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ABSTRACT

Inference systems ,?' and search strategies & for
f;v are distinguished from proof procedures f? = (7”,5{).
The conpleteness of procedures is studied by studying
separately the completeness of inference systems and of
search strategies. Completeness proofs for resolution
systems are obtained by the construction of semantic
trees. These systems include minimal ¢ -restricted
binary resolution, minimal o -restricted M-clash resolution
and maximal pseudo-clash resolution. Certain refinements
of hyper-resoluticn sysiems with equality axioms are
shown to be complete and equivalent to refinements of
the paramodulation method for dealing with equality.

The completeness and efficiency of search strategies
for theorem- proving problems is studied in sufficient
generality to includs the case of search strategies for
patl-gsearch problems in graphs. The notion of theorem-

, proving problem is defined abstractly so as to be dual to
that of and/or tree. Special attention is given to
resolution problems and to search strategies which generate
simpler before more complex Poofs,

For efficiency, a proof procedure (§%;§i) requires
an efficient search strategy S, as well as an inference
system ffy’which admits hoth simple proofs and relatively

few redundant and irrelevant derivations. The theory
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of efficient proof procedures outlined here is applied

to proving the increased efficiency of the usual method
for deleting tautologies and subsumed clauses. Counter~
examples are exhibited for both the completeness and

eificiency of alternative methods for deleting subsumed

clauses.

The efficiency of resolution procedures is improved
by replacing the single operation of resolving a clash
by the two aperations of generating factors of clauses
and of resolving a clash of factors. Several factoring
methods are investigated for completeness. Of these the
m-factoring method is shown to be always more efficient

than the Wos~Robinson nethod.
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Uhapter O
The subject of this thesis is the completeness and

efficiency of verious theorem-proving methods. These methods

apply primarily to resolution inference systems [39] and are
investigated by means of theoretical, rather than experimental,

studies. The theorctical methodology of these studies implies

that they are oriented meinly toward automatic, rather than
interactive, theorem-proving. Relationships between
completeness ané efficiency are remarked upon throughout the
body of this thesis and are explored more thoroughly in this
preliminary chapter.

The theorem-proving wethods investigated in this
thesis include deletion rules, factoring restrictions and
minimality, <o-ordering and M-clash restrictions. Chapters
1 and 2 concentrate rcspectively on the syntax and semantics\

of resolution systems. In chapter 3, restrictions on the

paramodulation method for dealing with equality [38] are
studied and related, for efficiency and conpleteness, to
The

the hyper~resolution method using equality axionms [ZOJ.

completeness and efficiency of search strategies for theorem-
proving problems are investigated in chapter 4. Parts of
chapters 2, 3 and 4 have already been reported in [17], [20]
and [21] respectively.

The major function of this introductory chapter is

to outline and defend a« theory of efficiency for automatic



theorem-proving. This theory incorporates conclusions
formulated after the investigations of chapters 1-4 and
is intended to provide a framework within which these
investigations can be evaluated. For this latter reason
we have chosen t ¢ place this chapter at the beginning,
rather than at the end, of this thesis.

Section 0.1 introduces and discusses the
significance of a fundemental distinction between inference
systems Tﬂb, search strategies X for 7§'and proof
procedures 6) = ( ]>; 2.). Relationships between the
efficiency of proof procedures and properties of inference
systens are investigeted in section 0.2.  Further
investigations, in 0.3, relate the efficiency of proof
procedures to the completeness of inference systems and
search strategies. An earlier version of a part of this

chapter was reported and discussed in a panel discussion al

the Fourth Aanual Systems Symposium [19].

0.1 Proof Procedures, Inference Systems and Searvrch Strategies.

A funcamental distinction, basic to the study of
aefficiency, is that between a system of axioms and inference
o -\
rules [ and a proof procedure ¢ = ( f, Y ) for obtaining
-
prcofs admissible for § by means of a search strategy Y. .
e
In ithe cose of resolution proof procedures, f is a function

of input sets of clausszs SO. Thus 7“ =='TTSO) consists



of the set of clauses SO together with resolution and
possibly factoring rules. We also write 3>‘=‘€?SO) when
SO is the set of axioms of a proof procedure ( sz >2.)
which dcrives theorems directly from axioms. Thus in
general, an inference systen ’TV(SO) congists of an initial
set of sentences SO together with inference rules F‘ which
cen be applied to construct derivations from SO. (The set
SO may be fixed, when it consists of a given set of axioms,
or may be a free variable, when it stands for a set of
axioms supplemented by different special hypotheses and,
pogsibly, by negations of theorems to be proved.) Derivations
coustructible from sentences in SO by means of the rules F’
are said to be admissible for Tw. The set S* of all
sentences derivable from SO is called the scarch space
deternined by ?N(SO). A search strategy 3 for ;hvis

an algorithm for generating derivations admissible for jx'in
order to eventually generate = proof of a given theorsm.
Thus 2. induces an ordering of occurences of sentences
from S¥ defined by the sequence in which derivations of
these sentences are generated by 2 . We distinguish
between an admissible derivation &) of a sentence C  and
the set of sentences generated by 2. before obbaining a
first proof of C. © contains only sentences necessary

for proving C whereas 2 will almost always generate,

before proving C, proofs of sentences irrelevant to a

first proof of C. Search strategies for resolution systems



include level saturation, unit preference [53], fewest
components [50] and diagonal search (chapter 4).
Although we restrict attention to proof procedures
.~
of the form ( § y 5 ), it should be noted that not 211
proof procedures can be analysed as consisting of inference
AN
systems { and search strategies 2 for generating proofs
forward from axioms (or input sets of clauses) to theorems
(or TJ ). 1In general it is necessary to consider
A N\ V)
procedures & = ( [ Ei) which generate proofs backwards
2
from theorems to axioms of Thby means of a search strategy
~ PAN
> The system § is dual to an inference system in
the sense that its operations are the inverse of inference
2 A
rules rq o The search space S* determined by { consists
of all sentences which can be used to derive the given theorem
and is structured in the form of an and/or tree [49]. Beth,
Kleene [ 18] and other researchers hove observed that semantic
tableau procedures obtain proofs constructible by means of
Gentzen-type axioms and inference rules 7. The semantic
e
tableau method consists of a scarch algorithn 2 for the
. P o
search space S* determined by a systen Y dqual to . It is
”~
interesting to note that Beth's original procedure 5 enployed
-~
an incomplete 2. which resulted in the incompleteness of
A
& [29]. The Gecmetry Theorem-Proving Machine [9] is an

P

AT
incomplete procedure of the form ( 5', EL) enploying incomplete
N\
Y
r . Vay

. [ AN .
Given a system Sor § it is often possible to



N
. o
construct a corresponding dual system. A system f ,

dual to a resolution system ’?“, can be constructed by

. : 2 ~

including in the search space S* for  all clauses which
can occur in resolution derivations of the null clause.

7\

S* defined in this way is the set of all clauses
constructible from a potentially infinite set of variables
and from the predicate and function symbols occurring in

”\

S For the system f?vof Slagle's program for symbolic

0
integration [49], an inference system TV(SO), dual to '%:,
can be congtructed by defining SO to be the set of
integration formulae of some integration table and by
defiring ™ to be a set of rules, inverse to those of %l ’
for constructing new formulae from existing ones. The
search spaces S* and §¥ for a system and its dual need not
be identical. For the resolution systems 7~ and ’ét above,
g* C §;, whereas for the symbolic integration systems T~
and %l, §; Cs*., (XCY if X is properly contained

in Y.)

The notions of and/or tree problen (for systems %L)
and theorem-proving problem (for systems /?d, chapter 4) are
dual to one another and both generalise the tree (or graph)
problenm [ 8] of finding a path between initial and terminal
nodes. Given a system T or 61’, having constructed a

systea dual to the one given, it is possible to construct

[
search strategies for the combined search space S* U S¥,



Such strategies have been studied for the tree problem and
are referred to as bi-directional search. Many of these
methods, including the cardinality comparison method of
[32], extend to the more general situation. It is
interesting to note that when the cardinality comparison
method is applied to the resolution or integration systems
”~ ~
T and T above, it avoids generating objects in S* - §*,

N
for the resolution example, and in S*~ 3%, for the integration

example.
The remainder of this thesis is concerned explicitly

with proof procedures of the form ('T’, S ). Despite this
restriction, mogt of the remarks in this chapter apply

equally to procedures ( é;, éi) as well as to bi-~directional
procedures more generally.

Proof procedures ( Th, E{) can usually be analysed
in more than one way as inference system and search
strategy. Zet of support resolution can be treated as
either a restricted inference rule determining a restricted
search space or as a restricted search strategy for an
unrestricted resolution rule. HMore generally, restrictions
on derivations generated by 03 can often be incorporated
into the definition of either i?’OI‘ 7 s The significence
of an appropriate analysis ( 1”, Z:) of 63 is related to

the distinet notions of completeness which can be formulated

for §, 3 and .
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An inference system ’5\’(80) is complete for a set
of sentences & if, whenever So implies a sentence Ce & ,
then there exists a derivation of C from SO which 1s
adnissible for ¢ . T (o) is refutetion complete for
& if, whenever So € & inplies a contradiction then
there exists an admissible derivation from So of an
effectively recognizable contradiction (e.g. ™ ). The
existence of admissible derivations and therefore the
completeness or refutation completeness of inference
systems ’f\' is independent of search strategies for T "
A search strategy F for /f\ is complete for /SN if
will eventually generate all derivations admissible for T
(assuming that ¥. can continue generating derivations
after obtaining a first proof of a desired theorem). 3.
nay be complete or incomplete independently of the complete-
ness of KS\’ o In particular /f\' nay be complete for &
but 3 may be incomplete if 2Z_ will not generate some
derivation admissible for T - Cn the other hand, $_
may be complete when T is incomplete, by wvirtue of
exhaustively generating all derivations admissible for Two
A proof procedure 6> = (T(So), 2 ) is complete for &5
(refu.tation conplete for 0= ) if whenever So implies
c e & (So ¢ (& and C some effectively
recognizable contradiction) then gZ. eventually generates

an admissible derivation of C from SO° Thus 6) can

be conmplete (or refutation complete) for (& even when Z_



is incomplete for @“ﬁ: for example, when & is the set
of all sets of clauses, 6> = ( 1’; >.) is sct of support
regsolution, ?h/ is ﬁnrestricted resolution and Z. generates
all and only those derivations admissible for ’?V which are
conpatible with tlie set of support restriction. However
is incomplete for & if [ is incomplete for € and,
equivalently, ’fv is complete for & if & is. The set
& is usually the set ¢ * of all sentences constructible
in the language of‘i?g. Situations where & C &% occur in
the cese of decision procedures which are incomplete for & *
but complete for the decidable subset &. More generally
all proof procedures incomplete for & * are complete for
some proper subset & C &* (e.g. & = B ). Unless
stated otherwise, the set & relative to which inference
systems and proof procedures are evaluated both for
completeness and for efficiency is taken to be the set for
which ¢ ig expected to ovrove theorens. (More detailed
discussion related to this topic is contained in the first
part of section 0030) For the most pnart all remerks
concerning completeness apply equally to refutation
completeness. Unless stated otherwise, the term
" completeness" is used to refer to both kinds of
conpleteness.

It is interesting to note that the original

comnpleteness proofs for wnrestricted resolution [39],
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hyper-resolution [40], clash resolution [42] and AM-clash
resolution [51] are all stated directly for proof procedures
(7” Y ) where & can be interpreted as a complete level
saturation search for if‘. These completeness proofs
imply the completeness of the corresponding resolution
systenm %" and also of resolution procedures ( 3>, =) for
any complete 2' for . Thevoriginal completeness
proofs for set of support [54], resolution with merging [2]
and linear resolution [23], [24] are stated directly for
inference systens j>l. All completeness theorens in this
thesis are stated explicitly either for inference systens
or f or search strategiess

When analysing & procedure G> for en inference
systen 'fv and search strategy Y_ it is convenient to have
™ incorporate the logical restrictions of ¢ and to
have X incorporate its heuristic restrictions. Suppose
that a procedure 6)==(’Tv, Y) is completc with incomplete
> and suppose that there exists an equivalent procedure
(‘T‘", 2{') = ( 1?1 %) such that S ' is complete for Tr.
The heuristic restrictionsof (P incorporated in 3 are
transferred to logical restrictions in @*". In the
following discussions we shall assune that proof procedures
are analysed in & way which minimizes their heuristic
restrictions. This convention implies that restrictions

such as set of support, P1—resolution, etc. are incorporated
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in the inference syster of resolution procedures. In
general whenever = (75, S) = (51,5") end

S C g% then = ( 5, s') is considered to be the
preferred analysis of 6'3 . If I ' is complete for ’f*'
then the heuristics incorporated in X' are restricted

to inmposing an ordering on the sequence in which admissible
derivations are gocnerated by Z_%

Phe distinction between infercnce systenms ‘3” and
proof procedures 6’: ( fp,ﬁi) induces an additional
distinction between neasures of simplicity (or complexity)
of derivations admissible for '3V and neasures of ease (or
di~ficulty) of obtaining such derivations. A related
distinction between notions of complexity and difficulty
can be observed in the context of informal rniathematics.
Informally proved theorems almost always have nore than one
proof (derivation), some of which are sinmpler than others.
In particular it is not uncormmon for early proofs of theorens
to be more complex then later proofs. Indeed an inmportant
part of mathemetical activity is concerned with just this
simplification of complex proofs. It is not difficult to
construct precise neasures of complexity for informally
obtained proofs. What is wanted is that such neasures be
conpatible with intuitive notions of complexity. The
nunber of distinct sentences occuiring in a given derivation

provides a rieasure of complexity which is approximately
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satisfactory in this respect. A nore appropriate measure
night be the total number of distinct symbols occurring
within the given derivation or perhaps some combined neasure
giving different weights to numbers of scentences and numbers
of symbols. Measures formulated for informel derivations
can be applied to derivetions admissible for formally
defined inference systens. For inference systems (such as
resolution) which adnit derivations () of tree-like
structure, the largest number of sentences occurring in any
one branch of M (level of 6) ) has often been treated as
a neagure of the complexity of 0 . The preceding and
subsequent remarks suggest that a more appropriate measure
might involve the total number of distinct sentences or
synbols occurring in . In any case, for the remainder of
this thesis it suffices for the most part to assume only
that complexity of derivations is defined in such o way thet
no derivation is ever sinmpler than any of its subderivations.
In this connexion we note that contractions and semi~contractions

D' of derivations ) (section 1.10) tend to be simplex
(and never significantly more complicated) than o .

The difficulty of informally obtaining a proof of

a given theoren coincides with the total effort needed to
obtain a first proof and includes work done on unsuccessful
attempts, This effort can be quantified in a variety of

ways: in particular, by the total anount of time expended
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or by the total number of sentences (or synbols) constructed
before obtaining a first proof. Sinilar measurcs of
difficulty can be applied to theorems proved by formally
defined proof procedures. Ls a first approxinmation it is
convenient to identify this difficulty with the total number
of occurrences of sentences (or derivations) generated
before a first proof. Compared with measuring difficulty
in terns of tine, this neasure has the advantage of allowing
comparisons of difficulty to be made anong proof procedures
and informal theoren~-provers independently of the computer

inplermentation of proof procedures.

For the first proof of a given theoren, whether
obtained fornally or informally, nmeasures of difficulty can
be applied to measure efficiency. More specifically we
shall regard a proof method 6)1 as nore efficient than a
nethod 6)2 for proving a given theoren when the nunmber of
derivations generated by 6)1 before obtaining a first proof
is less than the nunber generated by 632. This neasure of
efficiency allows comparison of proof procedures relative to
a given theorcn, it does mot provide a direct means of
evaluating for efficicncy o single proof procedure which is
intended to obtain proofs of theorems within sonme set Sf
sentences & C &*. For this purpose we shall assune
that sone informal proof nethod 6)* is given and assuned

to be an ideal to which all fornmal proof procedures are
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conpared for efficiency within & . Thus, in particular,
when we require of G) that formal difficulties coincide

with informal difficulties, this requirement can be
interpreted as inposing a norn that for all theorens

in & difficulties are equal both for & and §*, or

nore liberally that for all theorems in (& difficulties

for 63 and @* differ by at nost some given € (e may

be allowed to depend upon n, the difficulty of proving the
given theorem by neans of & *), or still more liberally
that average differences in difficulties for theorerms in

& are no greater than e (where € nay depend upon n).
Although none of these precise formulations adnits an
effective test for determining whether 6) neets the desired
requirenent, they serve the important function of clarifying
the intended interpretation of the more inprecise formul-
ation. We intend to identify the requirerment that a
proof procedure 6) be efficient with the requirement that
difficulties of proofs of theorems in & obtainea. by 6)
coincide with those of proof's obtained by P *. We intend
further that this latter requirenent be interpreted in the
nost liberal sense. Various objections to the identificetion
of our requirement with that of efficiency can be countered
by elaborating upon the choice of the informal method @ *
or by liberalising the tolerance function €. (We assune

that @* is never less efficient than any formal nethod 639
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For, in particular, ﬁP-* can be assuned to be intelligent
enough to be capable of employing the nethods of (4% N
Reeall too that difficulties ore neasured in terms of the
nunmber of alternative possible subproofs examined before
finding a first proof - and not in terms of time.) In any
case we do not intend so nuch to define an absolute standard
of efficiency as much as we intend to explicate in useful
forn the intuitive notion which we interpeet gs being
relative to variable standards of human performence, The
value of this explication depends upon its utility for
founding the theory of efficiency presented in this chapter.
As in the case of infornel methods of proof, the
efficiency of a proof proccdure & = ( 1”, Z) is related
to the complexity of proofs admissible for ’?va In
particular, if for a given theormm 7§ adnits no proofs
containing fewer than n sentences, then n 1is a lower
bound ¢n the difficuvlty of proving the theorem by means of
63 . It has been connmon to confuse eomplexities of
sinplest proofs admissible for inference systenms with the
efficiency of proof procedures. This identificetion
of sinplicity with efficiency is a nmistaoken one since, for
both fornal and informal methods, not only may simple proofs
be difficult to obtain but complex proofs nmay sonetimes be

easier to find than sinpler ones. Sinilarly nisteken is

the identification of efficiency with the degree to which the
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ratio of the number of sentences occurring in a first proof
to the number of sentences generated before finding that
proof approaches wnity. Relative to this neasure a proof
procedure is most efficient when it generates only sentences
occurringin a single first proof - independently of the
complexity of that proof which may be so great that it
contains far rmore sentences than is tolerable by comparison
with informal nmethods. Relationships between the complexities
of proofs and the efficiency of proof procedures ( 3”, 5)
depend upon several factors including the numbers and kinds
of redundant and irrelevant derivations admitted by /?’and
the efficiency of the search strategy % for ’?’. Before
investigating in section 0.2 properties of inference

systéms which are relevant to the efficiency of proof
procedures, we conclude this section with several renarks
concerning search strategies.

Whereas proof procedures adnit a notion of efficiency,
no such notion applies to inference systems in the absence
of search strategies. In contrast, the efficiency of a
search strategy X for an inference systen T cen be
studied independently of . the efficiency of ( 3, %).

For a given G>’, a strategy 25.1 is more efficient than
b3 5 when 251 generates fewer derivations than does 552
before the generation of g first proof. A proof procedure

& - ( T‘, ¥ ) can be hopelessly inefficient even when
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S is most efficient for 7 . Such a situation arises
in the example of the preceding paragraph where 'gv'admits
proofs cf only intolerable complexity and <£. generates no
sentences not occurring in the first and sinmplest proof of
the given theorem. Although efficient scarch strategies
cannot gusrantee efficient proof procedures, efficient
( @y, 2:1) can be rendered intolerably inefficient by
ennploying, instead of 2i1, an inefficient search strategy
Ei_z. In a worst case, éiz night be an inconmplete
search strategy which, genersting 2 potential infinity of
irrelovant derivations, delays forever the generation of
proof3. = > night be conplete but deley the generation
of a first proof beyond sorme limit of tolerable difficulty.
In any case the goal of constructing efficient proof procedures
cen be net only by the development of efficient search
strategies. Since formally defined theorem-proving
problens generalise the path-finding problen for graphs,
it is reasonabls to expect that methods employed to increase
the efficienty of graph searching cen be extended to methods
for theorem-proving. These methods include the use of
learning, analogy, induction and other heuristic techuiques
studied an the field of artificial intelligence. The
diagonal and upwards diagonal search strategies of chepter 4
are i£tended to provide a theoretically sound framework for

the extension of heuristic nethods to theorem-proving problenss
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Experience gained through research in artificial
intelligence suggests that the efficiency of search
strategies can be improved by sinuleting nethods employed
by intelligeunt beings. In the case of theorem-proving the
simulation of intelligent nethods suggests that search
strategies should ain at genersting simpler before nore
conplex proofs while generating non-proofs in a selective
order based upon intelligent estimates of their relevance
to a sinplest admissible proof. The suggestion that
search strategies should attenpt to generate simpler
before more complicated proofy may be a controversial one.
It 1s put forward here for three ressons: (1) The
convention for analysing proof procedures in a way which
ninimizes their heuristic restriction implies that simple
proofs which are not first generated by an efficient ( 7»} >)
will tend to be inadmissible for 5 ; (2) within
constraints imposed by logical considerations affecting
efficiency, 21} else being equal, nathematicians seek to
find simpler before riore complicated proofs; (3) most
inportantly, prcofs of increased efficiency for alterations
to inference systems require the assunption that P
generates, before all other proofs, the sinplest proof

admissible for § . This third point will be elaborated

in section 0.2.

It is interesting to note that certain inference-
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related rules can be defined only in the eontext of search
strategies. Deletion of variants and, more generally, of
subsumed clauses is an important example in the case of
resolution procedures: it is impossible to state that
subsumed clauses ao not occur within a refutation @) of an
initial set of clauses SO without referring to the subsuming
clauses which themselves need not occur either in &) or

S Both the completensss and efficiency of deleting

0"
subsuming clauses depends upon the sequence in which search
strategies generate resolvents of clashes. Completeness

of deletion rules 6{ for procedures ® is relative to

the completeness of & . R is complete relative to

G’ if 6) y employing @ » generates a proof of a

theorem whenever & , without K s generates a proof of

the same theoren. The completeness of deleting subsumed
clauses has been proved relative to procedures ( ’SV, E)

where < is level saturation and ,?\, is unrestricted

binary resolution [39] or AM-clash resolution [ 48]. Our

own proof [17] fails because no regard is taken of the
dependency of deletion rules upon search strategies.
Conpleteness of the usual deletion rule for subsumed clauses
is proved relative to (?’, 2) for most resolution systens
’f" and search strategies %. in section 1.11, where counter -~
examples are also exhibited for the relative completeness

and efficiency of alternative formulations of this same
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deletion rule. In this connexion we note that we have been
unable to prove increased efficiency except for the case of
deleting newly generated subsumed clauses. The relative
completeness and increased efficiency of deleting tautologies
is g sinmpler but not entirely trivial metter (scction 1.12).
For both deleting tautologies and subsuned clauses, proofs

of efficiency are extracted from proofs of relative complete-
ness and require the assumption that T generates simpler
before more complex refutations.

The preceding remarks have attempted to indicate
sore of the more important relationships between the
eficiency of proof procedures and the efficiency of search
strategies. It is hoped that the distinction of inference
system from search strategy will help to resolve some of the
controversy soncerning the use of 'complete! versus 'heuristict
methods in theorem-proving [41]. More specifically the
development of efficient proof procedures can be served by
a division of labour between logical studies of inference
systems and studies of search stratecgies by the methods of
operations research and grtificial intelligence.  These
separate studies need to be co-ordinated by means of a
theory which seeks to relate properties of inference systens
and search strategies to properties of efficient proof

proceduresg,
We have assumed that the fundanental property .

which needs to be required of proof procedures is
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that the difficulties of formally generated first proofs
should tend toward those of informally obtained first
proofs. We shall argue that a useful set of sufficient
conditions for & = (5, £) to approach this goal is that

(1) the complexities of simplest admissible
formal proofs should be related to the
conplexities of informal proofs first
constructed for theorems,

(2) S should restrict as much as possible the
adnissibility of both redundant derivations
and derivations irrelevant to a sinmplest
proof,

(3) Z should aim at generating simpler before
nore complicated admissible proofs, and

(4) Z should generate derivations in a
selective order determined by intelligent
estimates of their relevance to a simplest
proof,

These four conditions have already been alluded

to in preceding discussions., Conditions (1), (2) and (%)
are further elaborated upon in section 0.2 and condition

(4) is discussed in 0.3.

0.2 Refinements and the Elimination of Redundant and
Irrelevant Inferences.

In this section we compare for efficiency procedures
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(74, 3) and (57, Z) where 3" is obtained from Sl
either by imposing restrictions on the inference rules

of fb'or by omitting axioms from the axiom set SO of '?V.
Following Luekhan [24], %' is said to be a refinement of
0 when S'* C §* where S'* and S* are the search spaces
determined by ! and f?’respectively. By individually
comparing for efficiency procedures (’fj, EE) and ('?;, ﬁi)
with ( 5, S), where ‘?} and ?Z ave refinements of S

we can obtain indirect comparisons of efficiency for

(?’1, S.) and (?’2, =). TPurthermore, by extracting

from criteria for refinements, we obtain criteria for single
inference systems to admit extension to efficient proof
procedures. We shall argue that if ?“‘ is a refinement
of /?/and if Z_ generates simpler before more complex
proofs then (3, $.) is more efficient than ( 5, &) if
the sinplest proof admissible for 'gk‘is also admissible for

Tt; (%, =) is more efficient than ( T, &) if

; Kie
admits sinmpler proofs than 7' without admitting inordin-
ately many redundant and irrelevant derivations not admitted
by T,

If T“' is a refinement of = then either 11
eliminates redundant derivations admissible for S~ or

(provided ?b' does not eliminate all proofs of a the orem)

-

5

given theorem. The most obvious kind of redundancy

! eliminates derivations irrelevant to a proof of the
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exists when a systen ’?vadmits distinct derivations of the
same sentence C (or of variants C and C' when ’?yis a
resolution system). For resolution systems §>,’ another
kind of redundance exists when 3>Jadmits poth a derivation
O of a clause O and a second derivation @' of a clause
C!' which subsumes C. Other relationships between derivations
® and Q@' can be attributed to redundancy. A precise
characterization of these relationships is not necessary for
present purposes. An irrelevant derivation isg one which,
for reasons other than redundancy, is not necessary for the
construction of a proof. Redundant and irrelevant derivations
may be eliminated either by resirictions which prohibit
their generation or by deletion after generation. The
second method is related to the first because deletion
prchibits. the generation of derivations constructible from
deleted derivations.

The method of eliminating redundancies, which,as
we shall observe below, need not always contribute to
efficiency, is the principal method employed in this thesis
for studying the improvement of inference systems. We shall
argue that the potential improvement of eliminating
redundancies and irrelevancies is related not only to the
nurbers of derivations eliminated but also to the complexity

of the simplest proofs retained. 1In this connexion it is

worth noting that systems which represent sentences as sets
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of clauses omit redundancies caused in other systems by
explicit rules (or axioms) for double negation, for
comrutativity, associativity and idempotency of conjunction
and disjunction, for renaming bound variables, vacuous
quantification ani for interchanging adjacent quantifiers
of the same type. These redundancies are omitted without
the expense of complicating proofs.

The use of explicit operations for factoring
clauses saves partial results obtained when attempting to
resolve clauses. The method of marked factoring (section 1.6)
eliminates without complicating derivetions, redundancies
aliowz2d by the Wos-Rebinson method [53]. The method of
n-factoring (section 4.7) achieves similar results while
also providing an effective neans for inplementing merging
restrictions [2]. L restricted version of marked factoring
(nucleus clauses unfactored, section 4.6) reduces further
redundancies with some attendant complication of derivations.
(It is interesting to note that this nethod sometimes
eliminates all refutations which 1ift ground refutations.)
The method of section 2.9 for the unique decomposition of
hyper-resolution clashes can be interpreted either as a
means for eliminating redundencies from P1—resolution or
as a nethod for implementing hyper-resolution while saving
intermediate results. Under neither of these interpretations

does this method complicate derivctions.



For most resolution systems the retention of
tautologies only introduces redundances and complicates
derivations (section 1.12). On the other hand, retention
of variants and subsumed clauses generates redundancy -
but sometimes simplifies derivations (section 1.11).
Mininality restrictions (section 1.13); which can be imposed
on K -restricted binary derivations (2.6) and on M-clash
derivations (2.7), both simplify deriv~tions and eliminate
nany redundancies., M-clagh restrictions complicate
derivations; additional complication is caused by the

X -restrictions on M-clasgh derivations (2.7). Chapter 3
establishes an equivelence becween a refinement of the
paranodulation methed for dealing with equality and the
hyper-resolution method using equality axioms. This
equivalence implies both equivalent numbers of redundant
and irrelevent derivations and also equivalent complexities
of proofs for the two systems. For both systems, initial
trivialization of inequalities (3.4) restricts redundancies
and retains simplest refutations.

Almost certainly the most significant contribution
to the elimination of redundant infercnces has been the
Prawitz method for restricting the instantiation of matrix
clauses over the Herbrand universe [34]. This method, now
incorporated in other Herbrand procedures [35], [22], [14]

(by means of the unification or notching algorithm). improves
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efficiency by eliminating redundancies without complicating
proofs. In the case of resolution systoems, riost general
unification eliminates rcdundancies by onitting infinitely
nany ground derivations lifted by single general derivations.
The Prawitz method also eliminates irrelevant derivations in
a manner similar to that of the purity principle [39].
Clauses which cannot occur in proofs, because they contain
literals which cannot mate with other literals in the irnitial
set of clauses, are inhibited from generating irrelevant
derivations. (In the pre-Prawitz Gilmore method [10] such
clauses would not be distinguished from other clauses and
we1ld potentially need to be instanbtiated in 211 possible
ways over the Herbrand universe.) Methods sinilar to the
Prawitz method have been conjoctured but not verified for
the predicate calculus with equality [5], [28], [43}, [38].
M~clash resolution eliminates beth redundant and
irrelevant derivations. On the other hand, linear resolution
([23] and [24]) eliminates redundancies but no irrelevancies,
sinee, as shown by Loveland, for any clause C decriVeble by
uarestricted resolution there is & linear derivation @
of a clause C' which subsumes C. The lincer derivation
® ' is no nore complicated than the derivation ©of ¢ in
the sense that it contains no greater number of applications
of resolution. However @)' can be much norc complicated

than 6) if complexity is mecsured by resolution level.
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M-clash resolution eliminetes irrelevancies because only
clauses false in the interpretation M c¢an be derived by
the M-c¢lash resolution rule. That M-clash resolution
eliminates no irrelevant derivations other than those of
clauses true in M is a consequence of the deduction
conpleteness theoren 2.5.1.

The elimination of redundant and irrelevant
derivations does not, by itself, guzrantece efficient proof
procedures. Indeed it is even possible for a complete
inference systen ’?V, which admits neither redundant nor
irrelzsvant derivations, to be incapable of extension to a
procedure ('7v, Z ) which proves informally easy theorems
without great formal difficulty. Such an infercnce systen
?}' would admit proofs of only great formal complexity.
More generally if ' is a refinement of Cthen ($ 1, £)
mey be less efficient than ( 77, ) if 7! does not admit
the first proof obtained by <& which is adnissible for 7.
Under the assunption that = generates simpler before nore
complox proofs, (’' =( %', &) is more efficient then
@ =( 3, =) (or no less efficient) when 5 ' admits the
simplest proof admitted by 1?1(assuming also that the order
in which E generates derivations admissible for 3\'
coincides with the order in which &. generates derivations
adnissible for ?\: restricted toﬂderivations adnissible for

/’\1).

5 !

Under these assumptions, CP' generates the same first
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proof 0 generated by & ;s before generating G), 6) generates
all the derivations generated by (' and those derivations
generated by & and not by &' are redundancies and
irrelevancies not admitted by f?". If = generates nore
conplex before simpler proofs then @D ' may be nore
cfficient than 6> cven when ‘j*' elininatcs sinplest proofs
and very few other derivations. Such combinations of search
strategies and refincments yielding more efficient proof
procedures are pathological and do not seem to fit into any
comprehensive theory of efficient proof procedures. For
this and other reasons mentioned already in section 0.1,
we shall eompare infewence systems relative to the assunption
that they are incorporated in proof procedures with search
strategics which generate simpler before more complex proofs,
( %t, ) can be more efficient than ( ?”; =)
even when ¢! eliminates sinplest proofs provided that ’fh'
eliminates sufficicntly many redundancies and irrelevanciese.
The more 5! eliminates unnecessary derivations the greater
g nay complicate simplest proofs while still inproving
efficiency. Suppose for example that Tt is a refinenment
of ?b and that 2Z. is a level saturation search strategy
for ’?V and $7'. Suppose that, for a given initial set
of sentences S, T and T admit respectively d(n) and
d'(n) derivations of level less than or equal to n. Then,

d'(n)
for each n, d'(n) = d(xn) and r{n) = m is the fraction of



derivations of level less than or equal to n admitted by ?»

which are also admitted by §''. If K and ¥' are the least
levels of proofs from SO edmissible for 75 and Tt
respectively, then P! is more, less or equally efficient

to 0 depending on whether a'(N') < a(w), a*(m) > a(N)

or d*(N') = d(N) (assuming for simplicity, that = generates
all derivations of a given level before generating a proof

of that level). Thus { ', $.) is more efficient than
(5, &) if N =10 or if N' >N but 3 omits sufficiently
many derivations for d'(N') < d(K). For classes of initial
sets of sentences SO’ estimates of the function =r (as a
function of n and so) can sometimes be obtained by
comparing derivations admissible for $and ¥°t. Other
investigations can be made to estimate either d or d' and
bounds on the difference between N and N' (s a function of
SO and of the theorem to be proved) can often be extracted
from completeness proofs for 7§ ' relative to ?L: Similar
studies can be done for other notions of complexity when X
is a saturation search by degree of complexity. The functions
d, d' and r and N' as a function of N vary widely with
various properties of initial sets SO and of theorems provable
from SO. For this reason calculations of these functions
mgy be impossible in all but either worst or best cases or

cases which can be considered typical for some class of

theorens,
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Despite the great difficulties of obtaining, for
wide classes of theorems, precise comparisons of the
potential efficiency of refinements, certain important
principles emerge quite clearly. If "' refines /?v
and > generates simpler before more complex proofs, then
the greater the number of derivations eliminated and the
sinpler the proofs admitted by i?/', the more efficient
is (%', €) than( T, ). Both extended set of
support in resolution [55] and the employnent of lemmas in
model elimination [22] extend inference systems, sinplifying
proofs and introducing redundancies and irrelevancies. Both
extersions are motivated by the use of lemras and previously
proved theorens to increase the efficiency of proving
theorens in informal mathematics.

