of n 

distinct atoms. 

Suppose that S contains only the distinct atoms L19...Ln 

Let C19...,Cm E S be all the clauses in S containing the 

atom LI positively. Thus L1 has exactly m distinct positive 

occurronoss in S. Let C. be a sequence of literals i 
containing all and only the literals in C. where L1 occi}rs 

last: in C.. Let SO = S and for I < i< in let 

Si- (Si.-1 { C U Ri where Ri is the set of all non- 

tautologous resolvents of restricted pseudo-clashes with 

satellites in Si`1, and nucleus C. where C. is the sequence of 

literals resolved upon in C.. Each Si is unsatisfiabla 
n 

since SO = S is unsatisfiable and if Sis unsatisfiable 

then so is Si, by 2.10.1, for I <- i m Notice that S. 

contains mi-i positive occurrences of L because if S 

contains m - i+1 such occurrences, thouu Si-, -- { C. contains 
n 

m - i such occurrences, but R. contains no positive occurrences 

of L1 by virtue of the fact that L1 is last in the sequence 
n 

Cim Thus Sm contains no positive occurrences of L1. 

Therefore, by the purity principle [ 39 ] some S t C 
A 
Sm is unwr,tisfiable where the atom L1 does not occur in St. 

By induction hypothesis there exists a refutation 

6) (Tt, ct) of St satisfying the theorem. By ap;-encling 
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to each tip N a Tt where c' (N') A S the derivation of 

ct(N') from S associated with the construction above we obtain 

the desired refutation 6) of S. 

The proposition analogous to Theorem 2.10.2 for clashes 

does not hold. If S = { , L { L1'L21 , {L1 . L2 } , 

{ L1 ,L2) } then S is unsatisfiable but there exists no clash 

refutation (fl of S such that the set of literals resolved upon 

in the nucleus B of ary clash C in 6J coincides with the 

set of all literals in B. No such refutation 6) of S exists 

even if 6) is allowed to contain unrestricted clashes and 

tautologies. 
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CHUM 3. 

The use of equality axioms in resolution systems has 

seemed to be especially inefficient. In order to remedy 

this problem several modifications of resolution have been 

proposed (e.g. [ 3 ] , [ 6 ] 9 [ 28 ] a[ 38 ] 2 

[ 43 ]' [ 48 ] 9 and [ 55 ] ). Of these the paramodul- 

ation method of [ 38 ] seems to be particularly simple and 

efficient. In this chapter we compare paramodulction with 

hyper-resolution using axioms for equality. These two 

methods are first described in sections 3.1 and 3.2 and then 

compared in 3.3. L simple interpretation of hyper-resolution 

with equality axioms is found in the subsystem of paramodulation 

providing a straightforward proof for the completeness of this 

subsystem. In sections 3.4 and 3o5 modifications of the 

hyper-resolution method are proposed and these modifications 

are seen to induce corresponding modifications of the 

paramodulation method. i principal conclusion of this 

chapter is that systems designed especially to deal with 

equality need not be more efficient than existing resolution 

systems. 

Chapter 3 is essentially [ 20 ] with only minor 

modifications. 

3-l Hyper--resolution with Egualitz kKioms. 

Let 50 be a set of clauses and let E = E1 U E2 U E3 where 
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E1= x = x }} 9 

E2= xi Yi' f(x1 y...,xi,...yxn)= 
f(x1,...9yi,...rxn) 

f in the vocabulary of S0 anal < i < n{, 

E3 xi yi, '(xj jQO*,xiy...Pxn).0 

P the equality symbol or P in the vocabulary 

of So anal < i < n } J. 
We -writes = t instead of = (S. ,t) ands A t instead of 

_ (8 . We adopt the convention that "s=t" is syntactically 

indistinguishable from "t=s". This convention allows us to 

simplify notation and in particular allows us to consider as 

tautologies clauses of the form f s A t , t = s l . 

If SO has no normal model (i.e. no model in which the 

equality symbol is interpreted as a substitc.tive identity 

relation) then S = S6 U E is unaatisfiable. Therefore there 

exists a hyper-resolution refutation 6 of So This needs 

to be verified by appropriately modifying earlier definitions 

and proofs to accomodato the indistinguishability of "t=s" 

and "s=t't a, In this connection we note only that two equations 

t1=s1 and t2=s2 may have two non-equivalent m.gos®us, i.e. one 

for & I = { { t 1 , 2 } , { 
s1's2 } } 

and another for e2 
{ { t1 9 s2 { , { t2, s1 } { . In section 3.3 we shall 

compare h-por-resolution refutations (D of S with paramodulation 

refutations of S0 

The efficiency of obtaining the refutation m can probably 

be improved by imposing restrictions which have not been 
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investigated for paramodulation (e.g. deletion of tautologies 

and subsumed clauses, c ordering restrictions, various 

factoring methods, unique decomposition of restricted clashes, 

diagonal search and preprocessing procedures). In addition 

we note the following improvement for obtaining the hyper-- 

resolution refutation OJ of S = S0 U E. if SO results by 

eliminating quantifiers from a set of sentences SC* than it 
is unnecessary to include in E2 C E axioms for the Skolem 

function symbols introduced in obtaining SC from S0 . This 

follows directly from the fact that S0* U E* is unsatisfiable 

where E* = EI U E2* U E3 and E2* contains axioms only for 

the function symbols occurring in S 0*. 

.2 Paramodulation. 

Given a clause B and a single occurrence of a term t in 

B we write B [t] to indicate the given occurrence of t in 13. 

For grou,id clauses A = { t = s } l.1 AO and B = B [ t ] 
paramodulanb of L and B is the clause C = B [ s/t ] U L;C 

where ' B[s/t] indicates the result of replacing the single 

distinguished occurrence of t in B[t] by s. Mote that t 
may occur as a subterm of another term in B, both in its 

distinguished occurrence in B[t] as well as in otner 

occurrences in B. 

For the general case paramodulation is most conveniently 

defined in the context of refutation systems which include a 

separate rule for factoring clauses. For standardised factors 
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A = it , = sJ v 1. and B = B[t22 where { ti , t2} is 

unifiable with m.g.uo e , a paramodulant of A and D is the 

clause 

C = AO U Be[se/t2e] 

_ (110 U B[s/t2]) Q o 

The factors A and B are respectively the first and second 

arents of Co We cull the distinguished occurrence of t2 

In B [t2] the term ramodulated upon i B. (In a more 

precise terminology we would refer instead to "the 

distinguished occurrence of the term paramodulated upon.." ) 

rhQ literal t, = s, in A and the literal in B[t] containing 

the distinguished occurrence of t are both called the 

literals paramodulated u.on< 

An important case of paramodulation occurs when the 

occurrence of the term paramodulated upon in the second parent 

D[t] does not occur as a proper subterm of another term in Do 

In this c...se the distinguished occurrence of t in B [t]is said, 

to be rma, in B [t] and the application of paramodulation is 

also pry (The terminology here is borrowed from Sibert 

[ 48 ] ). For example if B = { f(c) A c} then both 

the single occurrence of f(c) and the second occurrence of c in 

B are primary ix.B but the first ocourrence of c is not. 

A derivation 6t= (Too) is a -derivation if NeT and 

(N) _ { DT' q ...,Nn } , 0 implies that either 

N c (S-1 (N)) is a clash with resolvent c(N) or 

(2) n=2 and c(N) is a paxamodulant of factors of c(N 
and c(N2). 
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Notice that we do not explicitly exhibit factoring in either 

clash-derivations or pt-derivations. A p-derivation 0 is binary 

if all clashes in 6) are binary. 

Given a set of clauses S© let 

E4 = { { f (xi 9...9xn)= f(x19...'xnf f in the 

vocabulary of S©s n > 0 
1 

. 

The following completeness theorem for paramodulation 

was reported by G. Robinson and dos in [ 38 ] . 

Theorema.2.1. If S0 has no normal model then there 

exists a binary p-refutation of S 
0 

U E4. 

Robinson and VIos have also proposed the following 

unsolved 

C one ecture if S 
0 

has no normal model then 

there exists a bin.=7 p-refutation of S0 U E1. 

3 Comparison of the Paramodulation and Iy e solution 
Methods. 

The basis for our comparison rests upon the observation 

that most hyper-resolvents with nucleus parents in E2 U E3 

can be interpreted as par:,modulan,ts.. This same observation 

was noted independem,;7y by Chang in [ 4 ] . For later 

applications in section 3a5 it is useful to formulate this 

observation more generally for n-resolvents with nucleus parents 

in E2 UF,. 

L, clash L' is an n-clash and its resolvent is an n-resolvent 

if the set of literals resolved upon in the nucleus B E (. 
coincides with the set of negative literals contained in B. 
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Thus any hypor-resolvent is an n-resolvent and any n>-resolvent 

of a restricted n-clash all of whose satellite parents are 

positive, is a hyper-resolvent. Note that we do not require 

that n-clashes be restricted. 

In the sequel in order to simplify terminology we shall 

often treat variants of the same clause as though they were 

identical. This convention allows us in the statement 

of 3.3.1 below to r efcr to ',1B E Eat' instkad of "B a variant 

of a clause in E3tr:? 

Lemma . .1 ,, Let '19.40y1,,nSB} be an n-clash 

with nucleus B and n-resolvent C. Then 

(1) if B E E3 and n = 2 then C is a primary paramodulant 

of factors of Al and A2 t 

(2) if B E E2 then C is a paramodulant whose first parent 

is a factor of Al and second parent is an appropriate 

clause B* E E4. 

(if B {x, yis f(x1,...,xia....gxn) 

f(x1'.M.Jyi$...9xn) } 

then D* = { f (x1 a . 9 A) = f (x1 o ... gxn) } o ) 

Proof. (1) Let °R = { Al I., A24 , B®} be the sot of 

factors of clauses :Ln e having C as resolvent. Lt = B since 

otherwise the two negative literals of B would be unified in 

Bt' implying that e has only one satellite in which case n 

would be 1. Lot 
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A; = {t = s} U 
%o1 

0 

A2 {p(t1sQ.nyti.,...stn)} U LO2 and 

B4 = {xi yis p(xs...sxis9xn)aP(x1y.o.syi...9xn)I 

Then C = ( {P(t1so..'ss¢..gtn)} U 
A41 

U 
Z102 

) 0 where 8 

is an m.g.s)ue of {tyti} . C is therefore a primary 

paramodulant of A Q and !i2 r . 

(2) Let C° = {Ap,B} be the appropriate set of 

factors of clauses in C having C as resolvent. Bt = B4 

Let 

A'= ft = s l U A0 and. 

Bt = {xi A Yis f(xjs.9sxisQ.esxn) 

f(xIs..e`Yisaa.Pxn)) . 

Then C = {f(x,s..ast9...xn = f(x1y..o'ss...sxn)} U A0 

and C is a paramodulant of At and of 

B* = { f(x19...sxn) = f(x1,.o.,xn) } ED 
4 

Lemma 3.31 implies that any hyper-resolution derviation 

CD of a clause C f'tom clauses SO U E U E4 can be 

transformed into a p-derivation of C from SC U E1 U E4 

provided that every clash in 0 with nucleus B E E3 has 

exactly two satellites. Furthermore., in order to obtain 

the application of section 3.4 to triv .lization of inequalities$ 

it is desirable that the clause Ix = XI does not occur 

rts parent of a i aramodulant in the resulting p-derivation. 

These two desiderata motivate the following definition and 

lemma. 

