
Logical English

A position paper prepared for Logic and Practice of Programming (LPOP) 2020

Robert Kowalski
Imperial College London

11 November 2020

Logical English (LE) is a controlled natural language, in which English sentences are
translated into a program in a logic programming (LP) language, such as Prolog,
Datalog or Answer Set Programming (ASP). Similar controlled English languages that
are also executed by translation to LP include ACE [Fuchs and Schwitter, 1996; Fuchs
et al, 2008; Fuchs, 2013], PENG [Schwitter, 2002] and PENG ASP [Guy and Schwitter,
2017]. ACE and PENG are both intended for general-purpose knowledge
representation and reasoning. In contrast, LE and PENG ASP are syntactic sugar for
logic programs. PENG ASP provides syntactic sugar for ASP, and LE provides syntactic
sugar for LPS [Kowalski and Sadri, 2015, 2016], which is an extension of pure
Prolog, implemented in Prolog [Wielemaker et al, 2019].

The ultimate goal of LE is to serve as a general-purpose computer language, which
can be understood by a reader without any training in computing, logic or
mathematics. It is inspired in part by the language of law, which can be viewed as a
programming language that is executed by humans rather than by computers
[Kowalski, 1992]. LE can also be viewed as a domain-specific language for legal
applications, similar to the English-like languages Blaux [Morris, 2020] and Lexon
[Diedrich, 2020], both of which also have LP roots. Blaux is a combination of the LP
language Flora-2 and the visual coding environment Blockly. Lexon on the other hand
combines syntactic sugar for logic programs with higher-order logic, and compiles
into Solidity, the programming language for the Ethereum blockchain.

LE is a declarative language, like the language of law. But LE also has an imperative
character, inherited from LPS. Computation in both LE and LPS is similar to
computation in a conventional imperative language, starting from an initial state,
observing a potentially infinite stream of external events as input, and generating a
potentially infinite stream of actions as output, while destructively updating a current
state, with the goal of solving a problem or of simulating a real or imaginary world.

But unlike computation in conventional imperative languages, computation in LE also
has a logical interpretation as generating a sequence of states and events, whose
time-stamped history underlies a model that makes the program’s goals true.

LE is a work in progress [Kowalski, 2019]. There have been three experimental
implementations of variants of LE based on LPS or Prolog, focussed primarily on
legal applications [Davila, 2017; Karadotchev, 2019; Fu, 2020]. The website
http://demo.logicalcontracts.com/ contains an example of the rock-paper-scissors
game in a form of Logical English in the Fintech submenu of the examples menu. It

http://demo.logicalcontracts.com/

also contains a number of LPS examples in the examples menu, which can be
modified and executed online. Here are some examples based on this work:

(1) If a player P1 plays a choice C1 and another player P2 plays a choice C2

and C1 beats C2 and it is not the case that the game is over
then P1 receives the prize and it becomes the case that the game is over.

(2) A transaction is governed by IsdaAgreement
if a confirmation of the transaction states
that the transaction is governed by IsdaAgreement
and the transaction commences on a first day
and IsdaAgreement is dated as of a second day
and the first day is on or after the second day.

(3) It becomes the case that a requirement is defaulted on a day

when it is the end of the day
and the requirement is potentially defaulted
and the lender delivers a notice to the borrower on another day
and the notice is that the requirement is potentially defaulted
and the other day is 3 days before the day
and it is not the case that the requirement is cured.

The first example translates into a reactive rule in LPS, written in the form if
antecedent then consequent . Reactive rules in LPS represent goals that are made true
by making their consequents true whenever their antecedents become true.
Consequents can be made true either deliberately by performing actions or fortuitously
by observing external events. The symbols P1, P2, C1 and C2 name variables. Their
optional use in LE is similar to their use in legal texts. They provide names for
variables, which look mathematical, but can be understood without mathematical
training.

The second and third examples translate into ordinary LP clauses, which have the
form conclusion if conditions . LP clauses define the models that can make goals true.
In (2) and (3), as more generally in ACE, PENG and LE, variables can be represented
by common nouns (such as transaction or notice) preceded by an article (a , an or the),
as in a transaction and the transaction . T he articles a and an are used for the first
occurrence of the variable, and the is used for later occurrences of the same variable.
Other variables of the same type in the same sentence can be introduced by preceding
them with such adjectives as first , second , or another and the other , etc.

