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For many years the artificial intelligence community has engaged in a debate 
about the relative merits of procedural versus declarative representations of 
knowledge. This debate has spilled over into the educational arena, where com- 
putational geometry as realized in Logo is represented as superior to classical 
nonprocedural geometry. 

The commitment of many artificial intelligence researchers to procedural 
representations of knowledge runs counter to the increasing development in 
other areas of computing of nonprocedural, declarative programming languages, 
database query languages and program specification languages. 

It is our belief that the apparent conflict between the declarative and the 
procedural can be reconciled by recognizing that, in the words of Pat Hayes 

‘computation = controlled deduction (Hayes, 1973) 
ie. ‘algorithm — = logic + control’ (Kowalski, 1979a). 

A specific example of this is the procedural interpretation of Horn clauses 
The application of suitably goal-directed proof-procedures to sentences of 

the form 

AifBandC 

treats them as procedures, which 

reduce problems of the form A 

to subproblems of the form B and C.
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The procedural interpretation of Horn clauses is the logical foundation of the 

computer language Prolog, developed and implemented in 1972 by Colmerauer 

and his colleagues in Marseille. Prolog, at first almost entirely a European pheno- 

menon, has recently gained attention in North America, thanks to McDermott’s 

(1980) Sigart article, and in Japan, where it has been selected as the core pro- 

gramming language for the fifth generation computer systems of the 1990s 

(JIPDEC, 1981). 

Because of the procedural interpretation which is the basis of Prolog, there 

are two Prolog programming styles: one declarative, the other procedural. Many 

Prolog programmers, especially those with a strong Al background, employ a 

procedural style. Others, especially those with a software engineering bias, 

emphasize the declarative. At Imperial College we are firmly committed to the 

declarative style. We recognize that Prolog is an efficient but logically restricted 

realization of logic programming ideal, and we use the extralogic features as 

rarely as possible. Even then we try to encapsulate them in the definition of 

logically defensible extensions of the language or its proof procedures (Kowalski, 

1981). 
We believe that in the first iteration programs should be written as declara- 

tive program specifications. Inefficient specifications can be transformed (pre- 

serving the logical intention of the specifications) into more efficient logic pro- 

grams. My colleagues, Keith Clark et al. (1977, 1978, 1982), John Darlington 

and Chris Hogger (1978a, 1978b, 1981) have made significant contributions 

to this methodology. 

As a complement to our activities, beginning in September 1980 we have 

been teaching logic as a computer language to children, starting at the age of 

10. Richard Ennals (1982b) has been responsible for preparing and testing the 

teaching materials. Besides the computer science objectives of teaching children 

database query methodology, program specification and ultimately program- 

ming itself, the project aims both to apply logic to other subjects taught in 

school, as well as to teach logic as a subject in its own right. In order to do this 

we have concentrated almost entirely on the declarative reading of Prolog 

programs. 

In the remainder of this paper I shall first sketch the outline of the one and 

a half years of the course that has been taught so far. Then I shall address the 

relationship between computer logic and classical school mathematics. Finally I 

shall compare the treatment of computational geometry in logic with its treat- 

ment in a procedurally oriented programming language such as Logo. A more 

comprehensive introduction to the children’s form of Prolog can be found in 

Clark, Ennals and McCabe (1981). 

ATOMIC SENTENCES 

The children are first taught to translate between English sentences and the 

atomic sentences of Prolog. The following are examples of atomic sentences 

constituting a simple database:
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John likes Mary 
Bob likes Mary 
Mary wants bicycle 
wheel part-of bicycle 
tyre part-of wheel 
Bob supplies wheel 
Mary supplies brake-set 
John supplies bicycle 

Each atomic sentence expresses a binary relationship between two individuals 
and has the form 

name of name of name of 
individual relation individual 

‘The spaces are significant and serve to separate the names of individuals from the 
name of the relation. Such relationships, whether they occur as self-standing 
sentences or not, are also called aroms. For the moment only binary relations 
are allowed and individuals are named only by constants. Other options are 
introduced later. 

The language is a sugared-up syntax for a subset of logic. It is compiled by a 
micro-Prolog program into micro-Prolog internal syntax (McCabe, 1980-81). 
It runs on Z80 microcomputers under the CP/M operating system, Facilities are 
provided to 

Add 
Delete 
List 
Load and 
Save 

sentences or sets of sentences. For example, 

Add(brake-set part-of bicycle) 
augments the part-of relation in the database. 

List partof 

lists the current state of the part-of relation: 

wheel part-of bicycle 
tyre part-of wheel 
brake-set part-of bicycle 

Sentences are listed (and, as we shall sce later, are used) in the order in which 
they are stored in the database. 

In the early part of the course emphasis is placed on translation between 
informal English and this simple subset of logic. For example, the English 
sentence
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John and Bob like Mary 

is translated into two atomic sentences 

John likes Mary 
Bob likes Mary. 

But the English sentence 
John and Bob like themselves 

is ambiguous. 
It is a major objective of the project to teach the relationship between 

natural language syntax and its semantics, where as a first approximation the 
semantics are expressed in symbolic logic. This is thought to be an important 
object in its own right as a contribution to the more effective use of natural 
Ianguage: to teach the distinction between English sentences which are clear and 
precise and English sentences which are imprecise or meaningless. 