A clash derivation (D is normal if whenever a clause 
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B E E,, U E3 occurs in 6) 

(1) B occurs as nucleus of an n-clash C , 

(2) C n (E1 U E4) = 0 and 

(3) If B E E3 then C contains exactly two satellites. 

Theorem 30-3 below states that any normal derivation 

from clauses S 0 
U E U E 

4 
, can be transformed into a p-derivation 

from SQ U E1 U E4. Lemma 3.3.2 both guarantees the existence 

of normal derivations and also serves as a lemma in the proof 

of 3.1E..2. 

Lemma 3.3.2. Let S = SC U Et, where Et = E or 

Et-;E2 U E3 UE., be unsatisfiable. Then there exists a finite 

unsatisfiable set S' of ground instances of clauses in S such 

that if a clash derivation 6) =(T)c) from S results from lifting 

a clash derivation Cot= (T,ct) from St (i.e. c'(N) is an instance 

of e(N) for all N E T) then for every clash ( in 

(1) if the nucleus of C is in E2 U E3 then 

C n {E1 U E4) = 0 and 

(2) if 0 i; an n -clash with nucleus B E E3 then C 
contains exactly two satellites. 

Proof. Choose St containing no tautologies. In addition 

let S' contain no instances of clauses in E2 of the form 

1 i3 i,o..,i ,.a.,n i ,o..,i, , 
n (*) {t. t i-9 

t t) = f(t t ... t) 
S4 may so be chosen because any instance of a clause in E2 of 

form (*) is subsumed by the corresponding instance {f(t1,o.eptn) 

f(ti p...,,t) } of a clause in Ei or E4. 
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Lot (DI and 0 be derivations from S' and S respectively 

where to lifts 01. Suppose that (1) is violated. Then there 

are clauses A, B e 0, where 11. a E1 U E and B E E2 U E3 

is nucleus of e which is some clash in 6 If B e E2 

then, since A is positive, the negative literal in B is resolved 

upon in C' end the corresponding instance Bt of B in O) t is of 

the form (*). If B e E3 then the first or second negative 

literal in B is resolved upon in e and th4 corresponding 

instance Bt of B in O f is a tautology. 

If (2) is violated and C is an n-clash in 0 with 

nucleus B E E3 and only one satellite then the corresponding 

instance B I of B in (D t is a tautology of the form {s A t, s=t } . 

Lemma 3,3.2 guarantees the existence of normal refutations 

4 of unsatisfiable S==Sp U Et. For if bat is a hypor- 

resolution refutation of S t then ® is normal if 6a lifts (O t 

and S t is the finite set of instances of clauses in 

asserted tc P xist by 3.3.2. 

Given a normal derivation 6) we denote the corresponding 

p--derivation by $ ( 0 ). Let 0 = (T,c) be a normal 

derivation from S0 U Et where Et = E or Et = E2 U E3 U E 0 

Then ¢ (ID) _ (Tt,c") is defined as follows 

(1) TtCT, 

(2) N e T-T9 of and only if c(N) E E3 and 

(3) fort E TI 

(a) if c(N) E E2 then ct(N) E E 
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(i.e. if c(N) = { xi A yi,f(x1,...$xi,.>.,x n) 

f(x1,...pyi,...,xn) } 

then o'(N) = f(x1g...,xn)= f(x,12®..vxn) 
} ) 

and 

(b) c'(N) = c(N) otherwise. 

Theorem 3.323. Let 6) be a normal derivation of a clause 

C from S4 U E' where E' = E or E' = E2 U E3 U E4. Then 

(0)) is a per-derivation from SC U E" where E" = 

EE4ifE =Eand E".=E4if E' =E2UE3UE4. 

Proof. 3.3 »3 is a direct co nsequence of Lemma 3.3.1 

Theorem. . If S C has no normal model then there 

exists a p--refutation 6) of SC U E4 such that: 

(xi) Both parents of every paramodulant in m are positive. 

(r2) Every resolvent in 4) is a hyper-resolvent. 

(r3) All applications of paramodulation in O) are primary 

except when the second parent is in E4. Moreover 

no clause in E4 is first parent of a paramodulant 

in 0 ,, 

(r4) Given any O -ordering for S 
C, 

U E4 all parents of 

paramodulants and satellite parents of hyper- 

resolvants in 6, satisfy the o(--restriction4 

Proof. Since SC has no nor'ral model, S(, U L2 U E3U E1- 

is unsatisfiable. Let G 
oC 

be an o ordering for SQ U E4 and 

therefore "or S as well. Let 0 be a hyper-resolution 

refutation of S satisfying the o(-restriction for satellites in 

0 0 Moreover let (9a be obtained by lifting a ground 
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refutation of a set St of ground instances of clauses in S., 

where S' satisfies the conditions of Lemma 3.3.2. Then GDQ 

is normal and (00 ) = 0 is a p-refutation of SQ U E4. 

That 0 satisfies (rl )' (r2) and (r4) follows directly from the 

definition of $ . The first part of (r3) follows from Lemma 

3,3'1 and the second part of (r3) follows from Lemma 3.3.2. 

Note that Theorem 393.4 implies Theorem 3.2.1 because all 
applications of lWper-resolution can be replaced by sequences 

of PI1-resolutions. 

Theorem 3If S0 has no normal model then there 

exists a p-refutation 0 of S. U E,1 U E4 such that 

(rl) - (r4.) and 

(r5) The clause { x = x} does not occur in 6 as parent 

of a paramodulant and clauses in E4 occur in only 

as second parents of paramodulants. 

Proof, The proof of 3 03 05 is identical to that of 3.3.4 

except t a.t we let S = S0 U E. Restriction (r5) then follows 

from Lemma 3.3.2 and the definition of o 

Theorems 3.3.4 and 3.3.5 establish the most direct of 

our comparisons between paramodulation and hyper-resolution 

with equality axioms. These comparisons are refined further 

in the next two sections. We note first that 3-3-4 and 3-3-5 

already establish the compatibility with the paramodulation 

method of the deletion of tautologies and subsumed clauses. 

(Since these deletion rules and compatible with hyper-resolution 

refutations 0 they are also compatible with p-refutations 0 M.) 
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It is also possible to impose mini,nality restrictions on 

p-refutations 4 () corresponding to the mini.mality 

restrictions imposable on hyper-resolution derivations. 

Finally the eompatability of renaming for hyper-resolution 

implies the same for paramodulation provided that the equality 

symbol is not enamed. 

94. Trivial.ization of Inequalities. 

Resolving a factor C {st} U CC with {x = x} 

produces the clause C09 where 9 is an meg.u. of {s,t} 

We call such an application of resolution the operation of 

trivializingaan no uala L (compare [ 3 ] and [ 48 ] ) . 

C-)rollary 3o7o2 of Theorem 3.1+,1 implies that if S0 has no 

normal model then S may be effectively preprocessed by 

trivAizing inequalities in clauses of S0 obtaining a set of 

clauses S0* such that S* = S 0 U E2 U E3 is unsatisifiable. 

SQ consists of SQ together with all resolvents of clashes 

{A1' m.. j.An,9B where B e SC and Ai = { = x} for all i, 
1 < i n (simultaneous triv:lalizatior of inequalities), 

Clearly the number of applications of resolution involved in 

obtaining Spy` from SC is finite and therefore S0 can 

effectively be obtained from SF,. 

If &J is a normal hyper-resolution refutation of SCE` 

then 4) (Q) is a p--refutation of S0* U E4 such that (r1) - 

(r5) of Theorems 3.3.4 and 3 03,5 hold for 4 (0) 9 with the 

obvious strengthening of (r5) that {z} does not occur 
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in (6) ). If we enlarge 4) (d)) so as to exhibit 

trivializations of inequalities then we obtain a p-refutation 
t of S0 U E1 U E4 which may differ from the p-refutation 

of 3.3.5 in that (r2) may fail to hold for these applications 

of resolution which trivialize inequalities. On the other 

hand all trivializations of inequalities in Mt occur before 

all other applications of resolution and before all applica- 

tions of paramodulation in V. whereas no such ordering of 

these operations need occur in the p-refutation asserted to 

e-rist by 3.3.5. 

Theorem 3.4.1 implies more generally that satisfiable 

sets S1 of unit clauses may be effectively preprocessed out of 

a set of clauses S = S 
0 

U S. before attempting to find a 

refutation of the resulting set SO . Our intuition is that 

such preprocessing is likely to increase the efficiency of 

obtaining proofs of more difficult theorems. The figure below 

gives a Pimple example of two derivations of the same clause. 

Only the first derivation will be generated if the original set 

SO is preprocessed. If the ontire set SO* must be generated 

before attempting to find a refutation then this method of 

preprocessing may be inefficient for proving theorems which 

have a simple proof which can be detected for instance with 

less effort than that involved in generating all of So itself. 

On the ot]+,:r hand since resolving P. clause A E SO with a unit 

clause in S1 producer a clause containing fewer literals than 

are contained in.A we may expect that this preprocessing 
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procedure will tend to retain the simplest of th se 

derivations which differ by permuting occurrences of clauses 

from S1 along their branches. Finally even for the case of 

simpler theorems preprocessing can be made more officiont by 

simultaneously generating S0 and generating resolvents from 

Sp before completing the generation of S0*. (Such a 

procedure would be similar to the diagonal search strategy 

of Chapter 1..) 

Example, 

{ L1 L) E SQ 

Notice that the redundancy exemplified here can not be 

removed by implementing singly connectedness [ 44 ] and is 
not removed by hyperr-resolution. Notice also that in this 

case the eliminated proof involved resolvents of length 2 

and is therefore more complicated than the first proof in the 

sense that it is generated after the first proof by diagonal 

search (chapter 4-.) 

Theorem1+1. Let S = S C us 
I 

be unsatisfiable whore S 

is a sati.sgiable set of unit clauses. 'Then the set 



S0* = S0 U R is unsatisfiable where R is the set of 

resolvents of clashes with nucleus in S0 and satellites in S1. 

Proof. Assume first that S is a set of ground 

clauses, Let S1 = {{ L1},..., { Ln}}. We prove the theorem 

for this case showing by induction that, for all k < n, 

Uk = SC U Rk U(S1 - {{ L1},..., { Lk}}) 

is unsatisfiable where Rk is the set of resolvents of clashes 

with nucleus in SC and satellites in if L1},..,,, {L k}}. 

U0 is unsatisfiable since U0 = S. 

Suppose that Uk is unsatisfiable for some given k. 

By Lemma 2.10,E (a) or (b), U = (Uk 
{Lk+1}) 

U R' is 

unsatisfiable where R' is the set of binary resolvents C of 

clashes C with nucleus {L k+1} and satellites L in Uk 
{ Lk+1}° 

But then A S. (since S1 is satisfiablo. So A E S0 U Rk 

and therefore C E 
Rkt-1 

But then R' C Rk+1 and since 

Rk Z Rk+1' Uk+1 = 
U is unsatisfiable. It follows therefore 

that Un = S0 U R = S0* is unsatisfiable. 

If S is not a set of ground clauses let S' = S0' U S1' 

be a finite set of ground instances of clauses in S where 

S0' and S1' are instances of clauses in S0 and S1 respectively. 

Then S0' U R" is unsatisfiable where R" is the set of 

resolvents of clashes with nucleus in S0' and satellites 

in S1'. But by the contraction theorem S0' U R' is a set 

of ground instances of clauses in a0 U R which is therefore 

unsatisfiable. 

Corollary 3.4.2. Let S = SC U E be unsatisfiable. 