It has been suggested that the efficiency of proof
procedures can be improved by increasing the power of
inference systems [27], [44].  This notion can be
quantified by identifying the power of /?/ for a given
theorem with the degree of conplexity of the simplest proof
adnitted by '?V + Thus a systen ’?V is more powerful than
3”' when the simplest proof admitted by 3?’13 simpler than
the sinplest proof admitted by %' for the same theorem.
In porticular § is never less powerful than 3! if §
extends ¥ '. G&8del's results on lengths of proofs [11]

show that many proofs can be greatly simplified by applying
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rules within a system of higher-order logic. Anong
resolution systems, unrestricted resolution admits the
simplest proofs and is thercforc nost powerful, although
not necessarily uniquely so.

Just as 1efincments cften ovor-conmplicate proofs,
extensions often introduce too rmany redundancics and irrel-
evancies. The problen of admitting too nany derivations is
especially acute for highesr-order logic and first-order
logic with axiom scherata, Gould's negative rcsults [12]
show that there is no algorithm for eliminating in higher-
order logic the kind of irrelevancies eliminated by the
unification algorithm in first-order logic. Axicm schemata
in first-order logic bccome axioms in sccond-order logic.

For this reason Gould's recsults are not very surprising since
extension of the unifi¢ation algorithm to higher-order logic
would inply very strong restrictions on the instantiation of
axion schemata in first-order thearies. Darlington's
f-patching nethod [5] provides Jjust such an extension of the
unification algorithn to the restricted instantiation of
axion schema. For the schema of substitutivity for equality
(which can already be restricted to a finite number of
instances), the completeness of f-matching is equivalent to
that of the paramodulation systcm conjectured to be complete
br Robinson and Wos [38]. For the axiom schema of induction

in nunmber theory, f-natching may fail to provide instances
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which are necessary to prove even easy theorenms.

The difficulties encountered by verious attemnts
to inhibit the generation of irrelevancies by logical
restrictions on inference systens suggests that a plateau
hns been reached for improvirg efficiency by eliminating
irrelevant derivations within conplete inference systens.
Further progress for inproving efficisncy may be possible
by employing incomplete inference systens. Tais
possibility will be discussed in section 0.3. It should
be remerked first that at Least two research programmes can
be formulated for increasing the efficiency of existing
proof procedures without sacrificing the completeness of
inference systems. The Jirst programme involves the
simulation in search strategies of intelligent informal
methods for finding »rocfs. The second prougramne is that
of constructing refinements of inference systems with the
explicit goal of elinirating as wany rcdundancies as possible
while still retaining simplest proofs. The first proposal
has already been discussed in the preceding section and will
be examined further in section 0.3 in eonnexion with
discussions pertaining to the completeness of search
strategics., With regard to the second proposal, it should
be remarked that existing refinements of inference systems
(e.g. resnlution) admit inordinately large nunbers of

redundant derivetions. Unlike irreleovancies, redundancies
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can be recognized during the course of scarching for proofs.
It might be hoped that these redundancies can be recoghized
and elininated bgfore rather than after their generstion.

1t seens recasonable to extract, from criteria for
refinerents and extensions, criteria for single inference
systens 4?' to admit extension to efficient proof procedures
( i?, El). These criteria include requirements that T
admit simple proofs and few redundancies and irrelevancies.
For formal nmethods to compete with informal methods in
restricting the generation of redundenst and irrelevent
inferences, it seems unlikely that first obtained fornal
proofs dan be nuch sinpler than those first obtained by
infornai methods. On the other hand, if formal
conplexities are nuch greater than informal complexities
then fornmal difficulties will tend to be greater than
informel difficulties. For these reasons it seens
desirable that formal conmplexities of proofs should
approxinate those of informally ob%ained first proofs
of the same theoren.

¥e have already remarked that infcernaelly obtained
first proofs of theorems are often more complex than later
proofs. For an ideally efficient proof procedure ( ﬁ?} 51),
assuning that Z. is conmplete for ,?1and gencrates ginplest
adnissible proofs belore nmore complex proofs, the preceding

renarkg inply tha% the first proof generated by ( 5, =)



is likely %o be wmore conplex then the sinplest proof
theoretically possible for a given theoren. This not only
suggests the possibility of improving efficicncy by the
appropriate choice of refinerents for proving given theorens
but also suggests the merit of nmethods for obtaining simplest
proofs of theorems after genercting the nmore complex and nore
efficiently' obtained first proofs admissible for refinements.
A sinmple progran for the simplification of complex proofs

can be outlined for resolution inference systens:

Suppose that ?\‘ is & refinement of the unrestricted
resolution systen f?”. Suppose that ¥ generates sinpler
befere rmore complex refutations and that ® and M are
the simplest refutations, of an unsatisfiable set of
clauses SO, admissible for 3“ and ‘?" respectively. Assune
that ( $7', ) is nore efficient then ( §, =) for
refuting SO and tnat @' is the first obtained refutation
of S.. With few exceptions the following method will

0
construct O (or an equivalently sinple refutation of SO)
fron Q) ', generally with much less difficulty than would
be involved in obtaining §) directly by ( f\} Z). Although
Q) ' may not 1ift a ground refutation, it can be verified
that it is easy to construct both a ground refutation
6)0 and a contraction 6)1 of Q)' which is a refutation
of 8, and lifts 6)0. (é)o and C)1 can be constructed

sinultaneously fron G}' by applying methods similar to
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those applied to prove the contraction theorem 1.10.2 and

to apply the mimimality restriction (section 1.13). In

the notation of 1.13, 6)0 = 51) The set SO’ of clauses

which occur at tips of 6-)0 constitute a truth-functionally une-

satisfiable set of instances of clauses in SO. ¥ applied

to ?V(SO") will generate a simplest refutation @2 of SO'.
@2 can be lifted to obtain a refutation 6)3 of SO.

Generally ®3 will be a simpler proof than 0)! 2nd either

will be identical to @ or will be of a complexity equivalent

to that of §) . Similar methods can be profitably applied

to the simplification of proofs in more general contexts.

0.3 Completeness of Procf Procedures.

Before examining relationships between completeness
and efficiency it is necessary to recall that both complete~
ness and efficiency are evaluated velative to the set of
sentences & within which a proof procedure 6) is expected
t0 prove theorems., This explicit identification of the
set & is necessary in order to avoid, when undesired,
evaluation relative either to the possibly larger set &'¥
of all sentences or alternatively to the set Go, the
largest set for which & is complete. For any proof
procedure @ such a set @o always exists and may in
extreme cases equal either ﬁf or nore likely (H *. Cc;o
may be properly contained in &, in which case 6) is

potentially required to prove theorems in & - g° which



are unprovable for  ;  &° nay be identical to & ;

or &3 nay be properly contained in @o, in which case

G y although theoretically capable of proving theorems

m &°- & is not required to do so, possibly because
@ is known to be inefficicnt for theorenms in @O -G
or because sentences in C?éo - (& do not arise in some
princiipl intended application 6f @ » 1In any case, for a
given proof procedure the set e} ° need not in general be
effectively recognizable (i.e. recursive). In contrast it
is important to require thet scntences in(S be distinguished
fron sentences in (¥ -~ (@& Dbefore a proof is attenpted by {P.
In particular it is not adequate to specify that 6) is
expected to prove, for instance, only casy cr only difficult
theorens, if no effective and efficient recognition algorithm
exlsts and is employed for distinguishing such possible
theorems. Without further qus Y} ification, it will be
implicitly assumed in the remainder of this section that
proof procedures 6) are evalueted for completeneas

(and efficiency) reiative to the set & for which (Pis
expected to prove theorems. It will be assuned that
senvences in (% -~ & arc effectively and efficiently
distinguishable from sentences in &, Because of

these assumptions, decision procedures for decidable

gubsets @ of & * are eveluated as complete when they are
intended to prove theorems in & and as inconplete if they

are expected to prove theorems in (5 *. For the same reasons,

procedures P conplete for Q‘fj‘a* will be investigated for



relationships between corpleteness and efficiency, not
necessarily relative to <§§*, but relative to the set (&
to which CP is expected to be applied.

A1l proof procedures, complete or incomplete, are
limited in practice by an upper bound on the amount of
effort available for generating a proof of a given
theorem. Failure to obtain a proof by a complete
procedure 6) within such finite limitations implies that
the alleged theorenm either is not wvalid or is valid
but too difficultto be proved with the linmited amount of
effort available., Similar failure by an inconpadete 63
inplies, as a third possibility, that the alleged theoren
is valid but unprovable by 6) even with unlinited effort.
For all practical purposesg it is only this third possibility
which distinguishes incomplete from complete proof procedures.
(Indeed the existence of this possibility provides an oper-
ational definition of incompleteness which coincides in
extension with the definition of the first paragraph of
this section.) We shall abttenpt to determine whether the
existence of this third possibility justifies evaluating
conplete procedures as always superior to incomplete
procedurus.

0f all proof<procedures we require only that formal

y
difficulties tend toward the informal difficulties of first
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proving theorems. (The degree to which a proof procedurs
approaches this goal can be evaluated indepencently of its
conpleteness or inconpleteness. Indeed it is wholly upon
this basis that we intend to base our evaluation of the
significance of incompleteness for efficiency.) Thus when
a best (i.e. nost efficient) proof procedure fails to obtain
a proof of a given theoren within given linitations on the
anount of effort available it can be inferred that the
theoren is too difficult to be proved by any good proof
procedure wivhin the same limitations. It is important to
notice that in thig sense an incomplete procedure Gt can
be gsuperior to a complete procedure ¢ . ¢ nay fail to
prove, even with considerable but limited effort, theorems
which are easy to prove informally with less difficulty, in
particular, than that unsuccessfully expended by 63. In
contrast, G?’, because of its incompleteness, may be incapable
of proving only informally difficult theorems which are in
any case too difficult to be proved by any efficient proof
procedure within the bounds on effort available. Thus what
natters for efficiency is not necessarily the frequency with
which an incomplete procedure & is expected to prove
theorems theoretically unprovable for e - but, more
significantly, the frequency with which s expacted
(and unable) to prove theorems informally provable with less

effort than that ursuccessfully expendsd by . More generally



a complete or incomplete procedure fails to be satisfactory
only when it fails to prove with a given bouanded amount of
effort a theoren which is informally provable with comparable
effort.

The longer that inference systems and proof procedures
(such as those of [5], [28], [38] and [43] ) are conjectured,
but not proved, to be complete; the less significant for
efficiency is the possibility of their inconpleteness. The
increased suitability of these systems and procedures is due
not only to the increased likelihood of theilr completeness
but nore importantly to the increased likelihood that in the
case of incompleteness, only infornally difficult theorems are
formally unprovable. Since successive attenpts to disprove
conpleteness will tend to eliminate simpler before nore conplex
counter-exanplev, coniinued failure of these attenpts increases
the likelihood thet, in the event c¢f incompleteness, only
conplex counter-exanples exist. Increasingly complex counter-
exaaples correspond to increasingly wore difficult theorens,
and therefore continuing failure to disprove conpleteness
decreases the probability that easy theorens are unprovable.-
'his decreased probability increases, in turn, the suitabllity
of the given inference systens and proof procedures for autonatic
theovren-proving. It is an in‘eresting possibility that nore
informatior nmay be available about the suitability of proof

procedures which are conjectured but not proved to be
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conplete than is available for proof procedures which are
definitely known to be either complete or incompletes  None
the less we shall argue that proof procedures 5 = (77, =)
enploying complete 1~ are often at an advantage compared to
procedures enploying incomplete inference systems.  This
advantage is that completeness proofs for inference systens
?\’ often yield information relevant to the efficiency of
procedures ( ’?1 §:),name1y that complexities of simplest
adnissible proofs relate to the complexities of informelly
obtained first proofe.

It has already been noted that inconmplete procedures,
because of their incompleteness, are able to eliminate nore
irrelevancies than can be elininated by complete procedvres.
Alnost certainly it is only this possibility of eliminating
greater nunbers of irrelevant derivations wldch can account
for an absolute preference for inconmplete proof procedures.
Indeed this reason acccunts for the fact that decision and
semi-decision procedures, complete for sets of sentences
& < &#* but incomplete for (5%, can be nore efficient
than procedures complete for (X when ther are applied to
proving theorens in Gé. In particuvlar the incompleteness
of resolation procedures, for deriving logical consequences
from sets of clauses, is a property which contributes to
their efficiency for obtaining refutations of unsatisfiable

sets of clauses. (Bounds on the incompleteness of
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resolution systems, relevant to efficiency, are established
by Theorenm 2.5.1.) The possible advantages of inconplete
proof procedures are apparent when these procedures are
applied to obtaining proofs of theorems which they are able
to prove. The disadvantages of incomplete procedures arise
when they are zpplied to proving theorems which they are
incapable of proving.

In genergl it is to the Adisadvantage of incomplete
proof procedures that usually little or no information is
available concerning the extent or character of thelr
inconpleteness. Ia particular ro such information has been
repozrted for the interactive theorem-proving programs of the
Applied Logic Corporation [14]. Certainly what should be
required of incomplete procedures is that only Very few
if any easy theorems should be unprovable. Norton notes
that this requirement fails to be satisfied by his incomplete
proof procedure for proving thecrems in group theory [31].

We have already renarked, in the preceding section,
that combleteness proofs for refinements 7' of inference
systems T often provide information about the comparative
efficiency of proof procedures ( §, =) and ( 3!, ).
This infcrmation is easiest to obtain when conmpleteness
procfs for St relative to’gb'proceed by transforming
proofs ) admissible for f?’into proofs 0) ! admissible

for /?’"

Comparison of the complexities of Q) and ®
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can be applied, by the method outlined in section 0.2, to
comparison of the efficiencies of ® ana ¢'. Similar

but more limited information concerning efficiency can
sometimes be extracted from completeness proofs (for inference
systems) which proceed directly by semantic arguments. In
particular the application to completeness proofs of semantic
tree construction exhibits a relationship between the
complexity of resolution proofs and the complexity of a
certain kind of semantic argument for establishing the sane
theorem. More generally, completeness proofs for inference
systems which can be interpreted as employing rules for
Herbrand instantiation of matrix clauses (e.g. Gilmore [10],
Prawitz [34J, [35], and Leveland [22] and Robinson resolution
systems) indicate a relationship between complexities of
simplest formal proofs and notions of complexity, invariant
for these systems, based upon the number and truth-functional
complexity of the fewest ground instances of mgtrix clauses
necessary to reduce the proof of a given theorem to the

proof of a corresponding theorem in propositional logic.

That conmplexities of simplest proofs correspond closely to
complexities of informally obtained proofs does not by
itself imply that formal difficulties correspond to the
informal difficulties of obtaining first proofe of theorems.
For this stronger correspondence, it is necessary in addition

that the inference systen 'TV admits few redundant and
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irrelevant derivations while the search strategy & finds
sinpler before more complex proofs, generating derivations
in a discriminating order of relevance to a simplest proof.
It seems that the problem of investigating inference systems
Kﬁv for redundant and irrelcvant derivations is no more
difficult for incomplete 7 +than it is for complete 7§ .
In contrast, the problem of relating formal to informal
complexities of first proofs seems to be an easier one for
conplete ’?V. We shall argue that complete search strat-
egies 21 are likely to be more suitable thah incomplete

S . for applicetion 46 inference systegns in efficient

procf procedures.

Py
We recall that procf procedures U™ are analysed
P
as consisting of inference systems . and search strategies
5 the logical restrictions of ' are incorporated
. s . . o . . . <
in 77 , heuristic restiictions are incorporated in . and
restrictions which are ambiguously logical or heuristic
P
are treated as logicel restrictions and incorporated in “f .
Relative to these conventions, we argue the case for
conmplete search strategies ¥ against that for incomplete 3 .
Since erguments for incomplete > seen to be based
primarily on the paradigm of intelligen®t human behaviour
as applied to finding proofs of theorems, we limit our

arguments to those based on this same paradign. Ve note

that the case for complete search strategies can also be
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be interpreted more generally as one for complete prcof
procedures.

Characteristic of intelligent informal theorem~
proving is the high degree of selectivity employed in
exploring possibilities for proving theorems. This
gelectivity seems to suggest that informal search strategles
80 restrict ihe generation of derivations that they must
alnost certainly be incomplete. Contradicting this
conclusion is the unlikelihood that an intelligent theoren~
prover would completely elininate, on purely heuristic
grounds, a logically possible subproof of a given alleged
theoren, This unlikelihood suggests that informal search
strategies (and also proof procedures) arc complete. The
apparent contradiction can be reconciled by interpreting
the selectivity of informal search strategies positively,
as employing highly discriminating but not incomplete
heuristics for ordering logically possible subproofs with
respect to their expected relevance to a desired sinplest
proof, instead of negatively, as eliminating beyond
recongideration possible but unlikely subproofs of the
alleged theoren. The heuristic for deleting clauses,
which cortain function symbols nested to a degree exceeding
a given fixed bound [1], [53], is an application of the
negative interpretation of selectivity. A corresponding

application of the positive interpretation is a heuristic
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which would give preference among clauses of otherwise
equal nerit, to clauses containing less function nesting
over clauses containing greater nesting, without completely
eliminating the latter clauses. (It is interesting to
note that implenmentation of the positively interpreted
heuristic improves the efficiency of diagonal search -
assuming that complexity of derivations .. is a monotonic
incregsing function of the number of symbols ceccurring in
& .) Similarly, search strategies employing only the
unit section of unit preference search [53} apply the
negative interprevation of selectivity, whereas diagonal
search strategies enploying expected length of clause as

a heuristic function (section 4.3) apply a positive
interpretation. 1In general complete search strategies,
enploying positive criteria for discrininating between
possible subproofs, sinulate intelligent search rethods
rnore faithfully than incomplete strategies, enploying
negative criteria for rejecting candidate subproofs.
Assuning that efficient search strategies are sssential
for the efficiency of proof procedures and that sinulation
of intelligent informal nethods is indispens@ble for the
efficiency of search strategies, it follows that complete
search strategies are nore likely than incomplete strategies

to serve the goals of efficient automatic theorem-proving.



- 45

0.4 Conclusion

In this chapter we have investigated various
notions and assumptions relevant to the efficiency of
automatic proof procedures. In particular, we have argued
for the utility of formulating distinctions between inference
system, search strategy and proof procedure, distinctions
between complexity and difficulty and assumptions relating
formal and informal methods of proof. We have attempted
to indicate that these distinctions and assumptions can be
usefully applied within a theory of efficiency to

(1) outline formal methods of evaluating refine-
ments, extensions and single proof procedures
for efficiency,

(2) reconcile apparently conflicting intuitions
regarding efficiency (e.g. concerning complete
vs. heuristic methods),

(3) distinguish intuitions on the basis of their
being compatible with, incompatible with or
logically implied by the theory and

(4) suggest practicable programmes of research for
improving the efficiency of proof procedures.

It is hoped that additional evidence for the utility
of this theory will be provided by the investigations of

chapters 1-4.
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Chapter 1

This chapter is concerned with the syntax of resolution
systems. Sections 1.1 - 1.5 examine the syntax of expressions,
substitutions, unification, clash resolution and clash
restriction. In section 1.6 factoring and resolution of
factors are introduced as methods for improving the efficiency
of implementing resolution rules. Derivations are treated as
labelled trees (section 1.8) and useful properties of trees
are stated in 1.7. In section 1.9 the trace of a search
strategy is defined and is used in turn to define the efficiency
of proof procedures and the completeness of deletion rules.
These notions are applied in 1l.11 and 1.12 to an investigation
of the completeness and efficiency of rules for deleting
subsumed clauses and tautologies.

The contraction thecrem (section 1.10) isolates and
formalizes a useful method for constructing and transforming
derivations. It is applied in chapcer 2 to construct derivations
from semantic trees and in chapter 3 to permute hyper-resolution
derivations. The contraction theorem generalises the 1lifiing
lemma and indicates how deletion of subsumed clauses can
simplify derivations.

In section 1.13 a strong restriction on derivations is
incorporated in the minimality condition. The preservation of
minimality conditions under contractions implies that minimality
is compatible with deletion of subsumed clauses. This same
property is used in chapter 2 to prove the existence of minimal

¢ -restricted binary proofs and minimal M-clash proofs.
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3.1 Expressions,

We assume familiarity with the basic congepts of
resolution theory as can be found, for instance, in
Robinson's review article [42] . The following definitions
are intended therefore primarily to establish the terminology
and notation used in the sequel.

Atomic formulae A are referred to as atomse. Literals

L are atoms A or their negations A; in the first case L is
said to be positive, in the second case negative. If L is a
literal then by !L! we denote the atom A such that L = A or
L=A., IfLis negative we identifly L with the atom 'Ll °

A clause C is a set of literals. If C = {Iq,w--,Ln}
is a set of literals then by C we denote, as in [3] s the set

ff,1,...,f,n} o It is convenient to follow the convention of

(-] .
[ 2] letting U denote disjoint union. Thus CUD is defined

only when CND = ﬂf and then CUD = CUD. If a clause C contains
no elements then we denote C by [1 and C is called the mll
clause. C is a Fautology if for some literal L, both L,f € Co

A clause C is positive (negative) if all its literals are positive

(negative), otherwise C is non-positive (non-negative). We
racall thet a clause is interpreted as the universal closure of
the disjunction of its literals.

Function letters may have no argument places, in which

case they arc individual constants. An expression i3 a term,

literal, clause or set of clauses. If an expression contains no

variables then it is called a ground expression.
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We note that the representation of sentences by sets of

clauses is an important factor contributing to the efficiency

1

of resolution systemse Rules for commutativity, associativity,
and idempotency cf disjunction and conjunction, for
interchanging adjacent quantifiers of similar kind and for
deleting vacuous guantifiers are all unnecessarys The

elimination of these rules contributes to efficieuncy by
shortening derivations and by reducing the number of

sentences derivable from a given set of sentences.

1¢2 Substitutions,

A subsbtitution o~ is a set of substitution components

ti/xi where %, is a term and x, is a variable (as in [39]

i . f = soegls irey l
by is not xi) If o- {t1/x1, ,fr/xrl then the variables
x, and tems t, (for 1 < 1 < n) are called respectively

the variables and terms of o « If the terms of o~

are ground terms then o= is called a ground substitution.

For any expression X and substitution o~ , the expressior

Xo~ is well~defined and is the result of applying o~ to X.

Xo- is called an instaace of X. If C and D are clazuses then
C subsumes D, if Co~ C D for some substitution ¢=

The following properties of substitutions are well known:

(1) Given substitutions o=, and o7, their
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composition (o‘:} 0"2) is always well-defined and is
such that X (O"“,I "'é) = (Xc°'1) o,

(2) Composition of substitutions is associative, i.e.
((oy o) 0-3) = (o= (o, 03) ) for all o7, s Ty

We may therefore omit parentheses for compounded
substitutions in the usual way.

(3) The empty substitution € = @ is an identity for

composition, i.es o0~& = Eo-=& for all o .
(4) Xo= = X if the variables of o do not occur in X.
If 01 and 02 are clauses and C1o-,i~ =02 s 020‘2= C‘l
for some o and o, then C,1 and 02 are variepts (variants
differ only by a systemstic renaming of variables). Under the
usual interpretation of clauses variants are logically

equivalent. A set of clauses S= {01,..., Cn} is

standerdised if no %wo distinct Ci and Cj share common
variaebles. Every set of clauses S is logically equivalent
to a standardised set S' where S! may be obtained from S by
appropriately replacing clauses in S by variants. Resolution
conventions for standardising sets of clauses eliminate the

usual ruleg for renaming bound variables.

1.% Unification.

A set of expressions E is unifiable 3f Eo~ is a
singleton for some ¢~ ; 0~ is called a unifier of E« A

family 8 = {E1,...,En} of sets of expressions is

simultaneously unifiasble, if Eic- is a singleton for each 1
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axd some o~ o A most general unifier (m.gous) of a set of

expressions E is a unifier © of E such that if o~ also
unifies E then o= = ®A for some A . If E is unifiable then
such an msgeuos © of B exists; moreover we may insist, as
we do in the sequel, that the varisbles of & and the
variables occurring in terms of € all occur in E

(see, {39] )o Similarly a most general simultaneous

unifier (mogesetie) of a family E is a simultaneocus unifier @
of & such that if o= simultaneously unifies &€ then o= =
0L for some A » If £ is simultaneously unifiable then such
an Msg«SeUe. © exists and may be restricted as for the case
of megeo.8 above. Notice that & is an megeseus of 8 =
fE} if any only if © 1is an m.geu. of BEs It follows
that we may restrict attention when desirable to statements
regarding families gand their simultaneous unifiers and
M.ZeSoMaS » We shall often refer to simultansous unifiers
more simply as unifiers- |
Algorithms for obtaining megeu»s and m.g.s.us of
unifiable families are given in [39] and [43] o The
refinement theorem below and its corollaries formalise mapy of
the intuitive properties expected of me.gessu.s Among the
implications of corollaries 1e3e3 and 1.2¢4 is that the
problem of computing arbitrary meg.seles can be reduced to
that of consecutively finding m.ge.u.s of sets containing
just two expressions. Corollary 1.3.5 is used as a lemma in

verifying that resolvents of clashes can be obtained as
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resolvents of factorse

Let £ and €t be fanilies of sets of expressions.
€1 is a refinement of £ if for every E' ¢ £! there is
an E € € such that B'CE. Notice that if & is unifiable
then so is €' (e.g. ary unifier of £ unifies &),

Lomma 1.3.1. Giver € unifiable and €' a refinement of £ ,
let ST and 92 be megessu.s of € and 661 respectively
then @162 is an Mmegesoue of .

Proof. 6,0, unifies @ since 6, unifies 861‘
and ( @81 ) & 5 = € ®,8,0 If o unifies® ther
o= unifies £' and o-=6, A, for some A ;o Moreover Ay
unifies &0, since (£0) A, = Eo ¢ s0 £y =
92,<2forsome Azo But then o= = 91(92,(2) =
(e ©,) A 0*

Theorem 1.32. (Refinement Thearem)e Let £ be unifisble

and let 815,0.., 8n be refinements of 8 « Then
@1q..9n9 is ah MegoeSetls Of € whero
ei is an megeseu of ﬁi 60 soo e:M (90.—. E,),
and € is an meg.Se.ue of ?;91 oo En
Proofe It suffices to show that for all k, 0g<k<n ,

ﬁo.m & k@' is an meg.se.ue of &. where
€' is an meges.us of ‘é’,ey..@‘k .

For k = O this is trivial, Assume by way of induction hypothe-

sis that the above is true for some k < ne By the preceding

liemma 1.341, since 8k+?1 90 coa Sk 1s a refinement of




660009 0. , we have that

OkH

e’ is an megesous OF 8,@009«:91{ where
8% 35 an mogoeselle Of 890""’91{.‘%1 0

Thus letting le—‘lﬁ@" be the msgessua 6 of the induction

hpothesis,

By o vo Oy 0y ,0OF is an me.g.Seus Of I where

6" is an meg.SeuUe oOf 890”0 ek@kM:

Corollary 1.%-,3. Let 8:_ {'E1$eog9En} be unifiable.

Then 919.” 9n is an megesSeUs Of € where ei is an MegesUe

oo = €),
of EJ_GO N 91_’1 ( 90 )

Proof, Let &, = {B} . Then £ is @
refinement of 8 and Si is an meg.seus cf gi e 0°°? Gi“,'e

So 6_1neo @n9’ is an MegeSeus of € where ' 1s an meg.s.u.

o

of €e1ona en' But each Eieigao @'n is a singleton, so

891960 @n is unified and ©°¢ may be teken to be € ,

Corollary 1e3ehe Let B= { }:1,.00,Xn} be unifiable
where X1,ew,Xn are expressions. Then

& Gn is an m.goue of E where

20‘0
& i & - . © 0
5 1s en megeu of {X‘I’Xi} 613 Giu-“l
(91= €)e
Procf, Si = {{X,I ’"Xi” is a refinement of & =
{E} for 2 <i<n,2 So
ezeooen@}' is an meg.s.us of & where
8! is an megesele of 8,@2000 Gno
But 8 PLLD & is already unified, so we may let

bY = €
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Corollary 1.3.5. Let € be a unifisble family and let

619“@, €, e refinements of & which share no variabless

Then
8,600 @ng‘ is an mege.set. of & where

1
Q-ils an MageSele OI e 5 and
@! is an megescus Of 8,61”, e n
Proofe It suffices to show that

But since, for i ¥ j. Ei and E:j share no variables

gi = g’i 8.
Note that corollary 1.3.3 iz essentially the simultaneous

unification theorem of Andrews! [ 2] and that Hart's

Theorem [ 15 ] is essentially Corollary 1.3.3 stated for

D = 26

10k Clashes

A stendardised set of clauses C= {A1,”o,ﬁn, B}
isaclash iffor1gign
By =E U Ay, 0 B A6,
© o ®
B=F, U,e UTF U B, Fiyégf and
£ - {g, U '151,..3,Enu En} ig unifiable with

MegeSellec © o
The clause
C = (Amu,.au Y BO) o
is the resolvent of C . The clauses in C are the parents of
Co B is called the pucleus and the clauses Ai are called the

satellites of & The sets of literels E; in 4, and
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o o

1UM.U Fn in B are called the literals resolved upon in C.

Diterals L € E, and K € Fi are said to mate in C .

¢ is called an megesetis of C o If n =1 then the

¥

distinction between the nucleus and satellite of C is
ambiguous and C and its resolvent C are said to be binary.
Note that € may contain wriants of the same clauses

The definition of clash given above coincides with
Brown's definition [ 3 ] and differs from the definition

of latent clash given by Robinson in [ 42 ]

1sh Clash Restrictions.

Robinson includes in the definition of latent clash
restrictions similar to the restriction below. This
restriction is not included in the definiiion of clash above
gince in section 3.3 we invostigoate the completeness of a
resolution rule for cleshes which are not necessarily
restricted.

Lot C= (®, U D, ,e.¢,EmQ D} e a clash
with m.go.ssls © where Ei is the non-empty set of literals in
B, GDi‘ resolved upon in ( « Then C= (})1U».°U Dm)e is
the resolvent of (& o (2 is wostricted if

L ¢ By,o  dmplies L £ Co
The motivation for introducing the notion of clash restriction
is twofolds

(1) zr € is restricted then the resolvent ¢ of & can

be obtained from C by a sequence of binary



resolutions.

(2) The sequence of binary resolvents of (1) contains
no tautologies if neither C nor any of its parents
in C is a tautology,

If c is not restricted then either (1) or (2) may fail to

holds Fcr exampls if G {A

4 o B} where b= {L1 ,"I:g}

2
L,= {Lz, L1} and B = {L1 ,Lz} then C=B cannot
be obtained from C by any sequence of binary resolutions.
1r C = {4,505, B} whore 4, = {L,,L,} , 4, =

{L2,L1} and B ={L1 91‘2} then C = A1 ﬂz can be obtained
from eby a sequence of binary resolutions, but not without
introducing tautologous resolvents.

The importance of (1) and (2) stems from the desiradbility

of replacing clashes by sequences of binary resolutionse. This

point is taken up again in sections 2.8 and 2.9.

146 Factoring.

It is often convenient to regard as two consecutive
operations the single operation of resolving a clash C.
first each clause in Cis replaced by a factor and then the
resulting set of factors (3t is resolved in such & way as to
obtain the resolvent ¢ of (2. The principal motivation
foir considering factoring is to increase Che efficiency of
searching for refutations.

Several notions of factoring are possible and are

studied in greater detail in Chapter 4. The following
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definitions are sufficiently general for present purposes and
are equivalent, by the refinement theorem and its corollaries,
to the definitions given by Wos and Robinson in [ 53 ],

If C = C1L.J,o$.jcn is a e¢lause and €= {01""’01 } »
1< n, then € is called a partition of C and a complete
partition of € if 1 = n (i.es if C = UL)s Let Ebe a
unifiable partition of C with meges.us © then C ¢ is a factor

of Cs Resolution of Pfactors is defined as for clauses in

general with the restriction however that the sets of literals
Ei and Fi resolved upon (in the notation of the definition
given in section 1.4) are singletons. In other words a
standardised sct of factors C= fA,I,n.,An,B} is a clash
if for 1 < ign

b= (L) U

B = {1&:1,9.”Kn} U B, and

E ={i K} see0p {5 K1 is unifishle,
Then C = (AO ALY LY Bo)e is the resolvent of C where
& 1is an megessues of C

The following more restrictive notion of factoring is

equivalent to that introduced by Hayes and Kowalski
in [ 17] « Let C be a clause and let &= {Cypees,C}

be a unifiable partition of C with megese.us & » The pair

D=(u(Es ), Ce ) is called a marked factor of C. The

setU ( 8@ ) is called the set of distinguished literals
of Do It will usually be the case that we identify the

marked factor D with its second element CO « A marked
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factor canmnot be factored. Resolution of a set C of marked

factors is defined only for the case where the literals
resolved upon in C are all and only the distinguished
literals of factors in C . 4 marked factor is a

satellite factar, if its set of distinguished literals is a

singleton. Thus satellites of a clash whose elements are
marked factors are satellite factors. i marked factor
L(Ee ), cé) is an i-factor (idam-factor) of a clause C
if € is already unified (i.e. if & = £ andU(E)e < C).
If a clause C contains n distinct literals then it has 2"
distinet i-factors and n distinct satellite i-factorse.

The followiag theorem justifies replacing the operation of
clash resolution by the two operations of genfarating factors and
of resolving clashes of factorse.

Theorem 1.6st: Lot C = {4,,000,4 ,B} be a clash with

resolvent G where for | < i <n

AiZEiUAin Ei#¢9

R =F1U000Fnu BO, Fi#¢ .

