A Metalogic Programming
Approach to Multi-Agent
Knowledge and Belief

Robert Kowalski and Jin-Sang Kim

Department of Computing
Imperial College of Science, Technology and Medicine
180 Queen’s Gate
London SW7 2BZ

. Abstract

We investigate, within a logic programming framework, the use of the
provability predicate demo(A, P) to represent that an agent named A be-
lieves a sentence named P. This use of the provability predicate extends
its more usual metaprogramming applications and motivates its use within
an amalgamation of object language and metalanguage. We study the ap-
plication of the amalgamated logic programming language to the wise man
problem in detail.

1 Introduction

Metalogic is used in logic programming to implement metaprograms, which
manipulate other programs, databases, knowledge bases, or axiomatic the-
ories as data. Typical applications include program transformers, expert
system shells, and knowledge assimilators. For many of these applications it
is useful to employ a metapredicate demno(T, P), which holds when the sen-
tence named P can be proved (or demonstrated) from the theory named T'.
For such applications it is usually adequate to implement systems in which
the object level theory is separated from.the metalevel theory.

The metalevel provab111ty predicate can also be used to represent such
modalities as necessity and belief [Kon82], [Per88), [Smu88]. Thus demo(A4, P)
might represent that the agent named A believes the sentence named P, In

231 Copyright © 1991 by Academic Press, Ine.
All rights of reproduction in any form reserved.
ISBN 0-12-450010-2

232 Kowalski and Kim

the sense that the theory (also named A) constituting the agent's explic-
itly held beliefs can be used to demonstrate the conclusion named P. For
these purposes, an amalgamation [Kow79, BK82] which combines object
language and metalanguage in a single language is necessary to obtain the
naturalness of expression which is possible in modal logic.

In this paper we investigate how the simple model of logic programming
can be extended by the amalgamation of object language and metalanguage
to make it more useful for representing knowledge and belief in multi-agent
domains. We shall investigate this extension in the context of a represen-
tation and solution of the wise man problem, which has been advanced by
John McCarthy [MSHI78] as a benchmark for testing the expressive power
and naturalness of knowledge representation formalisms. A simple version
of this problem is this:

A king, wishing to determine which of his three wise men is the
wigsest, puts a white spot on each of their foreheads, and tells
them that at least one of the spots is white. The king arranges
the wise men in a circle so that they can see and hear each other
(but cannot see their own spot) and asks each wise man in turn
what is the colour of his spot. The first two say that they don’t
know, and the third says that his spot is white. '

The problem is to explain how the third wise man reaches his conclusion.

We will present a solution which uses a logic programming amalgama-
tion of object language and metalanguage. In this respect our solution
resernbles that of Coscia et al. [CFL88], but differs from it in our explicit
use of “derno” to represent belief. Our solution is similar to modal logic
solutions using common knowledge. Following the approach taken by Mec-
Carthy et al. [MSHI78], we treat common knowledge as the knowledge
possessed by any “fool’” and therefore by any agent. The solution presented
in this paper is a simplified and improved version of the one presented in
an earlier paper [KK90],

2 A logic programming implementation of
the provability predicate for propositional
Horn clause logic

The simplest metainterpreter is one for an object language consisting of
propositional Horn clause logic:

A Metalogic Programming Approach to Knowledge 233

MP] demo(T,P) if demo(T, (P if Q))
and demo(T, Q)
[Conj] demo(T,(P and Q)) if demo(T,P)
and demo(T, Q)

These two clauses of a metalogic program express that every theory T is
closed under modus ponens and the rule of conjunction.

In fact the conjunction rule is not strictly necessary because object level
rules of the form

Pif Qand R

can be written instead as

(P if Q) if R.

In this case the rule M P can perform the same function as the rule
Conj. The rule MP is similar to the axiom schema of distribution in
modal logic -

(OP 4 O(Pi Q) O

where “CJ” is the necessity operator.