Then S* = SC U R U E2 U E3 is unsatisfitable where R is the set 

of resolvents of clashes with nucleus in S0 and satellites in E1. 
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Proof . Let St be a finite unsatisfiable set of 

ground instgnces of clauses in S satisfying Lemma 3.3.2. 

Take S 
0 

U E2 U E3 to be the S© of Theorem 3.1+:1. Then 

SD U E2 U F3 U R 
0 

is unsatisfiable where each C in R0 is the 

resolvent of a clash (. having nucleus in S 
0 

U E2 U E3 and 

satellites {x = x } 6 But each C e R0 is obtained in 3.)+.t by 

lifting a ground a lash e' C S I . If 0 is the derivation 

of C from C and 6)t the derivation of an instance of C from 

t then it follows by 3.3.2 that 0) is normal and therefore 

that the nucleus parent of C is not in E2 U E3t i.e. RQ R. 

Permutation of Inferences. 

Theorem 3.161 is a permutation theorem in the sense that 

it states that certain clashes may be permuted toward the tips 

of a derivation. Theorem 3,5i and its corollary are permuta- 

tion theorems in the same sense. Corollary 3.5.2 implies that 

applications of paramodulation may be made to occur before 

applications of resolution in a p-refutation. Together 

394e2 and 3.5.2 imply that a p-refutation may be obtained 

either in the form where trivializatione of inequalities 

precede paramodulations which in turn precede other resolu- 

tions or in the form where paramodulations precede trivializa- 

tions which precede other resolutions. For a p--refutation 

in either of these forms we may insist that (r3) and. (r5) still 
hold ((r5) suitably modified as for the p-refutation corresponding 

to Corollary 3.42). Restriction (ri) must be weakened to 
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assert only that literals paramodulated upon are positive. 

Restrictions (r2) and (rr1+) need to be modified to assert 

that resolutions which do not trivialize inequalities can be 

applications of any fixed complete resolution rule (e.g. set 

of support, M-clash resolution, binary restricted clash 

resolution etc.). The ordering restriction of Corollary 

3.502 can be effectively :implemented by insisting that no 

resolvent be the parent of a paramodulant. On the other hand 

3.5.2 unlike 3.1+02 does not imply that the initial set S 
0 

can 

be effectively pr=eprocesseud by applying paramodulation to 

obtain an unsati.sfiable set S© . 

A theorem similar to 3.5.2 can be obtained by analyzing 

the abstract of the Robinson - Wos completeness proof for para- 

modulation., [ 37 ] and [ 56 ] It was in fact 

this observation itiich motivated the discovery of Theorem 3..5.1 

and its corollary. Unlike the case of obtaining the p-refuta- 

tions corresponding to 344-02 we do not have any intuition on 

the efficienoy of finding the p-refutations corresponding to 

3.5.2. 
. 

Given S = SO U S1 where SrI is a set of non-positive 

clauses, let be a clash derivation of a clause C from S 

such that every clash in (0 is an n-clash with nucleus in S 

and satellites not in S. Then C is said to be an S 

resolvent from a and the derivation ID is said to be 

associated with C. If 81 = E2 lJ 
E3 

and if 0, is a normal 

derivation associated with an 8 1'-resolvent C from SO2 then 
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$ ( ) is a p-derivation of C from SC containing no 

application of clash resolution. 

Theorem 3r5.1. Let S = S©U S1 be unsatisfiable where 

S1 is a set of non positive clauses. Then some finite set S* 

of S1-resolvents from SQ is unsatisfiable, 

Corollary 3 .5,,,2. Let S = SC U E2 U E3 be unsatisfiable. 

Then some finite set S* of clauses derivable by paramodulation 

with resolution from SC U E4 is unsatisfiable. 

Proof of 3.5.2. Let E2 U E3 be the S1 of 3.5.1 and let 

S* be the resulting finite unsatisfiable set of S1 resolvents 

from SC. As in the proof of 3.1+.2 we m a y choose a set 8 ' 

of ground instances of clauses in S such that each derivation 

C associated with c E S* is normal. By 3.3.3 each 4 ( C, 

is a p-derivation and since 0 C contains no clash with 

nacieus not in E2 U E3 (6) C) contains no application of 

clash resolution. 

The proof of Theorem 3.5.1 requires the f ollowing lemma, 

Lemma 3 s5.3. Let 6) be a hyper-resolution derivation 

of a positive ground clause C from ground clauses S U {D} 

where D is non-positive and occurs in 6) only at the nucleus 

node immediately above the root.. Suppose that (D contains 

no tautologies. Then there is a hyper resolution derivation 

)1 of a claus'; C' C C from clauses S U R where R is the 

sat of n-rrE:solvents of n -clashes with satellites in S and 

nucleus D. 0 e contains no tautologies. 
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P r o o f of , . . Let D = { L,.e.9I} U D 
1 

where D0 is positive and each I. is negative. Let C 

K1, ...,Km } and -7 C = { { K1 { , ..., { K} { 19 

Notice that J L. I K. for all i, j where 1 < i < n, 

1 < j < m , since the clash at the root of © is 

restricted. S U {D} U --T C is unsatisfiable because S U {D} 

implies C. By Lemma 2.10.1 (b), S U Rt U -rC is unsati s 

fiable where R' is the set of n--clash resolvents with nucleus 

D and satellites in S U -, Co But R' = R sinco no n-Yclash 

with nucleus D has a clause {Kj} as satellite. Therefore 

S U R U' C is unsatisfiable and S U R implies C. By 

Theorem 205.1, because C is positive, there exists a hyper- 

resolution derivation (D' from S U R of a clause C' which 

subsumes C, i.e. Ct C C. 6 contains no tautologies. 

Proof of .5.1. As in the proof of 3.4..1 it suffices to 

consider the case where S is a set of ground clauses. Let 

(T,c) be a hyper-resolution refutation of S containing no 

tautologies. The proof is by induction on the number n of 

clashes in (S) having a clause in S as nucleus o Recall that 

each nucleus node of 6) is a tip of To If n = 0 then 6) 

is a refutation of 30 and S0 is unsati sf iable o But S0 is 

trivially a seu' of S1 resolvents from S0. 

Suppose that n > 0 and that the theorem holds for any 
0 

hyper-re.:oo. ution refutation O' of a set S.' U Si whenever 

(' contains no tautologies and the number of occurrences 

of clauses in S1 at nucleus nodes is less than no Let N e T 
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be such that for all N' a TN, c (N') E SI if and only if 

N' is the nucleus node of s-1(N) 
o In other words choose N 

such that if () N= (TN,c) then a clause D E S1 occurs in 

'DN 
only at the nucleus node lying immediately above the 

root of DN. Then (D N, is a hyper-resolution derivation 
. 

from SD U {D} of a positive clause C = c(N) and 0 N 

contains no tautologies. It follows by Lemma 3Q5o3g that 

there exists a hyper resolution derivation 6C of a clause 

Cf C C from SD U It where RD is a set of {D} -resolvents 

from S0, i.e. RC is a set of S,-resolvents from S©. ®o 

contains no tautologies. 

Let 6J1 be the subderivation of ® obtained by ignoring 

all of 0 N, except for the root N of TN. Then (D , is a 

hyper-resolution refutation containing no tautologies of 
A 

the set (SC U S 
I 

) U C and 4) 1 contains fewer than n 

occurrences of clauses from S1 at its tips. Let d) 
2 

be 

obtained from 6)1 by applying this contraction theorem to 

associating with the node N in 63 1 the clause AN= C' C C 

and otherwise associating to every other tip Nt in 6) 1 the 

clause '1Na = c(N' )$ Then (D 2 is a oontraction of CDI and is 
. 

a hyper-resolution refutation of (SD U S 
I 

) U C' . 0 2 = 

(`1'2,02) contains no tautologies, fewer than n occurrences of 

clauses from S1 at its tips and one node N0, corresponding to 

N, such that c2(N0) = Cf. 

Let 1Q' be obtained by identifying the root of 40 with the 

tip N 0 
of 2. Then (D ' is a hyper-resolution refutation 
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of (S0 V S1) V RD containing no tautologies and fewer than n 

occurrences of clauses from S1 at its tips. By induction 

hypothesis there exists an unsatisfiable set R of S1 -resojnents 

from S0 U R0. But si.ice R0 is already a set of S1 -resolnents 

from S0, R is as well. 
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CH. . 

The first half of this chapter (sections 4.1 - 4.5) 

extends the Hart-Nils son-Raphael [16] and Pohl [32] theories 

of heuristic search to the case of theorem-proving graphs and 

theorem-proving problems. In particular the admissibility 

and optimality theorems of [16] are generalized for the 

classes 6) and 6) of diagonal search strategies for abstract 

theorem-proving problems. Both ordinary tree (or graph) 

searching problems [8] , [321 , and resolution problems 

are shown to be special cases of the more general notion of 

abstract theorem-proving problems with non-negative costs. 

In seetioi, 4.4 concrete algorithms are discussed for applying 

diagonal search strategies to theorem-proving by resclution. 

The last two sections of th?,s chapter contain an 

investigation of two complete factoring methods. The first 
method, when applied to hyper-resolution, amounts to never 

unifying negative literals. The second method, m-factoring, 

is shown to be always more efficient than the Wos-Robinson 

method. 

The material in sections 1+.1 - 1i..5j is nearly identical 

to that reported in [21] . The ecmpleteZess result of section 

4.6 was announced without proof in [1'7] for the special case 

of 1Wpar-resolution systems. 

.1 Theorem-Proving Graphs. 

In the theorem-proving problem we begin with an initial 
non-empty set of sentences So and with a set of inference rules f1 . 



If ¶ E r and S is a set of sentences then y(s) ss 

another set of sentences. Y (S) = 0 if tJ is not 

applicable to S. In particular t' (S) = 0 if S is not 

finite. In applications to systems, S0 is 

a set of clauses and f consists of a single resolution 

rule or of a factoring rule and a separate rule for 

resolving factors. If tP is binary resolution of 

factors then 1 (S) = S' A 0 if S contains two factors 

which resolve or ore factor which resolves with itself 

and each C' E S' is a resolvent of the clauses in S. 

If t is the operation of unifying literals in a single 

clause (the Wos-Robinson method of factoring [ 53 ] ) 

then if(S) =S' A 0 if S is a singleton S = {C} and 

each C' E S' is a factor of C. 

Given an initial set of sentences S0 and a set 

of inference rules r let S* be the set of all sentences 

which can be derived from S0 by iterated application 

of the rules in f1 . Each sentence C E S* can be assigned 

a level: if C E S0 then the level of C is zero,otherwise 

C E T (S) for some l? E 11 and for some S C S* and the 

level of C is one greater than the maximum of the levels 

of the sentences D E S. If S 
i 

is the set of all sentences 

of level i then S* = U S.. Since a sentence C E S* 

0<i 
may have several distinct derivations, the level of C 

need not be mr-que. Since q? (S) t 0 only if S is finite, 

the set of sentences which occur in a given derivation of 

a sentence C E S* is always finite. The theorem-proving 

problem for a triple (S0, r, F ) 9 F C S*, is 
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that of generating by means of a search strategy 2 some C* E F 

by iterated application of the rules in beginning with the 

sentences in SC For certain applications it may be required 

to derive a sentence C* E Y having minirium level in F or, more 

generally, having minimum cost in F, where cost is determined 

by some "costing function" defined on the sentences in S*. 

The tree (or graph) searching problem [8] , [32] can be 

interpreted as a theorem-proving problem (sop l` , F) where 

each operator cp r has the property that tp(S) 

whenever S is not a singleton. 