8:: {E1UE1’GOQ’EnU Fn} and

C = (AO,'Uo»-UAOnU BO)G where & is an megeseus of e
then G = {A1's°°~:ft'n, B'} is a clash of marked factors

with resolvent C where for 1 < i < n

| A
At o= (Eie:.L R Liei)
B' = o :
( (BUesaUT ) 8 15 B0 )
8'J'. - {El} ’ €n+1n {F’I""’Fn} and

63- is an MeZeSalla of 83 for 1 Sj S n+ 1
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C 1 is restricted if & is.
Proof. Because (Zis standardised all of the Eij s
1 < J&n + 1, are refinenents of 8 which share no variables.
By Corollary 1.3¢5 of the refinement theorem the m.ges.u. ©

of gma;y be taken to be @,c00 © n9' where 6! is an

1
MoZeSele of 8 61 ees O n+i ¢
For 1 <1 < n, let
{Li} = Eiei s {Kl} = Fien-{-'h _and
é' = {{L19-K1} o0y {Ln;ﬁn}}

' - 1 ',
Then 8 = 891.“ e nﬁnde 1s an megsselte OFf E’,
Therefore ' is a clash and its resolvent is

\ = [ X}
C _(A01 61 u Y AOn 9n V Bo en+1) 6!

eve O )9!

= (Am e o0 9 UO;G UAOne aoQ 9 1 1‘1+1

! n+! 1 n+
= (,AOI U XN U A

U BOQ

o8 f
UBQ)G,I» 0 .40

On +1

= C
Suppose that C is restricted and that G! is note
Then for some L' resolved upon in (@, L*6! e C. But L' =

L., or LY = Ki for some 1. Therefore for some L resolved

i

upon in G, Iﬁ:l’JG'j =L61_.,.. & for some J, 1< Jg nHly

n-+1
and Le =L'et ¢ C. It follows that Cis not
restricted, contrary to the assumption.

The refinement theorem and its corcllaries suggest
various ways of computing an megsscu. © of a clash &,

In particular the coauputation of & can be reduced first to

the canputation of the meg.ssues 61,uo, e ned and ot
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of the thaorem above. This particular reduction is an
attractive one because each € 3 can be computed independently.
It does not seem unreasonable to assume therefore that the
effort involved in resolving o clash C is equal to the
effort involved in generating and resolving the corresponding
set of marked factors (f. In searching for refutations it
is usual for variants of the same clause to occur in several
different clashes. By storing the factors generated in
resolving a ¢lash it i1s not necessary to recompute them when
they occur in other clashess Thus by a suitable implementa~
tion of factoring it is possible both to simplify the
progranming and to increase the efficiency of clash

resolution,

1.7 Ireess
4 tree is a pair (T,s) where T is a non-empty set of
elements called nodes and s is a function s: T -~ T such
that:
(1) ™! (N) is finite for all N ¢ T (i.e.(T,s) is
finitely branching.)
(2) = (NO) = N, for exactly one element Nye T
called the root of (T, s) and denoted by =(T)s
(3) Define sO(N):N and s= (N)= s(s"(N)), Then
for all N € T there is an n 2 0O such that

vy

sTN) =1 (T)e (i.es wellefoundedness: if X £ §

is & subset of T then there exists an N € X
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such that N = 2(T) or s(N) £ X).
(4) s(N) =Nif end only if n= O or N = r(T)
(i.ee T contains no loops)e
If N € T and s’1(N) = § then N is a %ip of (T,s),

otherwise N is an interior node of (T,s)e When, as is usually

the case, there is no possibility of confusion we supress
refcrence to the function s and refer to T itself as though it
were the tree (T,s)s It is sometimes convenient to think of
trees as growing upwards. Thus r(T) lies above no nodes in T
and +ips of T lie below no nodes in Te
A brench of a tree T is a set 3 C T such that
(M =1 B
(2) N e  implies =(N) ¢ §»  and
(3) N ¢ B implies . (N) n @ contains at most one
elemente.
A branch ¥ is complete if
(3') N e & implies . (¥y n B contains exactly
one element unless s (N)=g .
Notice that any node N € T determines a branch QS of T,
D = sn(N) : n=0,1,see } » Every branch of T contains
at most one tip.
Given a tree T and node N ¢ T let TN be the smallest
subset of T sucl that

(1) N € Ty end

(2) N' € T inplies that it () < 1y

Thus TN consists of the node N together with all nodes of T
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lying above N TN has a natural interpretation as a subtree,

(TN,s') of T where s!'(N)=K and s'(N*)=s(N*) for N* £ ¥ »

TN is called the subtree of T rooted in N. Notice that

Tr(’l‘)" °
Given a tree T a cut through T is a non-empty set X € T

such that X M| 3 is a singleton for every complete branch
b¢r, i.e. X contains emactly one node from every
complete branch (3 of T. If X is a cut through T
then X determines a subtree (T/X,s') where T/X= | s™(N)
: NeX, n=1,2,ee0 } and s' is the restriction of
s to 1/X.  Note the following pr operties of cuts:
1eZsle  IfX= {r(T)}thenX is a cut and /X = »(T)
10722s If T is finite and X= { M:NeT and s*(N)=§ }
then X is a cut and /X =T.
1s7s3. X is the set of tips of T/X.

1o7oho (Kbrig's Lemma)s If X is a cut through T then

T/X is finite.

Proof: Each complete branch & in T/X is
finite since each such @) contains a tip in /X,
i.e. the unigque element of 63) N Xs BSuppose
T/X is infinite then we can construct an
infinite complete branch 030 of T/X as

follows:

r (/%) = r(T) e 6_30. IfN e B, then

the subtree of T/X rooted in N is infinite.

Since s"1(N) is finite the subtree of T/X



rooted in some N' e s | (N) is infinite.
Let N' € @, « Then (3, is infinite end
contains no tips

1s7s5 If X is a cut through T and X # {r(T)} then
s~1l(N) C X for some N ¢ Te
Proof: Suppose for every N € T there is an
N' € s (N) such that N' € Xo Then construck
a complete branch @o of T such that @o nX=4¢
as follows: r(T) € 6500 IfN e ( and
Nt e s-1(N), Nt £ X, then N' ¢ (Bo" Then
X N @O = ﬁ5 and therefore X is not a cut through

Ts

1.8 Derivations,

Let T be a iree and ¢ a function defined on the nodes of
T having clauses as valucs. For X C T define c(X) =
fe(N) + Nex} o A pair @3 — (T,c) is a
derivation relative to given logically valid inferencc rules,
if for all interior N ¢ T, ¢(N) can be obtained from
e( s (X)) by a single application of one of the given infcronce
rulese If X is the sebt of tips of T, if c(X)_C_ S and if

C=c(r(T)) then & is a derivation of C from S. If C= [

then ® is a refutation of S, We also say that ® is a

derivation from S (or refutation of S) when ®is a derivation
from a set 8! (refutation of S') and S' consists of variants

of clauses in S. (This convention is necessitated by the



decision to consider as clashes only standardised sets of
clauses)s If X is a cut through T and ¢(X) C S then (@'
= (T/X,c!), where ¢! is ¢ restricted to T/X, is a derivation
from § of C=c(r(T))=c'(r(T/X)) and S logically implies C;
if ¢ = 0§ then 3 is unsatisfiable. In order to simplify
notation we usually write ®'= (T/X,c) instead of @) =
(T/X,¢')e  Similarly for N € T we denote the derivation
GDN:(TNjC'), where ¢! is ¢ restricted %o Tﬁ by writing
G)N:(TN’C)'

Until section 2.8 we use the term"derivation"to refer

to clash derivations @ = (T,c) is a clash derivation

if for all intexrior NeT, c(s"’1 (N)) is a clash and c(N)

is its resolvent, Given such a derivation ®= (Tyc) and N
interior to T, o(s™ () is said to be the clash at N

If N' ¢ sm1(N) then the subset of ¢(N!) of literals resolved

. -1 . .
upon im c¢(s (N)) is ocalled the set of literals resolved upon

at N'e If o(N') is & satellite of the clash 0(3“1(N)) then

N' is called a satellite mode of 0 . Similarly if o(N') is

mucleus of c(s_1(N)), Nt is called a mucleus node of ).

If N € T then an occurrence of L € c(N) descends from the
same occurrence of L € ¢(l); If N'e sm1(N), if & is the
MegeSele Of the clash at N, if L'® =1L € co(N) for L'e c(N*)
not resolved upor at N and if the occurrence of L' in c(I1*)
descends from an occurrence of L" in ¢ (N"), then the
occurrence of L in c(N) descends from the occurrence of

L' in c(N").
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149 Search Strategies.

Ve distinguish betweon complete inference systems and
complete proof prosedurese L refutation complete inference
system is » set of effective inference rules which when
applied to arn unsatisficble set of clauses SO yields a
refutation of Soo Ths refutation completeness of a
resolution rule 6{ can be formulated as an assertion that
for any unsatisfiable set SO there exists a refutation {f)
such that each resolvent of a clash in () is obtainable by an
application of Gaa A refutation complete proof procedure
is semi~effective method for eventually obtaining a
refutation of a set of clauses SO when SO is unsatisfiablee.
Thus & proof procedure consists both of an inférence
system and of a search strategy for obtaining refutations
within the system of inference rules.

The usual statements of completenvss for resolution
systems implicitly ascsert the completeness of a particular
class of resolution proof procedures. It is easy to invent
British Maseum methods for searching resolution refutations.
Such methods might, for instance, emmerate all resolution
derivations rejecting those which were not refutaticns of o
given input set SO continuing until a first such refutation
vwore founde At any given time only one derivation might be
under consideration. Sach search strategies would be
extremely inefficient and much of the efficiency of resolution

dorives from the efficiency of the search strategies associated

with it.



We shall say that an arbitrary set of clauses
C is a clash if some standardised set(® of variants of
cleuses in Cis a clash. The resolvent of Cis identical
to the resolvent of (C!. Given a set of clauses S and e
resolution rule & let (S) be the set of all resolvents C
of clashes ©C S, where (& is an admissible set of

premises for application of the rule Ge » For a given input

C
set of clauses S, let R (SO) S8, and for n > 0
n -1 i
K (sp) =10+ ¢ e®R( U & (5))

and Clél.qu 0\i<so)3' =

I

thus C eQn (s O) if and only if there is a derivation §) of

C from S, such that each application of resolution in @) is

0
an application of Qand such that n + 1 is the number of

distinct nodes in the longest complete branch of @D. the

o0 i
set S.) is called the search space for S..
190 R (% . 0

Giver a set of clauses SO a resolution procedurc
(resolution rule ®] plus search strategy) gencrates a scguence
of clauses ( C1 sesay Cn,...) from the search space for SO.
This procedure elther terminates without generating the null
clause, terminates when some first Cn = [ or does not
terminate and 2o Cn = . In all of these cases we may
imagine that the procedure continues until all of the clauses
in i%:o@\i (SO) have been generated. The resulting (finite
or infinite) sequence ( C,5eee, Cn,...) is called the trace

for SO of the given proof procedure. Necessary conditions
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that a sequence ( Cysenes Cn,...) be a trace for a set of
clauses SQ of a proof procedureé), c¢onsisting of a
resolution rule 62 and search strategy, are that
(1) for every C» n>1, either €8, or
Cn is the resolvent of a clash
1
C- {cn1 seess G} such that ¢ ¢ R(C)

m
and n, < n forall i , 1<igm, and

(2) if C-.: {Cn gesey Cn } is a clash with
1 m
resolvent C ¢ Q1(@) then C =C for

some n > max §n1 senoy nm}

(provided that no Cp has been deleted),
i

A search strategy is a depth saturction strategy

if for every trace ( Cysoers Cn,...)

C, « OQn (SO) R Cj € 6)?1 (so) and i< j imply n < m.
Depth saturation has the appealing defining property of
generating simpler derivations before more complicated onese
What is more desirable is that simpler refutations be
generated before more complicated ones and that derivations
which can predictably contribute to simpler refutations be
generated before derivations which can predictebly contribute
only to more complicated refutations. This last property
partially defines the family of diagonal search strategies
studied in chapter L.

If a resolution procedure includes deletion rules

(c.ge deletion of variants, subsumed clauses, teutologics,etc.)
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then we include in the trace T for any set S all clauses
rejected by the deletion rules but include no other clauses
obtainable by derivations from such clauses after their delet~
ions Thuc if (01,..., Cn,-oa) is & trace | and the clause
Ci is deleted lmmcdiately after the generation of the clause

Cj then i< j and at most only the clauses Ci ’Ci-«-‘l’“f’cg

in T are obtainable by derivations containing Ci' This
convention allows us to treat the number n -1 of clauses
occurring before the first Cp= 0O in the trace(C1,...,Cn,...)

of an unsatisfiable set S, @s a measure of the difficulty of

refuting SO by the given proof procedure. This measure is

a first approximation which does not take into account, for
instance, the effort involved in testing for the applicability
of the decletion rules themselves. It might be agreed, that,
givon a program which implements a proof procedure, a more
appropriate measure would be the total time taken to rofute

S Such a measure would howevar more accurately quantify

o*
tho effort expended by the program than it would the effort

expended by the proof procedure itselfs In fact, given such
a program, an ideal measure would be the total cost involved
in refuting SO (including charges for use of a computer, and
Por writing and maintaining the program)., In any case it is
important to note that the difficulty of refuting an unsatis-

fiable set S, is completcly independent . of* the complexity

0

of a refutation of SO' The complexity of a derivation

‘D:(T,c) can be measured entirely in terms of intrinsic
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properties of () (i.e. the number of nodes in T, the length
of the longest complete branch of T, etc.), whereas the
difficulty of refuting a set of clauses S has to be
measured in terms of the total effort expended to obtain a
first refutation of Sj. The purpose of developing more
efficient theorem~proving methods cen be met only by reducing
the difficulty involved in refuting unsatisfiable sets of
clauses. Thus much of the research in automatic theorem-
proving, involved in reducing the complexity of derivations,
is unrclated to the principal goal of theorem-proving researchs
A deletion rule is compatible with a proof procedure &
(complete relative to @) if wheneverT,1 is the trace for
some S, of B, Té is the trace obtained by applying the

deletion rule to clauscs in 1% and some Cn in T} is O3,

then some C' in ’r2 is Q. A deletion rule may be

nY
complete yet fail to be efficient if n' >n. If Cn and C’n,
are the first occurrences of [ in ']; and T2 respectivol‘y
then a sufficient condition for the deletion rule to incrense
the efficiency of refuting S()(ignoring the effort involved
in applying the deletion rule) is for n' to be less than n.

In sections 111 and 1le12 we investigate the complebeness and

efficiency of deletion of subsumed clauses and tautologiess

1.10 Contractions.

The lirting theorcm asscerts that given a derivation

0) = (T,;c) and given for every tip N«€Ta clause Ay vhich has

¢ (N) as an instance thon there exists an isomorphic derivation



Dt = (T,c") fron §' = {AN: NeTis a tip} such that if
S' is standardised then (M) is an instance of c'(N) for all
NeT and c'(l) = Ay for N a tip of T, The contraction
theorem is obtaimed by generalising the lifting theorem,
allowing AN to subsume c(N) when N € T is a tip. The
resulting derivation Q)' from S' of a clause which subsumes
c(r(T)) is then a contraction of &) . The contraction
theoren yields the lifting theorem as a special case and in
its more general form is used for applications later in
chapter 1 as well as in chapters 2 and 3. We note that
our generalisation of tne lifting lemma was motivated in
part by Brown's generalisation in[ 3] .

L set of clauses ' subsumes another set of clauses
2 if for some substitution o~ and every L € (3. there is
an unique 4A' € &' such that A' o-C A. We also require
that for every A' € (2' there be agrj'x%‘éeef such that
L' o-C A. Thus o~ induces a 1~1 correspondence between
clauses 4' € (' and 4 € 3 such that A' o~ C A.

Let (2 and (' be clashes, Then (2' covers C,
if (1) 3 ' subsumes some subset of G (let o~ be such

that A' o= C A for corresponding A' € ' and

Ae@),
(2) 4" € @' is a saterlite (or nucleus) of (!

if and only if A' o= is a satellite (nucleus) of Q.



(3) the resolvent of C! subsumes the resolvent
of C,
(4) @' is restricted if Cis end
(5) it 4' € Q! then L. e A' is resolved upon
in &' if and only if Lo~ C i'or is resolved
upon in C .
' meakly covers C if (1), (3) ~ (5) above hold forCand

C'. The notion of covering here is only weakly related to
Sibeet's notion defined in [ 48 ]. The lemma below is the
local version of the coniraction theorem and is used in

se-tion 1.11 to study the subsumption strategy.

Lerma 1.10.1. Let C be a clash with resolvent ¢ and let

C! subsume C . Then either
(1) some €' ¢ C! subsumes € or
(2) some subset C'! of ! is & clash anda Q!
covers C .
If @ is a set of instances of cleuses in (3!, then Q' = (!

and C is an instance of the resolvent of e' °

Proof. Let C = {AJI,.“, An’ B} and
Cr = {,;1',..., At B'} . Let o be such that
A o= C Ai and B' o~ C Bs For1 i gm let

i

F, U"'UFmUBo ’ Fi,é;é,where

B
8 fE1 ] F1 seesy Em U Fm} and

C = (1101 U see U A

on V] Bo)e where ¢ is an

MeZeSela of g .
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Case (1) If Li‘ o < AOi for some i then
A:!L‘ o-® C C soh; subsumes C. Similarly if B! o
C B then B! gubsumes Coe
Case (2). If case (1) does not apply then
B' o~ N (F1 U eee QFm) £# ¢ . Assume that B*'o-nFi,éyS
for 1 €i < m' € n (by rearranging subscripts if
ncecessary)s For 1 <i < ! let
A;L" = O Ly, s BAS,
D' - F'O QFm' y By' ,Fi',é;é,
& - {E'1 U F|1 seses E'm' v F'ﬁ’} where
E' C B, F'c CF,
Bojom S by, end Bt C B
Notice that o~ © unifies F's. Let ©' be on meg.s.u. of

£ then o6 = 0'A for some Ao The resolvent of

Gt - {Aj’ yeoes ;%,,B'} C Q) is

1 J ' R
C* = (AéT Uses U &5 v U By } e
C' subsumes C simce C' A ¢ © (because
Ad ie' A = AO ;_ o-& < AOie ¢ G eand
By'0' A = By'o® C By e ¢ C)e

That a literal L is resolved upon in G if and only if L  is
resolved upon in C follows from the fact that
E.'e ¢ E, and F,'ogo C PF.,
i = 7i i = i
Suppose @!' is not restricteds Then for some i either
E.'6! C C' o T.'e C C',
i i =
But then
Eive'A = E ' g C'A =C and Ee ¢ Cor



-T2 -

Fi'/e',( =F;'omB6CC'A =CandF.OCC
and C is not restricted. It follows that G! covers &
In case each Ai is an instance of Ai' and B is an instance
of B! then case (a) does not apply, m' =m ; so @' =Q
and since all inclusions become equalities C'A =C, i.e. C
is an instance of C’'.
et © = (T,¢) and §)' = (T',c') be derivations. We
define the notion, §)' contracts §) (also §)' is a
ccntraction of @ ), by induction on the number \of n of
nodes in T :
(1) If n=1 and T = {Ny}, then ' = {N'o} and
c! (NO') subsumes ¢ (No).
(2) If n > 1 then let Ny = x(1), 7w, = 0000},
@ = c(s~1(No)) and @i = (TN‘,c), 1<i<m
One of (a) and (b) holds. ;
(a) @' contracts some ®i and c! (No') subsumes
c(No), where N,' = r (1').
(b) Let Ny' = (T'), then s'1(1\To') £4 . Let
s"1(No') = {N,"yeuey N L}
G =c! (s-1(No') and
@i' = (T'y, se"), Isigm's Then
CDi' contracts ®i for alli, 1<ign'sm

(after rearranging subscripts if necessary)

and @' covers G.
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Thus if @) is a derivation of a clause C from clauses Sy
if §)* is a derivation of C! from S' and if G contractsCs
then C! subsumes C and each clause in S' subsumes a clause
in 8 (provided S* = f{c! (N') : N' eT' is a tip} ).
Associated with every contraction §)' = (T' ¢! ) of a
derivation §) = (T, ¢) is 2 1 ~ 1 mapping Y ooy
such that for every N'e¢ T' the clash c! (s"1 (Nt) ) covers
the clash ¢ (s~1(N) Yo  The mapping¥'is defined (using
the notation in the definition of contraction ) by induction
on the number n of nodes in T:
(1) If n =4 then (ML) = Ny
(2) If n>1 then
() If ®' contracts some (Di with associated
mapping“f% then'\; is also associated
with the contraction &' of ®, otherwise
(b) If"l;.'_ is associated with the contraction
d)i' of Q)i for 1 <i<m', then
QV(NO') N, and

YY) =Y (W) for e TEAT! .
1

]

1

Examples.
(1) Let ®=(T c) where T = {NO""’N*IO} and where

the function 5 on T is defined by the diagrom
below and ¢ is defined by the following

equations.
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LN
o) =5 (o)} o(ig) = ()}
o)) =B (), ()} o(w) = § (a), Ha), T ()}
o(N,) =0 (v), B (y)} o(vg) = £ (v)}
o(tr,) =fP (), § ()} e(¥) = fg (a), a(v)]
o(1,) = (v), B (a)} o(w, ) = (B (v), (=), B (x)}
o(i) =0 (v), B (v)]
Lot ©F = (T',0') where T' =fi; N,, N> Ny Ngy o] amd

where s on T' is defined by the diagram below and ¢! is

defined by the following equations

‘\\NB / N1O
\\\ //
\N N N
. b 7 2 CT
\ -
\"\,\ /// //
b4 NO
o! (NO) = {P (v)} cf (N7) ={P (=), § (b)}

ot () = {a (v),F ()} ot (Ng) = P (w)}
ot (I,) = P ()} of (N )= # (b), P (v)}
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t + L) = T!' whe
Then ' contracts @ and \f"(Nl) N, for all VN, € where "i"
is the mapping associeted with the contraction.

(2) Let®, @ rand V' be defined as in example (1).

Let ®" = (T", ¢") whore T = {N end

N
w» Vgr Tl
where 8 on T" is defined by the following

diagram and c¢" by the following equationse

Ng N0 ot (M) = O
o (n) = {7 @)
o) = B (w)]
N,

then 00" is a contraction of both @) and B'.
The associated mapping W'' is defined by "{f' (Ni) =N,

for all N, € " , both for the contraction of @ by

@®" and of ' by ®"e.

Theorem 1.10.2 (contraction theorem). Let 0= (T, c)

and for every tip N let AN be a clause which subsumes c(N).
Let 8 = {AN: N eTis a tip} be standardised. Then therc
exists a contraction ®' = (T', c¢') of @) which is a derivation
from S« If each ¢(N) is an instance of AN, when N is a tip,
then T'=T and @' lifts &) .

Froof (by induction on the number n of nodes in T).
Ifn=1thenT= Njo LetT' =T andc! (NO) = A

Suppose that n>1 and that the theorem holds for derivation

troes containing fewer than n nodes, let Ny =7 (T) and

wf.
s (No) = (N, 5000, N Let®i = (TNi,c). Since cach T
1
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contains fewer then n nodes, by the induction hypothesis, there
: &£ gt ! . f t t 3

exist contractions ®i = (Ti s Cy ) of[Di « EBach (Dl is a

derivation from S and since S is standardised no clause in

‘Di' shares variebles with any clause in (Dj‘ fori £ jo

Let N.' =7 (Ti'), 1<igm, let

i

C {o (N1):o--, c (Nm)} and
C o= fo," ®)sees ot (W)} o
C is a clash with resolvent ¢ (No) and c:'l-(Ni'>
subsumes ¢ (Ni) for each 1,1 < igme C! is standardised.
By the preceding lemma either
(1) some c, ' (N'i) subsumes ¢ (No) or
(2) someQr ¢ is a clash with resolvent b!
and C" covers G Lot = {cqt(N‘t')’“"Gm’ (N’m )}e
Case (1) Letld) = @i' . Then @) is the desired contraction
of&)e
Case (2) Let®' = (T',c!) be defined as follows:
T P
st (NO’) = fN,I"H-s N;ﬂ,} s
c! (NO’) =C' and
of (M) =c!(F) for Nermn T,'
Then ®! is the desired contraction of ® .« In case each
¢(N) is an instance of AN for each tip N +then by induction
“hypothesis each Ti’ =T X, and (Di‘ 1ifts ﬂi. Therefore
case (1) does not apply and @" =Q! ., If we let NO' = NO

then T* =T , ¢ (N) is an instence of c'(N) for each ¥ and

Ot lifts Q.



The fact that the contraction lemma provides information

about the completeness and efficiency of subsumption suggests
that a2 similar theorem might serve the same purpose for
deletion of tautologiese In section 1.12 we show that for
any derivation ® from clauses S, whore ® possibly contains
tautologies, there exists a derivation®' from S where

' contains no tautologies and @' is a semi-contraction of
@ « The definition of semi-contraction is obtained by
replacing the condition that C' coversC(in (2b) of the
definition of contraction) by the weaker condition that &'
wezkly covers C.« Thus every contraction is a semi-
contraction but not conversely. .i.ssociated with every
semi~contraction ®' of a derivation ()is a mapping ‘-\"
defined as for contractions,

In order to apply the generalised version of the lifting
lemma and to obtain informetion about the completeness of
deleting subsumed clauses and tautologics we need to examine
some of the properties preserved under contractions and semi-
contractions. We note that if ® = (T',c') is a semi-
contraction (contraction) of a derivation @) = (T, c¢) then

1.10.3. @' is a refutation if®is,

1,10 @' iz binary if® is,

1.10.5. for all N € T,c'(N) is not a tautology

if ¢ (Y (¥)) is not, whereY'is the mapping
associated with the contraction ®' of 6) (thus

®' contains no more tautologies than © ) and



1,10.6.  if ©" is a scni-contraction (contraction) of
®' then D" is a semi~contraction (contraction)
of ® .
The following properties are noted in the sequel:
1,10.7s D! is minimel if @ is (Theorem,13.2).
1,10,8, If ®!' contracts ) and the clash at FIN) is
an M-clash then the clash at N is an M-clash
as well (remark proceding Theorem 2.4.1 ).
1,10.9¢ If N is inferior to T', (C!' = ¢! (s"l(N) ),
C=c (s"l (“*”(N) ) and A' ¢ &' subsumes
4 eCthen A' is O~ rostricted if A is

(remark preeeding Thieorem 2.6.1 ).

1.1l Deletion of Subsumed Clauscs.

Strategles for deleting variants and subsumed clauses would
scem to be promising first condidates for establishing ri:orous
proofs of effieciency in theorem-proving. Our attempts to
obtain such results have uncovercd uncxpected problems not
only for efficiency but for completeness as wells In
particular our proof for the completeness of subsumption in
[ 17 ]is not to the point, while Sibert's proof [ 48 ]
applies only to a very incfficient version of depth saturation
searche In fact counterexample (1) below shows that a
certain strategy for deleting variants is incomplete for
P1 - resolution.

In the counterexample below we make use of the following

simple depth saturation strategy ¥ which is defined only for
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binary resolution rules R « ¥ is defincd by specifying the

trace = (C P Cn,...) for an initial set of clauses SO

of the proof procedure determined by 3_ and & given binary res-
olution rule §:
(1) Let Cyseves C bo distinet clauses in S, where
8y = {01,..., cm} .
(2) Let p, = Vand g = 2. Suppose that p, and g4
are defined but thet p, 4 end q 4 8re not.
Suppose that C1,..., Cn are defined and that
cmij is nots Let C= {C bi 7 cqi} - If-'
OR(C) #8 then let € ,eee, G, Do distinet
cleuses in 0{1( C) where 5)1(6) = {Cn+1”"’
Cm—k} *
(a) 1If p, +1 = q; ‘then let p, 4 = 1 and Q4=+ e
(b) Otherwise let Dy 4= py+ 1 and g 4 % g
Bxempless The following examples are used in establishing

counterexemples 1.3 below.

(1) Let the initiel set of clauses S, P° {Cyseees CL,.}

where C, = {P (a,b)} , 02 = {P (z,¥), P (£ (x), )t
¢, = {P(ny), @ ()} emd c ={T (o) Let & be
P, - resolution, Let T = (01,,,,, cn,...) bc the trace

for SO of Q and Y+ Then

C5 = {P (£ (2), b)} 1is the resolvent of {C;s Cpl >
g = fa®} of {o, 0},

c, = [P (£(£(a)), b)} of {02, 05} ,

Cg = {Q (P)] of {C; o5} ema



6. =0 of {C, C

9 L’ 6}
It is easy to verify that for alln>2 ,

03n+1 {P (fn (a)s b)} ’
Can 4 2 {Q (b)} and
c}n + 3 = 0

(2)  Let 5, be {c,‘ﬁ,..., c5} where C, = {6 (v)s Ply)} s
¢y = (G @)}, o5 ={P((a) )}, 0 = {P (£(b) ),B(a)}

and Gy {P (£ (a) )}+ TLet®be binary resolution and

]

let T =( Cprooes cn,...) be the trece for S of 0 and 3.
Then

Cp = {P(f(x) )} is the resolvent of {cx, ch} s

c, = {6 (2(6) ), P (a)}of {0, O

cg = {6 (£(e) )} of fo,, C}

09 = O of {03, 05} ,

Cip = {P (a)} of {c#, 06} 5

C,,= G of {05, 06} ’

Cyy = {P(a)} of {cz, 07} and

Ciy = B of {c,, cgl - r

C, is undefined for n > Lk

Subsumption is admissible for a resolution rule 6 if
whenever (0is a clash with resolvent C € 0'31( e), G a
clash with resolvent C' and (! covers G then C € 6).,1( ;.
In particular subsumption is admissible for O if 0] is
preserved under contractions (i.e. if whenever 0t contracts

Q) and evéry application of resolution in (@) is an application

of R then every application-of resolution iy B)' is an application

of ®).
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Theorem 1.11,1 states that if subsumption is admissible
for § then simple deletion of subsumed clauses (defined below)
is complete relative toPand to any search strategy ¥ for 3.

Let Tﬁ, be the trace for a set of clauses S. of a proof

0
procedure ®. We define the trace TZ for SC of ®with a given

deletion rule by specifying which clauses in T1 are

generated in T, end which of these clauses in T2 are deleted

2
in T20 The order of clauses in T2 is the order inherited

from T,‘ o Thus if the n-th clause Cn in T'1 is generated in
T2 then Cn is the n'~th clause in T2 where n'< n and n~n! is
the number of clauses generated in T1 before Cn but not
gonerated in szefore C_e

Let T1 = ( Cypreces Cn,...) be the trace for a set
of clauses S. of a proof procedure (. The corresponding

0
trace T2 of (° with simple deletion of subsumed clauses is

defined inductively :

(1) 1f Cn in T1 is in SO then Cn is generated in T2.

(2) 1Ir C in T1 is the resolvent of a clash
C = {cn1,..., cnm} » m, <n, then C_is
generated in T2 if and only if each C is
generated and not yet deleted in T2.

(3) 1If c_ is gencrated in T2 then
(a) if C is subsumed by some Ci » 1 <n, generated

and yet undeleted in T then € is deleted
2 n ?

(v) if C, properly subsumcs some C,, i < n,

generated. in T2 then Ci is deleteds ( C
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properly subsumes D if C subsumes D but D does

not subsume C ).

Counterexample 1 provides an example of a well=defined
strategy for deleting subsumed clauses. This strategy is
incomplete as is the strategy which is derived from it by
limitation to the deletion of variants.

Counterexample (1). Let deletion of subsumed clauses

be defined by replating conditions (32) and (3b) in the
definition of simple deletion by (3a') and (3b') belowa
(3a') 1If C, is properly subsumed by some Ci,i<:n,
generated and yet undeleted in Té then Cn is
deleteds
(3b') If C_ subsumes some C., i<n, generated in Té
then Ci is deleted.
That this deletion strategy 1s not complete can be
verified by taking the S, R and Sof example (1).
(Note that subsumption is admissiblc for & .) 8, is
unsatisfiable and 0J is the 9~th clause generated in T}.
Applying the deletion rule defined above we obtain the trace

T’Z = (C;,oocg C'ngeno)o

! — J 3 ! 3
For ng8, C n = Cn and C6 is deleted when C g 1is

generated.
For n»8, when n is even, C' = fQ(v)} ana C' o is
deleted w t 18 generated.

eleted when C n generate 13

For n>9, when n is odd, C'_ = {P(f 2 (a),b)}  and

is never deletede.
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Thus no Ch inT2 is the mull clausee

Theorem lesllesls Let subsumption be admissible for a

given resolution rule 060, Then subsumption is complete
relative to & and any search strategy & for ®R.

Proof. Let T} be the trace for a set of clauses SO of
® and L. Let Té be the corresponding trace with simple
deletion of subsumed clauses. It suffices to show that for
every Cn in 'T1 there is a c¢lause Cn' generated inT2 which

is never deleted in Té and such that Cn' subsumes Cn. (Cn,

is never deleted in T2 if C , is not deleted after the

grmeration of Cm in Té for all m>n'.
We observe that therc exists mo infinite sequence of
clauses Cn sovoy Cn seeo such that Cn properly subsumes

1 i 1i+9

Cn ¢ Prom this observation it follows that for every
i

clause Cm generated in T; thore exists a clause Cm' generated
and never deleted in Té which subsumes Cmu The proof now
procedes by induction on n , the index in 1} of the clause

1 is generated in Té and is subsumed by

some C1, generated and never deleted in 'TZ'

Suppose that n>1 and that every Ci’ i<n, is subsumecd

Cn. If n =1 then C

by sone Ci' generated and never deleted in Té. If Cn is not
a resolvent then Cn is generated in Té and is subsumed by some
Cn' generated and never deleted in Té. Ir Cn is the resolvent

of e = {Cn gecey Cn } Y ni < n, let e! = {Cn, gevoy Cn' }
1 m 1 m
1

where cach Cn subsumes ¢ and is generated but never
n

i i
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deleted in Téc Then (' subsumesCs By the contraction

lemma either some Cn subsumes Cn or some ('' C @' covers

!
C + In the first case we are through. In the second case,
by the admissibility of subsumption and the completeness of the
trace Té, the resolvent of (C'' is generated in Té and is some
Cn" Cn' subsumes Cn and. some never deleted Cn" generated in
Té subsumes Cn' and therefore subsumes Cne

As can be seen by examining the proof of theorem l.ll.l
simple deletion of subsumed clauses need not be efficient, even
ignoring the effort involved in applying the deleticn rule itself.

Counterexample (2) shows how this deletion rule can hurt effieiency

by delaying the generation of the ITirst mull clause.