It is usual in metalogic to distinguish between object level formulae,
such as P if @, and terms which name object level formulae and which can
appear therefore as arguments of metapredicates. However, this distinction
‘has generally been ignored in most practical metaprogramming applica-
tions. It seems that this practice of metaprogramming can be justified
by the semantics developed by Barry Richards [Ric74], in which sentences
name themselves. The context in which a formula syntactically appears
distinguishes its use as a term from its use as a formula. We shall use this
simplification throughout this paper. '

To be used in practice, the rules M P and Conj would need to be aug-
mented by rules describing what axioms belong to what theories. This can
be done most simply by treating theories as conjunctions, and conjunctions
as lists, writing

A and Ay and ... and A,
as shorthand for ‘
A1 and (Az end (... and (A, and true)...)).

The rules are similar to those defining membership for lists:

934 | Kowalski and Kim

[Membl] demo((P and @), FP)
[Memb2] demo((P and Q),R} if demo(Q,R)

Using these two clauses together with M P and Conj, the metalevel
can simulate object level reasoning. For example, the metalevel execution
sequerice

? demo(((p if q) and ¢),p)
? demo(((p if q) and q),(p if Q)) and

demo(((p if ¢) and ¢),Q) by MP
? demo(((p of ¢) and ¢),q) by Membl
? demo((q),q) _ by Memb2
yes by Membl

using the metalevel clauses pr which define the demo predicate, simulates
the object level execution

7T p | '
? g by pif q
yes by g

using the object level theory.
Notice that metalevel reasoning is more powerful than object level rea-
soning. For example, it can generate answers for such queries as

? demo(((p if q) and g),X)

yes X =pifq
X =g
X=p
7 demo(((p if q) and X),p)
yes :

SV
Il
g

3 Reflection rules

In the case of a propositional Horn clause object language, the metalevel
program pr can completely simulate object level provability. This complete-
ness property of pr justifies the reflection principle

TP
prdemo(T, P)

[RP1]

A Metalogic Programming Approach to Knowledge 235

Used as a rule of inference, RP1 is redundant if pr is complete. Nonethe-
less, its use can improve efficiency by replacing indirect metalevel reasoning
by more direct object level reasoning. In cases where pr might not be com-
plete, RF1 can be used as an inexpensive way to “complete” the procedures

for computing demo. RP1 is the analogue of the rule of necessitation in
modal logic:

P
CIP
The definition pr correctly defines object level provability. This correct-
ness property justifies the second reflection principle

prt demo(T, P)
T+P

This rule is redundant if pr is correct. Nonetheless, it too can be useful

in practice, for example by facilitating the use of lemmas L stored by means
of metalevel statements of the form

demo(T, L).

Such metalevel recording of lemmas, both for the sake of efficiency and
to facilitate theory revision, is a major concern of truth maintenance sys-

tems. RP?2 is analogous to, but weaker than, the modal necessitation axiom
schema,

[RP2]

Pif OP

"The two reflection principles were first introduced by Weyhrauch [Wey80]
and were a feature of the amalgamation logic developed by Bowen and
Kowalski [BK82]. They constitute the sole mechanisms for linking object
level and metalevel reasoning in the Reflective Prolog language of Costatini
and Lanzarone [CL89]. The first reflection principle, also called attach-

ment, plays an essential role in Konolige’s modal deduction model of belief
[Kon85], [Kon86).

4 Extensions of the definition of the demo
predicate
The p:éovability predicate for any logic defined by means of a finite set

of axioms and inference rules can be defined by means of a Horn clause
metaprogram. Suppose for example that a logic L has axioms

Kowalski and Kim

QT1, GL2, ..., ATn

and inference rules of the form

C1,Co,...,Cm
C

then the proof predicate for L can be defined by means of a metaprogram
of the form :

demor(T, ax1)
demor (T, axa)

demor (T, axy)
demor (T, C) if demor (T, Cq)
and demoy (T, Cs)

and demor(T, Cp)

together with Membl and Memb2. Thus provability in any logic can be
reduced to provability in Horn clause logic.