. triple (S0,r,F) determines a directed graph whose 

nodes are single sentences C E S*. C' is an immediate 

successor of C (i.e. C' is connected to C by an arc directed 

from C to C') if for some S C S* and t,) E 1' , Cc S and C' E (f (S) . 

The situation is similar to that which exists for ordinary graph 

searching problems as distinguished from tree searching 

problems. Searching in a directed graph for a, path from a 

node a to a node b can be interpreted as searching in a 

directed labelled tree for a path from a node N, with label 

c(N1) = a, to a node N2, with label c(N2) = b. The tree 

search interpretation of graph searching has the property of 

representing a single node d in a graph as distinct nodes 

N1 ,...,Nk in a tree when the node d can be generated in k 

different ways as the end node of k different paths from 

the initial node a. This property of the tree search 

representation is one which we find useful when extended to 

deal with the more general theorem-proving problem. In 
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particular the extended tree search representation associates 

distinct nodes with distinct derivations. This I - 1 

correspondence between nodes and derivations allows the number 

of nodes generated by a search strategy L in the course of 

obtaining a terminal node to be treated as a measure of the 

efficiency of 5 for the given problem. 

We define the notion of an abstract theorem-proving 

ga hh ("abstract graph" or simply "graph") (G,s). The 

extended tree representation of an interpreted theorem-proving 

a h (S0, 1') can be obtained from (Gs) by labelling the 

nodes N E G by use of a labelling function c:G - S*, and by 

interpreting each application of the function s to a subset 

GI C G as an application of a function E P to the subset 

{ c(N): N e G' { . An abstract theorem-proving graph is a 

pair (Gs) where G is a set of nodes, s:2G 2G is a 

successor function defined on subsets of G taking subsets 

of G as values. G and s satisfy the following conditions: 

(1) s(9)=0. 
(2) s(G') $ implies that Gt is finite. 

(3) G' 3- G" implies that s(Gt) n s(G11) _ 0 . 

(4.) Let 5---'0 ={N E G: N, s(G') for az;y G'C GI, 

let 
Ok+1 

= IN E G : N e s(GI) for some 

G' C i U 551 G'n k3 { 
Then 

(a) $0 / 0 1 

(b) G = U 'Gi 
0 <i (c)n =i for i / j. 
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The graph (GIs) reduces to an ordinary tree if s(G't) # 0 

implies that G' is a singleton. For this case condition (3) 

states that distinct nodes have distinct sets of successors. 

More generally, (3) states that distinct sets of nodes have 

distinct sets of successors. It is precisely this condition 

which ensures that the graphs (G,s) extend the ordinary tree 

representation of search spaces. Condition (5) states that 

(G,s) is a levelled acyclic directed graph. In other words 

each N e G can be assigned a unique level i where N e i 
and N X lz j for all j i. If (S0, P) is an interpretation 

of (GIs) with labelling function c : G S* then 

Si = { c(N) : N e { is just the set of labelled nodes of 

level i. Condition (3) guarantees that for each C e S* and 

for each distinct derivation of C from S0 there is a distinct 

node N e G such that C = c(N). There is no restriction that 

,50 or S0 be finite. The case where '0 is infinite allows 

us to deal with axiom schemes in theorem-proving and more 

generally with potentially infinite sets of initial nodes moo 

The successor function s of (G,s) determines a partial 

ordering of the nodes in G: NO is an imroc?late successor of 

N ( and N an immediate ancestor of N') if 
N' a s(GI) and N e G' for sone G' C G. 

A node NO is a successor of N (and. N an jncest of NO), 

written NO > N, 

if NO is an immediate successor of N or 

if NO is a successor of an immediate successor of N. 

we write N < NO if N < NO or N = NO. The definition of (GIs) 
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guarantees that for all N c G the sot { N' : N' >NJ is 

finite, although the set {N' : N' >N{ may be infinite. 

Notice that in the theorem-proving interpretation of graphs 

(G,s), a derivation of a sentence c(N) consists of all the 

sentences c(N') where N' < N. Each such derivation contains 

only finitely many sentences c(N'). 

level 0 N4 N 

level 1 

level 2 

level 3 

Fire I. 

Figure 1 illustrates a graph (G,s) where nodes are 

represented as points and where points N and N' are connected 

by a directed line from N to N' if N' is an immediate 

Successor of N. In general it is convenient to picture graphs 

as directed downward, so that N lies above Nt if N' is a 

successor of N. To determine in Figure I if N e s(GI) it 

suffices to verify that G' is the set of all nodes connected 

to N by an arc directed to N. Thus, for example, 

s(N1,N2) = { N6} 

s(N2,N6) = { N9 } , 

s(N3,N4) = { N7,N8 1 , 

s (N7) N10'Nll { 

s(N2) = s(N5) = s(N8) s(N1,N2,N6) = 0 

If the graph of Figure 1 is interpreted as a resolution 

graph by a labelling function c : G -+ S* then the two clauses 
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c(N7) and c(N8) must be all the resolvents of the pair 

c(N3), c(N4). The clause c(N8) resolves with none of the 

clauses c(Ni) , 1<i <])+. The clauses c(N10) and c(N,,i ) 

are either factors of c(N7) or are obtained from c(N7) by 

resolving c(N7) with itself. If C =c(N6) = c(N7) = c(N1,.) 

then C has three derivations, two of level one and one of 

level three. Derivations are not necessarily represented by 

derivation trees. For instance the derivation of c(N12) 

consists of the caluses c(Ni), c(N2), c(N3), c(N4), c(N6), c(N7), 

c(N9), c(N73), c(N13). The clause c(N2) is used twice in the 

derivation of c(N13) but is represented by only one node in G. 

An abstract theorem-proving problem with non-negative costs 

("abstract problem with costs" or simply "problem") is a tuple 

63 = (G,s, P',g) where PC G, the set of terminal nodes for P 

(or solution nodes), and g : G -+ 1, the costing function of P, 

( (P , the set of real numbers) are such that 

(1) N e P implies that s(G') whenever N e G' C G, 

(2) (a) g(N) > 0 for all N E G, 

(b) if N E s(N1,...,Nk) (vie write s(N1,...,Nk) 

instead of s( f N1 , ...Nk I ) ) then 

g(N) max g(Ni). 
1 < i < k 

A solution to the problem 6' is obtained by constructing an 

algorithm 7- which generates from S! 0 a node N e P. Each node 

N e P is assigned a cost and it is often required to solve by 

generating a node N e P having minimal cost in P. If g(N) = 0 

for all N E G then in effect we have a problem without costs. 
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Alternatively g(N) may be taken to be the level of N, the 

number of nodes N' < N or any other value which satisfies 

(3) above. In applications to resolution theory g(N) is 

usually taken to be the level of the clause c(N). For N E 50 
we do not require that g(N) = 0. This freedom allows us to 

assign different costs to distinct nodes in '0 and is 

especially useful when 0 is infinite. The set P may be 

empty in which case the problem has no solution. In resolution 

applications when F= {N E G : c(N) = 01 then P is empty if 
the set S0 = {c(N) : NE5 01 is satisfiable. The general 

problem P= (G, s, P ,g) reduces to the ordinary tree 

searching problem when (G,s) is a tree. 

4.2 Search Strategies for Abstract Theorem-Proving Problems. 

L. search strategy Y. for P is a function 1..: 2G 2G 

which generates subsets of G from other subsets of G. Given 

such a function Y for Q we define the sets Mi of nodes 
I 

already Generated by I before the i+1 .st stage and i of 

nodes which are candidates for generation by_,Z at the i+1-st stage: 

(1) 0 =0, . 0 = ten, 

(2) +1 ri U 

ri+1= ( { N : N e s(GS), G' C 

We require that 3 satisfy 

(3) (i) c Li 

V Zz) - 7*.+1 

The set of nodes L), chosen from the set of candit-lates 

is the set of nodes new3,v generated by £ at the i+1-st stage 

(it is easy to verify that i Gli = 0 for all i.>0). 
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The function 7 should be interpreted as selecting subsets G' 

of Ii and generating nodes N e s(G') which have not been 

previously generated. The definitions above only partially 

formalize the intuitive notion of search strategy for P. 

In particular the search strategies .. are never allowed to 

display ar{y redundancy, i.e. generate the same node twice, 

This restriction is not essential because given any concrete, 

porsibly re(lundant, algorithm for generating nodes in G there 

corresponds a unique search strategy Z, which, except for 

redundancies, generates the same nodes in the same order. 

Notice that (c) may contain more than one node - as 

is common with resolution strategies which simultaneously 

generate several resolvents of a single clash or several 

factors of a single clause. Notice too that nodes in 1'0 

can be generated at axwy stage. We do not require that 

contain a node N E P` where in P 0 . If U" is an ordinary 

tree search problem then the definition of search strategy for 

2 provides a formal notion which applies to the usual strategies 

employed in searching for nodes in trees. 

A search strategy 7_ for 9= (G,s, P,g) is complete for 

if for all N e G there exists an i > 0 such that N e Z. 
It is possible to define completeness in this vay since we do not 

insist that Z generates no additional nodes after generating 

a first node N* a P, We say that terr:inAos at stage i 
if and either 

(1) P" n Ei or 

(2) 2 i Zi-1 



-- 175 - 
In the first case , terminates with a solution and without 

a solution in the second case. 

In the terminology of [ 16 ], a search strategy L. is 

said to be admissible for 5) if L is complete fore and 

terminates vith a solution having least cost in if / 0 , 

i.e. N* a P-(1 Ii, P''n L`ir1 = 0 implies that g(N*) c g(N) 

for all N e 9 P. In resolution applications admissible search 

strategies are of special interest for robot control and 

automatic program writing[ 13 1, where minimal cost solutions 

are related to simplest strategies and most efficient programs. 

More generally intuition suggests that, in the absence of 

special information about the location of non-minimal 

solutions, admissible search strategies will tend to be more 

efficient than non-admissible strategies for finding arbitrary 

solutions. An important step towards formalizing this intuition 

has already been made ir. the optimality theorems of Hart, Nilsson, 

and Raphael [ 16 } 

We 'define the notion of a search strategy ' for a 

problem = being compatible with a merit ordering 

4 defined on the nodes of G. For the moment we require only 

that be reflexive and defined for all pairs of nodes in G. 

We write N 4 NG (N1 has better merit than N2) when N1 4 N2 

and not N2 4 N1 We write N N2 (N1 and N2 have egua.,.l merit) 

if N, N2 and N2 4 N1. A search strategy for P is compatible 

with a merit ordering 4 if for all i > 0 , 

(i) '- i 0 implies that (, ) A , 

(2) N E Z( 2) implies that N N' for all N' s 2i. 
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In other swords, r alwaya generates, from a non-empty set ,V, 

at least one node N e Z i and no node N' e Zi which is not 

generated by 7- has better merit than any nodo N 
e Ei which 

is generated by 7,,. Since a node N may have better merit 

than an ancestor Nt < N, Z.. need not generate nodes in order 

of merit. Distinct strategies Z and Z! for the same 6) 

compatible with the same merit ordering A differ only with 

regard to tie breaking rules for choosing which nodes to 

generate from a set of candidates having equal merit. If 4 
is the trivial ordering, N A N' for all N. N' e G, then 4 is 

merit ordering for G and arty search strategy- , for 

is compatible with . If < is the ordering by levels, 

N 4 N' if and only if N E 5i, NEV tand i < i', then 

a* search strategy for P compatible with A is a level 

saturation (or breadth first) strategy for 6) . If 4 is 

the ordering by costs, N 4 N' if and only if g(To C g(N'CC), 

then Z compatible with 4 is a cost saturation strategy for iP . 