Counterexample (2)s Take the SO ,62 and £ of example (2).
Then the traceT1 for SO of R and $ is the trace Tof cxample
{2). S, is unsatisfisble and the first instance of O in T}
is C9. If Té = (01' yeeey C'n,...) is the trace for § of 63
and Z_with simple deletion of subsumed clauses, then the first

instance of f1in Té is C; More particularly:

O‘t
Por n< 8, C' =C and C! is deleted when

- n n 3

C?8 is generateds
C. is not generated inT2 since C'3 has been deleted

and therefore {C! , CQ is not resolved in Té.

3
Cé = {P(a)} , the resolvent of {C'A, C'6} and
C'ZP and C'7 are deleted when C! 1is generateds
! i I ' ! L]
C 10 I8 the resolvent of {C 5 C 6}

Counterexample (2) sugrests that it might be possible to



remedy the inefficiency of simple deletion by replacing
deleted clauses by the clauses which subsume them. In other
words if the search algorithm would generate the resolvent

C of the clash C= {Cn seues O } but certain G are

1 m i
deleted and subsumed by undeleted Cn' then examine the set
i,
o= {Cn,1 seecs Cn,} and if some '' C (! is a clash
n

then generate its resolvent C' in place of C., Admittedly this
procedure is quite difficult to define precisely for arbitrary
search strategies. But for the case of simple depth
saturation there is no problem. However counterexample (3)
shows that even in this case efficiency cannot be guaranteed
since the replacement procedure may lead to the premature

generation of resolventse

Counterexample (3). Let 2. be simple depth saturatione

Then §$*' ( 3 with the strategy of replacing subsumed clauses)
is defined by (1) and (2) in the definition of 3 and by (3)
belows
(3) Suppose that Cn has Jjust been generated.
(2) 1r C. is subsumed by some undeleted
Ci’ i < n, then delete Cn.
(b) If Cn properly subsumes some undeleted Ci’
i < n, then replace C, by C_ (ieeo lot
C, assume the new value Cn).-
It is easy to verify that X' is complete with resolution rules
01 which admit subsumptiones The reader will note that

redundancies are introduced by condition (3b) since a



clause Cn mey now occur in several positions C:,L and therefore
the resolvent of the same clash may be generated morc than
once., These redundancies can be eliminated without losing
completensss by modifying (3b). However even with such a
modification the counterexamnle below continues to hold since
no such redundancies are actually introduced in this example
by applying X' unmodified.

Let 8. and®R be the S

0 0
T2 = (C1',..., C'n,gn) be the trace for SO of R and 5 'e

and R of example (2) and let

Then C‘10 is the first instance of 1in T2 whereas C9 is the

first instance of O in T1 .

For n<7, C’n = Cn but 03 assumes the new value

Ce = {P(£(x) )} when 06 is generated.

Clg = {P (a)} s the resolvent of {CB, ch} » which
was not a clash inT1o C“l" and C’7 assume
the new value( '8o

C'9 = 08, the resolvent of fC'1, C’5} o

Gt =0 the resolvent of {0'5, c'5} .

Suppose that subsumption is admissible for a resolution
rule R. Tet & be a search strategy for R and let T =
( Chaases Cn,.o.) be the trace for & set of clauses 5, of

R ond ¥ o We say that subsumption is monotonic in Tir

whenever a clause C  in T is the resolvent of a clash C =

{Cn sescy Cn} and whenever ! = {Cn' sees C g } covers C
1 m 1 m?
where C subsumes C_ and n} < n., then if C_, is the
n' n. 1 i n

i
resolvent of (f! then n'< n., If X is simple depth
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saturation and if subsumption is admissible for a binary
resolution rule ®, then subsumption is monotonic in any
trace | of Reand Lo IfR admits subsumpbion and § is

a diagonal search stratcgy for 3 ; then subsumption is
monotonic in any trece| of R and¥ with a possible exception
for the case of clashes C and Crt (s above) where a clause

Cn' subsuming Cn contains more literals than C

. n,
i i i
Counterexamples (2) and (3) show that monotonicity of

L3

subsumption does not guarantee efficiency either for simple
deletion or replacement deletion of subsumed clausess.
Theorem l.1l.2 implies that monotonicity of subsumption is a
sufficient condition for the efficiency of deleting newly
generated subsumed clauses. This stratggy includes as special
case the ordinary strategy for deleting variants.

Let T} = ( 0196099 Cnsnoe) be the trace for a set of
clauses SO of a proof procedure 6). The trace Té of @

with the deletion of newly generated subsumed clauses is defined

inductively:

(1) 1f Cn 1nT1 ig in SO then Cn is generated 1n'r29
(2) 1r C in‘T1 is a rcsolvent of the clash
G = {Cmﬁg..., Cnm; s B,<n, then C 1is generated

in Té if and only if each Cn is generated and

1
undeleted in Té.

(3) 1r Cn is generated in Té then Cn is delsted if and

only if Cn is subsumed by some Ci, i<n.
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Theorem 1.11.2. Given a proof procedure ¢ and

an unsatisfiable set of clauses S let T1 be the trace

0’
for SO of ® and let T2 be the trace for SO of & with
deletinn of newly generated subsumed clauses. If subsump-
tion is monotonic in T1 and if Cn is the first instance of
d in T,', then some C' , = 0 in T2 and n' < n.

Proof. We show by induction that for alln > 1
there is an n' < n such that C'n, in T2 is undeleted &nd
subsunes Cn in T1.

Ifn=1 thenC,I eSO and C1' ESO

C1’ is undeleted and sabsumes C‘I . Suppose that for a given

are identical,

n > 1 each Ci’ i < n. is subsumed by an undeleted C'i,,i‘ < i.
If C €S, then C_ is generated in T, and is some C' , in T,

where n' < n. If C'n is deleted then some undeleted C'i

for i < n' subsunes C'n,. But then C‘i subsunes C, and
i< n. If C_ is the resolvent of (= = {C geeasC },
n n, n

n, <mn, then G' = fC'n,,“., C'n,m} subsumes & vwhere

C'n, is undeleted and subsumes Cn and n'ig n. . But then
i i

by the contraction lemma either some C'n, subsumes Cn or

i

some (3" C ' covers (3 . In the second case the
resolvent C'n, of (2" subsumes C  and n' <n. If C'n, is

deleted in T2 then scne ("i subsumes C'n, and C, where

i<n' <n.

Theorems 1.11.1 and 1.11.2 and counterexamples (1)-(3)
do not constitute a thorough analysis of deletion rules for

subsumed clauses. L more satisfactory analysis would probably

involve comparing the number of clauses omitted by the deletion

rules with the number of new clauses introduced before the first
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rules with the mumber of new clauses introduced before the
first instvance of T . It is quite possible for deletion to
delay the generation of II and yet compensate by omitting the
generation of more clauses than are introduced by this‘ delaye
It might be hoped that such an approach would also be applicable
to other more difficult problems of efficiency in theorem-

provinge.

1.12 Deletion of Tautologies.
If T1 = ( C1,..., Cn,..o) is the trace for §  of a proof

procedure @then the ordinary rule for deleting tautologies can

be defined by specifiying which clauses Cn in T1 are generated
and which of these are deleted in the corresponding trace TZ
of@with deletion of tautologies.

(1) 1f ¢, in T1 is in SO then C_ is generated in TZ.

(2) 1f C, in T1 is the resolvent of C = {Cn1,...,Cn} s

ni< n, then Cn is gonerated in T2 if and only 1?
eac;h Cn. is generated and undeleted in TQ-

(3) 1rc, is generated in T2 then C_ is deleted inTZ

if and only if Cn is a tautology.

Theorem 1,12.2 implies that if 6 is any resolution rule
preserved under semi-«con’r,ractibns then deletion of tautologies
is compatible with ® and any search strategy § for 6.
Bquivalently deletion of tautologies is compatible with R

and 3 if whenever C is a clash with resolvent C € Q1( <),

C! is a clash with resolvent Cf and @ weakly covers &, then
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Suppose that a resolution rule R is preserved under
semi-contractions. Let®be the proof procedure determined
by ® and a search strategy £ for R and let T=(C1"‘°:Cn9"°)
be & trace of ® . Then weak covers are monotonic in T if

whenever & clause Cn in ']‘ is the resolvent of a clash

C = {Cn,l"“’cn} and whenever Q! = {Cn',l’“"’cn' i weakly
m m

~

covers Cwhere C , Subsumes C_ and n'.< n, then if C_, is
n! n, i-= i n

the resolvent of (3! then n*<n. Theorem 1,12.3 implies that

monotonicity, of weak covers is a sufficient condition for the

efficiency of deleting tautologieso

Lemma 1.12.1. Let & be a clash with non-tautologous

resolvent C and let D ¢ C be 2 tautology. Then either
(a) some C!' ¢ & subsumes C or
(b) some subset C' G, D £ @', is a clash with
resolvent C! subsuming C and @ weakly covers C.
Proof: LetD = {L, B} U Dy et Cafhyyeessd o3

Wheref*iinUI&Oi9B=F’|U'.°UFnUBO’ Eifé¢9Fi%¢

and C = (1&01 UoeesU & U BO) & where © is an megss.ls of

0
£ = {E1 U 1'7‘1 seees B U Fn} « Since C is not a tautology
at least one of the literals L or L is resolved upon in De
There are three cases to consider.

Case (a). D is the mcleus B of C and only one of L or

L is resolved upon in Ds We may assume that L is resolved

upon and that L ¢ F1. Then A’I subsurmes Ceo  For since
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E16 = F,IG = {f el and since L 61309 feec BOG and
E € B® . 8o & CBG6. iy Ce
18 =% 0 40 B8V L0 &

-

Case (b1)e D is the nucleus B of € and both L and L
are resolved upon in D. Ve nay assume that L ¢ F1 and I ¢ }?2..

Let @' = {4, Az} and €' = JJ v E ¢ 6 unifies @)

1 2
because
E 6 = F’1e = {Le} and
Eze = er = {L 9}0

Let €' be an megoseus of € and let €= 6768'', The
resolvent of @! is

' = (& UAOZ) &' and

crert = (4, UAOZ) 8 < Co
So C! subsumes C» Suppose Cis restricted and !, is not.
Then either L 6! or L @' 4is inC's But thenLe or L6 ig
in Ct' 611" C ¢ and Cis not restricted.

Case (b2). D is a satcllite of C. Suppose that I
is resolved upon in D end that D is .{11 » Then L €E1 + Let
C'=C- [} =naQ =L~ (E UF o Then @ unifies €.
Let ©' be an m.ges.us of &' and let ¢ = 6'6 ''s The resolvent

of C! is
t — A XX A ' [
¢t = (Fyudy, U Ul VB, e
C! subsumes C since
= F = and T = (T
E, 6 Fe {16} an 18 {Le} C A0 5 w0
b ? — i se0
c 9"‘F19U(A02U UAOnUBo)e

C A U.MUAOHUBO)G=C.

019 V) (1102
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C. is not restricted since Le € 7,6 and ie € ¢,

Theorem 1,12.2, Given a derivation ®= (T,c) from 8§

of a non-teutology c(r(T) ) there exists a derivation ®' =
(Tt,c') from S of a clause which subsumes c(r(T) )s @' is
a seml-contraction of ® and @ contains no tautologies.
Proof (by induction on the number n of tautologics in
@O ). Ifn=0 then take® =@®. Otherwise n=>0 and we
assume that the theorem holds for any derivation containing
fewer than n tautologies. Let C", be a clash in@ conteining
at least one tautology D, ises C-= 0(5"1 (NO) ) for some
N, € T and D = ¢(N') for some N'e 5~ (No)o Choosec N, such
that ¢ (NO) is not a tautology. By the preceding lemma either
case(1) some C' =c ( Nj) € C subsumes c(NO), or
case (2) some @ C & , D Q, is a clash, and
QG weakly covers 3.

In either case let TO be the subtree of T obtained by ignoring

all of T lying above N (f.ce T = (T =T ) U v} ) end let
®O = (To,c)a Lssociate with every tip Nego a clause L wWhich
subsumes c(N) : be = C! and by = c(N) for N;éNO. By the
contraction "aheoremowe obtain a contraction @O' = (TO"C'O,)
of (DO Let NO' € TO' be the tip corresponding to NO

(i.e. NO' = “fﬂ (NO) where | is the mapping associated with

Y i ! Th t(N'T) = 4 =0,
the contraction (i)o of (Do)o en ¢ ( 0 ) W, c
Ti case (1) let ™' = (T'',c'') be obtained by identifying

Y 3 t gl : v Yy 1 .,
N, in T, with Nj in TNj ( ¢ O(No ) = c(Nj)=C Yo In case

(2) let ®'' be obiained by grafting the derivation trees Ty
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to the node NO' in TO' where N €S~1 (NO) and C(N) c C1,
More precisely let

Tt :-.TO' U {N:NeT andc (Ni) «c'

N,
1
c't (M) =c (W) for N ¢ Ty
i
c't (N) = co' (N) for N ¢ T

@) =N ro (W) e @ .
In both cases we obtain a semi-contraction ®'' of &)
! is a derivation from S and ®'' contains fewer than
n tautologies (by 1.10.3)s By the induction hypothesis
there exists a semi-contraction @ of @'' such that @'
contains no tautologies and is a derivation from 5 of a
clause subsuming ¢ (r(T) )s By the transitivity of semi-

contractions §)! is the desired semi-contraction of ®).

Theorem 1.12.%3. Given a proof procedure ® and an

unsatisfiable set of clauses SO’ let T:I be the trace for SO
of & and 1et T, e the trece for 5 of @ with deletion of
tautologies. If weak covors are monotonic in T1 and if Cn
is the first instance of [l in 4° then some C'n' = O in T2
and n'< ne
Proof. The proof is similar to that of 1.11.2. Ve show
that for all n>1 there is en n'*< n such that if Cn in T‘i
is not a tautology then C’n, undeleted in T2 subsumes Cn.
If n =1 then C1 €SO and C1' ESO are identicals C1'
subsumes C1 and is undeleted in T2 if C1 is not a tautology.

Suppose that for a given n>1 each non-~tautologous Ci’ ign,

is subsumed by c'i1 s i'< 1, undeleted in ‘]'2. If C e So then



cn is generated in TZ and is some C'n, in T, where n'<ne

2

C! , subsumes Cn and is undeleted if Cn is not a tautology.
n
If Cn is not a tautology and is the resolvent of 6:

{Cn soecy Cn} s n,<n, then either some non-tautologous
i

1 m

¢ subsumes Cn or some CFC Cweekly covers Cand Cf

n.
1

contains no tautologiess In the first case some undeleted
e subsumes C and also C where n', <n «<ng In the
n£ n, n i= i
second case C'' = {C' | ,ee0,C' , } , where C'_,
n', n' | nt,
m i
subsunes C and n'i< n,, subsumes G} and each C 'n’ e"
n, - 1 .
i i
is undeleted in TZ' If C' , is the resolvent of @! then
n'< n and either some C!n' subsumes C'nl and Cn where
i
n“i<n's n or some subset @' of @' covers G and
therefore weakly covers C and therefore the resolvent of
e”' undeleted in TZ is some C'n“ in TZ where n'’< n since

gach n', n. for C' ¢ e,
=0 * n, &2

1¢13 Minimal Derivations.

In sections 1.9~1.12 we adopted the convention of calling
an arbitrary set of clauses & a clash if some standardised set
Gt of variants of clausos inCis a clash. In this section
it is convenient to revert to the moro restrictive definition
of clash, wreserving the term for standardised sets of clausess
We introduce the notion of a ground clash @ which is like a clash
of ground clauses except that in this case we allow that C

contains variables emd is not standardised. More precisely,

C isa sround clash if Cis of the form “‘1"”5An »B! where
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- L]

.[‘;.1 =2 {L1} U 1‘;01900-, .A.n = {Ln} U A(\n
- - *®
B = {L'i’..o’ Ln} U Boo
The resolvent ofels C = 04 Uase U JLOnU BO.

Notice that given an arbitrary clash C with MeZs3sUa €&

and resolvent C, the set of clauses Ce is o ground clash
with resolvent C provided that for no A € G and no L,L'e L,
where L is resolved upon inCand L' is not, does L@&=1L'%®
Thus in particular Ce isa ground clash if Cis restricted.

A derivation § = (T,c) is a ground derivation if, for every

interior NeT, 6(8—1 (N) ) is a ground clash with resolvent
¢(N)s Thus every derivation from a set of ground clauses
iz a ground derivation but not counversely.

Given a derivation ® = (T,c), lot the pair @ = (T,¢)
be defined by letting

(r(T) ) = o(x(T) ) and, for N £ r (T),

(W) = (W) €, ceo & Where @, is the m.g.s.us of the

clash at si(N) apd where s (N) = v (T),sn“1 (1) #r (T).
If ®© is a derivation then it is & ground derivation lifted by
D . However(fj may not be a derivation even if every clash
in® is restricted (witness Andrews' counterexample [ 2 ] ).
Theorem 1+13+1 implies that a necessary and sufficient condition
for g) to be a derivation is that 0) contract some ground
derivation @f,

4 derivation ® = (T,c) is standardised if, for all

N,N'e T such taat T TN': $, o() and ¢(¥') share no

variables. A derivation® may fail to be stendardised even



though each clash in ) 1s standardised (since literals
resolved upon in disjoint subderivations of @) may contain
common variables). It is easy to verify that if ® = (T,c) is
a derivation (but not o ground derivation) then the derivation
®Ff = (T,c') obteined by applying the contraction theorem
to @ and the set 8' = {AN : AN is a variant of c(N), NeT a
tip} , where §' is standardised, is standardised and equivalent
to @ in the sense that c' (If) is a variant of c(N) for all
NeTe

Theorem 1.13.1. If = (T,c) is standardised and

contracts (or semi-contracts) & ground derivation Q' =
(T*,c') with associated mapping ‘t", then 8 is & ground
derivation and contracts (semi-contracts) Q! with mapping
"~\” o For some A and for all N eT,

TA g et (Y )

Proof (by induction on the mumber n of nodes in T').
We prove the theorem for the case where @ contracts ®'s The
proof is identical when @ is a semi-contraction of ©'. If
n=1 then, for sone N, and NO’ , T! = {No'} , T = {NO} and
W(No) = Nt ® =@ is a ground derivation and since
c (No) subsumes ¢! (NO') s O (No),( C of ("""(No) ) for
some A

Assume that n>1 and that the theorem holds for any
derivation contracting a ground derivetion which contains fewer
than n nodes. Let No' =r (T'), Ny= r(T), s~ (No')=

{No*,...,N'm,} and@'i = (T* . s 0e"), igigm’s If

¥
Ni
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5] (NO) £ f 5 let s~ (NO) = {111,.,.@,Nm} and (Di = (TI‘I. 5C) .

Suppose that ® contracts some @i‘ with mapping \r‘land.
that ¢ (NO) subsumes C'(No)o Since T'N' contains fewer than
n nodes, © is a ground derivation, contr;cts (Di' with mapping
Y and, for all NeT, c(N)A £ c' (Y(N) ) for some A o
Since E(NO) = c(No) subsunes c'(No'), 05 contracts €)' with
mapping Y o

If 6 contracts no 6)1' then s~ (No) £ 0, mgnt, (Di
contracts G):'L with associated mapping ’\{"i ( "f”i is the
restriction of "rto TN. ), C= c(s~1 (NO) ) covers (2! =
c’(s'1(1\ro') ) and '\{"(1:\LTO) = NO’o Let & be the megessue of
c ¢« By induction hypothesis each @i = (TN. ’ ’5'1) P)
where Zi (Me = ¢ (N) for ¥ ETN.’ is a ground éerivation
which contracts (Dl ! with manping ’j\}‘i and, for some A ; and
a1 N e, ?;i (N) ,(i c et(M() ). Leto-z/\1.../\m .
Since C covers C', O is standardised and C! is a ground
clash, o~ unifies & and therefore o~ = 8A for some A« Dut
then S(N)A ¢ o' (Y(W) ) for all N e T.

05 is a ground derivation which contracts ' with
essociated mapping Wif for overy NeT, N #£ »(T), 'E(Sl.'] (M) )
is a clash which covers c* (s"1 (f(N) )s But in general
whenever a clash Ccovers a clash ! with associated
substitution o then (& is a clash which covers @' with
agsociated substitution { when & and { are such that o~ = @A »

But this property clearly holds for the clashes Cand &F at

. ~o=t
N, end ‘{‘(NO) as well as for the clash ci(s (K) ) and
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ct (5_1 ( xr(N) ) ) waen N eTi. Therefore &3 is a ground’
derivation and contracts (D' with mapping

L. notion similar to that of minimel derivation was
introduced by Loveland for the case of binary ground derivations
in order to prove the existence of linear refutations
containing no tautologies [52] « The existence of various
kinds of minimal derivations and refutations is proved in
Chapter 2 by using Theorem 1+13+2 below. Implementation of
the minimality restriction serves several functions: it
provides a method for effectively applying the clash
restriction, rejects derivations which do not 1lift ground
derivations and tends to retain only the simpler of equivalent
derivationse This last property con be stated precisely
for the case of a minimal refutation O of a set S by saying
tnat the mumber of distinct nodes in the longest branch of ®
is no greater than the minimal mumber ¢f distinct atoms in
any set S' of ground iunstances of clauses in S. Clearly
the retention of only the simpler of cquivalont derivations
is important for efficiency.

A ground derivation @ = (T,c) is minimal if for no
NeT, N'e T lying above N, L'e ¢ (N') resolved upon at N' and
Lec (N) does |LY = |L] ¢ 4n arbitrary derivation {)=
(T,c) is minimal',\for noNeTy N'eT lying above N,

L' ¢ ¢ (N') resolved upon at N' and Lec (N) does

IL'e1 ...eni = |Le “or en{ where e.l is the megeseus of

k+1
the clash at 5™ (w'), where N = Sk(N'), Sn(N>=r(T)
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and 5% (W) #£ x(1)
It is easy to verify that a derivation §) is minimal
N

if and only if §) is.

The following is a simple, if not most efficient,
nethod for implementing the minimality condition:

(1) Associate with every derivation @ = (T,c¢) of
a clause C the history (I)* = (T,a) of
~

literals resolved upon in ® y 1l.e.

(a) if T = {NO} then a(l\TO) = &,
. -1
(v) if N, = r(T), s (NO) = {N1,,.,.,Nm},
O, = (‘I‘.Ni,ai) is associated with@i = (TNi,c),

Ei is the set of literals resolved upon at Ni
and & is the m.g.s.u. of the clash a% NO’
then O* = (T,a) where

¢ ,a) =E & and

a(NO)
y - (1

a(N)

(2) Reject, as incompatible with the minimality conditionm,

#

ai(l\T) & forNeTl

a clause C obtained by a derivation ) with
associated history D* = (T,a) if either
(a) for some L €C, N' € T and L' e a(N'),
ol =11 ] or
(v) for some N € T, N' ¢ Ty
L € a(N) and L' € a(N')
lo =11 .
Notice that condition (2a) generalises the clash restriction.

Theorenm 1.1%.2 below allows us to infer that a
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dorivation @' is minimal if it 1ifts a minimel ground

derivetion © o

Theorem 1.13.2. IfH)' = (T',c') is a semi-contraction
of ® = (T,c) and if &) is minimal then &' is minimal,
Proof. Let W be associated with the semi-contraction
O'!' of O &) is a minimal grcund derivation. It is easily
verified that §)' is a semi-contraction of () with mapping ¥
By 1613.1, 'ny) ' is & ground derivation, contracts & witn
mepping YV and, for some A and all N e T', S'(MA < g("f‘(N) )
Tt suffices to show that ' is minimel. If b’ is
not minimal then there exist N,N'e T, N lying above N,

L' ¢ o¢ (N') resolved upon at ' in ®F anda L ec ' ()

such that |L] = |L'| « But then Y (') lies above Yr(W)
inT, L', is resolved upon at WY (N') in & s LA € :('\y(l\’))
and |LA| = |L'A| ; contradicting the minimality of &5 .

Theorem 1.13.2 ensures the compatibility of deletion of
tautologies and of simple deletion of subsumed clauses with
proof procedures implementing minimality and a resolution rule
@ which is preserved under somiwcontractions , in the case of
tautologies, and contractions, in the case of subsumed clauses,
However it 1s necessary to modify the rule for simple deletion
of subsumed clauses in the following way : Let T =
(C1geoagcn’¢no> be a trace for a proof procedure implementing
minimality end simple deletion of subsumed clauses. Suppose

that Cn has just been generated. If Cn properly subsumes some
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G‘i, i € n, then Ci is deleted. Let the history
@*n, associated with the derivation of Cn ’
assume the new value (T,a) where T = fNO} and a(NO) =&,

Similarly if sone Ci’ i £ n, subsunes Cn then Cn is

deleted and the history (5)*1, associated with the

derivation of Ci s assunes the new value (T,a) where

T = fNO} and a(NO) = ¢ .
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CHAPTFR 2.

Chapter 2 is concerncd primerily with the application of
semantic tree constructions to obtain completeness theorems
for resolution inference systems (see [ 43] and [ 17 ] )N
These applications are limited to the first order logic
without equality. With the exception of section 2.5 most of
the results of 2.2 = 2.7 were obtained in collaboration with
P«Jo Hayes and were reported in [ 17 ] « Secticn 2.5
establishes the deduction completeness theorem proved by
Slagle, Chang and Lee in [ 52 ] » A somewhat weaker
theoren was proved independently by the author and was
presented in [ 20 ]» The completeness theorems of 2.3 -
2.6 improve those reported in[ 51 ], [ 17 ] and [ 52 ]
by imposing the minimality restriction on derivations. In
sectlon 2.8 we imwestigate clash~like seguences of binary
resolutions (pseudo-clashes) which are *then applied in 29
to establish the completeness of a modification of P1-
deduction (reported in [ 17 ] ) which is more efficiont
than either P1~deduction or hyper-resolution. Section
2410 establishes the completcness of maximal pseudo-clash

resolution. The analogous theorem fails for maximal clash

resolutione



= 103 ~

2.7 Herbrand Interpretations.,

Weo recall that the intended interpretation of a clause
is the universal closure of the disjunction of its elements.
Sets of clauses are interpreted as conjunctions of their
elements, We agsume acquaintance with the fact that a set of
clauses is satisfiable if and only if a corresponding sct of
clauses is satisfiable. A readable introduction to the
necessary preliminaries is Davis' [ 7] o This
section is concerned with establishing the definitions and
propositions necessary to reduce the study of thc semantics of
sets of clauses to the study of Herbrand interpretations.
Given a set of clauses S, the Herbrand universe of 5,

cound

H(S), is the set of all, terms constructible from the function

letters which occur in S (augmented by a single constant if

7~
S contains no constants)s The Herbrend base of 8, H(S),

is the set of all ground instances over H(S) of all atoms
which occur in clauses of S, i.es
ﬁ(s) = {|tjo : L eC ¢ S,OE{tT/x,’,eeogtr/xn} ’
t, e H(S) and |L |0~ is a ground atom} .
(In the sequel, when a set of clauses S has been fixed and
C<&F is said to be a ground instance of C € S, it will be
unierstood that the terms ti of U7 all belong to H(S). Ilo%e
that if § is a finite sob of ground clauses then H(S). is finite
although H(S) may be infinite.

If X is a set of ground atoms then a set of literals (@

is an assigmuent t0o K if
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(1) Le 2 implies |L| ¢ X , and
(2) Le @ implies L 4 @.

An asgigmment (@ to X is complete if
(3) LeX implies L e & or T e (2.

Given a set of clauses S & complete assigmment @ to

~
H(S) is called a Herbrand interpretation of Ss Any

Herbrand interpretation ® of S determines an interpretation of
S in the usual sense as follows:
(1) H(S) is the universe (domain) of the interpretation.
(2) The denotation f* of £, a function letter occurring
A
in S is given by: f*(t1,ooagtn>= f(t1,.o.tn),tie H(S) .
(3) The denotation P¥ of P, a predicate letter occurring
in § is given by: P* (t1,.,¢,tn) if and only if
P(t1,¢n,‘tn) e @ o
Notice that P(t1,...,tn) in (3) above, need not belong to
H(S)s As a result if § is a finite set of ground clauses and
H(8) is infinite then the interpretation corresponding to & is
infinite. It is the interpretation given by (1) - (3) above
which we have in mind when we refer to a clause or set of
clauses as being satisfied by a Herbrand interpretation.
Given any interprctation M of a set of clauses S we
denote by M | § the relation of M satisfying S. If 8= {C}
then we &l<o write M B C. We let the symbol -7 denote
lcgical negation.

Proposition 2.1s%e¢/
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Proposition 2.1.1« Given a set of clauses S and a

Herprand interpretation M of S
(1) M|S if and only if M N CO# 0  for all ground

instances CO~of a clause C € Se

(2) Mf = S if and only if Co- C M for some ground
instance Corof a clause C € S»

Proofs It suffices to prove (1) since (2) is just the
sontrapositive of (1). Suppose M | S then M [z C for all
C €8s But then M | Cofor all ground instances C O~ of C
(since C is interpreted as universally quantified and the domain
of M is H(S))s M | Co~implies that M | {L} for some L €
C O~ and therefore implies that MNCo = {L] # & .

Conversely if M N CO~ # & for all C € S and for all
ground instances CO™ of C then M | C and therefore M | S.

Proposition 2,%1.2. Given a sct of clauses S and a

model M of 8 (i.c. MES) there exists a Herbrand model M! of
S (fees MYES).

Proof. Note first that if S contains an individual
constant then every t €H(S) denotes some element t* in the
domain of M. If S contains no such constant and b is the
constant symbol introduced into H(S) then let b* be some
arbltrary element of the nonwempty domain of M. Then in
this casc as well every t € H(S) denotes some element t* in
the domain of M.

If L eg(s) then L=P(t,,0e05% ) for some P occurring in 8

and tysece,t € H(S)s But then I#* = p*(t,l*,ﬂ.o,-bn*) is either

1
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true or false in M where P¥ 1s the predicate in M denoted by P.
Let M* be the complete assigmment to ﬁ(s‘) where for all L ¢
H(S),

L ¢ M' if and only if I* is true in M,

T e M' if and only if I* is false in M.

Suppose M | § and H' | ~» S. Then C O° = ' for some
C ¢S and some groind instance € O of Co But then L € M?
for each L € CO and therefore each such IL¥ is false in M.
If C= c(x1,w.9xn) and C O = C(t1,u°,tn) then, since
c*(t,‘*,wa,tn*) i3 false in M, C is also false in ¥ and

M‘: - S.

Corollary 2,103, & set of clauses S is unsatisfiable if and

only if S has no Herbrand models.

Proposition 2e1s4e Lot 8 be a set of clauses and 8! an

unsatisfiable set of instances of clauses in S. Then S is
unsatisfiable.

Proof. If S is satisfiable then y g S for some Herbrand
model M of S. But then MN CO# ¢ for 2all C € S and all
ground instances C & & Buteach ground instance C'o'of a
clause C!' € 8! is a ground instance COof a clause C € 8
(vnere C' =C® and O©=90™" ), Taerefore MNCtot # ¢
for ech ground instance C' o' of each ¢! € 87 and therefore
M! is a Horbraend model of S' where M' & M is the subset of

P
M which is a complete assignment to H(S').
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262 Semantic Trees.

The notion of a semantic tree was introduced by Robinson
in [43] fo obtain extensions of resolution for first~order
logic with equality. The semantic trees studied below are,
however, limited to first—order logic without equality.

We extend Robinson's original definition of failure and concorn
ourselves more with establishing specific applications than
with extending the general theory. Further research on
semantic trees is reported on in Robinson's recent over=-view
of theorem-provirg [46].

Let X be a set of ground atoms, T a tree and & a
function defined on nodes of T having assigmments to K as
valuess If X is a subset of T let @(X) = { QW) : N ex}.
Then 8= (T, @) is a senantic tree for K if

(1) @ (Wy)=g forN =z (T),

(2) A{s(W)) < QN) for ¥ £ r (T),

(3) @(®) 1s & complete assignment to K for B a

complete branch of T and
(4) for N € T such that s’1(N)={N1,ou,Nn} 2

B,.' VosaV Bn is a tautology where Bi is the

conjunctioa of the literals in d(Ni)" @Q(N).
Note that because our convenblon of considering trees aos
growing unward, the orientation of semantic trees in this
paper is opposite to their orientation in {17] « If
K = Q(S) for some S taen (I(@' is a Herbrand interpretation

of 8 if @ is a complete branch of a semantic tree for K.
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That conversely for every Herbrand interpretation M of S there
exists a complete branch {3 of & such that A(A) =1U is
a consequence of the following

Proposition 242.1e If 8 = (T, ®@) is a semantic tree

for XK and M is a complete assigmment to K then M = 4(03)
for some complete branch @ or 8 s

Proof, Given M construct §3 as follows: »(T)e @3 .
If N ¢ © and s () = NysesesN |} then since I is en
interpretation of B1V ess V Bn, where B, is the conjunction
of the literals in d!(Ni) - (N), and since B,V eca V B
i1s true in M, some Bi norcoveris true in M and therefore each
literal in @ (N,) = (§(N) is true in M. So @1,)- @(W) g Mo
Let N, € £ . If §is the complete branch of T defined in
this way then A(®) ¢ M. But M ¢ E@) and
M= A (B) since & ( R) is a complete assignment to K.

Clash Trees. A semantic tree 3 = (T, @) for a set

of ground atoms K is a glash tree when for any N e T,
-1 . . )
5 (N) = fN,]ga..,NmH} _Linplles that

C@(N.i) = @(N) v fLi}, 1<i<m and

(Q(Nmm) o &(N) CJ’ {i};,eo., E—m } s

for some L190009Lm such that |L}1 secey !Lm] € Ko

a_mcleus

The nodes N, yeeeN are satellite nodes and N

1 m m+1
node of 8 o All of the clash trees investigated in this
paper will be one of the two following kinds.

Binary Semantic Tree for Ordered K. Let K be a

totally ordered (finite or infinite) non-empty set of ground



- 109 =

atoms K:{L1,..°,Ln,.¢. } , where i< j implies that A,

precedes A 3 in the given ordering of K« The binary semantic

tree 8 = (T,¥) for K ordered in this way is given by:

(1) @@ (@) = Fo

(2) If N €T andAN) is a complete assignment to some

K! € K then
(a) If XK' =K then e (W)=8 , otherwise
(b) IfK' = {LigLiMyan,.q.} then
Sﬂ(N) ={ N,] ,NZ} for some Nys N, ¢ T and
@)= @n U 1), @)= @ (E.
Note that if K' is an initial segment of K and if M' is a
complete assignment to K' then M' = (R (N) for sone N € T,

M ~Clash Tree for Ke: Let K be a finite set of ground

atoms and M a complete assignment to K, then the M~clash tree
. 3 = (T, @) for K is defined by:
(1) & (x(m)=F-

(2) If N €T and (Z(N) is a complete assignment to some

Kt ¢ K then
(8) IFK! =K then £~ (N) = f otherwise
(b) & (W) C M. Let U ~ @(N) = §L1,“.,me .