For the formalisation and solution of the wise man problem, it is nec-
essary to extend the object level logic to include disjunction and negation.
The necessary rules include -

[Disjl] demo(T,(P or Q)) if demo(T, P)

[Disi2] demo(T, (P or Q)) if demno(T, Q)

[Dis33] demo(T, Q) if demo(T, (P or Q))
and demo(T, (not P))

Although in theory it is not necessary to go outside Horn clause meta-
logic, in practice it is often useful, as it is for example in the case of defining
object level negation as negation by failure:

demno(T, not P) if not demo(T, P).

Unfortunately, although this definition is useful for many applications,
it is not appropriate when demo is interpreted as belief. Given, for example,
an assumption that a person is agnostic, it would be possible to conclude
using this definition, that that person is an atheist.

What is acceptable, however, both in the case of metainterpreters and
in the case of belief, is to hold that an agent believes not P if it does not
believe P, but has complete information about P, i.e.

A Metalogic Programming Approach to Knowledge | 237

[Compl] demo(T, not P} if not demo(T, P)
and complete(T, P)

In fact, this rule and its contrapositive

(Comp2] demo(T,P) if not demo(T', not P)
and complete(T, P)

are both trivial consequences of the more géneral specification, which, how-
ever, goes beyond logic programming form:

[Comp) complete(T,P) ff [demo(T,P) or demo(T, not P)]

In the solution of the wise man problem, given in section 8, it is necessary
to reason that because the first wise man has complete knowledge of the
colour of the second wise man’s spot {i.e. white2) and complete knowledge
of the colour of the third wise man’s spot (i.e. white3), he also has complete
knowledge of the disjunction -

white2 or whited.

The necessary reasoning can be carried out by means of the rule

[Comp3] complete(T, (P or Q)) if complete(T, P)
and complete(T, Q)

This property can be derived from the spemﬁcatlon Comp toge‘sher with
the rules Disjl and Disj2.

The solution of the wise man problem requires the use of Disj3 in its
contrapositive form

not demo(T, not P} if demo(T, (P or Q))
and not demo(T, Q)

Such use of contrapositives, however, is not possible within currently avail-
able logic programming systems. Fortunately, all such uses of the contra-
positive are used together with the clause Comp2, to eliminate the literal

not demo(T, not P).
Consequently the effect of using the two clauses can be achieved by
using their resolvent instead:

[Reason] demo(T',P) if demo(T, Por Q)
and not demo(T, Q)
and complete(T, P)

The term “Reason” is borrowed from Aiello et al. [ANS88, ANS89].

238 ' Kowalski and Kim

In the solution of the problem the clause Reason is used twice. First
it is used to reason that, because the first wise man knows (or believes)
that at least one of the spots is white (i.e. whitel or white2 or whited),
and because he does not know that his own spot is white, and because he
has complete information about the colour of the other spots, therefore he
knows that at least one of the other spots is white (i.e. white2 or white3),

It is also used a second time to reason that because the second wise man
also knows white2 or whited, and because he does not know that his own
spot is white, and because he has complete knowledge about the colour of
the other spot, therefore he knows that the third wise man’s spot is white.

5 Belief, knowledge, and confidence

In modal logic, the necessitation axiom schema

Pqf OP

is what distinguishes the interpretation of ‘" as knowledge from its inter-
pretation as belief. In metalogic, the analogous axiom schema

[Conf] P if demo(T,P) and agent(T)

can be interpreted as an expression of confidence in the agent named 7.
Here the same term T is used both as the name of an agent and as a name
of that agent’s beliefs.