In (2) the condition a confirmation of the transaction states that the transaction is
governed by IsdaAgreement illustrates the embedding of an object-level sentence
inside a higher-order or meta-level sentence. This embedding is represented in Prolog
by translating the phrase is governed by both into a predicate symbol, which is “used”
at the object-level in the conclusion of the sentence, and into a function symbol, which
is “mentioned” at the meta-level in a condition of the sentence.

Sentence (3) translates into an LP clause representing a causal relationship between an
event (it is the end of a day) and a fluent (a requirement is defaulted on a day), which
is initiated by the event. In LPS, this relationship is implemented by adding the fluent
to the current state if it is the end of a day and if the other conditions of the clause hold
at the end of the day. The representation uses the ontology of the event calculus
[Kowalski and Sergot,1986], but an implementation involving destructive updates of a
single current state. The frame axiom of the event calculus is an emergent property,
which is true in any model that satisfies the goals, but it is not used for reasoning. The
example could be expressed equally well in PENG ASP , which supports the writing of
temporal specifications using an ASP-based adaptation of the event calculus.

To reduce ambiguity, LE has no pronouns, such as he , she , or it . To reduce the need
for a dictionary, all nouns and verbs are expressed in the singular. The restriction to
singular nouns means that LE does not use English quantifiers that require the use of
plural nouns, such as all and some .

The use of articles in LE avoids the need for explicit quantification. In the case of a
range-restricted LP clause (containing no variable in the conclusion that is not in the
conditions), the natural reading of the articles in English conforms to the LP
convention that all variables in the clause are universally quantified. But in the case of
a non-range-restricted clause, the natural reading is that any variable in the conclusion
that is not in the conditions is existentially quantified, For example:

(4) An event of a person acquiring citizenship of the land of oz occurs on a day
if the person is born in a place on the day and the place is in the land of oz.

Here the natural reading is that all variables are universally quantified except for the
variable an event , which is existentially quantified. Moreover, although the scope of
the universally quantified variables is limited to the clause, the existentially quantified
variable has wider scope, as in the added clause:

(5) A person celebrates the event if the person lives in the land of oz.

These readings of the English article are compatible with the interpretation of implicit
quantifiers in existential (or ∀∃) rules, and with the elimination of existential
quantifiers by skolemization [Baget et al, 2011].

All of the examples above are written in a basic form of LE, which is syntactic sugar
for LPS. The plan is to develop LE as a series of extensions, starting from this basic
form, introducing increasingly more natural syntaxes, while avoiding the introduction
of ambiguity. For example, the LE sentence (2) above could be written in an extended
form of LE as:

(6) A transaction is governed by IsdaAgreement

if the confirmation of the transaction states
that the transaction is governed by IsdaAgreement
and the transaction commences on a day that is on or after the day as of
which IsdaAgreement is dated.

Here a confirmation is replaced by the confirmation to indicate that the relation
between the confirmation and the transaction is “functional”, in the sense that there is
only one confirmation for each transaction. The relative pronoun that , as well as the
preposition as of followed by which , introduces a restrictive relative clause, which
inserts a logical condition into the text of another logical expression.

LE and its relationship with other logics and other computer languages

LE and its logical underpinning LPS are based on a more general logic for abductive
logic programming (ALP) [Kakas et al, 1992; Kowalski, 2011] in which logic
programs are extended with abducible predicates (generalising actions in LPS) and
with goals in first-order logic (generalising reactive rules and constraints). As in LPS,
goals in this ALP logic are made true by a model determined by the logic program
extended by facts expressed in the vocabulary of the abducible predicates.

In this ALP logic, goals of the form if antecedent then consequent are material
implications, which can be satisfied preventively by making the antecedent false, or
proactively by making the consequent true whether or not the antecedent ever
becomes true. They can also be satisfied while performing unnecessary and irrelevant
actions. However, in LPS and LE, goals of this form are reactive rules, which can be
solved only reactively and relevantly , by generating actions to make consequents true
whenever antecedents become true.

LPS is scaled down from ALP, losing some of the power of a problem-solving
language, to compete more effectively with conventional computer languages for
efficiency. However, the LE syntax for LPS introduces language features that are
absent from both ALP and LPS, but which have been found to be useful in other
computer languages. For example, even in the basic form of LE, the use of common
nouns provides some of the features of a typed, object-oriented language. Other
proposed extensions of LE provide some of the features of a functional language, as in
Monday is the day before the day before Wednesday , which compiles into the LP
relational form Monday is the day before another day and the other day is before
Wednesday . The inclusion in LE of these and other features suggests that LE has the
potential to compete with conventional computer languages not only for efficiency,
but also for expressive power.