-1
Then s (N) = {N,l,...Nm,i} for some NyyeoesN ,€ T

and Q(Ni) = A (N) Q {Li}
@ W) =am U (T,.5) .

We need to verify that given K and M the M-slagh tree for X

for T <i<m,

actually exists. Por this purpose it suffices to verify that

& (N) C M wherever (N) is a complete assignment to K'C Ko
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Suppose this is not the case, then because T is well-founded
there exists a lowest interior node Ny such that CQ(NO) ¢ M
(icee CQ(NO) ¢ M and & (s (NO)) C Mo N, # r (T) since
A (r (1)) =< U But @ (s(N,)) C M implies that either
@,) = @(s(n.)) U {1} , for some I eM-@N),ar
QN )=Ws()) U (T 000k} for i @) =
{L19.,~.,Lm} .
Tn the first case CQ(NO) C M, in the second case K¥ =K. It
follows that the M-clash tree for K does in fact always existe.
Note that if K¥ € K and M' is a complete assignment to
K' then M' = (B (N) for some N ¢ Te
Failure. Let - (T, @) be a semantic tree for some
set . of ground atoms K and let 8 be a set of clauses. A
clause C & S fails atNe T, if  Co~ & @ (N). Note that
(1) © fails at r(T) if and only if C = (] .
(2) IfK = ﬁ(S), I3 is a complete branch of 4 and
C fails atN € §, then Z( R) k = Cs
(3) If ¢ fails at N then C is not atautology. (If C
were a tautdogy and Co~ < @ (N) then Co-
would be a tautology and ¥ (N) would contain
complementary literals.)
(lq.) If C Pails at N then C subsumes the clause ma
C € 5 feils properly at N € T if C fails at N and either
N= r(T) or C does not fail at s (N), A node NeT is
free for S if no C € S fails at Ne A nodeN € T is a

failure point for S if some CeS fails at N and elther
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N = 2(T) or s (N) is free for S¢ If N € T and T 1s the
subtree of T rooted in N € T then a cut X through 'IIN is a

frontier o T.. for S if every node in N is a failure point for
LV

Se TN

of T for 8o If N= r(T) and T, is closed for § then we also

say that '?) 1s closed for S.

is closed for S if some cut X through TN is a frontier

Proposition 2e2:2. If TN is closed for S then TN is

olosed for some finite set ST of ground instances of clauses

in S.
Proof. Let X be & frontier for S X is finite by 17k«
Foreach N € X let C‘N be some ground instance of a clause

C € S which fails at N (i.es C' = C o~ where C o~ C @ (N))e

N
Then S! = { C'N e N ¢ X} is finite and X is a frontier
for S,

Proposition 2.2.3. If some semantic tree 8: (T, @)

for some K is closed for S then S is unsatisfiables

Proos LetK' =K N ﬁ(s) and let M be a Herbrand
interpretation of 8. Let M' ¢ M be the complete
.assignment to XK' contained in M and let M" be any extension
of M' to a complete assignment to Ko Then M" = R ({3) for
some complete branch ¢f T. Since 8 is closed for S,
Co < @ ( 8 ) for some ground irstance of a clause
C € S. But then Co~ C M' C M, so C and therefore S is
false in Me Because M was an arbitrary Herbrand interpre~
tation of §, S is unsatisfiable since it has no Herbrand

modelss
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Proposition 2.2.4. Let 8 be unsatisfiable and let 8

= (T, @) be a semantic tree for ﬁ‘(s)e Then 9 is closed
for So

Proof, We need to show that some cut through T is a
frontier for 8 or equivalently that every complete branch
03 of T conteins a failure point for S. Let 55 be such a
braach thon the unsatisfisbility of § implies that @ (¢®) k- 8,
iece C o= C 2 (B) for some ground instance of some
C € S. BSince (@ is well-founded either r{T) is a failure
point for S or there exists a node N € @3 such that some
C € S fails at N but no D€ S fails at s(N)e In either case
3 contains a feilure point for S.

Corollary 2.2.5 (Herbrand's Theorem)s If § is

unsatisfiable then some finite set S' of instances of clauses
in & is unsatisfiable.

Proofs Let L be the binary semantic tree for 2 (8)
ordered iin some Way. Then 2 is closed for S and is
therefore closed for some finite set 8t of instances of

clauses in S. It follows that S* is unsatisfiables.

2¢3 Semantic Trees and Derivations.

Let 'S = (T, @) be a semantic tree and S a set of

clauses, Ne€T is an inference node for S if 5-1 (N) is a set

of failure points for S.

Proposition 2.3.%1o If 8 = (T, @) is a semantic tree

and TN is closed for S where N € T, then either TN contains
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an inference node for S or some C € S fails at N

Proof. If noC € S fails at N and X is some frontier
of TN for 8 then by 1.7.5, since X;é fI‘T},
- (M') & X for some N' € T . But then N' is an
inference node for S.

The following theorem and its first corollary provide
the basis for two methods of applying semantic trees to
ostablish the completeness of resolution inference systems.

Theorem 2+3+2. Let S: (T, @ ) be a clash tree and

let T NO € T; be closed for a set of clauses S. Then

N’
there (;xists a derivetion ® = (T',c) from S of a clause C
which #ils at Ny There is a 1~1 mapping Y: T' - TNQ such
that
(1) If N € T'is a tip then c(N) € § fails properly
at ¥ (N) and ¥ (N) is a failure point for 8 in Ty
(2) IfN e T is an interior node then Y (N) is
Inberior to Ty 1 C is the clash o(s™ (M)} at
N with resolvent ¢ (N) then
(a) & is restricted.
(b) the satellites of (G fail properly at
satellite nodes of 5-1( '\%” (M),
(¢) The micleus of & fails properly at the
nmicleus node of 3'1("-}" (M)
(d) ¢ (N) fails at "‘{”(N) and
(e) If A € C fails properly at N' €

sﬁ‘{" (N)) and K o~ € @ (N') then
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Lei i1s resolved upon in € if and only if
Lo C@(N')- CZ(N)s
(3) Wo o(W), for N € T', is a tautologye.
() ® is minimel.
Proof, Let X be a frontier of T% for 8. Let D=
(TNO/X, ') be the ground derivation defined by ¢! (N) = CZ(N)

for all N € TN /X. The definition of ¢lash tree guarantees
0

+that if N is interior to TNO/X then c'(.‘s'"1 (N)) is @ restricted
clash with resolvent ¢'(N)e Thus (D is a derivation.  The
conditions on assigaments that they contain no complementary
licverals implies that ®' contains no tautologies. The
condition that @(s(@W)) <€ @A (N), for N interior to T,
implies that @' is minimal.

For every tip N € TNO/X (iees for N € X) let by €8
be a clause which fails at N (i.e. I—No— C @(x) for some
o e Then &y subsumes ¢?(N)s Let 8! = {AN: N ¢ X}
bz standardised. By the conbraction theorem there exists a
derivation @) = (T', ¢) from 8! and therefore from § of a
clause which subsumes c! (NO>’ i.eo of a clause which fails
at N0° @ is a contraction of @' and therefore (f) contains no
tautologies and is minimal. If Y 45 the mapping
associated with the contraction then @) satisfies properties

(1) and (2) of the theorem.

Corollary 2.2.3. Let 8 = (T, @) be a clash tree

and let NO € T be an inference node for Se. Then there

exists a clash such that each clause in & is a variant
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of a clause in S and
(a) €& is restricted,
(b) the satellites of C fail properly at satellite
nodes of S...1 (¥),
(c) the muicleus of G fails properly at the mucleus node
of s7T(N),
(d) +the resolvent ¢ of C fails at N,
(e) if A € @, fails properly at N' e e (N) ard
Lo < @(nr) then L. € A is resolved upon in &
if and only if L o= & @ (N') - @(N) and
(d) neither C nor any of the clauses in & are
tautologies.
Proof, TI\T is closed for S. The corresponding
derivation () of a clause which fails at N consists of just

the single clash C »

Corollary 2c3+e If S is unsatisfiable then there exists

a minimal binary refutation of S containing no tautologiess
Proof. Let 8 =(T, (Z ) be the binary semantic tree
for g (8) ordered in some ways Theorem 2.3.2 guarantees the

existence of a minmimal refutation 0) of S containing no
tautologies. Since smlI (N) contains exactly two elements for
N interior to T, (L) is binary.

4 theorem similar to corollary 2.3.4 was proved by
Loveland in [ 23 ] for the case of ground sets of
clauses Se In section 2.6 we shall see that corollary 2e3.4

can be strengtheuned by introducing the notion of (X-ordering
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FN
in order to make use of the ordering of H(S) in the proof of

2 »33 ol}»e

2.4 M=Clash Derivati onge

Let 8 be a set of clauses; M a Herbrand interpretation of
S and C a clash with satellites Iy yeeesh 5 mucleus B and
mogessus & o Then s is an M—clash if
(1) A, & yocey- A & and C are false in M,
(2) Be&3 and B © has an instance B & A true in N,
{ L : L6 € Bo AN M} is the subset
of literals in B resolved upon in C  and
(3) Cis restricted.

A clash derivation 0 is an M=clash derivation if each clash

in @) is an M~clashe The definition of M-clash introduced by
Slagle in [ 51 ] 1is less restrictive and is gencrally
easier to applys Conditions (1) and (2) above are replaced
by

(1) Ayseesgh end G are false in M and

(2!) B hes an instance true in Me

The following theorom is a third corollary of Theorem
203420 Becausc 2.3.2 was proved by applying the contraction
theorem, the proof of Theorem 24,1 is equivalent to a proof
that M~clash derivations are preserved under contractions.

Theorc: 2.ho1e Let 3 = (T, &) be an M-clash tree and

let TN s NO € T, be closed for S« Then there exists a
0

minimal M-clash derivation ®t= (T!',c) from S of a clause which
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fails at Ne @t contains no tautologies.
Proof. Let = (T*, c) be the minimal derivation

containing no tautologies of Theorem 2.3.2 corresponding to

T. e Let "f‘ s T' — ‘T Dbe the associated mapping. It
% ¥

suffices to show that if N € T! is interior to T!' and if
C = | A1,.,.91‘,,n,B} is thé clash at N then C is an
M-clashs

Let N' = W (N)o The satollites &, ,eeesh OF c
fail properly ot satellite modes N,%sees,N t of s7H(N*)
anl the mucleus B of (& fails properly at the mucleus node

N? of S—d'(N’)s Since C is standardised there is a single

n+
substitution e~ such that
'Eie— C CV.(Ni“) and B o gC@(Nan)

But then o= unifies  and therefore o= = 0 for some A
where © 1s an meges.us of C . The resolvent G of c
fails at N! which is a satellite node of S. Thus 4,8 seeesd
and C fail at satellite nodes of :g o But if a clause D
fails at a satellite node N" of % then for some substitution
Ay DAC @) C M, iceo D is false in M,
Be A - &(N'nM) and L e B is resolved upon in C if
and only if
TeA < @ (N, )-@0N') ¢ " , iaes if and only

irf

LOA € Be& A N M,
The instance B & /( of B& is therefore true in Me Since

~Nn isatipof Ty B € Se (& is restricted and

4
+1
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therefore c 1s an Me~oclash and d) is an M~¢lash derivation.

Corollary 2.4.2. If S is unsatisfiable and M is a

Herbrand interpretation of S then there exists a minimal
M~clash refutation of 8 containing no tautologies.

Proof, Let S* be a finite unsatisfiable set of ground
instances of clauses in S and let K be the finite set of ground
atoms occurring ir cleuses in S's ThenK = H (s') ¢ ﬁ(S)
and some subset M! of M is a complete assignment to K.

Since 8! is umsatisfiable, the M!~-clash tree 3 - (T, ®) for
X is closed for S and is therefore closed for Se By 2obe1

( letting No-—-r(T) and M! be the M of 2.4e1) there exists a
minimal #'-clash refutation () of S8 containing no tautologies.
But since M' € M, . (1) is also an M-clash refutation of S.
Remarks.

It is the existence of M-clash derivations satisfying
conditions (1) and (2) rather than (1!) and (2') which is
necessary to jJustify the completeness of extending M-clash
resolution to systems which employ factoring. If &
= Aysesesd B}  is an -clash with resolvent C and
MogeSeus © then there is a set of factors Gt = {A,‘”,au
Aty Bf} with resolvent C and meg.s<u. 6! where
A’:Aiei ’ B = B O and

1 n+1
= - '
9 = Gi 80 9 9n+1 @‘
The clash() is restricted, each A;'®' =4, 6 is false inM
and B' ' = B& has aa instance B! & '/ true in Ms The

literals L' € B! resolved upon in (2 ! are precisely those
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literals for whick ~ - LT 9'/( e U, Thus 3! is an M-clash
with resolvent Cs

(2) M-clash resolution is a theoretically interesting
resolution methods Its potentiality for efficient theorem=
proving however seems gquite limiteds To implement M-clash
resolution for a given Herbrand interpretation M it is
necessary to find efficient procedures fer determining both when
clauses are false in M and when clauses have instances true in
Mo Such procedurss exist forvery few Herbrand interpretations.

For example, suppose that 8., is a set of clauses repres-

0
enting the axioms for group theory and the negation of some
proposed theorems Suppose that MO is some finite group of
small cardinality. TFirst it is necessary to extend MO to a
Herbrand interpretation M by introducing denotations for
the Skolem function symbols of Soo It is then necessary to
provide an algorithm for deciding when instances of clauses C
over H(SO) are true or false in M. In most cases this will
have to be done by enumerating all ground instances of C and by
individually deciding the velidity in M of each such instance.
This process will in general be a very lengthy one even for
models MO of small cerdinality.

(3) Perhaps the most interesting use of M~-clashes is for
establishing connections among hyper-resolution [ 40 ]
reraming | 25 ] and set of support. 4s noted by Slagle

[ 51 ] all of these resolution methods are examples of

M—clgsh resolutions
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Hyper-resolution is obtained by choosing as the Herbrand
interpretation M, for a given set of clauses SD’ the set
i="H where H= H(S o)+ Although N is umually infinite, this
case of M~clash resolution is especially ecasy to apply since
a clause A is false in M if and only if it is positive. 4
clause B has an instance true in M if and only if it is none
positive; precisely the negative literals in B are resolved
apon in any M-clash (hyper-resolution clash) C containing
B as nucleuse.

Let .= {P130003Pn} be the set of all predicate symbols
ocourring in a given set of clauses Sje  Let /\'= {P,‘Q.Q.Pm},
0 € m < m . bea subget of /\. and let

M= {L : L € H(s ) and L=P (t1,snot ),1<m}
J {L :1 ¢ i (s ) end L=P (t sesst, )gm<;]5n}
Then M is a Herbrand interpretation of S. In this case
M-clash resolution is equivalent to hyper-resolution after
renaming, is.e. after replacing in SO each literal L € C ¢ SO
by T when L = Pi(s1,..39s;ni) and P e /AL

Given a set of clauses S, ard a setisfisble subset 8'C &,
let M be a Herbrand model of S's Then the satellites and
resolvent of every M-clash C = fA,I,«,.. ,An,B} are false
in M and therefore do not belong o 8'. Since C is
restricted the resolvent ¢ of € can be obtained by resolving
a sequence of binary clashes C,,s.., C  where G1= {A1 »B}
and for 2 5 1 5 n, C, = 4,0, _q} where C,_, is the

i
resolvent of Gi—»’l (see section 2.8 below)s The resolvent
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of & 1is C and no two clauses from S' are resolved together to
obtein Co This last condition that no two clauses from S!
are resolved in & binary clash can be interpreted as the

definition of the set of support resolution method.

2.5 Deduction Completeness.

Much of the efficiency of resolution derives from the
fact that it is not a complete rule for deriving logical
consequencess More precisely, given a set of clauses SO’
the process of searching for a refutation of S0 is accelerated
by not generating certain of the logical consequences of SO
along the way.

Theorem 2¢5s1, which generalises the subsumption theorem
of [ 20 ] and the deduction completeness theorems of [ 52 ]
provides information about the extent of deduction completeness
for resolution. Theorem 2:5.1 is used *o establish the

permutatic: theorem of Chapter 3.

Theorem 2.54. Let S be a set of clauses, S # 4 , and

C a clause which is not a tautology, logically implied by S.

(1) There exists a minimal binary derivation 631from
S of a clause D which subsumes C.

(2) If M is 2 Herbrand interpretetion of § end if C is
false in M then there exlstis a minimal M-clash
derivation 0)2 from 8 of a clause D which subsumes C.

(3) Neither Dy nor Q)2 contain tautologies .

Proof, If S logically implies C, then § U=C is
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unsatisfiebles  Tet C = {L, (x1,o..,xn>,.na,Lm(x1,uo,xn)}
where Eygoeok are all the variasbles occurring in C and
Li(x1,e°, ,xn) indicates all occurrences of these varisbles in
L, € C. - C is logically equivalent to ax,l,...,xn
(1‘1(x1,,n.9xn) & ran & "ﬁm(x1,.o.,xn))a Let &,5e00a Do
constant symbols not occurring in S U =~ C and let (=~ C)*
= { ff_’(a.”o..,an)}' sscey fim(a1,..a,an)} b
then Sy= 8 U (=C)* is unsatisfiables

(1) Let & = (T, (2 ) be the binary sementic tree for
E(SO) ordered in such a way that the atoms !L‘l (a1,..ean)’ s
seces |Ly (8500058 )| precede all others in the ordering
of/}; (So)a Then, because C is not a tantology there exists a
node N € T such that (P (N) = U ( = C )*. T,ls closed

for SO uniess some clause D € SO and therefore D € 8§

fails (improperly) at No In this case let @ =(T',c), where

Tt = {NO} and c(No*)z De If TN is closed for 5, then it
is closed for S since no clause in (=7 C)* fails in TN)- In
this case also, by Theorem 2.3+2, there exists a minimal
binary derivation (J) of a clause D which fails at N» Ve
shall show that any such clause D subsumes C. But first:
(2) Let C be false in Me Then T A € M for some
ground substitution /\ = ft,l /x1,.«.,tr/xn} where ti €
H(S)s Extend M to a Herbrand interpretation M* of SO by
defining
L (a1,°,.,an) € M* if and only if L (t1,..,;cn) € M and

L (ay5eeep,) €M¥ if and only if T (tyseeest,) € Mo
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M¥ contains no compleusntary literals and contains either L
or Lfor each L € Q(SO)' Therefore M* is a Herbrand
interpretation of Sq and N C M*, Note moreover that

CA CHM implies that U (- C)* € ¥,

Let S,S be & finite unsatisfiable set of ground instances
of clauses in 5, and let MN'C M* be the subset of M* which
is a complete assigmment to the atoms occurring in clavses
of 8§ o  Let 5= (T, @) be the M'-clash tree for so'.

8 1s closed for S,' end therefore for 8 e Since C is not
a tautology, @(N) = U (= C)* for some N ¢ T, Either
some D € S fails at N or TN is closed for S. 1In either
case there exists a minimal M'-clash derivation @O =(Tt, )
from S of a clause D which fails at N. 4) is also an M*-
elagh derivetion of D since MY ¢ M¥.

Thus each satellite and resolvent of a clash in @
is false in I* and each mucleus has an instance true in If¥,
But no clause 4 = ¢ (N'), N' € T!, contains any of the
constants 8ypeccsd o If o-* 1is a ground substitution all of
whose terms belong to H(SO) let o~ Dbe the ground substitution
which differs from ©0~* by having the term t; whenever o~* has
Then

Ao-% C M* if and only if Ao~ C M eond

ai.
Aor®tn MAP ifandonlyiflho N M £ .

Thus each satellite and resolvent in @) is false in M and

each mucleus in §) has an instance true in M and therefore

@) 1is an M~clash derivation of D. (For M-clashes as
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defined by (1) and (2) instead of (1') and (2') in scction
244 a slightly more detailed argument along the scme lines as
above is neededa)

(1) and (2) concluded: It remains to show that if a
clause D fails at a node N, where @@(N) = U (= C)*, then D
subsunes Cs But

Do* C @(N) = U(= C)* for some o *,

Let o— differ from ¢~ * by having x; whenever o0~* has ay in any
of its terms, for cach i, 1 < i < n. Then D o~ C {L,l (x1,¢.e,xn)
'“'“Lm(x'l""’xn)} s 1ecs D subsumes C.

It should be noted that Theorem 2.5.1 does not settle the
problem of generating consequences from assumptions by
resolution. That this is so is due to the fact that if A and
B are sentences of first-order logic, if 4 implies B and if
A* &nd B* are the gets of clauses corresponding to i and B,
then 1t is not generally true that A* implies B¥s 4L =

Ay VY x Plz,y) and B = W x Jy P(x,y) provide & simple

counterexamples

266 xOrdering and Binary Resolution.

Let 8 be a set of clauses and <, & total ordering of

A
A i L. f L L

H(S)o. (Write Ly <L, for L, < L, and not L, g /L, o)

The notion of L-restriction; which extends Slagle's definition
[ 51] , proviCes the basis for studying the completeness

of the more effccetive @-restriction (called A-restriction in

[ 17] and =restriction in [ 20 ]) o
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Let (D= (T,c) be a derivation and let ¥ € T, N # r(T)e

Then ¢(N) satisfies the A-restriction if
lze /| > ALY for somef , for L e o(N)
resolved upon at N, for L' € ¢(N) not resolved upon
at N and for © m.g.seu. of the clash at s(N).
The weaker restriction that
| Lo l > |L? o-l for some o=, for L € c(N)
resolved upon at N and for L' € c(N) not resolved upon
at N
(as in the case of the corresponding weakening of the M~clash
rule) is not sufficiently restrictive to justify extending
L-restrictions to clashes of factors (compare remark (1) section
2ok )

The following theorem translates the ordering for binary
semantic trees into A~restrictions on the corresponding binary
derivations The second half of the proof of 2.6.1 is
equivalent to a demonstration that ot~restrictions are
preserved under contractions.

Theorem 2.6.4. Given § unsatisfiable and 4 a total

ordering of ﬁ(S) there exists a minimal binary refutation
O = (T,c) of 8 such that @) contains no tautolosies and,
for all N € T, ¥ £ (1), c{N) satisfies the L~ |
restriction.

Proof, Let S' be a finite unsatisfiable set of instances
of clauses in S+  Then ﬁ(s’) C ﬁ(s) and 4 totally orders

A
St. Let §= (71,Q) be the binary semantic tree for H(S?)
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ordered by A« Then 8 is closed for S* and therefore for
Se

Let D =(Tye) and Y': T - T' be as in Theorem 24302
where N = r(T')e Then §) is a minimel binary refutation of S
containing no teutologiese Let N € T, Nt r(T)s Then
¢ = c¢ (N) fails properly at some node N' € 3-1("?(3(1\1)),

Nt € Tt, Therefore C o C (& (N') for some ground
substitution o~ . IfL € © is resolved upon at N and
L € C is not resolved upon at N then

{1 o~ } =d(N') - @(s(N')) and L* € R(s(N')).
But by the construction of % , 1T e | > ,f-f:‘ o |
icea [Lo-| SAIL'G‘“Io But o= = 8A for some £
where ® is an m.geseus of the clesh at 8(N)s. Therefore
o(N) satisfies the A-restriction.

In general A-restrictions may be very difficult to verify,
What is wanted is a notion of ordering and corresponding
restriction which applies directly to literals occurring in
clauses of derivetions instead of to literals occurring in
ground instances of such clauses. The P-orderings of
Slagle [ 51 ] meet this requirement and are particularly

easy to apply.

Given a set of clauses S and P,y...,P and ordering of the

predicate symbols occurring in 8, let the partial ordering

o *
= pof H(2) be defined by

< L' if and if L = oo
L < i only i P:‘L(ti’ ’tn.) and

P
1L
L = Pj(t'l"””lbnj) implies §<i< j< ke

ﬁ(s) 1s 4he set of all atems ohtained 55 (V\S'lZQ*ft‘q{‘"j: ’o)

nmeans

"F Q,\J su\agﬁrﬁq‘&qu —t_h,._ q'ﬁouqm. Formulqe oqurrw\j Y 57'
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The partial ordering S‘P is called a P-ordering for 3,

The P-rest¥iction corresponding to a P-ordering Sp is

defined as follows: Let @ = (T,c) be a derivation and let

Ne T ,N #£zr(T)e Then ¢(N) violates the P-restriction

if

[ . |<P [Lt] for L e o(N) resolved upon at N and

L' € ¢(N) not resolved upon at N.
Otherwise ¢(N) satisfies %he P-restriction. Given a
P-ordering and a clause C there may be several litcrals L in C
which contain the same predicate letter and such thot L ZPL’
for all L' € Co. In this case the P-restriction imposes
no restriction on which one of these literals L arc to be
resolved upon when C occurs in a clash.

The notion of of=~restriction includes the case of

P-rastriction and allows a stricter limitation of the literals

which can be resolved upons Let sq be a partial ordering

—

(o}
of H(8) then S, ison o¢-ordering far 8, if for any L,sL, e
a
H(S) and for any substitution e
Ly So( L, impliecs Lo S« Lzo* .
Let ® = (T,c) be a derivation and let N e T, N #£ »(T).

Then ¢(N) violates the &-restriction if

lre] < o |1t | for T e c(N) resolved uson at N
for L' € o(N) notresolved upon at N and for &
Mmege3elle of the clach at s (N).

Otherwise ¢(N) satisfies the ot-restriction, X~orderings can

often be convenicntly represented by finite sets of inequality

schemesa
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Examples.
(1) If the atoms P(a), P(£(x)), P(g(¥)) and Q(y) or their

complements occur in a set of clauses S then the inequalities

Pla) <y P(2(t))) <, Pla(t,)) end

P<t1) <°( Q(‘bz), for all terms t1 and t2,
determines an o-ordering for S, If C= {P(x),P(a),0(£(x)) }
then the &~restriction for ¢ implies that Q(£(x)) may not be
resolved upon in Co  If C= {P(f (x),P(a),Q(f(x))} then only
P(a) may be resolved upon in C.

(2) The condition,

P(%) <o P(f(%)), for all terms t, imposes an¢~ordering
for any set of clauses containing P and £f» However the
condition

4 and t2, does note

(Because P(t1)<°‘(P(f(t2)) implies that P(f{x))&P(f(x)), whi.ch

P(‘b,l) < I"(f’(tz)), for all terms t

violates the reflexivity of partial orderings).
(3) In systems which ineorporate the use of marked

factors &-restrictions can serve to restrict the generation of

Y

and let C = { P(x),P(f(y)), P(g(z))} « Then C has a total of

factors of clausess Let <mbe the xX~ordering of example (1)

5 marked factars (3 of them i-factors). Only 3 marked
factors of C are compatible with the &X-restriction.

Lema 26,2, Given a set of clauses 8 and Ko 57
o-ordering for 8, there exists a total ordering < of ﬁ(S’)

such that for any derivation ®= (T,c) from S, for any N € T,

N f‘é I‘(T):



o(N) satisfies the c~restriction if and only if

c(N) satisfies the A-restriction.

Proof. Given § and 5« there is at least one total
ordering < A of ﬁ(s) which is compatible with £ o i.ees such
that

L <, L' whemever L <, L' and L, L! ¢ ﬁ(S)n
(Just extend the restriction of Sc( to §<S) to a total
ordering of ﬁ(s)). Let M=(T,c) be any derivation from S
and let e(N), N € T, satisfy the A-restriction. If o(N)
viclates the of~restriction then

iz el gﬂ( |Lte | for some L € c¢(N) resolved upon at N,

for L' € o(N) not resolved upon at N and for € me.ge.s.us

of the clash at s(N).

But then IL e /(l 5g( |L’6/( | for all A and
therefore |L € /\! = IL'G/{ l for all ground

lLekl, lueAl e #(s).
It follows that c¢(N) violates the A-restriction contrary to
assumption.

Corollary 2.6.3. Given S unsatisfiable and < _, an

&
=ordering for S there exists a minimal binary refutation

D = (T,0) of 8 such that @ contains no tautologlies and,
for allW € T, N # r(T), o(N) satisfies the a-restrictions

Proof. Let <, be the total ordering of ﬁ(S)

L

corresponding to 50( by 2.6.2. Let &) be the refutation

of § for <, of 2.64f. They by 2.6,2 each c(N), N£ 2(T),

satisfies the e~restrictione
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20f K-Ordering and M-clashes

Carollary 2.7.2 was proved by Slagle [ 51 ] for the
case of FM-clash resolutions Theorem 2+7.1 1s proved by

modifying Slagle's argument.
Theorem 2+7+1« Let S be unsatisfiable, M a Herbrand

interpretation of S and < 5 @ total ordering of IfI\(S)o There
exists an M-clash refutation @ of S such that (@ contains no
tautologies and each satellite clause in 0D satisfies the
A=~restrictione.

Proof. Let o (T, @ ) be an M'~clash tree closed for
S where M!C Ma ( % exists by the construction in the
proof of 2¢4e2.) The proof is by induction on the number n
of nodes in T free for 8¢ If n=Othen {J €S and @) =
(T*,c), where Tt = { NO} and c(NO) = 0 s is the
desired refutation of 8« Suppose that n>0 and that the
theorem holds for any S! such that ’8 is closed for S' and
such that +the mimber of nodes in T free for S' is less than n.

Leb ' = { Lyyeceyl }  where | Li! <, l Lj[

for 1 < je ConstructM® C M' as follows:

-~ e

M
0
&

] =M" 1P M ‘ . s :
W, =M AW, U { Li+1} falsifies some A € §,
. . by . | ” * ‘
iees i Ho- G MW" U { Li+1} for some &~ ,
otherwise
L]
i) - 1 ;
M i ’Mvi v {Li+1'

M o= M .
m
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M" falsifies no cleuse in S (since no M"i does)s " £ !
since M! falsifies some clause in S. Let N € T be such that
-1

GZ(N) = M¥, Let s (N) = :{ N1,oe-:Nk+1} where Nk,*_']
1s mucleuse.

N is a tip of T and therefore &<Nk+1) falsifies some
B € 8. Moreover B fails properly at Nk+1 since B does not
fail at No Eaeh satellite N, 1 < 1 = k, is a
failure point for S since

awm,) = {L}] vQN)

some L € M's

]
&)
C
2
Hy
o)
e

Thus N is an inference node for S and some set Cof veriants
of clauses in § is a clash satisfying conditions (a) - (f)
of 24303, Let C be the resolvent of ¢ and © an megeSsUs
of C . Each s atellite & ¢ C  satisfies the A-restriction.
For if B C A is the set of literals in 4 resolved upon in @
then for some /(

AGA ¢ {n} U ¥ for some L=, € MY,

E® A £} = {z}

LA € M for all L' € A-E,

and

But, by the construction of M", A may be chosen such that

w Y {1} falsifies Ao So if LT e LB
then Ttef € ", , end therefore Tte f = {LJ}
for some J < 1 and IEGAI >4 IL'G/\I.» So

the clause A in & satisfies the A-restriction.
Let (Do = (TO’CO) be the derivation of ¢ from & , i.e.

1, = {22} U 5 (1)) e (x(z)) = co
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c O(S~1 (r(TO))) = C;’ 3 o is an M~clash derivation containing
no tautologies and every satellite in 0:)0 satisfies the A-reg~

triction.

-

Let St =8 U {C}, Then gis closed for Sf
and has fewer than n nodes free for 8' (since C fails at N).
By induction hypothesis there exists an M-clash refutation
CD1 = ,(T'I’C'l) of 8! such that ()’)1 contains no tautologies
and each satellite in (D1 satisfies the hd~restriction. Tiet
D = (T%,0) be cbtained from (DO and 0')1 by identifying
ary tip N of T, such that c, (N)=C with the root of a copy of
)] o+ Then ) is the desired refutation of Se

Corollary 2.7.2. Let § be unsatisfiable. M a Herbrand

interpretation of S and % angX~ordering for S. Thore
exists an lM-clash refutation 6) of S such that §) contains
no tautologies and each satellite in () satisfies the
A~regtriction.

Proof« By Theorem 2.7.t and Lemma 2.6e2.
2e7.2 camnot be improved clther by insisting that nuclel irn
also satisfy the arestriction or by requiring that () be
minimale. Let S = {L1 1 {L1,_f.2} , {'ﬁz, L
§£1’.I:2} b oM = {Lﬂng} and L, < L,s Then S is

unsatisfiable but no refutation of & exists having either of

the two properties mentiomed aboves

28 Pseudo-clashes.

For a variety of reasons it is usually desirablc to



reduce the problem of searching for clash refutations to the
problem of searching for binary clash refutations (sec esge
section 2,9)« This reduction, which can be obtained for
restricted clashes, is investigated by introducing the notion
of pseudo~clashs In section 210 we prove the completéness
of resolving maximal pseudo-~clashes (the corresponding
completeness theorem fails to hold for meximel clashes.)

-~
Let C be a standardised sequence of clauses

(A'I""’An’ B) » . For 1 < i < n, let
4 =B U &, , Ei;éﬁ,
] L ¢
B = "F.] U eus UFI]- V) BO ] Fi#ﬁh

Let Cy=B and suppose { Ai-ml ,Gi} is a clagh with resolvent

C:‘L+1 (0-'< i < ne1) wherc the literals resolved upon
FaN
in 4, . 8ve B, . and in C, the descendants of ¥, ,o Then C

is a preudo-closh on (F ;p-gF“) with resolvent C=C . The
clauses 1};13.,,0,;;11 are the satellites and B the nucleus of

é . AQ/ is restricted if none of 01,.”,011_1 are tautologles
when none of A,],..o,.lxn, B and C are tautologies. A

derivation §) = (T,c) is a ngeudo-clash derivation if

~

g (N) # # implies that some sequence C consisting of the
clauses c(sm1 (N)) is a pseudo=clash with resolvent c(lN).