In the solution of the wise man problem, the confidence schema is used
twice. First it is used to derive the conclusion

white2 or white3

from the previously derived conclusion (using Reason) that the first wise
man believes white2 or white3. It is also used to derive the conclusion

whited

from the conclusion (also obtained by using Reason) that the second wise
man believes white3. In both cases the confidence schema justifies inter-
preting the beliefs of the two wise men as knowledge rather than as mere
belief,

A Metalogic Programming Approach to Knowledge 239

6 Constants as names of theories

In cases where demo means belief, it is not generally possible to identify ex-
plicitly all the axioms belonging to the theory which constitutes an agent’s
beliefs. It is possible, however, to use constants as names of theories in-
stead, and to assert by means of meta-axioms what object level axioms can
be proved from the object level theory. Thus, for example, we could use
the meta-axioms

[t1] demo(t,p if q)
[t2] demo(t,q)

to define what axioms belong to the object level theory

pifq
q

using the constant ¢ as a name of the theory. This use of constants, to name
theories and of meta-axioms like ¢1 and ¢2 to perform the same function
as Membl and Memb2, ig in the spirit of McCarthy’s notion of abstract
synbax [McC63]. In the same way that Membl and Memb?2 belong to the
definition pr of demo, so too should #1 and £2.

In the wise man puzzle, we will use the constants

wisel, wise2, wise3

both as names of theories and as names of the wise men themselves. For
the sake of simplicity, we assume that the constant wisei names the state
of the i-th wise man just before he answers the king’s question. In a more
precise representation we could represent the state of a theory as a pair
{(wi, 8) consisting of an invariant name wi for the theory and a name g for
the state.

Because it is virtuaily impossible to have complete knowledge of all an
agent’s beliefs, it is not appropriate to use negatlon as failure to prove
conditions of the form

not demo(A, P)

when A is a constant which names the agent’s beliefs. However, conditions
of that form occur in the Resson axiom. They can be proved by using
negative assertions which are given as part of the input. In the wise man
puzzle the statements that the first and the second wise men do not know
the colours of their spots is just this kind of input:

240 . Kowalski and Kim

not demo(wisel, whitel)
not demo(wisel, not whitel)
not demo(wise2, white2)
not demo(wise2, not white2)

The use of such negative asgertions to prove negative conditions requires
a trivial extension of the usual logic programming execution strategies. It is
implemented in the Prolog solution by introducing a new predicate symbol
not_demo and by replacing negative literals of the form not demo(T, P) by
positive literals of the form not.demo(T, P).

7 Common knowledge

The solution of the wise man puzzle, which is presented formally in sec-
tion 8, is presented from the third wise man’s point of view, L.e. using
the theory wise3. Perhaps the trickiest part of the solution is to for-
malise how the third wise man concludes that the second wise man knows
white2 or white3. Does wise3 simulate the reasoning of wise2? Or does
wised first reason for himself that white2 or whiteld, and then conclude
somehow or other that wise2 must also know white2 or whiteld?

Our solution to this problem, like several others ([Kon82], [Kon85]}, is
based on the concept of common knowledge. The third wise man reasons
that it is common knowledge that white2 or whited. Therefore both he and
wise2 know white2 or whited. This solution can be viewed as an elegant
combination of the two alternative solutions mentioned above.

Following McCarthy et al. [MSHI78], we represent common knowledge
by means of a common theory wise(, which is a subtheory of every agent,
ie.

[Commonl] demo(T, P) if demo{wisel, P)
and agent(T)

In the wise man puzzle, the statements made by the king and by each of
the wise men are all common knowledge. It is also common knowledge that
each wise man has complete information about the colour of every other
wise man’s spot, and that each wise man is an intelligent agent. Therefore
the following “facts” all belong to the theory of every agent:

A Mei:alogic Progra.mniing Approach to Knowledge _ 241

(F1) demo(wise0, complete(wisel, white2))
(F2) demo(wise0, complete(wisel, whited))
(F3) demo(wisel, complete(wise2, whitel))
(F4) demo(wise0, complete(wise2, white3))
(F5) demo(wise0, complete(wise3, whitel))
(F6) demo(wise0, complete(wised, white2))
(F'7) demo(wise0, whitel or white2 or white3)
(F8) demo(wise0, not demo(wisel, whitel))
(F9) demo(wise0, not demo(wisel, not whitel))
(F10) demo(wisel, not demo(wise2, white2))
(F11) demo(wise0, not demo(wise2, not white2))
(F12) demo(wisel, agent(wisel))

(F13) demo(wise0, agent(wise2))

(F14) demo(wise0, agent(wise3))

Every common knowledge belief P is held by every agent wisei in the form

‘of a metalevel statement demo(wise0, P). Given the additional assumption

[Common?2] agent(wz'seﬂj

~ then by confidence wisei can also hold P as an objeét level belief.