If A is the inverse ordering by levels, N A PT' if and only if 
N Weand i > it, then I compatible with 4 is a 

depth first strategy for 6). 

Lemma 4.2.1 states the fundamental properties of search 

strategies 2: compatible with merit orderings: (a) any node 

N2 e G is generated by L. before any node NI which has worse 

merit than N2 and than all the ancestors of N2, (b) if N1 is 

generated before N2 then N2 or some ancestor of N2 has wore e or 

equal, merit to N1 . 

13%ls revnark 

c.C b realk n 
d iFFctreht 

is no+ S'Erlc11' rower 3 5 194 ce -f4Q cotisc Q"CQ>S 

Q tie di fererttl Mqy die kkz VneraLto%A of 
etv4eec. Su-c..ess ors of. +ile artoit.1q(I) 4--ted nodes, 



Lemma 4.2.1. Let P = (G, s, ", g) be a problem,, 
~4 

a merit ordering for G and , a search strategy for 

compatible with - . 

(a) If N1 E Ei and N2 E G are such that N N1 

for all N < N2 then N2 E i-1 . 

(b) If N1 E i and N2 E 2 ('Ei) then N1 N 

for some N < N2. 

Proof. (a) Let N1 be generated at the j + 1 - st 

stage, i.e. N1 E (Z'j), N1 I ZE j Cnd j < i. If 
N2 then for some N < N2, N j j and N Ej 
But N -< N1 and therefore , is not compatible with 4 
since it generates N1 instead of N at the j + 1 - st 

stage. Therefore N2 E `j and N2 E , i-1 since j < i. 
(b) Suppose N N1 for all N < N2. Then by (a), 

N2 E Yi-1 and therefore N2 j (Li)- 
A merit ordering for G is 8-finite if for 

all N E G the set {N' E G : N' N} is finite (compare [16]). 

The importance of 8-finite merit orderings is a 

,consequence of Theorem 4.2.2.: any search strategy 

compatible with a 5-finite merit ordering is complete. 

Any merit ordering for a finite set G is i-finite. 
Ordering by levels is £-finite if r"-'' is finite and s(GI) 

is finite for all G' C G, under the same conditions 

inverse ordering by levels is not 6-finite if G is 

infinite (by K6nig's Lemma). 



Theorem 4.2.2. If ( = (G,s,1,g) is a problem, 

,.,N a S-finite merit ordering for G and a search ,I 

strategy for compatible with ; , then is complete 

for R . 

Proof. Let N* E G be given. We need to show 

that N* E ."i for some j > 0. If G is finite then 

G = U :-5' . since i 0 implies that 9( 
j) 0 i>0 i 

and since 2(i) (1 i O. Otherwise if G is 

infinite let N' < N* be a node such that N A -,N' for 

all N < N*. Since -. is S -finite, since 
i 0 

implies that and since(i) C i 
it follows for some j > 0 and for some N1 E 

Nt.< N1, and therefore N 
cN1 

for all N < N* and by 

Lemma 4.2.1 (a), N* E j . 

4.3 Heuristic Functions aad Diagonal Search. 

There is special interest in merit orderings 

which can be expressed in terms of the cost function 

g of ' _ (G,s, P,g) and of an additional heuristic 

function h No [301, [331. A heuristic function h for b? 

is a function h:G -, IR such that h(N) > 0, for all N E G. 

Let f(N) = giN) + h(N) for all N E G. The intended 

interpretation of the heuristic function h is that 

f(N) = g(N) + h(N) is an estimate of the cost g(N*) of 

a terminal node N* E P , such that N < N*, i.e. h(N) is 

an estimate of g(N*) - g(N). If it is desired that L be 
admissible then h(N) is intended to estimate the minimum 

value of g(N*) - g(N) for N* E P such that N < N*. 

Suppose, for example, that we know of a given problem 
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00 = G0'a0y 0,g0) that if it has a solution then its 
minimum cost is k. Suppose for simplicity that no N e G has 

cost g0 (N) greater than k. Given only this information then 

an appropr,ate definition of a heuristic function h0 for 

is h0 (N) = k g0 (N) for all N E G 

Suppose that a given problem = (Gi , s1,, g1) is 

interpreted as a resolution problem by a labelling function 

c : G1 -, S*. Suppose that the inference rules r consist of 

P. factoring operation for unifying two literals in a clause 

and of a separate resolution rule for resolving at most two 

factors. Let g1(N) be the level of N and 
r1 

= { N : c(N) = 1. 

Fo 1 N e G. let 1(c(N)) be the length of c(N) (number of 

literals in c(N)) The heuristic function h1 for ( is 

defined by the letting h1 (N) be the expected length of c(N) 

(1) for N e 5 ,, h1(N) = l (c(N) ), 

(2) for c(N) a resolvent of c(N1) and c(N2) 

h1(N) = 1(e(N1)) + 1(c(N2)) - 2, 

(3) for c(N) a factor of c(N') (the result of 

unifying two literals in c(N')) 

h(N) =. l(c(N')) - 1. 

To the extent that merging does not occur (i.e. so long as 

h1(N) = 1(c(N) ), h1(N) is a lower bound on the value of 

91 (N*) .. 
g1 (N) for c(N*) = 0 wheii c(N) occurs in a derivation 

of 0 Notice that since r contains a factoring operation, 

this operation is explicitly exhibited in dorivo.tions, contrary 

to the conventions employed in chapters 1 - 3. 



The costing function g and heuristic function h 

allow us to define two important classes of search strategies 

for . Given Q= (G,s, R ,g) and h a heuristic function 

for Ur Let the merit orderings { d and for G be defined 
d 

for all N1 N2 e G, by 

(1) N1 r6d N2 if and only if f(N2) < f(N2 ), 

(2) N1 N2 if and only if f(N1) < f(N2) and 
d 

h(N1)<h(N2) when f(N,1) = f(N2). 

A search strategy Y for P is a diagonal search strategy for P 

and h (written Z E @ (tP,h)) if and only if ,is compatible 

with the merit ordering d is an upw ds diagonal 

search strategy for 6) and h ( E j'((P,h)) if and only if 
Z is compatible with the merit ordering u. Notice that 

d 

3u(h)c®(6)h) and that Zu(P,h) _ . (f ,h) if h(N) = 0 

for all NE G. 

Except for minor d.ifferances, the search strategies 

e (6 h) coincide with those investigated in [ 16 ] for 

the case of ordinary tree search. The search strategies 

E ®u(,h) differ from those in O (P,h) by generating, 

from among candi&.te nodes which have equal merit for d 

those nodes whose cost is estimated to be closest to the 

cost of a solution node. In the case of the problem and 

heuristic function h0 , defined above, f0 (N) = g0 (N) + h0 (N) 

= k for all N e G . All nodes in G have equal merit for 

search strategies .`c" E (D(6, h0) . For E (0u(,h0 
nodes which have cost closer to k have better merit than 



- f81 

nodes which have smaller cost. In case g0 (N) is the level 

of N for all N E G then Z e Q is a depth-first search 

strategy, which intuitively seems the most efficient search 

strategy for (P , given only the information that a minimal 

solution of must have level k. Concrete search algorithms 

for 57 E iZ u(P1,h1) are discussed in the next section. 

The terminology, diagonal and upwards diagonal search, 

is suggested by representing nodes N E G as occupying 

positions in the plane with co-ordinates (h(N),g(N)), where h 

increases rightwards away from the origin and g increases 

downwards away from the origin (see Figure 2). ,L.,e) ((;',h) 

attempts to generate nodes on consecutive diagonals in order 

of increasing distance from the origin (0,0). In addition if 

z E 0 u( ,h) then attempts to generate nodes, lying on 

a given diagonal d, upwards in order of increasing h. I 
-f d or ,,,,u are $-finite then each diagonal contains only 

d 
finitely many nodes N E G and for every diagonal d there 

are only finitely rnar.j diagonals which contain nodes N E G 

and which are closer than d to (0,0). 

(0,0) 

h 

g Figure 2. 



Figure 3 illustrates Lemma .2.1 and Theorem 1..2.2 . 

for a problem $ and for a search strategy 5 e Ou(11,h) 

where u is assumed to be 6-finite. The node N* E F` has 
4-1 

d 
minimum cost in P and N' < N* is a node having worst merit 

in the set consisting of N* and all ancestors of N*. The 

node N C G has better merit than N* and N if < N has worst 

merit in the set consisting of N and all ancestors of N. 

Dots represent nodes, lying on diagonals, generated by S 
before the generation of N*. The small circles represent nodes 

generated by after the generation of N** The diagonal d 

contains the node W. By Lemma 1+.2.1 Z generates N* before 

generating nodes having worse merit than N', i.e. before 

generating nodes lying above N' on d and before generating 

nodes lying on diagonals to the right of d. 

d 

N* 

N** 

g 
Figure . 

The heuristic function h satisfies no conditions other 

than h(N*) = h(N**) = 0 and those imposed by the t-fi.niteness 
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of ., e . may fail to be admissible because some N** e P 

having; worse merit than N* will be generated before N* if N** 

and all ancestors of N** have better merit than Nr. The node 

N E G will not be generated before N* if N" lies to the 

right of d or above N' on d. 

1#.4 Upwards Diagonal Search Strategies for Resolun. 

The algorithm Z,* defined below approximates an 

upwards diagonal search strategy for the resolution problem 

(5) 
1 

and heuristic function h1 . The same algorithm L * 

when applied to the resolution problem 
2 

and heuristic 

function h2 defined below is a pure upwards diagonal search 

strategy for 62 
and h2. The admissibility and optimality 

theorems of the next section apply to TY* for 62 
and h2 

and to for (91 and hl , except when merging occurs 

in . A search strategy which differs inessentially 

from Z* has been implemented in P0P2 by Miss Isobel Smith 

for a problem and heuristic function similar to P1 and h1. 

The definition and identification of the problem 2 

was motivated by a suggestion of Mr. Donald Kuehner. 

6 
2 = (G 2' s2' P2 g2) differs from (P 1 by interpreting 

clauses c(N) as lists of literals and by exDlicitly exhibiting 

and assigning cost to the operation (treated as a special 

case of factoring) of identifying two copies of the same 

literal within a clause. The length l(c(N)) of c(N) is 

defined as the cumber of literrals in the clause c(N), counting 

duplications. 
92 (N) 

and h2(N) are still defined respectively 



as the level of N and expected length of c(N). 

h2(N) = 1(c(N)) for all N E G2 and h2(N) is always a lower 

bound on the value of g2(N*) - 
92 

(N) when N < N* and 

N*E 92 = 1N EG2 : c(N2) =G}. 
Throughout the remainder of this section, 9= (G,s, P,g) 

and h are either 6 
1 

and h1 or 
`P2 

and h2. The definition 

of Z* for 9 and h is the same for both of these cases 

except for the details remarked upon at the end of this section. 

Clauses c(N) are stored upon the generation of N in 

cells A(i,j) of a two-dimensional array a. c(N) is stored 

in A(i,j) if 1(c(N)) = i and g(N) = J. Although it is 

natural to represent cells A(i,j) as lists of clauses, we 

write c(N) E A(i, j) if c(N) is stored in !1(i, j) when N is 

generated. The merit of a node N E G is defined to be the 

cell A(h(N),g(N)). The cell A(i,j) is said to be better 

than A(i',j') (written ..(i,j) A(i',j')) if 
(1) i + j < it + jt or 

(2) i + j = it + j' and i < it. 
Thus a node N E G has better upwards diagonal merit thannaa 

node N' E G if and only if the merit of N is better than 

the merit of N' , equivalently N -< u N' It if and only if 
a 

A(h(N),g(N))) A(h(N),g(N')). Notice that for 6) 2 and 

h2, N E G2 has merit A(i,j) if and only if c(N) E A(i,j). 