But no matter how LE compares with other computer languages today, there is no
need for the computer languages of the future to employ such machine-oriented
features as the use of variables to name computer memory locations and the use of
assignment statements to manipulate the contents of computer memory. Nor is there
any need for them to employ complex symbolic syntax in situations where natural
language syntax can be used just as effectively instead.

We need to follow the lead of legal scholars campaigning against legalese that can be
understood only by legal professionals and advocating plain language that can be
understood by ordinary people [Williams, 2004]. In the world of computing, we need
to move away from languages that make people think like machines, and employ

languages that make computers think more like people. Arguably, logic-based
controlled natural languages like Logical English provide a path, which is both logical
and natural, for helping to reach this goal.

References
Baget, J.F., Leclère, M., Mugnier, M.L. and Salvat, E., 2011. On rules with existential
variables: Walking the decidability line. Artificial Intelligence , 175 (9-10), pp.1620-1654.

Davila, J. 2017. Rock, Paper, Scissors.
http://demo.logicalcontracts.com/example/RockPaperScissorsBaseEN.pl

Diedrich, H. 2020. Lexon Bible: Hitchhiker’s Guide to Digital Contracts. Wildfire Publishing.

Fu, Z, 2020. Logical English (LE) for representing legal documents, MSc thesis. Imperial
College London.

Fuchs, N.E. 2013, Attempto Project. http://attempto.ifi.uzh.ch/site/

Fuchs, N.E. and Schwitter, R., 1996. Attempto controlled english (ace). arXiv preprint
cmp-lg/9603003.

Fuchs, N.E., Kaljurand, K. and Kuhn, T., 2008. Attempto controlled english for knowledge
representation. In Reasoning Web (pp. 104-124). Springer, Berlin, Heidelberg.

Guy, S.C. and Schwitter, R., 2017. The PENG ASP system: architecture, language and authoring
tool. Language Resources and Evaluation, 51(1), pp.67-92.

Kakas, A.C., Kowalski, R.A. and Toni, F., 1992. Abductive logic programming. Journal of
logic and computation , 2 (6), pp.719-770.

Karadotchev, V., 2019. First Steps Towards Logical English. MSc thesis. Imperial College London.

Kowalski, R., 2011. Computational logic and human thinking: how to be artificially intelligent .
Cambridge University Press.

Kowalski, R., 1992. Legislation as Logic Programs In: Logic Programming in Action (eds. G.
Comyn , N. E. Fuchs, M. J. Ratcliffe), Springer Verlag, pages 203-230.

Kowalski, R. 2019. Logical English slides.
http://www.doc.ic.ac.uk/~rak/papers/Logical%20English.pdf

Kowalski, R. and Sadri, F., 2015. “Reactive Computing as Model Generation.” New
Generation Computing,, Volume 33, Issue 1, pp 33-67

Kowalski, R. and Sadri, F., 2016. Programming in logic without logic programming. Theory
and Practice of Logic Programming, 16(03), pp.269-295.

Kowalski, R. and Sergot, M., 1986, "A Logic-based Calculus of Events", in New Generation
Computing, Vol. 4, No.1, February pp. 67-95.

Morris, J., 2020. Blawx Alpha: User Friendly Rules as Code on the Web. https://www.blawx.com/

Schwitter, R., 2002, English as a formal specification language. In Proceedings. 13th
International Workshop on Database and Expert Systems Applications (pp. 228-232). IEEE.

Schwitter, R., 2019. Augmenting an answer set based controlled natural language with
temporal expressions. In PRICAI 2019: Trends in Artificial Intelligence, vol. 11670 of LNAI,
500–513. Springer.

Wielemaker, J., Riguzzi, F., Kowalski, R. A., Lager, T., Sadri, F., & Calejo, M. 2019. “Using
SWISH to realize interactive web-based tutorials for logic-based languages”, Theory and
Practice of Logic Programming, 19(2), 229-261.

Williams, C., 2004. Legal English and plain language: An introduction. ESP across Cultures ,
1 (1), pp.111-124.