" It is a characteristic property of common knowledge, not only that all

- agents know it, but that all agents know that all agents know it, and that

all agents know that all agents know that all agents know it, etc. This
property can be captured quite simply by the axiom

[C'ommon3] demo(wiséﬂ, (demo(T, P) if P and agent(T)))

This axiom is more powerful, and also more useful, than the usual common
knowledge axiom: :

demo(wise0, demo(T, P)) if “demo(wise0, P) :
- and demo(wise0,agent(T))

~ which can be derived from C‘ommon.‘;" by one application each of M P and
Conj. : i '

As we shall see in the proof below, Commona3 is especially useful when
using the attachment rule RP1 to construct and reason within an object
level representation of the common theory wise(. Common3 can be used
in this context simply to add the axiom schema |

demo(T, P) if P and agent(T)

to the object level representation. In contrast the usual axiom would need
to be applied an infinite number of times to add a clause of the form '

Erratum "A metalogic programming approach to multi-agent knowledge and belief” by
Kowalski and Kim

[Common 3] on page 241 is too strong. The weaker axiom

demo (wise(, demo (T, P)) if demo {wise0, P)
and demo (wise0, agent (T))

needs to be used instead. This makes the proof on pages 242-243 more complicated. Either the
tirst part of the proof needs to be carried out at the metalevel without using reflection, or else a
more complicated form of reflection needs to be employed where the effect of the weaker axiom
is obtained by an inference rule

P, agent (TH
demo (T, P}

which is restricted for use within the object level representation of wise(.

To see that the stronger axiom [common 3] is incorrect, consider what follows from the
general assumptions

[Conf] P it demo (T, P} and agent (T}
[Common 3] demo (wise0, demo (T,P) if P and agent {(T})
[Common 2] agent (wise()

and the domain-specific knowledge of wise 3

(D white2
(2) demo (wiseQ, agent (wise2))

From these wise3 can derive

(3) demo (T, P} if P and agent (T} by [Conf, Common 2, Common 3]
{4) agent (wise2) by [Conf, (2), Common 2]
{5) demo (wise2, white2) by {(1), (3), (4)]

which 1s incorrect!

Clearly the problem lies with the derivation of (3) using [Common 3].

R

242 Kowalski and Kim

demo(T', P)
whenever the object level representation contains clauses of the form

P and agent(T).

In addition to its ability to perform metalevel reasoning, an important
characteristic of an intelligent agent is its ability to recognise that every
other agent can also perform metalevel reasoning, etc. This property can
be captured simply by assuming that the confidence axiom and the axioms
pr that define provability are all common knowledge. In fact, in the proof
below it is necessary to use only the assumptions that Reason, Conf,
Common3 and Comp3 belong to wisel.

8 The proof

The following proof is presented from the point of view of the third wise
man, using the axioms wise3. These axioms contain the purely object level
~ knowledge

whitel
white2

but thege are not necessary for the proof. Although the proof is presented in
a forward direction, it is generated backward in the Prolog implementation.

The proof has {wo main parts. In the first part, wise3 reagsons that
white2 or whited is common kunowledge. This reasoning could be per-
formed entirely within the theory wise3 by simulating wise). However,
it is simpler and potentially more efficient to use the attachment rule to
reason directly within an object language representation of wise0d. The
object level representation is constructed by collecting all sentences of the
form

demo(wise0, P)
in wise3 and for each such sentence adding
P

to the object level representatlon of wise(. It is then possftﬁe to reason
within this representation:

A Metalogic Programming Approach to Knowledge 243

(1) whitel or white2 or whited by F'7

(2) agent(wisel) ' by F12

(3) demo(wisel, whitel or white2 or white3) by (1),(2), Commond
(4) not demo(wisel, whitel) by F8

(5) complete(wisel,white2) - by F'1

(6) complete(wisel, whited) by F2

(7) complete(wisel, white2 or whited) by (5),(6), Comp3

(8) demo(wisel,white2 or whited) by (3), (4),(7), Reason
(9) white2 or whited by (2),(8),Conf

Having proved white2 or whited from the object level representation of
wisel, it is then possible for wised to reason by attachment that

demo(wiseld, white2 or whiteld).