For OY 
1 

and h1, if N E G1 has merit A(i,j) then 

c(N) E A(i',j) where it = 1(c(N)) < h(N) = i. ,*, on the 

whole, attempts to generate nodes of merit..(i,j) before 

attempting to generate nodes of worse merit A(it,jt) ?` A(i,j). 
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A node of merit A(i,j) is generated either 

(0) by inserting into.L(ip0), when jam, a clause 

c (N) where 1 (c (N)) = i and g(N) = 0, 

(1) by unifying two literals within a clause 

c(N) E A(i+1, j-1) or 

(2) by resolving a factor c(N1) E .A41 , j1) with 

a factor c(N2) E A(i2,j2) where N1 may be 

identical to N2 and where 

i = i1 + i2- 2 and 

j = max (j1sj2)+ 1. 

+ employs two subalgorithms for generating nodes 

N E G. The principal subalgorithn Fill(i,j), generates in all 

possible ways, from nodes already generated, nodes N of merit 

A(i,j) which have worse merit than all their ancestors. 

Fill (i,j) terminates wh.:?n all such nodes have been generated. 

Fill (',j'), where A(i',j') is the next cell after A(i,j), 

begins when Fill (i,j) terminates. 57 begins by invoking 

Fill (0"0) 

Whenever a node N0 is generated by Fill (i,j) the 

second subalgorithm Recurse(0(N0)) .interrupts Fill (i,j) 

and generates in all possible ways, from nodes already 

generated, nodes N1 which are immediate successors of N0 and 

which are of merit A(i1, j1) better than A(i, j). In general 

whenever a node N is generated, either directly by Fill (i,j) 
or by some call of Recurse (c(N')) which is local to Fill (i,j), 

Recurse (c(N)) generates, from nodes already generated, immediate 

successors of N which arQ_ of better merit than A(i,j). Notice 



that if N is generated by Recurse (c(Nt) during Fill (i,j) 

then N has better merit than some ancestor of merit A(i, j). 
Notice too that the depth of recursion involved in Recurse 

(c(N')) is bounded by the sum i+j. 

Remarks. 

(1) If 6) and h are 6) 
2 
and h2 and if c(N0) is 

generated directly by Fill (i,j) then c(N0) E A(i,j) and 

the only immediate successors of N0 which are of better 

merit than A(i,j) are nodes N1 e A(i-1,j+1). Arty such 

N1 generated by Recurse (c(N0)) is obtained either by 

factoring c(N0) or by resolving c(N0) with a unit clause 

c(N) of level g(N) < j. More generally if N0 is generated 

by Recurse during Fill (i,j) and if c(N0) 
E A(i0, j0) then it 

is easy to verify that i0+ i 
0 

= i + j and therefore any 

immediate successor N1 of better merit than A(i,j) is of 

merit A(i0- 1,j0+ 1). 

(2) If 9 and h are and h1 then * may 

fail to do upwards diagonal search because of merging, 

i.e. nodes may be generated by Recurse which have worse 

merit than other candidates for generation. Suppose that 

N0 is generated by Fill (i,j) and that c(N0) E A(i',j) 

where it < i. Suppose that N1 and N2 of merit A(it -1, j+1) 

are generated by Recurse (c(N0), N1 before N2. Suppose that 

N3 of merit Alit -1 , j+2) -i A(i, j) is generated by Recurse 

(c(N1))G Then N2 has better merit than N3 but N3 is 

generated before N2 since Recurse (c(N1)) must terminate 

before Recurse (c(N0)) generates N2. 
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(3) For both P 1 , h1 and 6)2, h2, Z * has the 

desirable property of attempting to resolve every unit clause 

c(N0) with all previously generated units c(N1) as soon as 

c(N0) is generated. If N0 is generated.furing Fill (i,j) 

and if c(N0) E &(1, jd) and c(N1) E 11(1, j1) then X1(0, max 

(jo, j1)+ 1) .< ..(i, j) and. an attempt will be made to resolve 

c(N0) with c(N1) during Recurse (c(N0)) 

(4) Suppose that Fill (i,j) has just begun, then 

* has not yet generated any nodes of merit worse than 

L(i, j). Thus a.f N has merit A(i, j) then either j = 0 

and g(N) = 0 or c(N) is a resolvent of factors c(N1) and 

c(N2) and both N1 and N2 are of merit better than A(i,j). 

In order to generate all such nodes N i,-t sufficas to attempt 

to resolve all clauses e(N1) with clauses c(N2) where 

C1 F li,(lgk), C2, E 11(i-1+2, j-1) 

for 0 < k < j-1 and 

1 if i is even or 9 < 12 

1 < 1 <+ 1° if i is o,d. 

(5) The details for generating noCos during Pecurse 

(c(N)) have already been discIssed for 
X32 

and h2 in remark '(I). 

For 61 
1 

and h1 these details are more complicated. Suppose 

that N has been generated during Fill (i*, j*) end. that 

c(N) E L(i, j) . The following pro ;edure will generate 

without rodunjaney, from codes generated before N, immediate 

successors of it which are of better merit than 1i(i', j*) : 
(a) First resolve c(N) with clauses in A(it, jt) where 

j-1 < j'<i*+j*.-LT2,in order of decreasing j', and 

for given J1, where 1 <f < i*+ j'1fi°- j t =-:L+1 in arbitrary 
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order but preferably in order of increasing it. 
(b) Next generate factors of c(N) by attempting 

to unify, in all possible ways, two literals 

in c(N). 

(c) Finally resolve c(N) with clauses in A(i',j') 
where 

1 < i' < i" + j* - i - j + I 

0 < j' S j in arbitrary order but 

preferably in order of increasing it. 
W Let ' 3 = (G1 ,s1, P1 ,g3)wher-e g3 is defined as 

g1 except for nodes N such that c(N) is an immediate 

factor of a clause c(N') in which case g3(N) = g3(N') . In 

other words & 3 is identical to 61 except that cost is not 

assigned to the factoring operation. h3(I1) is still defined 

as the expected length of c(N). 

With only minor modifications * can be applied to 

3. The details differ little from those already discussed 

for applying I * to 91 . 

L.5 Admissibility and Optimality of (D and 6) u. 

Let 
''2 

= (G,s, P ,g) be an abstract theorem-proving 

problem. For N E G let 

H(N) = {g(N*) - g(N) : N* E P , N< N*) , 

h* (N) = inf )H(N) when H(N) 0 , 
h*(N) = 00 when H(N) = 0 , 

Then when N < Ne, for some N*E P', h*(N) is the greatest lower 

bound on the additional cost over g(N) of g(N*). The heuristic 
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function h is intended to be an estimate of h*. The only 

property of 00 needed below is that k < 00 for all real 

numbers k. Since we do not allow h(N) = 00, it is often 

impossible to construct a heuristic function h which gives 

a perfect estimate of h*. In particular it is impossible 

to incorporate into a definition of h any information that 

a node N is not an ancestor a node N* E `` . However such 

heuristic information can be applied to a problem 9 by 

defining a new problem 0 ' which differs from (9 by containing 

no such nodes N. Alternatively it is possible to allow 

h(N) = 00 in which case several complexities need to be 

introduced in preceding definitions (e.g. in the definition 

of 9-finiteness). 

A heuristic function h for satisfies the lower 

bound condition for 9 if 
h(N) < h*(N) for all N E G 

i.e. if h(N) < g(N*) - g(N) whenever N* E ( and 

N < N*. Thus the lower bound condition 

constrains in effect only the value of h(N) when N is an 

ancestor of some solution node. Recall that h2 satisfies 

the lower bound condition for 9 2 while hI does the same for 

I except for merging. 

Lemma 1+.5.1 states certain fundamental properties of 

heuristic functions h satisfying the lower bound condition: 

(a) h(N*) = 0 for N* E P , (b) no ancestor of a solution 

node N* E ` has worse diagonal merit than IT",', (c) there 

exists a solution node N* E F' having minimum cost in ( if 
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diagonal merit is d-finite.' 
Lemma 4.5.1 Let 6 > = (G,s, P,g) be an abstract 

.theorem-proving problem and let the heuristic function h 

for l " satisfy the lower bound condition. 

(a) If N* E P' then h(N*) = h*(N*) = 0 and 

therefore f(N*) = g(N*). 

(b) If N* E ' and N < N* then f(N) < f(N*). 

(c) If 4 d is 6-finite then for some N* E P 

g(N*) < g(N) for all N E V" , provided F' 0. 

Proof. (a) is obvious, since H(N*) = {0} and h*(N*) = 0. 

(b) If N* e P and N <.N* then h(N) < g(N*) - g(N). But then 

f(N) = g(N) +h(N) < g(N*) = f(N*) . 

(c) If A d is 6-finite then for all N E G, the set 

{N' I f(Nt) < f(N), N' E G} is finite. In particular for 

N E P the set {N' I g(N') < g(N), N' E ` } is finite and 

therefore contains an element N* such that g(N*) is minimal. 

But then g(N*) < g(N') for all N' E F. 
Theorem 4.5.2. If d is ,s-finite for = (G,a,F,g) 

and if h satisfies the lower bound condition for 63 then 

e W (G,h) is admissible for ,V-c 
. 

Proof. Assume that P . Let N* E P be such 

that g(N*) < g(N) for all N E f (such an N* E f exists 

by Lemma 4.5.1 (c)). By Theorem 4.2.2. L is complete 

and therefore there is a stage isuch that for some N, 

N E l 11 L i and fi f1i-1 = 
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Suppose that F- is not admissible for 9 . Then g(N*) < g(N). 

But, by Lemma 4-5 -1 for all N' < N*, f(N') < f(N*) = g(N*) < f(N). 

So f(N') < f(N) for all N' < N*. But t hen N' N for all Nt < N*. 

By Lemma 4..5.1 (a), N* e i-1 
and therefore (1 Li-1 0 , 

contrary to assumption. 

Theorem 4..5.2 specializes to a generalisation of Theorem 1 

in [ 16 ]when s(G') = 0 for all GI C G which are not 

singletons. In particular it is not necessary to require that 

0 be finite or that g(N) be strictly greater than g(N') 

whenever N'<- N. Since the specialization yields a tree 

representation of graph search, it is unnecessary to distinguish 

between the cost g(N) and the total cost along some minimal 

path to N. 

Figure if illustrates Lemma 4..5.1 and Theorem 4..5.2. 

l , Z , N*, N' t N and N" are as in Figure 3, but h 

satisfies the lower bound condition. By Lemma 4.5.1, N' lies 

on the same diagonal d as does N*. F is admissible since arty 

N** E F" having worse merit than N* lies on a diagonal to 

the right of d and is not generated before N*. It is still 
possible for a node N e G to have better merit than N* and 

not be generated before N* because N" has worse merit than Nt. 

(0,0) d 

h 

N* 

g Figure 
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To prove the appropriate extension of the Hart Nilsson- 

Raphael Theorem on the optam .lity of Z e (u, we need to 

formulate an assumption equivalent to their "consistency 

assumption". The reader familiar with [ 16 ] will easily 

convince himself that the following condition is equivalent 

to the consistency assumption. We say that the evaluation 

function f satisfies the montonici condition if 
f(N') < f(N) for N4 < N and 

f(N*) = g(N*) for N' E P. 