Remarksa
™~
{1) To every pseudo~clash C  there corresponds a binary

~
derivation of the resolvent C of G from the clauses in
~

C (see the figure on next page)s The literals resolved

upon at interior nodes of the derivation all descend from



- 134 «

FaS
1iterals in the mudbus of C. A B

~
Therefore to any pseudo= \ /

c
clash derivation () there \ 7
corresponds the binary /
derivation §)! obtained by \ ;’

"decomposing” each pseudo- f,{l /

clash in P« ~J C =0

o~
(2) If C is a ground pseudo-clash then 4, = {Li} Udps

C = (AOi - ﬁzgebép-in}) U sss -

U (F&Oi {Li+1’veo,Ln}) U Sos
A -
If none of 1\11,”.,111&, B and C are tautologies then, for
t<i<gm, none of Li+‘ﬁ’""Ln belorg to Ai (since

rii+1’°'°’fn} C €y amdLy, C G ). Conversely if
none of Li+1f’""’Ln belong to A, for all 1, 1 <1 < n, then
’é, is restricted.
(3) 1f é': (A1',oen,An', B') is a ground pseudo-clash with
resolvent C' and if A1 'N“sﬂn’ and B' are all instances of

Lyseesph and B respectively then (by the contraction theorem

1
applied to the binary derivation corresponding toé ) é =
(A1,.°O,An,B) is a pseudo-clash and C! is an instance of

C, the resolvent of é « Moreover é is restricted if @‘
ise

N

(yy & = ¢1,,m,f*~n,B) is a pseudo~-clash if and only if

G = {A1,0003An9B} is a clashe If C is a clesh with
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NegoSelle & then the resolvent of C is

(Am U ees U 4y U BQ) & .
-~

However the resolvent of . is

(4,6 =~ {FZ,..‘,Fn} & ) U eee

01
v (Aoie - {Fi+1,m,}_«*n§ & ) U eee
V) AOn & U BOG o
Theorem 2.8e1 below implies that if C = fA,‘,.u,An,B }
is any restricted clash with resolvent C and if ‘(AW(1)’X"An(n))
is any permutation of the sequence (A,‘,ue,An) then (?.,ﬂ_ =
( AW(I),Q,..,Aﬁ(n) »B) is a refiricted pseudo~clash with
A
resoivent Ce r = (A,‘ ,ew,An,B) is a pseudo-clash
~
then C= = fA1,“o,ﬁn,B§ is a clashy however even if G

A
is restricted the resolvent of C may differ from the resolvent

of G/ 2

~
Theorem 2.8:1. Lot C= (£)5000sh »B) then Cis a

FAS

restricted pseudo-clash if & = {4,004 ,B} isa
restrictel clash and if B © is not a tautology where © is an
megesetls of (O o The resolvent of @, is the resolvent of Cos
Proof. We use the notation in the definition of pseudo-
clash above. Let & = {E1 U E’“"‘”Enu -fn} and 81 =
{B,UF,} . 1£Cis a clash with resolvent C then € eana &,
are unifiable for 1 <i< m.  The substitution 91,ao., e,
is an megesoue of 8 where

» > —
ei is on megeSeUs Of Eai 90».. gi-‘ﬂ (90—-8) and

C = (AO1Un0uU .H.OnU BO) 91009 gno
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Suppose that C is restricted and that none of I..,],.n,An?B,C
are tautologies. It suffices o show that, for 0 < i g n,no

Ci is a tautology and

0i

= ([ sos) L ! 'y € ses
cy (.&01 Usodl &y, U T, UsasW F U BO) o ei.;
The proof is by induction on i» If i = O then C,=B= 3 9,

and Co is not a tautology. Suppose that the equation for Ci

above holds for a given i (0 <i < n) and thet C; is not a
tautologys We need to show that Ci+1, is not a tautology a,;;f;d

that

- o) - i‘m.‘
Ci+1 = (AO1 UeselU AOi+13 W) Fi-}QU‘.QU Fn U B@j S%ooo o gipﬂ o

But C. is the resolvent of &; and ¢, where ¥he liferals
i+ 1+1 i

E, , are resolved upon in A, , and the litorals F, , € ... &,
i+ i+] ist 0 i
are resolved upon in C, . But because C is standardised

-~ L e L X =} e L4 SO g. ls an mMe DSQU-O Of
Eo ﬂ : 1 : 3 i 1 g
E U E e *oe s. ar]d

Ci+‘l = AO:'L-E-'I i+t

Since C 1s restricted

& v (Ci@iﬂ HFi+1 90.., ei+'l)'

- B oo 0 =
Ci ®3541 " Taa1 %o i+l
foesU 4. UP, _UssoUF UB )G eee 6
(Am L / ‘o:u_ 142 °° n 0) 0" Tivto

Since \
P2 N = N LY X 6
Yo i1%im Ttoia %o 141 ?

= .A. ev s .[ . UF. Us s o F U L
Ci+1 (01 Veeol 01+t A v n BO) OO" .ei-e-‘h.

i (=2 CIe i . [ ¥ ] = C" ¢
Ir Ci+1~ is a tautology then so is C:.+1 6i+2 en VUG

- f o A T I

waere C! = (&01U U A()i
LR B 4 o ° t 1 C s f

(Fyp U UFn) 8y0s © o But G' S C, 50C' 35 not &

tautologys C" <& B, vesb) 4 80 0" is not a tautologys

e 9 ":."
+1UBO) oo 0 nandC

Therefore C! U C'' ig a tautology only if
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o, NI £ ¢ forx=Aok eo... enorf,‘or

oso &  for some j and k such that 1 +2 € j g8

Fj 90000

= 6
X B-OO

and T < k <i+4. Dut then Cis not restricted contrary
to assumption.
Theorem 28,1 fails to hold without the assumption that

B6 is not a tautology. Therefore 2.8+1 does not fully
justify the second half of remark (5) above. On the other
hand it is not difficult to verify that all completeness
theorems which assert the existence of derivations §)= (T,c)
containing no tautologies continue to hold under the stronger
restriction that no ¢(N)6& is a tautology for N €T, N £ r(T),
and © megossus of the clash at sN). (In fact these
theorems hold under the still stronger condition that no

o(N) € 4ece 6 1is a taubology where N £ r(T), 6, is the
Megesela of the clash at si(N) and s"(N) = r(T), sm”(N) £2(T) )e
For this reason the completeness of searching for restricted
clash refuliations containing no tautologies is not lost by a
corresponding search for binary refutations containing no
tautologies. /e shall ignore these complications in the

following sectione

2.9 Hyper-resolution and P, ~resolutions
1

A clash C is a B -clush and its resclvent C is e

» o 2 2 (. .
P’-a esolvent if @ is binary and one parent of C is pogitives

The completeness of P1~resolu‘bion follows from the completeness

of hyper-resolution, for given any hyper-resolution derivation



(© each hyper~resolution clash C in [ can be replaced by
a pseudo~clash éi and éi.can be replaced by a P1—derivation
of the resolvent of C .

Search strategies for hyper-resolution have the advantage
over those for quresolution that they avoid the redundancy
involved in calculating the n! hyper-resolvent pseudo-~clashes
é associated with a hyper-resolution clash € having n
satellites. On the other hand search strategies for P1~
resolution have the advantage of computing hyper=resolvents
incrementally and of saving the intermediate resolvents for
resoilution with possibly other positive satellites. More
precisely if éi = (A1,noo,An,B) is a hyper-resolution
pseudo-clash with resolvent C and associated sequence of P1~
resolvents C1,ea=,0n= C then each Ci can be used as an interw
mediate resolvent for some hyper-resolution pseudo~clasflé§ =
(A’I soceshys Iii_:,‘ o s .,,A*n,B) without recalculating for e‘i’ the
intermedi.te resolvents C1goa.,Ci already calculated for é% o
A second point in favour of FH-resoluhion is that the problem
of developing search strategiss for binary resolution systems
is much better understood than the corresponding problem for
clashes of larger cardinalitye

The following version of P,~resolution incorporating the

1
use of marked factors offers the advantage of both P1€resolution
and hyper-rosolution without being subject to any of the dis-

advantages of either.
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(1) An input positive clause is factored as a
satellite clause.

(2) 4n input non-positive clause B is factored as a
nucleus clause for hyper-resolution (i.e. generate all
factors B© of B where © is an meges.us of a unifiable
complete partition of all the negative literals in B). For
each such factor B' of B choose a total ordering of the
negative (i.e. distinguished) literals in B'.

(3) Resolve a positive factor on its single distinguished
literal with a non-positive factor on its first remaining
negative literal.

(4) Factor a positive resolvent as a sateliite clause.
Let a non~positive resolvent be its own trivial i-factor and
let its first distinguished literal be the next remaining
distinguished literal descending from its non~positive parente.

Clearly the device of choosing a unique total ordcring of
the negative literals in non-positive factors amounts to
associating a unique pseudo-clash with every hyper-resolution
clashe The generation of factors of positive clauses can be
further restricted by choosing anc~ordering and then only
generating those sctellite factors compatible with the
&=restrictions The method of decomposing hyper-resolution
clashes outlined above can be extended to hyper-resolution
after renaring without any commplications. 4 system employing
renaming, &X—ordering and (1) - (4) has been suggested by

Darlington [ 6 ] for application to information retrievale
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Darlington's system also incorporates Meltzer's device of

using renaming to simulate set of support. [ 26 ]

2410 Maximal Pseudo~clash Refutations,

Part (a) of Lemma 2.10s1 is used in the proof of Theorem
241042 which asscrts the 8&xistence of maximal pseudo-clash
refutations. Part (b) is used in Chapter 3 to prove a
permutation theorem for paramodulation refutations.

Lemma 2.10.1s Let S U {B} be an unsatisfiable set

of ground clauses where B = {L‘I’””Ln} is not a tautology«
Ié
(al) For 1 <1 < n let R\_l be the set of rcsolvents of
P
restricted pseudo-clashes C = (A’I’""A:‘.’B>
A
on Bi = (L1,aoa,Li) where .A1’aso’.[i.i € S are not
tautologiess
(b1) For 1<i < n let R, be the set of resolvents of
clashes C= {A1,.”,Ai,B} where A jessghs € 8
are not tautologies and the set of literals resolved
upon in B is {L‘l"“’Li} .

then

AN A
(eit) 8, =8U R, is unsatisfieble for all i, 1 £igm,
and

(bii) 8; =SU R, is unsatisfiable for alli, 1 <1 gn.

Proofs (a) By induction on is Extend the definition

~ ~
of R; and S, tothe case i = 0 by letting ﬁ\e = {B} o Then,
.
since 8. =8 U {B} , (aii) holds trivially for i = 0.

0

Suppose that (aii) holds for a given i+ Then we want to show
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. A
that gi+1 is unsatisfiable assuming that Si is unsetisfieble.

But §i+1 is the set of non-tautologous binary resolvents

”~

of clashes {Ain’ Ci} where Li+1 € S and Ci € Ri are not
tau’ologies and where Li+1 is the literal resolved upon in

~ A A ~

B = =) R - i a i
Ci Si+1 (Si Ri) ¥} 341 It suffices to construct a2 semantic
o 3

tree which is closed for ;04 ° Let 8- (T,d@) be = binary

semantic trec for the set of atoms in é\i ordered with Li+1

N

last. Then &is closed for S, and any clauso Ci € Ri

i
which fails in Sfails properly only at a tip of T (since Ci

cortains L and ii+ £ @(N) if N is not a tip of T).

141 4
Suppose ?)is not closed for S\i+1 « Then some complete

N
branch 81 of & does not contain & failure point for Si+1 -

But then some Ci € ﬁi fails properly at the tip N1 of @1,
Let N = s(N;l) ond s~ N) = {N,' ,NZ} e Then some

Ai+1- € S fails properly at Nz(since the complete branch 632
differing from @3 4 only in the tip N, contains a failure
point for S). By 2c3.3. the resolvent C € ’§i+1

of A . and C, fails at N on 6})1 contrary to assumptione So

i

V4
& is closed for 8, , and 5. . is unsatisfiable,
i+t i+
()  Ry=dc :cC o= (8 - (I} U@~ L))

V) (B - {L1,oce,Li} ), f-r A1’.OI’J'Li € S
where L1 € A1,a--, Li € Ai} °
Let 8 = (T,@) bo a binary semantic tree for the set of stoms
in SO =S5U Fe Then 8 is closed for Sge  Suppose 8 is not
closed for some 8,1 < ign. Then some complote branch

o of. S contains a failure point for S, but not for 8.
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Therefore B fails on &3 and {51’000,}:5_} < ().

Let Bj be the complete branch of S which differs from 03

o

onlyinLj, ie€a CQ(O?)J)=( CE(B) - {.f,]}) U {Lj},

for 1 <J <ie Then each 633, contains a failure point for
Se Let Aj € S fail on @5. If -L_j ¢ 1‘;3 for some j then

A, fails on &3 alrecdy end so comtrary to assumption &>

J

contains a failure point for S and therefore for Si. There-

fore -f: € ﬂ.jo Let

J
C = (A1 - {i}; ) Uo'tU (Ai"' {Ei})

U (B - {L1,9'09Li} ) »

thenC € R, and C fails on 0> 1.e. ¢ € A (W) since

1
I, < e - (@@ -iLN0M) em
o, - {1} £ @(®) end
B - 1Leensl;] S @B) .

Therefore @ contains a faillure point for Sia It follows
that 8 is closed for S:,L and that Si ie unsatisfiable,

Thecoren 2410626 If S is unsatisfiable then there exists

a refutation )= (T,c) of S such that (D is a pseudo-clash
derivation and the sequence 3 of literals resolved upon in the
nucleus B of any pseudo-~clash é in @) contains all the
literals in B. U2 contains no tautologies and overy
pseudo-clash in {§) is restricted.

Proof, By the contraction theorem it suffices to consider
the case waere S is a set of ground clausese. The proof is
by induction cn the botal number n of distinct atoms contained

inS. Ifn=1then s ¢ { {1}, {T}, {5,I} } for
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sowe atom L. The derivation &) consisting of the pseudo-

A
clash C = ({1}, {I}) with resolvent [ satisfies the

theorem. Suppose that n>1 and that the theorem holds for
any unsatisfiable set containing fewer than a total of n
distinct atoms.

Suppose that S contains only the distinet atoms L ,-ooLn

1
Let C1,...,Cm ¢ S be all the clauses in S containing the

atom L1 positively. Thus L1 has exactly m distinct positive
’
oceurrenoss in S. Let d; be a sequence of literals

containing all and only the literals in Ci where L, occyrs

1
A~ ~
last in Ci. Let S@ = 8 and for 1 < is m let

~

~ "N ~,
8= <Si~1 - {Ci}) U R, where R, is the set of all non-

tautologous resoclvents of restricted pseudo-clashes with

”~

A
satellites in Si and nucleus Ci where Ci is the sequence of

1.
™,
literals resolved upon in Ci' Bach Si is unsatisfiable
st A
since SO = S is unsatisfiable and if Sl 1 is unsatisfiable

—

~ ~
then so is S,, by 2610«1, for 1 < 1 < me Notice that Si

N
containg m~i positive occurrences of L1 because if Si 1
~

contains m - i+] such occurrences, then Si M {Ci} contains
FaS
n ~ 1 such oceurrences, but Ri contains no positive oceurrences

of L, by virtue of the fact that L1 is last in the sequence

”~ A
Cio Thus Sm contains no positive occurrences of L1.
Therefore, by the purity principle [ 39 ] some St C

~A

Sm is uns:.tisfiable where the atom L1 does not occur in St.

By induction hypothesis there exists a refutation

0 = (Tt,ct) of 8! satisfying the theorem. Dy appending
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to  each tip N' € T where c¢'(N') £ S the derivation of
c?(N') from 8§ associated with the construction zbove we obtain
the desired refutetion @) of S.
The proposition analcgous to Theorem 2.10.2 for clashes
does not hold. If S = { {L,,L,}, {L,L}, L, L},
{L1,L2} } then S is unsatisfiable but there exists no clash
refutation @ of 8 such that the set of literals resolved upon
in the nucleus B of any clash C in () coincides with the
set of all literals in D. No such refutation © of S exists

even if 0) is allowed to contain umrestricted clashes and

tautologies.



CHAPTER 3,

The use of equality axioms in resolution systems has
seemed to be espccially inefficients In order to remedy
this problem several modifications of resolution have been
proposed (esge [ 3] , [6] ,[ 28] ,[38],
[ 43 ][ 48] 5 2nd [ 55] )e Of these the paramodul-
ation method of [ 38 ] seems to be particularly simple and
efficients 1In this chapter we compare paramodulation with
hyper-resolution using exioms for equality. These two
methods are first described in sections 3.1 and 3.2 and then
compared in 3.3 4 simple interpretation of hyperw-resolution
with equality axioms is found in the subsystem of paramodulation
providing a straightforward proof for the completeness of this
subsystems In sections 3.4 and 3.5 modifications of the
hyper-resolution mothod are proposed and these modifications
are seen to induce corresponding modifications of the
paramodulation methods A principal conclusion of this
chapter is that systems designed especially to deal with
equality need not be more efficient than existing resolution
systems.

Chapter 3 is essentially [ 20 ] with only minor

modificationse

3+1 Hyper-resolution with Equality Axioms,

Let SO be a set of clauses and let B = E1k}E2 UE3 where
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E1= {{ X =X }} 9
E2= {{xi % yi’ f(x1,"o,xi,“o,xn)=
f(x1,u.,yi,u.gxn)} t

f in the vocabulary of SO and1 < i < nj,
E, = {{ %, p ¥, ’P'(x1,.o.,xi,o.e,xn),
P(x1,wo,yi,-..,xn)} s

P the equality symbol or P in the vocabulary

ofsoa.nd1 <i<ml}e.

We write s = t instead of = (gst) and s £ t instead of
-:.:-(_s,:l: s We adopt the convention that "s=t" is syntactically
indistinguishable from "t=s"e, This convention allows us to
simplify notation and in particular allows us to consider as
teutologies clauses of the form {s # t s bt = s} .

If SO has no normal model (i.e. no model in which the
equality symbol is interproted as a substituvtive identity
relation) then S = 8, UE is unsatisfiable. Therefore there
exists a hyper-resolution refutation ® of 8. This needs
to be verified by appropriately modifying earlier definitions
and proofs to accomodate the indistinguishability of "t=s"
and "s=t"s In this connection we note only that two equations

t1=s1 and t may have two non~equivalent m.gos.ug, lece. one

2752
for 81 = {f b9 %, }, {31,32}} and another for 52
= fft1,sz} s {tz,s1 }} « In section 3.3 we shall
compare h:por-resolution refutations O of 8 (W‘i’th paramodulation
refutations of SO'

The efficicncy of obtaining the refutation ® con probably

be improved by imposing restrictions which have not been
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investigated for paramodulation (e.ge deletion of tautologies
and subsumed clauses, X=ordering restrictions, various
factoring methods, unique decomposition of restiricted clashes,
diagonal search and preprocessing procedurcs). In addition
we note the following improvement for obtaining the hyper-
resolution refutation® of S = SOU B, If SO results by
eliminating quantifiers from a set of sentences SO* then it
is unnecessary to include in E2 C E axioms for the Skolem

function symbols introduced in obtaining S 0 from SO*’. This

follows directly from the fact that S8 * U E* is unsatisfiable

0
where E* = E1 U E2 V] E5 and EZ* contains axioms only for
the function symbols occurring in SO*-

302 Paramodulation.

Given a clause B and & single occurrence of a term + in
B we write B[t] to indicate the given occurrence of + in B.

For grou.d clauses &L = {t = s} CJ A, and B =D [4]

0
paramodulant of 4 and D is the clause ¢ = B[s/%] U A

0
whexre B[ s/ “b] indicates the result of replacing the single
distinguished occurrence of t in B[t] by s. Note that ¢
may oceour as a subterm of another term in B, both in its
distinguished ocecurrence in B[t] as well as in otner
occurrences in B.

For ilhe gensral case paramodulation is most conveniently

defined in the context of refutation systems which inelude a

separate rule for factoring clausess For standardised factors
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<
A = {t, = g} U AO and B o B[tZ]Where {t,',tz} is
unifisble with megeus © ;, a paramodulant of 4 and D is the

clause

C=4 U Be[se/t?_e]

= (AO U B[s/tz]) 8 .

The factors & and B are respectively the first and second

parents of Cs We call the distinguished occurrence of tz

in B[tz] the term paramodulated upon in B. (In a nore

precise terminology we would refer instead to "the
distinguished oceurrence of the term paramodulated upono")

I'he literal t in A and the literal in B[t] containing

(R
the distinguished occurrence of t are both called the

literals paramodulated upon.

An important case of paramodulation occurs when the
occurrence of the termparamodulated upon in the second parent
B[t] does not occur as a proper subterm of another term in D.
In this c.ce the distinguished occurrence of t in B[t]is said
to be primery in B[t] and the application of paramodulation is
also primary. (The terminology here is borrowed from Sibert
[ 48] Yo For example if B = { £(c) £ ¢} then both
the single occurrence of f£(c) and the second occurrence of ¢ in
B are primery in B but the first cccurcence of ¢ is not.

4 Qerivation ®= (T,c) is e p-derivation if NeT and

5'1(1\1) = {NHM.gNn} # @ implies that either
(1) ¢ (3'1 (N)) is & clash with resolvent o(N) or

(2) n=2 and c¢(N) is a paramodulant of factors of c(N,')
and c(NZ).



Notice that we do not explicitly exhibit factoring in either
clash~derivations or p-derivations. A p-derivation ® is binary
if all clashes in ® are binary.
Given a set of clauses So let
Eh =
vocabulary of S

{ { f<x1$""3xn)= f(x1 "'"3xn)} : £ in the
03 n _>_ 0} L]
The following completeness theorem for paramodulation

was reported by G. Robinson and Wos in [ 38] .

Theorem 3.2.5. I SO has no normal model then there
exists a binary p-refutation of Sq Y Elﬁ'
Robinson and Wos have also proposed the following

unsolved

Conjecture [ 38 ] If 8, has no normal model then

there exists & binary p-refutation of SO UE 4°

3.3 Comparison of the Paramodulation end Hyper-resolution
Methods

The basis for our comparison rests upon the observation
that most hyper~resolvents with micleus parents in E2 v 333

can be interpreted as paramodulamtse This same obscrvation

was noted independently by Chang in [ 4] « For later
applications in section 3.5 it is useful to formulate this
observation more gencrally for n~resolvents with mucleus parents

in E, UBR,.
)

2
L clash C is an p-clash and its resolvent is an n-resolvent
if the set of literals resolved upon in the micleus B ¢ &

coincides with the set of negative literals contained in D.
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Thus any hypor-resolvent is an n-resolvent and any n-resolvent
of a restricted n~clash all of whose satellite parents are
positive, is a hyper-resolvent, Note that we do not require
that n-clashes be restricted,

In the sequel in order to simplify terminology we shall
often treat variants of the same clause as though they were
identicale This convention allows us in the statement
of 3.3.1 below to refcr to ™3 ¢ E3" insthad of "D a variant
of & clause in E,">

3
Lemma 365470 Let C = {AN"”‘An’B} be an n-clash

with mucleus B and n-resolvent C» Then
(1) if B ¢ Es and n = 2 then C is a primary peramodulant
of factors of 111 and Az y
(2) if B e E, then C is a paremodulant whose first parent
is a factor of !;1 and second parent is an appropriate
clause B* ¢ E)+9
(I£ B = {xi # Yy f(x”e..yxi,@..,xn) =
£(x, ’aao’yi,onagxn) }
then B¥ = {£(x,50000% ) = (% 50005x )} o )
Proofs (1) Let 7 = {4,

factors of clauses in C having C as resolvent. D! =D since

'y Az', B be the sct of

otherwise the two negative literals of B would be unified in
B* implying that  has only one satellite in which case n

would be J. Let
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1

A ft =8} U Boq »

-0
Aé {P(t19°”’tis°"3tn)} u %2 and

B = {xi;éyi, -1-5(3!1sw"sxisw‘;xn)yp(x.l9°°°3yi9'°“sxn)} .

I

is an meges,us of {t,ti} . C is therefore a primary
paramodulant of A, ¥ and Ayte
(2) Let C' = {4t,B] be the appropriate set of

factors of clauses in ¢4 having C as resolvent. B! =3B,

Let
A= {t = s} L.JAO and.
B! = {xi # Iss f(x1,e.a,xi,a..,xn) =
f(x1,oa;,yi,.o,,xn)} o
Then C = {f(x,lp..a,jz,..o,xn = f(x1,..o,s,..¢,xn)} U 4,

and C is a paramodulant of A' and of
B = {f(x,‘,o..axn) = f'(x,l,.”,xn) } eE4 o
Lemma 3%.3.1 implies that any hyper-resolution derviation
a of & clause C from clauses S, U B U B can be

4
transformed into a p~derivation of C from SO v} E_l UE

4 *
provided that every clash in () with nucleus B ¢ E3 has
exactly two satellites. Furthermore;, in order to obtain
the application of section 3.4 to trivilization of inequalities,
it is desirable that the clause {x = x} does not occur
as parent of a paramodulant in the resulting p-derivation.
These two desiderata motivate the following definition and

lemma,

L ¢lash derivation @ 1is normal if whenever a clause



B € B, U E3 occurs in )

(1) B occurs as mucleus of an n-clash C ,
(2 C n (8, v EL) =g and

(3) IfB € E, then C contains exactly two satellites.

Theorem 3+3+3 below states that any normal derivation
from clauses SO UE UE, can be transformed into a p~derivation
-
from S0 ) E,‘UEI"_. Lemma 3.3¢2 both guarantees the existence

of normal derivations and also serves as a lemma in the proof

of 30402:
Lemma 3¢%.2. Let S = SO UE'y where E' = E or
Bt=E. UE_UE, s be unsatisfiable. Then there exists a finite

2 3

unsatisfiable set 8! of ground instances of clauses in S such
that if a clash derivation ® =(T,c) from S results from 1iffing
a clash derivation ®@'= (T,of) from S' (i.e. ¢'(N) is an instance
of ¢(N) for all N €T) then for every clash C in

(1) if the mucleus of C iz in E, U E3 then

Cn(E“UE4) =@ and

1
(2) if C ir an n~clash with micleus B € B, then C

3
contains exactly two satellites.
Proof, Choose S' containing no tautologies. In addition
let 3' contain no instances of clauses in E2 of the form
(*) {t; # by f(t1,°..,‘bi,...,tn) =f(t1,,..,ti,...,tn); .
S* may so be chosen because any instance of a clause in E2 of
form (*) is subsumed by the corresponding instance {f(t1,ou,tn)

= f(t‘l""’tn)} of a clause in E, or E, .
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Lot P! and ) be derivations from S' and § respuctively
where @ lifts ©'e. Suppose that (1) is violated. Then there
are clauses LA, B € @ where A € E1 U El,. and B € E2 V) E3
is micleus of ( which is some clashin @« If B ¢ E,
then, since 4 is positive, the negative literal in B is yesolved
upon in G and the corresponding instance B! of B in () ! is of
the form (*)s If B ¢ Es then the first or second negative

literal in B is resolved upon in C and thé corresponding
instance Bf of B in ®' is a tautology.

If (2) is violated and (3 is an n-clash in §) with
nucleus B € E3 and only one satellite then the corresponding
instance B! of B in @7 is a tautology of the form {sft, s=t},

Lemma 3:3.2 guarantees the existence of normal wefutations
@ of unsatisfiable S=8, U Bfe For if §' is a hypoer-
resolution refutation of S' then ) is normel if &) lifts !
and S*' is the finite set of instances of clauses in S,
asserted tc exist by 3e3.2.

Given a normal derivation §) we denote the corresponding
p-derivation by ¢ (& )e Lot ®= (T,c) be a normal
derivaticn frem S0 U E! where E' = E or E! = E2 U E3 V) El..“

Then ¢ (0) = (T%,c') is defined as follows:

(1) 2P g1y

(2) N € T-TV if and only if c(N) € Ey and

(3) for N ¢ T!

(a) if ¢(N) e E, then c'(N) e E),
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éiueo if C(N) = { xi # yi,f(x1 ,""xigsotsxn) =
f(x,],c.ogyi,...,xn) }
then 0'(N) = {f(x_‘,oeogxn): f(x.1go-uglxn) } )
and

(b) c*(N) = c(N) otherwises

Theorem 3.3.3. Let @ be a normal derivation of a clause

14 | J— ! - :
C from SOUE where E* = E or B _Ezu EBUELI.’ Then

$ (D) is a p-derivation from 8, U E" where B =

0

; t - "o if B = U T
E1UE41J‘.'E E and E Eh-le EZUEB E4°

Proofs 3e3.3 1is a direct consequence of Lomma 3.3.1s

Theorem 3.3.ks If 8 has no normal model then there
exists a p-refutation Mof Sy U Eh_ such that:

(r1) Both parents of every paramodulant in @ are positive.

(r2) Every resolvent in ® is a hyper-resolvent.

(x3) All applications of paramodulation in® are »rimary

except when the second parent is in E Moreover

L
no clause in Eh- is first parent of a paramodulant
in ©® .

(r4k) Given any &~ordering for S oY E, all parents of
paramodulants and satellite parents of hyper-

resolvenis in ) satisfy the a-restriction.

(] [a] 3
Proof, Since §, has no rnormal model, Sy U L2U E3U El;-
is unsatisfiable. Let < . be an &-ordering for SQ u Eh- and

therefore for S as welle Letd) be a hyper-resolution
refutation of S satisfying the ot~restriction for satellites in

® o ° Moreover let (DO be obtained by lifting a ground
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refutation of a set S' of ground instances of clauses in S,
where ' satisfies the conditions of Lemma 3342 Then CDO

is normal and  $(®,) =@ is a p-refutation of §, U E,.

0 4

That © satisfies (r1), (r2) and (rhk) follows directly from the

definition of ¢ « The first part of (r3) follows from Lemma

3.3.1 and the second pert of (r3) follows from Lemma 3e3e2e
Note that Theorem 3¢3+4 implies Theorem 3.,2.1 bhecause all

applications of hyper~resolution can be replaced by sequences

of P1 -resolutions.

Theorem 3+3.5. If 80 has no normal model then there

exists a p-refutation @ of 8y U B, U EL,. such that
(r1) - (rh) and
(r5) The clause {x = x} does not ocour in® as parent
of a paramodulant and clauses in El+ occur in ® only
as second parents of paramodulants.

Proofs The proof of 3.3.5 is identical to that of 3.3.4
except that we let § = 5, U E. Restriction (r5) then follows
from Lemma 3.3.2 and the definition of ¢ «

Theorems 3e3.4 and 3+3.5 establish the most direct of
our comparisons between paramodulatiion and hyper-resolution
with equality axiomse These comparisons are refined further
in the next two sectionse. We note first that 3.3.4 and 3.3+5
already establish the compatibility with the paramodulation
method of the deletion of tautologies and subsumed clauses.
(Since these deletion rules aré compatible with hyper-resolution

refutations © they are also compatible with p-refutations (b(CD) o
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It is also possible to impose miri:hnality restrictions on
p-refutations ¢ (@) corresponding to the minimality
restrictions imposable on hyper-resolution derivations.
Finally the compatability of renaming for hyper-resolution
implies the same for paramodulation provided that the equality

symbol is not enamede

7 sl Trivilization of Inegualities.

Resolving a factor C = {sft} UC, with {x = x}

0
produces the clause 009 where © is an meg.-us of {s,t} «
We call such an application of resolution the operation of

trivializing an incquality (compare [ 3] and [ 48]).

Corollary 3.7+2 of Theorem 3eke1 implies that if SO has no

normal model then S, may be effectively preprocessed by

0

trividizing inequalities in clauses of So obtaining a set of

clauses SO* such that 8% = SO* U E2 U E3 is unsatisifiable.

8 .* consists of S, together with all resolvents of clashes

0 e

C = {A1 o end 4, = fx=x} for all 1,

1<i < n (simltencous trivializatior of inequalities).

,M,An,B} where B ¢ 8

Clearly the number of applications of resolution involved in

obtaining SO* from SO is finite and therefore SO* can

effectively be obtained from Spe
If ® is a normal hyper-resolution refutation of So¥

tten ¢ (@) is a p-refutation of § * U B, such that (r1) -

0 b
(r5) of Theorems 3o3es and 3365 hold for ¢ (D), with the

obvious strengthening of (r5) that {x=x} does not oceur



in (b(D)o If we enlarge¢ ((D) 80 as to exhibit
trivializations of inequalities then we obtain a p-refutation

®'!' of SO*\J E1 LJEA which may differ from the p-refutation
of 34345 in that (r2) may fail to hold for these applications
of resolution which trivialize inequalities. On the other
hand all trivializations of inequalities in ®' oceur before
all other applications of resolution and before all applica-
tions of paramodulation inED', whereas no such ordering of
these operations need occur in the p-refutation asserted to
exist by 343450

Theorem 3olet implies more generally that satisfiable

sets S, of unit clauses may be effectively preprocessed out of

1
a set of ¢lauses § = SO U Sy before attempting to find a
refutatisn of the resulting set So*o Our intuition is that
such preprocessing is likely to increase the efficiency of
obtaining proofs of more difficult thecremse The figure below
gives a imple cxample of two derivations of the same clouses
Only the first derivation will be generated if the original set
8q 1s preprocesseds If the entire set SO* must be gencrated
before attempting to find a refutation then this method of
preprocessing may be inefficient for proving theorems which
have a simple proof which can be detected for instance with
less effort than that imvolved in generating all of SO* itself.
On the oth-r hand since resolving e clause A € SO with a unit

¢lause in Sy produces a clause contalning fewer literals than

are contained in A we may expect that this preprocessing
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procedure will tend to retain the simplest of th se
derivations which differ by permuting occurrences of clauses

from S ’ atong their branches. TFinally even for the case of

simpler theorems preprocessing can be made more efficiont by
simultaneously generating S »0* and generating resolvents from

SO‘" before completing the gencration of S *. (Such a

0
procedure would be similar to the diagonal search strategy

of Chapter L.)

Example,
{L1 ,th €8, {L1}J €8, {L1,L2} eSO‘. {LZ,LS} €S,
// \\
- W, - \
{LZ,L3} €S, ‘-/J(LZI € 8t {LB,LA}fso : 2,1,3}
N\ / N\
- \ \
{LZ)’L&-} ESO \'/{Lj} ﬁ:‘l} SS'] S “‘1’ LL,_}

N \
\/{ L} \{L )

Notice that the redundancy exemplified here can not be
removed by implementing singly connechedness [ 44 ] and is
not removed by hyper-resolution. Notice also that in this
case the eliminated proof invoived resolvents of length 2
and is therefcore more complicated than the first proof in the
sense that it is gencrated after the first proof by diagonal
search (Chapter k. )

Theorem 3.41s Tiet S = SO U S1 be unsatisfiable where S‘l

is a satisfiable set of unit clauses. Then the set
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SO* = SO U R is unsatisfiable where R is the set of

resolvents of clashes with nucleus in S. and satellites in S1.