This provides the starting point for the second part of the proof, where
wised reasons for himself that wise2 knows white3, and therefore that
whited is true:

(10) demo(wise0, white2 or whited) by (9), RP1

(11) agent(wise2) by F13, Common2,Conf
(12) demo(wise2, white2 or whited) Dby (10), (11}, Commonl
(13) not demo(wise2, white2) by F10, Common2, Conf
(14) complete(wise2, whited) by F4, Common2,Conf
(15) demo(wise2, whited) by (12), (13), (14), Reason
(16) whited by (11), (15),Conf

9 Conclusion

The example of the wise man problem shows that the metareasoning capa-
bilities of logic programming can be extended to formalise reasoning about
knowledge and belief. The resulting extension combines the naturalness of
modal logic, with the power of metalogic and simplicity and efficiency of
logic programming.

The extension of the demo predicate to represent knowledge and belief
is greatly facilitated by the amalgamation of object language and meta-
language embodied in such axioms as Common3 and such axiom schemas
as Conf. As can be seen, for example, from the work of Coscia et al.
[CFLS88], such amalgamation also has practical value in the implementa-
tion of object-oriented systems. A schema such as

P if demo(Ob1, P)

e e

244 Kowalski and Kim

within a theory Ob2, for example, allows Ob2 to inherit all the beliefs of
Obl.

In most conventional applications of metaprogramming it is usual for
the first argument 7" of the demo predicate to be a term which has the
same structure as the theory it names. This has the limitation that the
metaprogram then needs to have complete information about the contents
of that theory. This is not generally possible when demo repregents knowl-
edge or belief. In such cases it is possible instead to name theories by
constants or other structurally dissimilar terms. It seems likely that such
structurally dissimilar terms can be used in a similar way for other more
practical applications.

The amalgamation logic used in this paper has an alternative inter-
pretation as a modal logic similar to Konolige’s deduction model of belief
[Kon86]. It shares with his modal logic the characteristic that the argu-
ments of demo denote sentences rather than propositions, as they do in
most modal languages. We prefer, however, the interpretation of the amal-
gamation logic as a metalogic, with the simplifying features of Richards’
semantics [Ric74], whereby sentences name themselves.

It is well known from the work of Montague [Mon63] and Thomason
[Tho80] that simply treating modal operators as metapredicates can lead
to inconsistencies. It has been shown, however, by Perlis [Per88] and by des
Riviéres and Levesque [dRJL86] that it is possible to extend modal logic or
to restrict metalogic so that the two approaches have similar consistency
properties,

Another correspondence between modal logic and an amalgamation of
object language and metalanguage has been studied by such logicians as
Boolos [Boo79] and Smorynski [Smo85]. In their case the amalgamation
logic studied is first-order arithmetic, in which Gédel numbers name arith-
metic sentences and other syntactic expressions. It was in fact the example
of arithmetic which was the original guide for the development of the amal-
gamation logic of Bowen and Kowalski [BK82] used in this paper. Perhaps
it is along these same lines that a more rigorous semantics for the amalga-
mation logic will be developed in the future.

Acknowledgement

This work was supported in part by the ESPRIT Basic Research Project,
COMFPULOG, and in part by an ORS(UK) award. We are grateful to our
COMPULOG partuners, and in particular to Luigia Aiello, Pat Hill, John
Lloyd, Paoclo Mancarella, Danielle Nardi and Barry Richards for useful
discussions about this work.:

e e e e

A Metalogic Programming Approach to Knowledge 245

References

[ANS88] Luigia Aiello, Daniele Nardi and Marco Schaerf. Reasoning about
knowledge and ignorance. In Proc. of the Int'l G‘onference on FGCS,
pages 618-627, 1988.