(The first condition is equivalent to 

h(N) > h(N') + (g(N') - g(N)) for N' < N). 

Notice that for 92 the evaluation function f2= g2+ h2 

satisfies the monotonicity condition whereas for) 1 the 

function f1= gl + hl is monotonic except for merging. 

Figure 5 Illustrates upwards diagonal search when the 

funcion f satisfies the monotonicity conditions 

, Z, N*, N', N &nd N'' are as in Figures 3 and 1+. 

By Lemma 1+.5.3, h satisfies the lower bound condition and 

therefore L is admissible and N' lies on the same diagonal 

as N*. The monotonicity condition implies that if N has 

better diagonal merit than N,* then all ancestors of N 

have better merit than N* and therefore, by Lemma 4.2.1, IT 

is generated before, N* e 
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(o,o) a 

h 

N* 

g Figure . 

Lemma 4.5.30 ?,et P = (G,s, P' ,g) be an abstract 

theorem-proving problem, let h be a heuristic function 

for 6) and, let f satisfy the monotonicity condition, 

where f(N) = g(N) + h(N), N E G. Then 

(a) h satisfies the lower bound condition, 

(b) If 
. E 4 (Q,h), N1 E and N2 E (i) then 

f(N1 < f(N2). 

Proof. (a) h satisfies the lo,ror bound condition if 
h(N) < g(N*) .. g(N) whenever N* E P and N < N*. 

But the monotonicity of f implies that 

f(N) = g(N) + h(N) < f(N*) = g(N*). 

So h(N) < g(N*) - g(N). 

(b) Suppose the contrary, namely that 

N1 E 7i _. N2 E 2 . (Z i) and f (N,) >f(2) . 
But then, since f(NT) < f(N) < f(N1) for all N' < N2, 

it follows that N'-', N1 for all NT < N2. By Lemma 4.2.1 (a), 

N2 E 7 -1, contradicting the assumption that N2 E Z (Zi) 
For the case of ordinary graphs, the optimality theorem 

(Theorem 2) of [16] compares, in effect, search strategies 

£ e O(tP r h) with strategies 
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' E Q) (6D,ht) where ht (N) G h(N) for all N e G and where 

f = g + h is monotonic. ( In [16] the search strategy F' is 

assumed only to be no better informed" than E - we interpret 

this to mean that h' (N) < h(N) and E IP ,h').) If 
and are the first sets which cohtain nodes N* E 

then i C :E! it U G' where G' is the set of nodes N e S 

which have diagonal merit equal to N* E "E i n P', i.e. b ore 

termination y ' generates all the nodes generated by 

except possibly for unlucky choices by of nodes tied for 

merit with the solution node N* E 5 i. Theorem 4.5.4 

below generalizes Theorem 2 of [ 16] and implies in addition 

that 5 u is an optimal subclass of 

It should be noted that the monotonicity condition on f in 

Theorem 4.5.4 can be replaced by the lower bound condition on 

h with the result that ' may now fail to generate nodes 

in the larger set G' of nodes N E i where some N' 
has diagonal merit tied w ith the solution node N* E i 
A special case of this modification of Theorem 4.5,,4 is 

illustrated by the example of Figure 6, following the proof 

of Theorem 4.5.4 

Theorem 40=4. 

Let _ (G,s, P,g) and let h and h' be heuristic 

functions for 6) such that 

ht(N) 5 h(N) for all N e G. 

Let f(N) = g(N) + h(N) and ft (N) = g(N) + h' (N). 

Suppose that f is monotonic. Given E (W(6,h) and 

M' E {= ((,h' ), suppose that 
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N1 E /1:E i, Pn i-1 = 0 , 

N2 E Pn ' i f and t n 

Then 'i C £ i t U G* where 

G* { N : N E,-i and for some N' < N1, 

f(N) = f(N') = f(N1) and h(N) < h(N') 

Proof . £ r satisfies the lower bound condition since 

h' (N) < h(N) for aj.1 N E G and sinco , satisfies the 

lower bound condition. Therefore both and ' are 

admissible and g(N1) = g(N2), f(N1) = f(N2). Suppose 

that N E X i and that N J Ft it . It suffices to show 

that N E G*. 

By Lemma 1..2.1 (b), N E Z i implies that N 4 uNt for some 
a 

Nt < N1. But by Lemma 4.5.3 (b), since f is monotonic 

f(N) < f(N1), 

f(N')<f(N1), 

f(N?') <f(N) for all N't < N. 

But ht(Nt') < h(N't) implies 

ft(Nr t) < f(N't). S,o 

ft(Nt') < f(N) for all N't< N. 

Also N Eli, and if2 E ' j, imply by Lemma 4.2.1 (a) that 

for some N't < N, Ntt '>d N2, i.e. 

N :i< UN' implies 
d 

fI"N'') > ft(N2) = f(N1). So 

f(N) > f(N1) and 

f(N) = f(N1). 

f(N) <f(N') < f(N1). So 

f(N) = f(Nt) = f(N1) and 

h(N) < h(Nt), i.e. 

N E G*. 
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Figure 6 compares nodes generated, before the generation 

of a given N* E F , by different search strategies 

2 E t,) ((9,hi) for a fixed problem 6 = (G,s, g) and 

for different heuristic functions hi. h1(N) is assumed to be 

a greatest lower bound on the value of h *(N) when N < N*, 

where N* has least cost in . Nodes N E G are represented 

as points with co-ordinates (h1(N), g(N)). The node N; has 

worst upwards diagonal merit in the seja consisting of N* and 

the ancestors of N*. The functions hi are defined by 

hi(N) = i.h1(N) for all NE G, 0 < i E r1 k. 

(0,0) dI d d d 
7 -4 

For 0 < i < 1 hi satisfies the lower bound 

condition for ? and ! i is admissible for t? . a i need 

not be admissible for when i> 1 . The area to the left 
of the line di contains nodes generated by 2.i before the 

generation of N*. For 0 < i G 1, i generates all the 

nodes generated by 1 . Fox i > 1 , generates all the 

nodes left of di which have been generated by 
1 

0 No 2, is 
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more efficient than F 1 
if i < 1. Some Z i may generate 

fewer nodes than 1 
if i > 1, but this possibility becomes 

more remote as i increases. However even for large i, 

Z1i 
may be more efficient than , for generating solution 

nodes of arbitrary cost. A more thorough analysis of 

relationships similar to those discussed here has been made 

by Ira Pohl in [ 321 and [ 331 . 

t+.6 Resolution of Marked Factors with ;-Factor as Nucleus. 

For resolution systems which employ separate rules 

for factoring and for resolving clashes of factors, 

Theorem 1+.6.2 implies the refutation completeness of 

generating only i-factors of nucleus clauses. This 

oompleteness, which is subject to certain restrictions on 

the given resolution rule, applies to AM-resolution and to 

hyper-resolution in particular. For the case of systems 

which employ marked factoring and p1-resolution of 

marked factors, 4.6.2 implies that non-positive clauses need 

never be factored. As reported in [17] , this restriction 

can be combined with the method of section 20 for obtaining 

unique decompositions of hyper-resolution clashes. A theorem 

related to 1+.6.2 was reported by Raphael in [36]. 

Lemma 1j.6.1 . Let C = { A1, ...,&naB } 
be a 

clash with resolvent C . Then there exists a clash of 

marked factors Cc {A'11,...,A'1m1,...&'n1$...,At , B'1 
n 

with rosolvent C? such that 

(a) B' is an i-factor of B, 
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(b) Arij is a variant of a satellite factor of Ai, 

1 < j < mi' 
(a) C is an instance of C'. 

(d) e is restricted if C is. 
Proof. By 1.6.1 there exist marked factors 

e i is an 

Bt t = {K1, ,Kn} U Bart of B and 

At = {Li} U At 0i of 11i such that 

C (A®1' U ... U AQn' U B0'r) ®1 where 

m.g.s.uu of 

e1 = { {L1,K1 } ,..., {Ln,f111} 

B"= B e 2 where e2 is an m.g.se u * of 

2 
= { F1 , ...,Fn} B = F1 U ... U Fn U B® 

and. U (F1 U ... U F) is the set of 

distinguished literals resolved upon in B. 

'For 1 < i n let 

Fi = {Ki1,...,Kim i } and let B' be the 

i-factor of B with distinguished literals U (F1 U . . U Fn) 

Let A j = { Lij} U A'aij be a variant of Ait 

such that Ail = A! and such that C' above is standardized. 
1 

Let 
9 

be a substitution such that 

At j I = Ail = Ai for all i, j, 1 < i < n, 

1 < j < zni 

Let 3 = { L11'111} ,..., {Lipfij} ,..., 
{LM 'Kim }}. 

n n 

Then 

Therefore r( 
e2 

e1 
unifies C3 . Let 

e3 
Le an m.g.s. u 

of F-3. Then for some A , e 2 e1 = e 31( 
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The resolve nt of eJ is 

C' (A411 U...UAC'ij U..U.c_'©rm U BO) &3. 
n 

At 
62e1 

U..0U ADij @261 U...U Ate ®261 U BC ®261 

= A g1 U ...U A'Oi e1 U ...UL ton el U B0'' 61 

= C. 

We have shown that (a) - (c) hold. Suppose that' is 

restricted and that (' is not. Then 

Lij63 EC' orKij63 EC' 

for some i and j, But then 

Li j e3 A = L. j g2 61 = L. 91 E C14 = C or 

Kij ®3 4 _Kij e2 e1 = Ki 61 E C',( = C. 

So C " _ } Al',..., An',B'' } and C, are not restricted, 

For the statement of Theorem 4.6.2 and for the 

remainder of this chapter it is convenient to exhibit 

clashes of factors explicitly as clashes in derivations. 

A factor-derivation = (T,c) of a clause C from a set of 

clauses S is a dervation such that 

(1) for each tip N E T. c(N) is a factor of a clause 

in S, 

(2) for each interior node N E T, c(NNT) is a factor 

of the resolvent of the clash of factors c(s-1(N)), 

Notice that the factoring operation is not exhibited in 

factor-derivations. If every clash in a factor-derivation (D 

is a clash of marked factors then 1 is a marked factor- 

derivation. To simplify the statement and proof of Theorem 

4.6.2 we allow the clause c(r(T)) in a marked factor 

derivation ( j = (T,c) to be unfactored. 
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Theorem 4a6.2. Let 6 = (T,c) be a elash derivation 

of a clause C from a set of clauses S. There exists a 

marked factor O.erivation (y' = (T',c') from S of a clause 

C' which has C as instance. Every nucleus factor in 0t is 

an i-factor. 

To every node N' a T' there corresponds a node N e T 

satisfying the following conditions : 

(a) If N' is a tip of Tt then N is a tip of T and 

c'(N') is a marked factor of c(N), 

(b) If N' i3 interior to T' then N is interior to T 

and c(N) is an instance of c'(N'). Lot 

(3 = c(sr1(N)) and (' = c'(s^1(N')). 

(2) Satellites of C correspond to satellites of 

' and the nucleus of a corresponds to the 

nucleus of C'. 
' is restricted if (3 is. 

Proof (by induction on the number -n of nodes in T). 