0

Proof. Assume first that S is a set of ground
clauses. Let S, = {1 L1},°.., § Ln}}. We prove the theorem

for this case showing by induction that, for all k < n,

is unsatisfiable where Rk is the set of resolvents of clashes

with nucleus in SO and gatellites in {{ L1},°.., {Lk}}.

UO is unsatisfiable since UO = S.

Suppose that Uk is unsatisfiable for some given k.

By Lemma 2.101 (a) or (b), U = (U }) UR! is

k

unsatisfiable where R' is the set of binary resolvents C of

- {I‘k+1

clashes & with nucleus {Lk+1} and satellites 4 in U - { Lk+1}°
But then A ¢ S, (since S, is satisfiablg. So A € S;U Ry

and therefore C ¢ Rk+1' But then R' g,Rk+1 and since

Rk < Rk+1 ’ Uk+1 = U is unsatisfiable, It follows therefore

- a1 . o
that Un SO UR = SO is unsatisfiable.

If S 1is not a set of ground clauses let S' = SO’ V) S1'
be a finite set of ground instances of clauses in S where

S~' and S1’ are instances oi clauses in SO and S1 respectively.

0

Then So’ U R'" is unsatisfiable where R" is the set of

resolvents of clashes with nucleus in So' and satellites

"in S1‘. But by the contraction theorem So' U R' is a set

of ground instances of clauses in SOKJ R which is therefore

unsatisfiable.
Corollary 3.4.2. Let S = So U E be unsatisfiable.
Then S* = So URU E2 U E3 is unsatisfiable where R is the set

of resolvents of clashes with nucleus in SO and satellites in E1.
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Proof. Let S' be a finitc unsatisfiable set of

ground instgnces of clauses in S satisfiying Lemma 3e3.2.

Take SO L}E2 L}E3 to be the SO of Theorem 3e41. Then

SO L;Ez U F, UR_ i1s unsatisfiable where each C in RO is the

3 0
resolvent of & clash & having mucleus in S U E2 L}E3 and

0
satellites {x = x ]+ But each C € R, is obtained in 3.4.% by
lifting & ground slash &' € 8'. If €) is the derivation
of ¢ from C and €)' the derivation of an instance of ¢ from

(' then it follows by 3.3.2 that ® is normal and therefore

that the nucleus parent of C is not in EZ\J E3, ieco RO= R,

3.5 Permutation of Inferencese.

Theoxren 3.4 is a permutation theorem in the sense that
it states that certain clashes may be permuted toward the tips
of a derivation., Theorem 3,53 and its corollary are permuta-
tion theorems in the same senses Coyollary 3e5.2 implies that
applications of paramodulation may be made to occur before
applications of resolution in a p-refutation. Togcther
3eke2 and 3.5.2 imply that a p~refutation may be obtained
either in the form where trivializations of inequalitiecs
precede paramodulations which in turn precede other resolu-
tions or in the form where paramodulatiions precede trivializa-
tions which precede other resolutions. - For a p-refutation
in either of those forms we may insist that (r3) and (r5) still
hold ((rﬁ) sultably modified as for the p-refutation corresponding

to Corollary 3.4.2). Restriction (r1) must be weakened to
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assert only that literals paramodulated upon are positives
Restrictions (r2) and (rl) need to be modified to assert
that resolutions which do not trivialize inequalities can be
applications of any fixed complete resolution rule (e.ge se$
of support, M=-clash resolution, binary arestricted clash
resolution etce)s The ordering restriction of Corollary
34502 can be effectively implemented by insisting that no
resolvent be the parent of a paramodulant. On the other hand
39502 unlike 30442 does not imply that the initial set SO can

be effectively prsprocessedd by applying paramodulation to
obtain an unsatisfiable set S(fo

L theorem similar to 3¢5.2 can be obtained by analyzing
the abstract of the Robinson - Wos completeness proof for para-
modulation, [ 37] and [ 56] o+ Itwas in fact
this observation which motivated the discovery of Theorem 34541
and its corollary. Unlike the case of obtaining the p-refuta-
tions corresponding to 3.4.2 we do not have any intuition on
the efficienoy of finding the p-refutations corresponding to
3¢542e

Given S = SO Q S1 where 81 is a set of non-positive
clauses, let © be a clash derivation of a clause C from S
such that every clash in J is an n-clash with nucleus in 31
and satellites not in 819 Then C 1s said to be anu§1:;
resolvent frem 8 and the derivation &) is said to be
=E, U B, and if @ is a normal

1 2 3
~resolvent C from SO’ then

associated with Co IT S

derivation associated with an S1
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¢ (@) isy a p~derivation of C from 8. containing nc

0

application of clash resolution.

Theoren 3.5.7. Let 8 = S0 (W] S1 be unsatisfiable where

S1 is a set of non-positive clausess Then some finite set S#

of S1-resolvents from SO is unsatisfiable.

Corollary 3.5.2. Let § = SO W) E2 UE3 be unsatisfiable.

Then some finite set 8% of clauses derivable by paramodulation

with resolution from So U Elx- is unsatisfiables

Proof of 3.5.2. Let B, U E, be the S, of 3.5¢1 and let

2 3 1
S* be the resulting finite unsatisfiable set of 8 1-resolvents

from 8g° As in the proof of 3+4.2 we may choose a set S?

of ground instances of clauses in § such that each derivation

C
is a p-derivation and since O C contains no clash with

®  associated with ¢ € S* is normal. By 34343 each ¢(®G)

nucieus not in E2 v E3’ ¢ (O C) contains no application of
clash resolution.
The proof of Theorem 3.5.1 requires the following lemma.

Lemna 35436 Let 6) be a hyper-resolution derivation

of a positive ground clause  from ground clauses S (J {D}
where D is non-positive and occurs in f) only at the nucleus
node immediately above the roots Suppose that §) contains
no tautologiess Then there is a hyper-resolution derivation
Q' of a clauss C' C C from clauses 8 U R where R is the
set of n-resolvents of n~clashes with satellites in 8§ and

micleus Do @)' contains no tautologies.



- 163 -

- —— *
Proof of 3.5s:3s LetD = {L1,...,Ln} U D,
where D 0 is positive and each Li is negatives Let C =
§K1,9099Km} and - C = {{K1} 90seyg {Km} } °
Notice that ] Li | £ IKj | for all i,j where1 < i < n,

1 € J < m, since the clash at the root of () is
restricted. § U {D}U = C is unsatisfiable becsuse S U {1}
implies Ce By Lemma 2+10s1 (b), SUR! U = C is unsatis=-
fiable where R' is the set of n-clash resolvents with nucleus
D and satellites in 8 U = Cs But R' = R sinco no un=-clash
with mucleus D has a clause {EJ} as satellite. Therefore
SUR U = C is unsatisfisble and S U R implies Ce Dy
Theorem 2+5.%, tecause C is positive, there exists a hyper—
resolution derivation ® from S U R of a clause C' which
subsumes C, i.es C' C Co OF contains no tautologies.

Proof of 3.5.1s 4As in the proof of 3.ke1 it suffices to

consider the case where 8 is a set of ground clausess, Let
® = (T,¢) be a hyper-resolution refutation of § containing no
tautologies. The proof is by induction on the mumber n of
clashes in ® having a clauce in S1 as mrcleus. Recall thatb
each micleus node of 6) is a tip of Te If n = O then O
1s a refutation of 3, and SO is unsatisfiables DBut SO is
trivially a ses of 8 1—resolvents from S0 °
Suppose that n > 0 and that the theorem holds for any
byper-re:s) vtion refutation @' of a set SO' \:) $4 whenever

@' contains no tautologies and the mumber of occurrences

of clauses in 81 at micleus nodes is less than ne Let N ¢ T
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be such that for all N!' e Ty, c(Nt) e 8, if and only if

1

N' is the nucleus node of s~ (N)s In other words choose N
such that if ®N= (! N,c) then & clause D € S, occurs in

Oy

root of ®V° Then (DN is a hyper~resolution derivation

only at the mucleus node lying immediately above the
fram S, O {D} of a positive clause C = ¢(N) and ON
contains no tautologies. It follows by Lemma 3503, that
there exists a hyper-resolution derivation (DO of a glause
¢t € C from SGC'/ R, where R, is a set of {D} ~resolvents
from SO’ laes RO is a set of S1—resolvents from Soo (DO
contains no tautologiese.

Let © 1 be the subderivation of © obtained by ignoring
2ll of @) N except for the root N of TN. Then @1 is a
hyper-resolution refutation containing no tautologies of
the set (S, v S1) U C and ®1 contains fewer than n
occurrences of clauses from S‘l at its tipse. Let O 5 be
obtained from O ; by applying the contraction theorem to 631 .
associating with the node N in 6_),1 the clause AN:. crc ¢
and otherwise associating to every other tip Nt in 0 ’ the
clause A= ¢(N'), Then ® 5 is a sontraction of ®1 and is
a hyper-resolution refutation of (SO U S1) UGt ®2 =
(’1‘2,02) contains no tautologies, fewer than n occurrences of

clauses from S, at its tips and one node Nos corresponding to

1
N, such that CE(NO) =C',
Let O' be obtained by identifying the root of @O with the

tip N, of Q pe  Then ' is a hyper-resolution refutation
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of (S0 U S1) v RO conteining no tautologies and fewer than n
occurrences of clauses from S1 at its tips. By induction

hypothesis there exists an unsatisfiable set R of S 1 ~resolvents

from 5, \ Ro. But siuce RO is already a set of S1 -resolvents

from SO’ R is as well.
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CHAPTER L4

The first half of this chapter (sections hel = 4.5)
extends the Hart-Nilsson-Raphael [16] and Pohl [32] theories
of heuristic search to the case of theorem-proving graphs and
theorem-proving problems. In particular the admissibility
and optimallty theorems of [16] are generalized for the
rlasses ) and @u of diagonal search strategies for abstract
theorem~proving problems. Both crdinary tree (or graph)
searching problems [8] , [32] , and resolution problems
are shown to be special cases of the more general notion of
abstract theorem-proving problems with non-negative costse
In sention 4.4 concrete algorithms are diseussed fer epplylng
Giagonal search strategies to theorem~proving by resclution.

The last two sections of this chapter contain an
investigation of two complete factoring methods. The first
method, when applied to hyper-resolution, amounts to never
unifyying negative literals. The second method, m-factoring,
is shown to be always more efficient than the Wos-Robinson
method.

The material in sections Le1 = L5 is nearly identical
to that reporbed in [21] . The completeaess result of gection
L.6 was announced withiout proof in [17] for the special case

of hypar~resolution systems.

Le1 Theorem-Proving Graphs.

In the theorem-proving problem we begin with an initial

non-empty set of sentences SO and with a set of inference rules ['.



- 167 -

If t? € P and S is a set of sentences then \?(S) 9s
another set of sentences. LP(S) =@ if LP is not
applicable to S. In particular l? (s) = ¢ if s is not
finite. 1In applications to resolution systems, SO is
a set of clauses and {' consists of a single resolution
rule or of a factoring rule and a separate rule for
resolving factors. If  is binary resolution of
factors then n{?(s) =8' £ § if S contains two factors
which resolve or ore factor which resolves with itself
and each C' € S' is a resolvent of the clauses in 8.
If LP is the operation of unifying literals in a single
clause (the Wos-Robingon method of factoring [ 53 ] )
then cp(s) =8'£@ if S is a singleton 8 = {C¢} and
each C' € S' is a fgctor of C,

Given an initial set of sentences S0 and a set

of inference rules | let S* be the set of all sentences

which can be derived from S, by 'iterated application

0
of the rules in P » Bach sentence C ¢ 8* can be assigned

a level: if C € S, then the level of C is zero,otherwise

0
C e LP (8) for some \? € It and for some § C S* and the
level of C is one greater than the maximum of the levels

of the sentences D ¢ S, If Si ig the set of all sentences

of level i then 8% =U  S.. Since a sentence C ¢ S*
0<i

may have several distingt derivations, the level of C

need not be unrque, Since LP(S) £ @ only if § is finite,
the set of sentences which occur in a given derivation of
a sentence C € S¥ is always finite. The theorem-proving

problem for a triple (SO, r,F ), F C 5%, is
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that of generating by means of & search strategy 2. some C* ¢ F
by iterated application of the rules in fﬁ beginning with the
sentences in SO’ For certain applicetions it may be required
to derive a sentence C* € F having minimum level in F or, more
generally, having minimum cost in F, where cost is determined
by some "costing function" defined on the sentences in S*.
The tree (or graph) searching problem [8] s [32] can be
interpreted as a theorem-proving problem (sO,F1, F) where
each operator qDGfﬂ has the property that (8) = ¢
whenever 8 is not a singleton.

A triple (So,fﬂ,F) determines a directed graph whose
nodes are single sentences C € S*, C!' is an immediate
successor of C (i.e. C' is connected to C by an arc directed
from C to C!) if for some SC S* and e l', C e S and C'e P(s).
The situation is similar to $hat which exists for ordinary graph
searching problems as distinguished from tree searching
problems. 3Jearching in a directed graph for 2 path from a
node & to a node b can be interpreted as searching in a
dirccted labelled tree for a path froa a node Nf,with label
c(N1) = a, to a node Nys

search interpretation of graph searching has the property of

with label c(NZ) = b. The tree

representing a single node d in a graph as distinet nodes
Na,...,Nk in a tree when the node d can be generated in k
different ways as the end node of k different paths from
the initial node a. This property of the tree search

representation is one which we find useful when extended to

deal with the more general theorem-proving problem. In
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particular the extended tree search representation associates
distinet nodes with distinct derivations. This 1 = 1
correspondence between nodes and derivations allows the mmber
of nodes generated by a search strategy 2 in the course of
obtaining a terminal node to be treated as a measure of the
efficiency of ¥. for the given problem.

We define the notion of an abstroet theorem-proving

graph ("abstract graph" or simply "graph") (G,3)s The

extended tree representation of an interpreted theorem-proving

graph (SO, ) can be obtained from (G,s) by labelling the
nodes N € G by use of a labelling function c¢:G - S*, and by
interpreting each application of the function s to a subset
G'S G as an application of a function Pe€ " to the subset
fe(N): N eG'} . An abstract theorem-proving graph is a
pair (G,s) where G is a set of nodes, s:2% f is a
successor function defined on subsets of G taking subsets

[

of G as values. G and s satisfy the following conditions:

(1) s(8)=¢.
(2) s(6') £ f implies that G! is finite.
(3)  G'#£6" implies that s(G') N s(G'') = B
(&) Let?:’50={NeG:N,és(G')forauye'g ¢},
let & , ={N € G:N € s(G') for some
¢ g, Y S5, o0 S48

Ti<ck
Then (a) SO % ¢ s
(v) G =

V)
=
(e) Sn%:p’fori%j‘
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The graph (G,s) reduces to an ordinary tree if s(G') £ §
implies that G' is a singleton. For this case condition (3)
states that distinct nodes have distinct sets of successors.
More generally, (3) states that distinct sets of nodes have
distinct sets of successors. It is precisely this condition
which ensures that the graphs (G,s) extend the ordinary tree
representation of search spaces., Condition (5) states that
(G,s) is a levelled acyclic directed graph. In other words
each N € G can be assigned a unique level 1 where N GSi
and N;éSJ for all j £i. If (SO,P) is an interpretation
of (G,s) with lebelling function ¢ : G - S* then
8, = fe(N): N eSi} is just the set of labelled nodes of
level i. Condition (3) guarantees that for each C € S* and
for each distinet derivation of C from S, there is a distinct /
node N € G such that ¢ = ¢(N). There is no restriction that
S, OF S, be finite. The case where SO is infinite allows
us to deal with axiom schemes in theorem-proving and more
generally with potentially infinlite sets of initial nodes SO'

The successor function s of (G,s) determines a partial

ordering of the nodes in G: N! is an imcoliate successor of

¥ (and N an immediate ancestor of N') if

Nt ¢ s(G') and N ¢ G' for some G' C Ge
A node N' is a siccessor of N (and N an ancestor of N'),
written N' > N,

if N' is an immediate successor of N or

if N' is a successor of an immediate successor of N.

we write N Nt if N< N' or N = N'. The definition of (G,s)
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guarantees that for all N ¢ G the sct {N' ; N!' >N} is
finite, although the set {N': N' >N} may be infinite.
Notice that in the theorem-proving interpretation of graphs
(Gy5), a derivation of a sentence c(N) consists of all the
sentences c¢(N') where N'< N. Each such derivation contains
only finitely many sentences c(N').
level O
level 1
level 2

level 3

Figure 1.

Figure 1 illustrates a graph (G,s) where nodes are
represented as points and where points N and N' are connected
by a directed line from N to N' if N' is an immediate
guccessor of N. In general it is convenicnt to picture graphs
as directed downward, so that N lies above N!' if N' is a
successor of N. To determine in Figurc 1 if N € s(G') it
suffices to verify that G' is the set of 21l nodes connected
to N by an arc directed to N Thus, for example,

S(N1 ’NZ) = { NG} ¥

3(N29N6> = {Ng} '

S(N3’Nh-) = {NT’NB} ’

s(N7) = {NIO’NII} ’

s(N,) s(N;) = s(Ng) = s(N,,N,,N) = § .

t

If the graph of Figure 1 is interpreted as a resolution

graph by a labelling function ¢ ¢ G = S*% then the two clauses
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c(N7) and c(N8) mist be all the resolvents of the pair
°(N3)’ C(NL;.)° The clause C(NB) resolves with none of the
clauses c(Ni) » 1<i < 1. The cleuses c(Nw) and C(NH)
are either factors of c(N7) or are obtained from c(N7) by
resolving c(N7) with itself. If C =c(N6) = c(N7) = c(N“'.)
then C has three derivations, two of level one and one of
level three. Derivations are not necessarily represented by
derivation trees. For instance the derivation of c(N1 2)

consists of the caluses c(N,i), C(NZ)’ c(N3), c(N&), C(NG)’ c:(l\T,?),
c(N9), C(NJI)’ C(Nia)' The clause C(NZ) is used twice :?.n the

derivation of C(N”l@) but is represented by only one node in Ge

An abstract theorem-proving problem with non-negative costs

("abstract problem with costs" or simply "problem") is a tuple

& = (G,s,F,g) where FC G, the set of terminal nodes for %

(or solution nodes), and g: G - fR, the costing function of 63,

{ R , the set of real numoers) are such that
(1) N ¢ P implies that s(G') = § whenever N € G' < G,
(2) (a) g(N) >0 forallNe G, |
(b) if Ne S(N1""’Nk) (we write s(N,‘,...,Nk)
instead of s( {N‘l""Nk} ) ) then

g(M) Zmax  g(N,)-
1gigk

A solution to the problem $ is obtained by constructing an
algorithm ¥ which generates friom S, a node N ¢ . Each node
N ¢ is essigned a cost and it is often required to solve & by
generating a node N € F having minimal cost in F. If g(N) =0

for 2all N € G then in effect we have a problem without costs.
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Altermatively g(N) may be teken to be the level of N, the

number of nodes N'< N or any other value which satisfies

(3) above. In applications to resolution theory g(N) is
usually taken to be the level of the clause c(N). For Ne SO
we 40 not require that g(N) = 0. This freedom allows us to
assign different costs to distinct nodes in ,‘.—3‘0 and is
especially useful when ESO is infinite. The set ¥ may be
empty in which case the problem has no solution. In resolution
applications when F= {NeG : c(N) = {3} then F is empty if
the set §; = {e(N) . NeSo} is satisfiable. The general
problem ¥= (G, s, P ,g) reduces to the ordinary tree

searching problem when (G,s) is a tree.

Lhe2 Search Strategies for Abstract Theorem~Proving Probidems.
G

L search strategy S for 6 is a function J.: ZG—» 2

which generates subsets of G from other subsets of G. Given

such a function ¥ for & we define the sets Zl of nodes

already gererated by 3. before the i+l-st stage and Zi of

nodes which are candidates for generation by & at the i+i-st stage:
(1) Eo=¢’ gO= SO’
(2) SN PV, z(z;),
giﬂ: ({¥:wesler), 6' g Z':i.+1} UEi) = Jya1e
We require that 2 satisfy

The set of nodes Z(Zi), chosen from the set of candidates gi,

is the set of nodes newly generated by £ at the i+1-st stage

(it is easy to verify that Zin}.'i =g foralli>0).
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The function ¥ should be interpreted as selecting subsets G!
of X, and generating nodes N € s(G') which have not been
previously generated.s The definitions above only partially
formalize the intuitive notion of search strategy for f.
In particuler the search strategies 2 are never allowed to
display any redundancy, i.e. generate the same node twices
This restriction is not essential because given any concrete,
poBsibly redundant, algorithm for generating nodes in G there
corresponds a unique search strategy Z which, except for
redundancies, generates the same nodes in the same orders
Notice that Z(%) may contain more than one node - as
1s common with resolution strategies which simultaneously
generate several resolvents of a single clash or several

factors of a single clause. Notice too that nodes in S'o

can be generated at any stage. We do not reguire that Z( Zi)
contain a node N ¢ F when gin FAg. If Pis an ordinary
tree search problem then the definition of search strategy for
& provides a formel notion which applies to the usual strategies
employed in searching. for nodes in treese.
A search strategy X for ¥ = (G,s, p,g) is complete for

® if for all N ¢ & there exists an i > O such that N e Zi'
It is possible to define completeness in thiswy since we do not
insist that 2. generates no additional nodes after generating
a first node W ¢ F. We say that ¥ terminctos at stage i
ir Fn Zi—'l = ¢ and either

(1) FnZX 1 P or

(2) 2 PR
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In the first case . terminates with a solution and without
a solution in the second case.

In the terminology of [ 16 } a search strategy 2. is
said to be admissible for ¥ if I is complete for ¢ and
terminates with a solution having least cost in F i F # ¢,
i.es N* e Fn I, FnZ; , =¢ implies that g(*) < &(x)
for all N ¢ F e In resolution applications admissible search
strategies are of special interest for robot control and
automatic program writing [ 13 ], where minimal cost solutions
are related to simplest strategies and most efficient programs.
More generally intuition suggests that, in the absence of
special information about the location of non-minimal
solutions, admissible search strategies will tend to be more
efficient than non-admissible strategies for finding arbitrary
solutions. An important step towards formalizing this intuition
has already been made in the optimality theorems of Hart, Nilsson
and Raphael [ 16 }

We define the notion of a search strategy § for a

problem = (&,s,F,s) being compatible with a merit ordering

—.{\ défined en the nodes of G. For the moment we require only

that ;f‘ be reflexive and defined for all pairs of nodes in G.

We write N, 4 N, (N1 has better merit than N2) when N, { N,

and not N, 4, . We write N, ~ N, (I\T1 and N, have egual merit)

if N1 a{, N2 and N2 -‘.\4 N“1. 4 search strategy 3 for Pis compatible

with a merit ordering 4 if for all1 >0 ,
(1) =, # #inplies that (%) 4 8 ,
(2) Neg(3,) implies thet N {N' for cl1N' e Z
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In other words, 2. always generates, from a non-empty seb fi,
at least one node N € ’ii and no node N* ¢ ii which is not
generated by Z has better merit than any node N € zi which
is generated by Z.. Since a node N may have better merit
than an ancestor N'< N, 2 need not generate nodes in order
of merit. Distinct strategies ¥ and X' for the same &
compatible with the same merit ordering 4 differ only with
regerd to tie breaking rules for choosing which nodes to
generate from a set of candidates having equal merite Ir <
is the trivial ordering, N4 N' for all N, N' ¢ G, then £ is
a merit ardering for G and any search strategy .2 for %
is compatible with 4 If Zis the ordering by levels,
N 4 N* if and only if N ¢ S’i, N'e,S;L anl 1 < i', then
any search strategy for & compatible with {\ is a level
saturation (or breadth first) strategy for & . 1r A is
the ordering by costs, N 4 N' if and only if g(If) < g(N'),
then 2 compatible with £ is a cost saturation strategy for 6:).,
If.;(is the inverse ordering by levels, N £IN' if and only if
N e ,%’i, N e Q‘i and 1 > i', then 2 compatible with £ is a
depth first strategy for 63 .

Lemma 4.2 states the fundamental properties of search
strategies J ccmpatible with eerit orderings: (a) any node

N, € G is generated by 2 before any node I\I1 which has worse

2
merit than N, and than all the ancestors of N,, (b) if N, is

generated before N2 then N2 or some ancestor of N2 has worce or

equal merit to N1 .

* Thig remar'( 1S not S‘Emc‘tlj (o(*re&'t’ stnee tHe comge%uvmces
of brealqma a +te dq‘_“erew‘:lb may be +the %,enera‘(:aom of
digfacent  wnbied  suceessors  of the ortgymally tied. nodes,



- 177 -

Lemma 4.2.1. Let & = (&,s, f,g) be a problem, %
a merit ordering for G and 2 a search strategy for 6)
compatible with £ .
(a) 1If N, € Zi and N, € G are such that N 4N,
for all NS N, then N, ¢ S, ,
(v) If N, € Zi and N, € .';S(Ei) then N, N
for some N < N,.
Proof. (a) Let N, be generated at the j + 1 - st
stage, i.e. N, ¢ z(zj), N, ¢ Zj end j<i. If
N, £ Zj then for some N < N,, N ¢ Z,end XN egj .
But N < N1 and therefore 2 is not compatible with 5,1

since it generates N, instead of N at the j + 1 - st

1
stage.  Therefore N, € Zj and N, € Zi-1 since j < i.
(b) Suppose N < l\I1 for all N < N2. Then by (a),
N, € Zi-’l and therefore N, d Z(Zi).
A merit ordering £ for G is §-finite if for
all N € G the set {N' € G : N' 4 N} is finite (compare [16]).
The importance of §-finite merit orderings is a
.consequence of Theorem 4.2.2.: any search strategy
compatible with a §~finite merit ordering is complete.
Any merit ordering for a finite set G is S—finite.
Ordering by levels is §-finite if Sy is finite and s(a?)
is finitef for all G' C G, under the same conditions
inverse ordering by levels is not g—finite if G is

infinite (by Kénig's Lemma).
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Theorem 4.2.2, If § = (¢,s,F,g) is a problem,

A

% a §-finite merit ordering for G and 2. a search

strategy for 6) compatible with

for@ o

Proof, Let N* ¢ G be given. We need to show

£, then = is complete

that N* € gj for some j > 0. If G is finite then
¢G= U = since g'”i £ @ implies that =( )48
i>0 i

and since Z(Z,) N =, ##. Otherwise if G is
infinite let N' < N* be a node such that N £ N' for
all N < N*, Since 4 is S—finite, since gi # Qf
implies that ﬁ(i’i) # ¢ and since s(s)) ¢ 5,
it follows for some j > 0 and for some N, € Ej’

N' < N,, and therefore N 4N, for all N < N* and by

Lemma 4.2.1 (a), N* ¢ 5_3.

4.3 Heuristic Functions aand Diagonal Search.

There is special interest in merit orderings
which can be expressed in terms of the cost function
g of % = (G,s, F,g) and of an additional heuristic

function h [8], [30], [33]. A heuristic function h for &

is a function h:@¢ = R such that h(N) > 0, for all ¥ € G.
Let £f(N) = g\N) + h(N) for all N € G. The intended
interpretation of the heuristic function h is that

£(N) = g(¥) + h(N) is an estimate of the cost g(N*) of

a terminal node N* ¢ F s such that N < N*, i,e. h(N) is
an estimate of g(N*) - g(N). If it is desired %hat 3 be
admissible then h(N) is intended to estimate the minimum
value of g(N*) - g(N) for B* ¢ F such that ¥ < N*.

Suppose, for example, that we know of a given problem
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630 = (GO,sO,P(‘) 7 ) that if it has a solutionthen its
minimum cost is k. Suppose for simplicity that no Ne G has
cos® 80 (W) greater than k. Given only this information then
an appropriate definition of a heuristic function h0 for ¥
1s hy (N) =k = g, (N) for all N € G .
Suppose that a given problem 6?‘ = (G1,s1,F:,g1) is
interpreted as a resolution problem by a labelling function
c: Gy - S*. Suppose that the inference rules " consist of
e factoring operation for unifying two literals in a clause
and of a separate resolution rule for resolving at most two
factors. Let g, (N) be the level of N and F,T = {N:o(N) = L}
For N € Gy let 1(c(N)) ve the length of c(N) (mumber of
literals in c¢(N)} The heuristic function h, for @1 is
defined by the letting h1(N) be the expected length of c(N):
(1) for Ne & , h1(N) = 1(c(N)),
(2) for ¢(N) a resolvent of c(N1) and c(Nz)
n, () = 1or,)) + 1(c(w,)) - 2,
(3) for c(N) a factor of c(N') (the result of
unifying two literals in c(N'))
n(¥ = 1(c(y)) - 1.
To the extent that merging does not occur (i.e. so long as
h, N) = 1(c(N))), h, (N) is a lower bound on the value of
g1(N*) - g1(N) for co(N*) ={3 when c(N) occurs in a derivation
of 1, Notice that since {' contains a factoring operation,
this operation is explicitly exhibited in derivctions, contrary

to the conventions employed in chapters 1 -~ 3.
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The costing function g and heuristic function h
allow us to define two important classes of scerch strategies
for ¥ o Given ¢- (¢,s,F,8) and h a heuristic function

for $ o Let the merit orderings «, and < for G be defined
d

for all N ,N2 € G, by
(1) N, & N, if and only if f‘(NQ) Sf‘(Nz),

4du N, if and only if f(N1) < f(Nz) and

h(N1)5h(N2) when f‘(N1) - f‘(NZ).

(2) N,

A search strategy % for  is a diagonal search strategy for (Y

and h (written 3 e (@h)) if and only if $.is compatible

with the merit ordering 4 a° S is an upwards diagonal

search strategy for & and h ( S e O (¥,h)) if and only if

= is compatible with the merit ordering \<u‘ Notice that
O(P,h)CO(P,h) and that 5(P,h) = @(ﬁg,h) if n(N) = 0
for all N € Gs

Except for minor cdifferences, the search strategies
= e ®(® ,h) coincide with those investigated in [ 16 ] for
the case of ordinary tree search. The search strategies
S ¢ ®YF,h) aiffer from those in O (P,h) by generating,
from among candidate nodes which have equal merit for é‘d ’
those nodes whose cost is estimated to be closest to the
cost of a solution node. In the case of the problem 6:()) and
heuristic function h , defined above, f, (M) = gy (N) + hg (M)
=k for all N € G » 411 nodes in G have equal merit for
search strategies 3 € @(68, ho). For X ¢ (Du(()g,ho)

nodes which have cost closer to k have better merit than
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nodes which have smaller cost. In case g, (N¥) is the level
of N forall Ne G then 5 ¢ ®"@gb)is a depth-first search
strategy, which intuitively seoms the most efficient search
strategy for @ s gliven only the information that a minimal
solution of 3) must have level k. Concrete search algorithms
for 5 ¢ ®u( 671,h1) are discussed in the next section.

The terminology, diagonal and upwards diagonel search,
is suggested by representing nodes N € G as occupying
positions in the plane with co-ordinates (h(IV),g(l)), where h
increases rightwards away from the origin and g increases
dowrwards away from the origin (see Figure 2). S£.e ©(®,h)
attempts to generate nodes on consecutive diagonals in order
of increasing distance from the origin (0,0). In addition if
2 € Q)u(@,h) then & .wmttenpts to generate nodes, lying 6n
a given diagonal d, upwards in order of increasing h. If
A a .f-u are §~finite then each diagonal contains only
finitely miny nodes N € G and for every diagomal d there

are only finitely many diagonals which contain nodes N ¢ G

and which are closer than d to (0,0).

(0,0)
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Figure 3 illustrates Lemma 4.2.1 and Theorem L.2.2.

for a problem ¥ and for a search strategy 3 € £ (£,h)
where 4&“ is assumed to be §-finite. The node N* ¢ F has
minimum cost in F oand N < N¥ is a node having worst rerit
in the set consisting of N* and all ancestors of N*., The
node N ¢ G has better merit than N* and N'!'< N has worst
merit in the set consisting of N and all ancestors of N.
Dots represent nodes, lying on diagonals, generated by &
before ‘the generation of N*. The small circles represent nodes
generated by = after the generation of N*. The diagonal @
contains the node N'. By Lemma 4241 3 generates N* before
generating nodes having worse merit than N', i.e. before

generating nodes lying above N' on d and before generating

nodes lying on diagonals to the right of d.

0,0)
(0, .
\ > h
N'* <N
a AR
N* 4}7
N** o
v
g
Figure .

The heuristic functlon h satisfies rno conditions other

than h(¥*) = h(IW*) = O and those imposed by the S~Ffiniteness
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of & Q- 2 may fail to be admissible because some I¥#* ¢ F
having worse merit than N* will be generated before N¥* if Nk
and all ancestors of N** have better merit than N'. The node

N € ¢ will not be generated before N* if N'! lies to the

right of d or above N' on d.

4.l Upwards Diagonal Search Strategles for Resolution.

The algorithm 3 * defined below approximates an
upwards diagonal search strategy for the resolution problem
@1 and heuristic function h1. The same algorithm 2 *
when applied to the resolution problem 6)2 and heuristic
function h2 defined below is a pure upwards diagonal search
strategy for 632 and h,.  The admissibility end optimality
theorems of the next section apply to S % for @2 and h2
and to 3 * for 6)1 and h1, except when merging occurs
in vy 1° A search strategy which differs inessentially
from J_* has been ipmplemented in POP2 by Miss Isobel Smith
for a problem and heuristic function similar to 6:'1 and h1 .

The definition and identification of the problem 632
was motivated by a suggestion of Mr. Donald Kuehner.