[ANS89] Luigia Aiello, Daniele Nardi and Marco Schaerf. Reasoning about
knowledge and reasoning in a meta-level architecture. Technical re-
port, Dipartimento di Informatica e Sistemistica, Universitd di Roma
“La Sapienza”, 1989. :

{BK82] Kenneth Bowen and Robert Kowalski. Amalgamating language
and metalanguage in logic programming. In Logic Programming, Keith
Clark and Stan-Ake Térnlund (eds.), Academic Press, pages 153-173,
1982.

[BooT79] George Boolos. The Unprovability of Consistency. Cambridge
University Press, 19879,

[CFL88] Patrizia Coscia, Paola Franceschi, Glorgio Levi, Giuseppe Sardu
and Luigia Torre. Object level reflection of inference rules by partial
evaluation. In Meta-Level Architectures and Reflection, Pattie Maes and
Daniele Nardi (eds.), Elsevier Science Publishers, pages 313-327, 1988.

[CL89] Stefania Costantini and Gaetano Lanzarone. A metalogic program-
ming language. In Logic Programmaing: Proc. of the Sizth Intl. Confer-
ence, Giorgio Levi and Maurizio Martelli {eds.), pages 218-233. MIT
Press 1989. |

[KK90] Jin Sailg Kim and Robert Kowalski. An application of amalga-
mated logic to multi-agent belief. In Proc. of the 2nd Workshop on
Meta-programming in Logic, Maurice Bruynooghe (ed.}, pages 272-283,
1990.

[Kon82] Kurt Konolige. A first-order formalization of knowledge and action
for a multi-agent planning system. Machine Intelligence, vol. 10, Jean
- Hayes and Donald Michie and Y. Pao (eds}, Ellis Horwood, 1982.

[Kon85] Kurt Konolige. Belief and incompleteness. In Formal Theories
of the Commonsense World, J. Hobbs and Robert Moore (eds.), Ablex
Pub. Corp., pages 359-403, 1985.

[Kon86] Kurt Konolige. A Deduction Model of Belief. Pitman, London,
1986.

2486 Kowalski and Kim

[Kow79] Robert Kowalski. Logic for Problem Solving. North-Holland,
1979.

fMcC63] John McCarthy. Towards a mathematical science of computation.
Proc. IFIP Congress 1962. North Holland 1963.

[MSHI78] John McCarthy, Masahiko Sato, Takeshi Hayashi and Shigeru
Tgrashi. On the model theory of knowledge. Technical report ATM-312,
Stanford University, 1978.

[Mon63] Richard Montague. Syntactical treatments of modality, with
corollaries on reflection principles and finite axiomatizability. Acte Philo-
sophica Fennica, 16, pages 153-167, 1963. Reprinted in Formal Philoso-
phy, New Haven, Yale University Press, pages 286-302, 1974.

[Per88] Domnald Perlis, Languages with self-reference II: knowledge, belief,
and modality. Artificial Intelligence, 34, pages 179-212, 1988,

[Ric74] Barry Richards. A point of reference. Synthese 28, pages 431-445,
1974.

[ARJL86] des Rivieres Jim and Hector Levesque. The consistency of syn-
tactical treatments of knowledge. In Proc. of the 1986 Conference, The-
oretical Aspects of Reasoning about Knowledge, Joseph Halpern (ed.),
pages 115130, 1936.

[Smo85] Craig Smorynski. Self-Reference and Modal Logic. Springer-
Verlag, New York, 1985. ' .

[Smu88] Raymond Smullyan. Forever Undecided. Oxford University Press,
1988,

[Tho80] Richmond H. Thomason. 4 note on syntactic treatments of modal-
ity. Synthese, Vol. 44, pages 391-395.

[Wey80] Richard Weyhrauch, Prolegomena to a theory of mechanized for-
mal reasoning. Artificial Intelligence, 13, pages 133—170, 1980.