If n = I then (1)' = 0 satisfies the requirements of the 

theorem. If n > I let N© = r(T) and sr1(N0) = { NI , ...,Nm} 

We may assume by way of induction hypothesis that to each 

derivation 0i = (TN , c), I i< m, there corresponds a i 
marked factor derivation (i = (T!,e'i) which satisfies 

the theorem relative to .. i 
Let Ni' = r(T !) , (* c,' (N') , ..., c' m(N' m) { 

and ,. = o(s 
-1(%)) 

. C * subsumes 2 . By Lemma 1 ,,10.1,, 

* is a clash which covers (3, o (NO) is an instance of the 

resolvent C * of e*. Let C3* be the (3 of Lemma 4.6.1 and 
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letC be the corresponding set of marked factors with 

resolvent C' which has C* and thoreforo c(N0) as an instance. 

The desired marked factor derivation (T',c') is 

determined by the f cllowing conditions. 

(1) 

(2) 

r(Tt) = No' and c' (NQ') = C' 

c'(s(N0')) = C'. For N' 
s,_'(N0'), 

TtNt is 

an isomorphic copy of Ti where ct(Nt) is a 

marked factor of ci(N(T=Nt,ct) is a copy 

of ()'i, except that c'(N') is a marked factor of 

(N! 

p' :.satisfies (a) and (b) of the theorem. N0 corresponds 

to N0' and if N oorrespond.s to N' in 6)' then N corresponds 

to the appropriate copy of N' in 

Notice that the level of G t in (5)t is the same as the 

level of C in 6) , however the number of factors in a clash 

t of (D t is often greater than the number of clauses in 

the corresponding clash C of (D . 

4- m-I'actor Derivation: . 

m-Factor erivations are of interest for at least two 

reasons: First (Theorem 407.1), m-factoring provides an 

effective method for implementing merging restrictions. In 

particular the restrictions investigated by lindrews for ground 

derivations [ 2 ] can be lifted to general derivations by 

imposing m-factor restrictions. Second (Theorem 4.7.3), 

mj-factoring is always more efficient than the Wos Robinson 

factoring method (for search strategies L which give 
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preference, among clauses of equal level}; to clauses of 

shorter length), 

Recall that a factor of a clause C is a clause C e 

where e is an m.g.s. U. of some partition of C (equivalently, 

some complete partition of C). m-factors are defined only 

for resolvents of clashes : if C 0 is a factor of a 

resolvent C of a clash G then C e is an m-factor (merging- 

factor) of C if a does not unify literals in C which 

descend from the same parent in C . 
Let e _ D2 U 

D®, 
.,Dri En U DCn} be a clash 

where Ei is the set of literals in Di resolved upon in 0. 
Then C = (DC U .,. U DQ n) A t is the resolvent of C , 

where e' ij an m.g.s. u. of C . A factor CO of C is 

an m-factor if 
L, , L2 E DCi and L1 e s A L2 s t imply 

L1 e' a L2 of e . 

m-factoring restrictions can be strengthened by limiting 

attenticn to m-factors of m-resolvents. C is an 

m-re s olv ent of ' if 
Tjj,L2 E Doi and L r L2 1417 

L101 A L2 at . 

Thus C 6 is an m-factor of an m-resolvent C of a clash 

if end only if 
L1 ,L2 E DOi and I., L2 imply 

LIetb A L2e e 

A factor derivation (S _ (T,c) is an m -factor derivation 

if for every interior node N E T, c(N) is an m-factor of 
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an m resolvent of the clash of factors c(s-1(N)) 

An m-factor C& is a merrge if at least two literals 

in distinct parents of C are unified by e'e , i.e. if 

for some 

L1 s DOi, L2 E Dad, where i J, 

L1 e' e = L2 9' 6 

This definition coincides with Andrews' in the case of 

ground clashes and ground resolvents. Notice that if 

C _ { D1, ...,Dnj is a clash of n factors then Ce is a 

merge if and only if 
1 (C e) < l(D1)+...+ l(Dn)-2(n-1). 

Theorem L .J.1 . Let 0 = (T,c) be a ground derivation 

from a set of clauses S and let S be a set of instances 

of clauses in S'. Then there exists an isomorphic m-factor 

derivation 01 = (T, c') from S. 

For all N E T 

(a) c(N) is an instance of c'(N), 

(b) 1(c(N)) = 1(c'(N)), 

(c) if N is interior to T then 

(i) c'(N) is a merge if and only if c(N) is and 

(ii) c'(s-1(N)) is restricted if C(3-1 M) is. 

Proof (by induction on the number of nodes n in T)e 

If n = I then T = {N 0 } . Let C = c(NO). Then C is an 

instance C' c- of some clause C' E S' . 

Let C = { L1,...,L{ and {E1,..0,E where 

Ei = {L' E Cl : L' a- = Li} . F, is a complete partition 

of C' unified by o- . Let e be an m.g.s, u . of ( then 
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0- = &A, for some A . Let c'(N0) = Cte then c(NO) is an 

instance of c'(N 0) and contains the same number of literals 

as c'(N0). 

Suppose that n > 1 and that the theorem holds for 

any ground derivation containing fewer than n nodes. 

Let N0 = r(T), s-1 (N0) _ }N1,...,Nm} and of = (TN c) for i 
1 < i < m. By the induction hypothesis there exist m--factor 

derivations (TN,ci) from S' satisfying (a)-(c) for 

NeTN, 1 <i<m. i 
Let e _ e(s`1(N0)), C * c(N0,) andCl, = 

{c1'(N1),..e,c'm(Nm) } . Then (' subsumes (f, and therefore 

corers is restricted if e is and the resolvent 

C' of (,` ' has C as an instance. Let c' (N0,) = C' e be 

defined as in the case n = 1. Then c(N0) is an instance of 

c'(N0) and contains the same number of literals as c'(NO). 

Let tD' _ (T,c be defined by c' (N0)= C' a and 

c'(N) = c'i(N) for N E TN. 

z 
It suffices now to show that C' a is an m-factor of 

an m-resolvent of ('. Suppose that, on the contrary, there 

are distinct literals L1 and L2 in some c'(Ni) such that 

L1 @' e = L2 et e where e t is the m.g.s. tY . of C t at N0 . 

But then, since ?' covers (2 and since C is a ground resolvent, 

(a '(Ni)0- = c(Ni) for some a- and 

t t (NO) A = c(N0) for some /, such that c- _ jP' 

L1 a- and L2 a- are distinct in c(Ni) (since c'(Ni) and 

c (Ni) contain the same number of literals) . Therefore L10- 

and L2o-are distinct in c(N0). But then L1e'& and L2e'e 
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are distinct, contrary to assumption. 

Lemma 4.7.2. Let e={D1 =E10D01,...,Dn=EnI)DOn} 

be a clash of factors with resolvent C = (Do1 U ... U Don) 0. 

Let D = 0 0' be a factor of C. Then there exists a clash 

of factors 3' = { D ' 1 = E ' 1 l) D'01,...,D'n _ Eln U DIOn} 

where for each i, 1 < i < n, D'i is a factor Di 9i of Di, and 

D is an m-factor of the m-resolvent C' of (''. 

Proof. Let e' be an m.g.s.u. of the complete 

partition e' of C. Then we can represent F" as 

10 
t = {G1 ®,...,Gk 9} where 

C. = Gj1 000sUGjn, Gji C Doi and 

L e Doi, L 0 E GjiG imply L E Gji. 

Then= 1G1i,..,Gki} is a complete partition of Doi. 

Let 

P," -- ,U{G1,...,Gk} 

where E° is the family of literals resolved upon in ,. 

Then 9 0' is an m.g.s.u. of " since Z is a refinement of 
0 is an mg.s.u. of and e' is an m.g.s.u. of 0. 

On the other hand, each Ci is a refinement of e" az4 none 

of the refinements '1,...; Cn share rariables. Let ei be 

an m.g.s.u. of F, i. By 1.3.5, 01 ...0n9" is an m.g.s.u. 

of where G" is an m.g.s.u, of 

P, 
it e1...en = e e1...en U{G1,...,Gk} 4) 1...en. 

Let D'i = DiOi. Then L"" = {D'1,...,D'n} is a clash 
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and the family of literals resolved upon in (2' is 61...On. 

Let 0* be an m.g.s.u. of F;010..0n The resolvent of (,' is 

C'.TD0191 0*U ...UDOnene*. 

Since ,e1...9n is a refinement of E" 01...9 n, 0* 9** 

is an m.g.s.u. of 4'" 01...On where 9** is an m.g.s.u. of 

. e" 01...9nG* _ e 0116..One* U{G1,...,Gk}01...On G* 

But then 01...9nO*0** is an m.g.s.uo of " and because 

E 01...0n 0* is already unified we may take 9** to be an 

m.g.s.u. of 

{G1,...,Gk} 91...8n0*, 

which is a partition of C'. Let D' = C' O** 

Then 
D' = (D01010* U...U Don nO*) 0** 

(D01 U...U DOn) 010.09ne* 0** 

(D01 U...U DOn) 0 9' 

_ D. 

It suffices to show that D' is an m-factor of an 

m-resolvent of C'. Suppose not. Then for distinct 

literals L'1 and L'2 in some D'Oi = D0i 9i, 
L'1 e* a** = L'2 9* g**. 

But then there are distinct literals L1 and L2 in DOi such 

that L'1 = L1 Ol, L'2 = L2 0i and L1 0i 0* 0** = L2 01 0* O**. 

Therefore 

L1 01...O 0* 9** = L2 01... en 0* 0** and 

L1 00' =L29e'. 
So L1, L2 C Gji for some j. But 0ji ei is a singleton 

and therefore L1 0i = L2 0i and L' = L'2 contrary to assumption. 



z07 

Theorem L«7.3. Let (D= (T,c) be a factor derivation 

of a factor C from a set of clauses S. Then there exists 

an isomorphic m-factor derivationt = (T,c') of C from S 

such that 
c(N) is a factor of c(N) for all N E T. 

Proof. (by induction on the number n of nodes in T). 

If n then ti t =*,; suffices. Suppose that n> 1 and that 

the theorem holds for any factor derivation containing 

fewer than n nodes. 

Let N0 _ r(T), s_1(1Q) _ N1,.,Nm} , C = c(Np) and 

}c(N1),...,c(Nm)I . By Lemma 4.7.2. there exists a 

clash (-',' = {D1 , ...,Dm} , where D i is a factor of c(Ni), 

1 < i < m, and C is an m-factor of the m-resolvent of C'. 
Let 6)i be the factor derivation (TN. ,on) which is identical 

to (TN, c) except that ci(Ni) = Di instead of c(Ni). By 

the induction hypothesis for each i, 1 < i S m, there exists 

an m-factor derivation 6)i' = (TN ,c'i) of Dl such that 
1 

cIi(id) is a factor of ci(N) for every N E TN 

Let 6) t = (T, c') where c' (NQ) = C and c' (T?) = cti (N) 

for N ETN.. is the required m-factor derivation of C. 

Theorem 4.7v3 states that any clause (or factor) C, 

derivable by a factor derivation 4 , can be derived by an 

isomorphic m-factor derivation t V Moreover J1' is no more 

complicated than in the sense that no factor in b' contains 

more literals than the corresponding factor in 6 . Search 

strategies : (such as level saturation or up,vards diagonal 

search) which generate simpler before more complex derivations 
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will generate m-factor derivations before isomorphic factor 

derivations which are not uhfactor derivations. Let 7be 
such a strategy and let (k , 7) be a proof procedure 

employing T- and an inference system j which incorporates the 

Wos-Robins on factoring method (w-R method). Let ('S s ',) 

differ from only by using the m-factoring method 

instead of the !--R method. If (1 , ) generates n 

derivations and (j', 5) generates nt derivations before 

obtaining a first refutation then n = n'+ k where k is 

the number of non m-factor derivations generated by 

before the generation of a first refutation. 
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