& 5 = (G2, 5,5 Pz,gz) differs from @1 by interpreting
clauses c(N) as lists of literals and by explicitly exhibiting
and assigning cost to the operation (treated as a special
case of factoring) of identifying two copies of the same
literal within & clause. The length 1(c(N)) of c(N) i3
defined as the mumber of literals in the clause c(N), counting

duplicaetionse gZ(N) and h2(N) are still defined respectively



as the level of N and expected length of c¢(N).
h,(N) = 1(c(N)) for all N € G, and hZ(N) is always a lower
bound on the value of gz(N*) - gZ(N) when N < N* and

et = INee

5 :c(Nz) =01},

2
Throughout the remainder of this section, &= (G,s,F,g)

and h are either &, and b, or &, and hy. The definition

of 5* for & and h is the same for both of these cases

except for the details remarked upon at the end of this sectione.
Clauses c¢(N) are stored upon the generation of N in

cells A(i,j) of a two-dimensional array a. c(N) is stored

in A(i,j) if 1(c(N)) =i and g(N) = j. XAlthough it is

natural to represent cells A(i,j) as lists of clauses, we

write co(N) € A(i,j) if c(N) is stored in A(i,j) when N is

generateds The merit of a node N ¢ G is defined to be the

cell A(h(N),g(N)). The cell A(i,j) is said to be better

than A(i', ') (written A(4,3) 4 A(it, %)) if

(1)i+§ <«i' + 3* or

(2) 1+ § =1' + j' and i < it.

Thus a node N € G has better upwards diagonal merit than a

node Nt € G if and only if the merit of N is better than

the merit of N', equivalently N < N', if and only if
d

A(n(N),g())) < A(h(N},g(N')). Notice that for §° , end

hy, N € G, has merit A(i,3) if and only if c(N) ¢ A(4,]).

For @1 and h,, 1
%

o(N) € A(i',5) where i' = 1(c(N)) < h(N) =i. 2, on the

if N € G, has merit A(i,j) then

whole, attempts to generate nodes of merit »(i,J) before

attempting to generate nodes of worse merit A(i',J') > A(4,j),
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A node of merit A(i,j) is generated either
(0) by inserting into 4(i,0), when j=0, a clause
c(N) where 1 (c(N)) =i and g(N) =0,
(1) by unifying two literals within a clause
c(N) e A(i#1,3j~1) or
(2) by resolving a factor c(N1) € Ix(i1,j1) with
) where N

a factor c(Nz) e A(L may be

22Jdp

identical to N2 and where

1

i=l1+ 12-2 and

max (j1,j2)+ 1.

J

S * employs two subalgorithms for generating nodes
N € G. The principal subalgorithm Fill(i,j), generates in all
possibie waye, from nodes already generated, nodes N of merit
A(i,3) which have worse merit than all their ancestors.
Fill (i,j) terminates wh:n all such nodes have been generated.
Fill (ir,5'), where A(i',J') is the next cell after A(4,J),
begins when Fill (i, j) terminates. S begins by invoking
Fi1l (040).

Whenever a node N, is generated by Fill (i,3) the

second subalgorithm Recux-se(c(NO)) interrupts Fill (4i,3J)
and generates in all possible ways, from nodes already
generated, nodes N1 which are immediate successors of NO and
which are of merit A(i1,j1) better than A(i,j). In gineral
whenever a node N is generated, either directly by Fill (i,J)
or by some call of Recurse (c(N')) which is local to Fill (i,j),
Recurse (c(N)) zenerates, from nodes already generated, immediate

successors of N which are; of better mcrit than 4A(i,j). Notice
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that if N is generated by Recurse (c(N') during Fill (4,]J)
then N has better merit than some ancestor of merit A(i,J).
Notice too that the depth of recursion involved in Recurse

(c(N')) is bounded by the sum i+j.

Remarks »

(1) If & and h are @2 and h, and if c(NO) is
generated directly by Fill (i,j) then c(NO) € A(1,)) and
the only immediate successors of NO which are of better
merit than A(4,j) are nodes N, € L(i-1,j+#1). Any such
N

1
factoring c(NO) or by resolving c(NO) with 2 unit clause

generated by Recurse (c(NO)) is obteined either by

c(N) of level g(N) < J. More generally if N. is generated

0
by Recurse during Fill (i,j) and if c(NO) € A(io,jo) then it

is easy to verify that i.+ 'jO =1 + j and therefore any

0

immediate successor N, of better merit than L(i,5) is of
merit A(io— 15+ 1),

(2) £ © and h are @, and h, then 5 * may
fail to do upwards diagonal search because of merging,
i.é. nodes may be generated by Recurse which have worse
merit than other candidates for generation. Suppose that

N. is generated by Fill (i,j) and that c(NO) e A(1',))

0
where i< i. Suppose that N, and N, of merit Aldr-1,541)
are generated by Recurse (c(NO), N, before N,. Suppose that
N3 of merit A(i'-1, j+2) < A(i,j) is generated by Recurse
(C(N1))n Thon N, has better merit then N3 but N3 is

generated before N2 since Recurse (C(N1)) mst terminate

before Recurse (c(NO)) generates N,.
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(3) For both @,, b, end 6’2, h,, I * has the
desirable property of attempting to resolve every unit clause
c(NO) with all previously generated units G(N'l) as soon as
c(NO) is generated. If N is gemerated furing Fill (i,j)
and if c(NO) € A(1,30) and c(N1) eA(1,j,1) then A(0, max
(jo,j1)+ 1) £ A(i,3) and an attempt will be made to resolve
c(NO) with c(N1) during Recurse (C(NO))e
(&) Suppose that Pill (i,j) has just begun, then

S * has not yet generated any nodes of merit worse than
L(i,3). Thus if N has merit A(i,j) then either j = 0
and g(N) = 0 or ¢(N) is a resolvent of factors c(N1) and
c(Nz) and both N, and N, are of merit better than £(3,3).

In order to generate all such nodes N i% suffices to attempt
to resolve all clauses c(N1) with clauses C(NZ) where

¢y € A1yk), €, € A(1-142, §-1)

for 0 < ki~ and
15_15"32 if 1 is even or
113 ir 115 oca.

fo

(5) The details for generating nolcs Curing Recurse

(c(N)) have already been discussed for 632 and h, in remark (1).

2

For 6)1 and h1 these details are more complicated. Suppose
that N has been generated during Fill (i*,j*) end that
cN) € &4(i,]). The following procsedure will generate
without redungancy, from rodes generated before N, immediate
successors of N which are of better merit than A(i%,j*):
(2) Pirst resolve c(N) with clauses in A(i',j!) where
j=1 £ j'<i*+§¥*-d42,in order of decreasing j', and

for given j', where 1<t i¥+j*=j'=i+1 in arbitrary



order but preferably in order of increasing it.
(b) Next generate factors of c(N) by attempting
to unify, in all possible weys, two literals
in c().
(¢) PFinally resolve c(N) with clauses in A(i',J")
where
1 it g %+ -1~ 341
0 £ J' £ J§ in arbitrary order but
preferably in order of increasing i'e
(6) Let @3 = (G1,s1, P’,I ,g3)where 8s is defined as
g, except for nodes N such that c(i) is an immediate
factor of a clause c(N') in which case g3(N) = gB(N'). In

other words & 3 is identical to O except that cost is not

4
assigned to the factoring operation. h3(]?) is still defined
as the expected length of c(M).

With only minor modifications 3~ * can be appkied to
& o The details differ little from those already discussed

3

for applying F* to 6)1.

o5 Admissibility and Optimality of © and @°.

Let & = (G,s, F,g) be an abstract theorem-proving
problem, For N € G let
H(N) »= {g(t*) - g(N) : * ¢ F, Ng W},

i

W*(N) = inf/H(N) when H(N) £ § ,

h*(N) 00 when H(N) = ¢ ,

it

Then when N < N*, for some N¥¢ [, h*(N) is the greatest lower

bound on the additional cost over g(N) of g(N*). The heuristic
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fPunction h is intended to be an estimate of h*., The only
property of OC needed below is that k <00 for all real
numbers k. Since we do not allow h(N)= 00, it is often
impossible to construct a heuristic funection h which gives
a perfect estimate of h*. In particular it is impossible
to incorporate into a definition of h any information that
a node N is not an ancestor a node N*¥ € {1' » However such
heuristic information can be applied to a problen & by
defining a new problem (@ ! which differs from & by containing
no such nodes N. JMAlternatively it is possible to allow
h(Nj} = 00 in which case several complexities need to be
introduced in preceding definitions (e.g. in the definition
of 8~finiteness)e.

A heuristic function h for & satisfies the lower

bound condition for @ if

n(N) < n*(N) for a1l N € G
iees 1f h(N) <g(N*) - g(N) whenever N* ¢ {~ and
N < N, Thus the lower bound condition
constrains in effect only the value of h(N) when N is an
ancestor of some solution node. Recall that h, satisfies
the lower bound condition for @ 9 while h1 does the same for
631 except for merging.
Lemma 4obe1 states certain fundamental properties of
heuristic functions h satisfying the lower bound condition:
(2) n(3*) =0 for ™ € &, (b) no ancestor of a solution

node N* € © has worse diagonal merit than ™, (c) there

exists & solution node N* € [ having minimum cost in [ if
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diagonal merit is &-finite.
Lemma 4.5,.1 Let @ = (a,s, P,g) be an abs;tract
-theorem~proving problem and let the heuristic function h
for 63 satisfy the lower bound condition.
(a) If ¥ ¢ P then h(¥*) = n*(¥*) = 0 and
therefore £(I#*) = g(N*).

(b) If ¥ ¢ P and N < ¥* then £(N) < £(3*).

(c) If £ g is §-finite then for some N* e
g(*) < g(N) for all N e ¥ , provided F # 4.

Proof. (a) is obvious, since H(N*) = {0} and h*(N*) = O.
(b) If ¥* ¢ P and N < ¥* then h(N) < g(N*) - g(N). But then
£(N) = g(N) +n(N) < g(I*) = £(N*),

(c) 1f z,(d is §-finite then for all N € G, the set

{n+ | £(v*) < £(N), N' € G} is finite. In particular for
Ne P the set {N' | g(i') < g(N), N' ¢ F } is finite and
therefore contains an element N* such that g(N*) is minimal.
But then g(M*) < g(N') for all N' ¢ .

Theorem 4.5.2. If £, is §-finite for & = (6,s,F,e)
and if h satisfies the lower bound condition for 63 then
$ ¢ ® (®,h) is admissible for (.

Proof. Assume that F £ g .  Let N* ¢ F be such
that g(3*) < g(N) for all N € I (such an ¥* e F exists
by Lemma 4.5.1 (¢)). By Theorem 4.2.2. 3 is complete

and therefore there is a stage i such that for some N,

N e P(\Ziand Pn 21—1,:}5"
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Suppose that ¥ is not admissible for & . Then g(*) < g(N).
But, by Lemma 4.5.1 for all N'< N¥, £(N!') < f£(N*) = g(\*) < £(N).
So f(N') < f£(N) for all N' < M. Butthen N' < N for all N' < N*.
By Lemma 4.5.1 (a), N* ¢ g4 ond therefare P’nZi_,',é g
contrary to assumption.,
Theorem 4.5+2 specializes to a generalisation of Theorem 1

in [ 16 Jwhen s(@') = # for all ¢! < G which are not
singletons. In particular it is not necessary to require that

S o Pe finite or that g(N) be strictly greater than g(N')
whenever N* < N. Since the specialization yields a tree
representation of graph search, it is unnecessary to distinguish
between the cost g(N) and the total cost along some minimal
path to N,

Figure 4 illustrates Lemma 4.5.1 and Theorem 4.5.2.

®, =Z,M, N, N and N'! are as in Figure 3, but h
satisfies the lower bound condition. By Lemma 4.5.1, N* lies
on the sames diagonal 4 as does N*, 5 is admissible since any
M™% ¢  having worse merit than N* lies on a diagonal to
the right of d and is not generated before N*. It is still
possible for a node N € G to have better merit than N* and

not be generated before N* because N'' has worse merit than N'.

(0,0) d

N*

g Fi& e l_]-e
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To prove the apprcopriate extension of the Hart-Nilsson=
Rephael Theorem on the optamdlify of 3 € ﬁ)u, we need to
formulate an assumption equivalent to their "consistency
assumption", The reader familiar with [ 16 ]Jwill easily
convince himself that the following condition is eguivalent
to the consistency assumption. We say that the evaluation

function f satisfies the montonicity condition if

P(N') < £(N) for N* < N and
F(N*) = g(r) for Nre F,
{(The first condition is equivalent to
h(N) > h(N') + (g(N') - g(¥)) for N' < N).

Notice that for @2 the evaluation function f + h

2= &7 72
satisfies the monotonicity condition wheress for & ’ the
function f,|= &+ h1 is monotonic except for merging.
Figure 5 Lllustrates upwards diagonal search when the
functlion f satisfies the monotonicity condition.
& y o, ¥, N'*; N end N'! are as in Figures 3 and 4.
By Lemma Le5:3, h satisfics the lower bound condition and
therefore 2. is admissible and N' lics on the same diagonal
as N*. The monotonmicity condition implies that if N has
better diagonal merit than N* +then all ancestors of N
have bettor merit than N* and thercfore, by Lemma 4.2.1, N

is gemnerated before N*,
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(an) d
N" <N
N Nt < N*
Ik
v
£ Fi%e :2-

Lemme 4¢5.3. Let & = (G,s, F,g) be an abstract
theorem-proving problem, let h be a heu;‘istic function
for and let f satisfy the monotonicity condition,
where f(N) = g(N) + h(N), N € G. Then
(2) h satisfies the lower bound condition,
(b) 1£ 3 € @(O,b), N, ¢ Z and N, ¢ S(E;) then
:f‘(N1) < f(Nz).
Proof., (a) h satisfies the lowor bound condition if
h(N) < g(W*) - g(N) whenever N* ¢ I and N < N*.
But the monotonicity of f implies that
£(N) = &(N) + B(N) < £(™) = g().
8o h(N) gg(¥) - g().
(b) Suppose the contwary, namely that
Ny e Eg, N, e Z£(Z,) and £(N,) >£(Ny).
But then, since f(N') < f(Nz) < f(N1) for all N' < N,
it follows thet N' < N, for all N'g N,. By Lemma 4e2.1 (a),
N, e = 3.4 contredicting the assumption that N, e S Zi).
For the case of ordinary graphs, the optimality theorem

(Theorem 2) of [16] compares, in effect, search strategies

5 e O(®, h) with strategies
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=t e @ (,h) where h'(N) < h(N) for all N € G and where
f =g+ h is monotonic. ( In [16] the search strategy 5! is
assuned only to be "no better informed"” than 2. - we interpret
this to mean that h'(N) < h(N) amd 3' e Q) (P,n).) If %,
and E'i’ are the first scts which cohtain nodes N* ¢
then é:i - E'i’ U @' where G' is the set of nodes N ¢ ‘é"..i
which have diagonal merit equal to N* € 2:‘. N, i.e. before:
termination S ' generates all the nodes generated by &,
except possibly for unlucky choices by =. of nodes tied for
merit with the solution node N* ¢ 21' Theorem 4.5 .4
below generalizes Theorem 2 of [ 16 ] and implies in addition
that ) % is an optimal subclass of Q) .

It should be noted that the monotonicity condition on f in
Theorem 4.5+4 can be replaced by the lower bound condition on
h with the result that ! may now fail to generate nodes
in the larger set G' of nodes N € E‘i where some N'' < N
has diagonal merit tied with the solution node W* € = 5
A special case of this modification of Theorem 45,4 is
illustrated by the example of Figure 6, following the proof
of Theorem La5.4

Theorem L.5 *Lh

Let & = (G,s, F,g) and let h and h' be heuristic
functions for 63 such that
h'(N) < h(N) for all N ¢ G.
Let £(N) = g(N) + h(N) and £1(N) = g(N) + h'(N).
Suppose that f is monotonic. Given = ¢ U (H,h) and
ste @(®,ht), suppose that
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N, eFnE,,FnE, , =4,
NzePnZ'i, end F 0 gl o= g.
Then Z; ¢ Z_'i, U G&* where
@ = {N:N eZ; and for some N' g N,
£(N) = £(Nt) = £(N,) and H(N) g h(N')} .
Proof, 3~ 'satisfies the lower bound condition since
h'(N) < h(N) for 811 N € G and sinco 5. satisfies the
lower bound condition. Therefore both Z and S ! are
admissible and g(N1) = g(Nz), f(N1) = f(Nz). Suppose
that N ¢ X, and that N £ §'.,. It suffices to show
that N € G*.
By Lemme 4.2.1 (b), N ¢ Z; implies that N £ N' for some

d

N' < N,. But by Lemma 4.5.3 (b), since f is monotonic

4
£(N) < £(N,),
f(N')Sf(N1):
£(N1 ) <f(N) for all N'' < N.
But h'(N'?!) < h(N'') implies
FI(N't) < £(N*'). So
£r(Nt!) < £(N) for all N''< N.
AlsoN ¢ x'., and W, ¢ 3';¢ imply by Lemma L4.2,1 (2) that
for some N'! < N, N'* >, Ny, i.e.
FUN'T) > f'(Nz) = f(N1). So
£(N) > f(N1) and

£(N) = f'(N,I )e

N £ N' implies
Ky 2(N) <EW) < (). So

£(N) = £(N*) = f(N1) and
h(N) < h(N'), i.e.
N e G® e
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Figure 6 compares nodes generated, before the generation

of a given W € F , by different search strategies

=, e 4)] (@,hi) for a fixed problem & = (G,s, F,g) end
for different heuristic functions h,. hl(N) is assumed to be
a greatest lower bound on the value of W*(N) when N < ¥,
where N* has least cost in F . Nodes N € G are represented
as points with co-ordinates (h, (N), a(N)). The node N! has
worst upwards diagonal merit in the sey consisting of N* and
the ancestors of M., The functions hi are defined by

hi(N) =i (N) for allNe G, 0 <1 ¢ R.

d dq d d
0,0 1 !
/'" _,,:/ 1
et
pe %
N -
%
dy deo
L 4 .
g Figure 6.
For 0<ig iy hi satisfies the lower bound

condition for ¥ and 3, is adnissible for ® . E‘i need
not be admissible for & when i>1. The area to the left
of the line d; contains nodes gemerated by =2 5 befare the
genaration of ¥, For O <i<1, Zi generates all the
nodes generated by & 1" For i>1, éi generates all the

nodes left of d, which have been generated by 21 . No 21 is
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more effiocient than ¥ 1 if4d <« 1. Some Zi may generate
fewer nodes than = , if i > 1, but this possibility becomes
more remote as 1 inecreases. However even for large 1,

Z’i may be more efficient than = 4 for generating solutiom
nodes of arbitrary cost. A more thorough analysis of
relationships similar to those discussed here has been made

by Ira Pohl in [ 32] and [ 33] -

L+6 Resolution of Marked Factors with i-Factor as Nucleus,

For resolution systems which empdoy separate rules
for factoring and for resolving clashes of factors,
Theorem 4e6.2 implies the refulation completeness of
generating only l~factors of micleus clauscs. This
oompleteness, which is subject to certain rcstrictions on
the given resolution rule, applies to AM~-rcsolution and to
hyper-resolution in particular. For thc case of systems
which employ marked factoring and Py -resolution of
marked factors, 4o6.2 implies that non-positive clauses need
never be factored. As reported in[{7] , this restriction
can be combined with the method of section 249 for obtaining
unique decompositions of hyper~resolution clashes. & theorem
related to 4e6+2 was reported by Raphael in [36].

Lemma 40601 . Let C\i = { A1 sree ’An,B } be a

clash with resolvent C » Then there exists a clash of

with resolvent C ' such that

(2) B! is an i~-factor of B,



(v) A'i,j is a verlant of a satellite factor of 4,,
t<Jigmg,
(¢) C is an instance of C'.

(a) & is restricted if C is.

Proof. By 14641 there exist marked factors

»
B' = {Kjseee0K} U B,'' of Band
t - !
a'y = {L,} U A'y, of A, such that
— ] t 1t
C= (&y' U eee Uby' UBy ) 8, whera

61 is an megeseu, of

6:1 = {{L1}K1} geowy {Ln’Kn}} s
B''- B 92 where 92 is an megese u o Of

. . »
82 = {F‘i,...,Fn} s B =F1 U esee U FnUBO

and v (F1 U ees U Fn) is the set of
distinguished literals rcsolwved upon in B,.-
For 1 <31 £n let

Fi = {Ki1,o-.,Kim} arﬁ let B! be 'the

i [ ] L J
j-factor of B with distinguished literals u(F1 Ueee U F n)““

Let A;.j = {L

° 3 v 3 1
ij} U Algy; bea veriant of A;

such that A]!_1 = A]!_ and such that (! above is standardized.

Let '] be a substitution such that

t - AY -~ At 1.3
Aijq = Af, =4} for all i,j, 1 <ign,

1 i

Let o -
83 = {{L11,K11} goesy {Lij,Kij} govey

i R 1.

€. =

3 qez e1 .

Therefare (18,8, unifies 83. Let €, te an meges. u
of 83. Then for some £ , ,)9291 . = 93/( .

Then
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The resolvent of &4 is w
t 1 ' .
Gt o= (A01,1U...UAOijU'..UA onmnu BQ‘) 93

~ t
et A = AL,y 0.8 UsidU AL, €0, Ul 4 68, UB, 6.8,

21 0ij Onm 271 0
—~— 1 . e
..Am 91 Uo.vUA'Oie1 U v-aUJ;’0n91 U BO 6’1
=0,

We have shown that (a) - (c) hold., Suppose that T is
restricted and that 2! is not. Then
Lijejec, orKij95 eC’
for some i and j« But then
Lije3,( =Ty /19291 =L, &, € C' =0 or
Kij 03,( =Kijv16261 =K; o, e C'A =Cs
So (31 = | Aytseeny Ah',B"} and C are not restricted,
For the statement of Theorem 4.642 and for the
‘remainder of this chapter it is convenient to exhibit
clashes of factors explicitly as clushes in derivations.

A factor-derivation ) = (T,c) of a clause C from a set of

clauses S8 1is a derivation such that
(1) for each tip N € T, c¢(N) is a factor of a clause
in 8,
(2) for each interior node N € T, c(N) is a factor
of the resolvent of the clash of factors c(5—1(N)),
Notice that the factoring operation is not exhibited in
factor-derivations. If every clash in a factor-derivation o

is a clash of marked factors then ) is a marked factor-

derivation. To simplify the statement and proof of Theorem
4s6.2 we allow the clause c(r(T)) in a marked factor

derivaticn &) = (T,c) to be unfactored.



- 200 -

Theoren Lebe2, Let @) = (T,c) be a elash derivation

of a clause C from a set of clauses S« There exisfs a
narked factor derivation @' = (T',c*) from S of a clause
C' which hus C as instance. Every nucleus factor in Q! is
an i-factor.
To every node N' € T' there corresponds a node N ¢ T
satisfiying the following conditions:
(a) If N' is a tip of T* then N is a tip of T and
c!'(N') is a marked factor of c(N).
(b) If N' is interior to T' then N is interior to T
and ¢(N) is an instance of c¢!'(N'). Let
© = o(s™' ) and @1 = or(s7(N)).
() Satellites of C correspond to satellites of
' and the mcleus of & corresponds to the
mucleug of &f.
(i) (' is restricted if (3 is.
Proof (by induction on the mumber n of nodes in T).
If 1 =1 then @' =) satisfies the requirements of the
theorems If n>1 let Ny = »(T) and s"1(NO) = {Nyyeee,N ) o
We may assume by way of induction hypothesis that to each
derivation ©,; = (TNi’ ¢), 1<1i< m, there corresponds a
marked factor derivation (Di = (Ti,c'i) which satisfies
the theorem relative to ®i'
Let N;' =x(Tf), C* = {oj(N]),eeeset (N )]

and = o(s_1(l\{))). C* subsumes S . By Lemma 1.10.1,

I

(2 * is & clash which covers C, o(N,) is an instence of the

resolvont C* of &%, Let (X% be the (3 of Lemma 4.6.1 and
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letC be the corresponding set of marked factors with
resolvent C! which has C* and thereforc C(NO) o5 an instance.
The desired marked factor derivation @) = (Tf,c') is
determined by the fcllowing conditions, \
(1) r(T*) = N,' and c'(NO’) = !
(2) c!(s‘"1(No')) ='. For N' ¢ 9‘1(1\10'), Tty 18
an isomorphic copy of T! where c'(N') is a
narked factor of ci(Ni')’ (T'N,,c') is a copy
of @, except that c!'(W') is a marked factor of
c'i(N:{)r
Q! satisfies (a) and (b) of the theorem. N, corresponds
to N.' and if N corcesponds to N'in.d)’i then N corresponds
to the appropriate copy of N' in Q.
Notice that the level of ¢' in (§)' is the same as the
level of C in @), however the number of factors in a clash

C ! of §)! is often greater than the number of clauses in

the corresponding clash Cof Q) .

Lo/ m-Factor Derivations.

m-Factor (erivations are of intevrcst for at least two
reasons: First (Theorem 4o7.1), m-factoring provides an
effective method for implementing merging restrictions. In
particular the restrictions investigated by fLndrews for ground
derivations [ 2 ] cen be lifted to general derivations by
imposing m~factor'restrictionsa Second (Thcorem L4e7e3),
m~factoring is always more efficicnt then the Wos-Robinson

factoring method (for search strategies § which give
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preference, among clauses of equal levely to clauses of
shorter length).

Recall that a factor of a clause C is a clasuse Ce
where © is an m.g.s.u. of some partition of C (equivalently,
some complete partition of C). m-factors are defined only
for resolvents of clashes : 1f C© 1s a factor of a
resolvent C of a clash & then C & is an m-factor (merging~
factor) of ¢ if © does not unify literals in C which
descend from the same parent in C.

Let © = {D,=5, v DoyseeesD = B, Y Dy} Pe & clash |
where Ei is the set of literals in Di resolved upon in C.
Then C = (j, U ese U Don)e' is the resolvent of C ,
where 8" is an m.ges.u. of . A factor Cé of € is
an m-factor if

I“I’LZ € Doi andL1e’ # LZG’ imply

1
m~factoring restrictions can be strengthened by limiting

L,e'e # Lze'e o

attenticn to m~factors of m-~resolvents. C is an
n~resolvent of & if
L 3t
I"‘I ,L2 € DOi and LJ‘ = L2 dmply
. .
L& £ Lo .
Thus C© is an n-factor of an m-resolvent C of a clash
. if and only if
L,;sL, € Dy, and I, ',é L, imply
4 ]
L,6'8 # L,0'e .

A factor derivation 0) = (T,c¢) is an m-factor derivation

if for every interior node N €T, ¢(N) is an m-factor of
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an m-resolvent of the clash of factors c(s”1 (M),

An m-factor C& is a merge if at least two literals
in distinct parents of C are unified by 6'€¢ , i.e. if
for some

Ly € Doys Iy €Dy
L, gt = L2 e'e .

5> where i#i,

This definition coincides with Andrews! in the case of
ground clashes and ground resolvents. Notice that if
& o= {D,‘,...,Dn} is a clash of n factors then Ce is a
merge if and only if

1(C8) < 1(Dy)+sees 1(D )-2(n-1).

Theoren k.7.1. Let ® = (T,c) be a ground derivation

from a set of clauses § and let S be a set of instances
of clauses in S'. Then there exists an isomorphic m-factor
derivation ®' = (T,c') from S\
For all N e T
(a) ¢(N) is an instance of c'(N),
(®) 1e(M)) = 1(c'(W)),
(c) if N is interior to T then
(1) c!'(N) is a merge if and only if c(N) is and
(i1) o' (s (M) is restricted if o(s™ (N)) is.
Procf (by induction on the number of nodes n in T)e.
If n=1then T = {NO} e Let¢C = c(No). Then € is an
instance Cfo~ of some clauss C' € S'.
Let C = {L,,eee,h} and &= {E1,...,Em} where
E; ={L' eC' : L'o- = Li} . & 1is a complete partition

of C' unified by o~ ., Let © be an m.g.s.u. of & then
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o~= 8L , for some A . Let c'(NO) = ¢'® then c(No) is an
instance of c'(NO) and contains the same number of literals
as c'(NO).
Suppose that n > 1 and that the theorem holds for
any ground derivation containing fewer than n nodes.
Let Ny = (), s"1(No) = (N, yeee,N jond O = (TNi,c) for
1 <1 <me By the induction hypothesis there exist m~factor
derivations @', = (TN.,ci) from 8! satisfying (a)-(c) for
Hely , 1 <1igm, :
: Let C = c(s'd(No)), C = c(NQ) and U =
{01’(N1),..¢,c'm(Nm)} + Then C! subsumes (> and therefore
covers C« (! is restricted if Cis and the resolvent
C' of (@' has C as an instance. Let c'(NO) =C'® be
defined as in the case n = 1. Then c(NO) is an instance of
c!(Ny) and contains the seme number of literals as c'(NQ).
Let ' = (7,¢) be defined by c'(Ny)=C'8 end

ct(N) = c'i(N) for N € TNi.

It suffices now to show that C'6& 1is an m-factor of
an m-resolvent of C'. Suppose that, on the contrary, there
ere distinct literals L, and L, in some c'(Ni) such that

L1e‘9 = L2 6'® vwhere ©' is the megesSege of CF at NQ.

But then, since ' covers (* and since C is a ground resolvent,
b'(Ni)o- = c(Ni) for some o~ and
t
e () A
L,o- and Lyo- ere distinct in c(Ni) (since c'(Ni) and
c(N;) contein the same number of literals). Therefore L,o-

i

c(NO) for some A such that o~ = 9t/ .

and L.o~are distinct in c(No). But then L,6'®  end L,6'e

2 1
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are distinet, contrary to assumption.

Lemma 4.7.2. Let = {D1 =B, UDyyseeesD =B U DOn}

be a clash of factors with resolvent C = (D01 U see U Don) 0.
Let D =C ©' be a factor of C. Then there exists a clash
= B!

of factors (' = {D' UD'y,ee.,D' =E' UD

1 1 On}
where for each i, 1 < i < n, D'i is a factor Di Gi of Di’ and
D is an m~factor of the m-resolvent C' of (',
Proof. 1Let ©' be an m.g.s.u. of the complete
partition £' of C. Then we can represent &' as
E = §G1 CIRPPH o} where

G’. =G'. UoooLjG‘-n’ GjigD and

J 31 J 0i

L e DOi’ Lo e Gjie imply L € Gji°
Then 81 = QGH,...,Gki} is a complete partition of DO:i.'

Let

En =€u{c1,...,ck}
where £ is the family of literals resolved upon in G,.
Then © 8' is an m.g.s.u. of £'" since <. is a refinement of
&', 0 is an m.g.s.u. of &£ and 6' is an m.g.s.u. of &' 6.
On the other hand, each Efi is a refinement of &' ard none
of the refinements & froees an share variables. Let €. be
an m.g.s.u. of Si. By 1.3.5, ©,...0 0" is an m.g.s.u.
of €' where " is an m.g.s.us of
E" 6.0 = £ CIRRE MY, [PPSR

Let D', = D,6,. Then '= {D'1,...,D'n} is a clash
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end the family of literals resolved upon in ' is §§91...Gn.

Let 6% be an m.g.s.u. of 55:91...9n. The resolvent of ! is
"= D0191 e* U ... U DOn Gn o*,

Since Ef,61...9n is a refinement of E&" ©y0000 , B¥ OXX

is an m.g.s.u. of Ef"91...9n where 0%* is an m.g.s.u. of

le

8 " 91-..9119* 4 8 610-09119* U{G’,',--o’G‘ .ooene*g

k'

But then ©,...0 O%9** is an m.g.s.u. of €. and because

1
& 0,048, % is already unified we may take &** to be an
R.geS.Ue OF
*
{G‘.]’blo,Gk} 910009116 ?

whieh is a partition of C'. Let D' = C' o%*

Then
- *) o»
D' = (Do1919* Ues o DOn?ne ) o%x

= (D01 UsosU Dy ) 00008 0% 6%
= (Dy, Ve D, ) 6 8
=D,
It suffices to show that D' is an m-factor of aﬁ
m-resnlvent of (', Suppose not. Then for distinct

: ] ——
literals L', and L', in some D 0i = DOi e.

1 2 i i?
L'1 ¥ p¥* = L'2 ox g¥*¥,

But then there are distinet literals L1 and L2 in Doi such

that *
L', =1L Gi’ L. = L2 Gi and L1 Qi O¥% p¥¥ L2 @i ¥ Q¥*,

1 1 2
Therefore
- * Q¥R
L1 91o..9n e* e**-—LZ 91.00 ene e and.
) - )
L1 60 = L2 e e'.

So Ly I, € Gji for some j. But Gji 0, is a singleton

— arL', =1 3 N
and therefore L1 Gi = L2 Gi and L 1 L 5 contrary to assumption
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Theorem L«7.3. Let ® = (T,c) be a factor derivation

of a factor € from a set of clauses 3S. Then there exists
an isomorphic m~factor derivation ©!' = (T,c) of € from S

such that
c'(N) is a factor of c¢(N) for 211 Ne T.

Proof. (by induction on the mumber n of nodes in T).
If n =1 then Q) =) suffices. Suppose that n> 1 and that
the theorem holds for any factor derivation containing
fewer than n nodes.

~4

Let Ny = (1), s (Ny) = {MNyseeesN} , C = o(N)) and
C = {0(1\11),..9,0(Nm)} « By Lemma 4.7.2. there exists a
clash (! = {D,',...,Dm} s where D; 1s a factor of C(Ni)’
1<i<m, and € is an m-factor of the m-resolvent of C'.
Let d’)i be the factor derivation (T ,oi) which is identical

i
to (TNi,c) except that °i<Ni) = D, instead of c(Ni). By
the induction hypothesis for each i, 1 <i < m, there exists
an m-factor derivation G)i' = (TN ,c'i) of D, such that
i

c’i(N) is a factor of ci(N) for svery N eTNi.

Let ®! = (T,c') where c'(NO) = C and c'() = c'y (W)

for N eT @t is the required m-factor derivation of C.

N, °
T}iectrem Lo7.3 states that any clause (or factar) C,
derivable by a factor derivation QL can be derived by an
isomorphic m-factor derivation 7. Moreover O)! is no more
complicated than Oin the sense that no factor ia §)' contains
more literals than the corresponding factor in 0>. Search

strategies 3 (such as level saturation or upwards diagonal

search) which generate simpler before more complex derivations
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will generate m=factor derivations before isomorphic factor
derivations which are not m-factor derivations. Let J_be
such a strategy and let (J“, 2',) be a proof procedure
employing ). and an inference system T“Which incorporates the
Wos-Robinson factoring method (W-R method). Let (T¥, %)
differ from (5, £) only by using the m-factoring method
instead of the W-R method. If ( {7, 5) generates n
derivations and (3‘”’, 2) generates n' derivations before
obtaining a first refutation then n = n'+ k where k is

the number of non m~factor derivations gencrated by (F, =)

before the generation of a first refutation.
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