ATOMIC QUERIES 

It is generally believed in the computer industry that significantly more people 
can be expected to interact with computers as database users rather than as com- 
puter programmers. It is with this in mind that we introduce database queries 
as early as possible. 

The simplest queries involve only a single atom and are of the Yes—No 
variety: 

Does (John likes John) 
No 

Does (John likes Mary) 
Yes 

Does (Mary likes John) 
No 

The system as it is currently implemented uses the closed world assumption 
(Clark, 1978). If information cannot be derived from the database then the sys- 
tem assumes it to be false, This blanket assumption is, of course, extremely 
dangerous. For example, given the current state of the database: 

Does (pedal part-of bicycle) 
No. 

It is typical of computing systems today to act as though they ‘know it all’. 
Perhaps it is just as well to encourage a healthy suspicion of computers as early 
as possible. 

More complicated than Yes—No queries are queries with variables standing 
for unknown individuals, For example,
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Which (x John likes x) 
Mary 

Which (x x likes Mary) 
John 
Bob. 

Each such query has the form 

Which (output-pattern conditions) 

where the output pattern can be a single variable, ie. one of 
X,ys2,X, Y,Z, x1, x2, etc, 

or a list of names of individuals (including variables) enclosed in parentheses 

and separated by spaces, e.g. 

(&y) 
(the answer is x) (happy x) 

Each condition is either a simple atom (with variables standing for unknown 
individuals) or as we shall see later a conjunction of atoms. Thus we.can ask 

Which (x y) x part-of y) 
(wheel bicycle) 
(tyre wheel) 
(brake-set bicycle) 

Which ((the answer is x) x likes Mary) 
(the answer is John) 
(the answer is Bob) 

Which ((happy x) Mary likes x) 
No answer. 

We shall see later that lists themselves can be used as names of individuals. 

COMPOUND QUERIES 
Several atoms joined by ‘and’ and separated by spaces can be used as the condi- 
tions of a query 

Does (John likes Mary and Mary likes John) 
No 

Which (x Mary wants x and Bob supplies x) 
No answer 

Which (x Mary wants x and Bob supplies y and y part-of x) 
bicycle.
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Compound queries provide a rich source of examples for analysing the meanings 
of English sentences. They are adequate, in particular, for expressing the mean- 
ing of the English questions 

Who supplies something Mary wants? 
Who supplies a part of a part of a bicycle? 

GENERAL RULES 
Instead of asking the same form of compound query over and over again, e.g. 

Which (x x likes Mary and Mary likes x) 
Which (x x likes John and John likes x) 
Which ((x y) x likes y and y likes x) 

it is possible to define a new relation by means of a general rule and query it 
instead. 

Add (x friends-with y if x likes y and y likes x) 
Which (x x friends-with Mary) 
Which (x x friends-with John) 
Which ((x y) x friends-with y) 

A general rule has the form 

conclusion if conditions 

where ‘conclusion’ is an atom and ‘conditions’ is a conjunction of atoms (con- 
nected by ‘and’ and separated by spaces). Atomic sentences can be regarded as 

general rules which have no conditions. This means that variables can be used in 

atomic sentences, e.g. 

Add (Bob likes x) 

i.e. Bob likes everything. 
Whereas variables in queries stand for unknown individuals, variables in 

general rules stand for any individual. All occurrences of the same variable in 
the same sentence stand for the same arbitrary individual. However, there is 
absolutely no connection between variables in different sentences even though 
they may have the same name. Thus the two sentences 

x is female if x ismother-of y 

xismale if x isfatherof y 

do not in any way imply that an individual might be both male and female, 

The use of general rules promotes a database user to a programmer — or 

more accurately, because we have been using only the declarative semantics of 

{queries and general rules, to a program specifier.
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RECURSION 
General rules can be used to augment relations already in the database, 

Add (Mary likes x if x likes Mary), 

  

Here the general rule is recursive. Our experience has been that such recursion, 
stripped of its operational semantics, causes no conceptual difficulties for 
10-11-year-old children, 

Not every recursion is quite so easy. Consider for example, the ‘part-of” 
relation. At this stage, this describes only the relationship between a part and its 
immediate subparts. There is nothing to imply, for example, that 

iftyre is part of wheel 
and wheel is part of bicycle 
then tyre is part of bicycle. 

Such an inference, however, is a special case of the recursive general rule 

xpartofz if x partof y 
and y part-of z. 

It can help to understand such recursions if we picture them graphically (Deli- 
yanni and Kowalski, 1979), 

SEMANTIC NETWORKS 
Suppose that we have three individuals, x, y, 2, pictorially: 

x y 2 
. . ° 

and that they are connected by part-of relationships 

x Partof 7% part-of 
aie a Be 

then we can add a new part-of relationship between x and z. 

part-of partof 
x y x 
<— tee 

  

Such pictorial representations can certainly help to formulate and understand 
general rules. However, they are no substitute for the linear syntax, They bear a 
similar relationship to the logic of binary relations that Venn diagrams bear to 
the logic of one-place predicates, ic. sets.
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Loops 
With recursive definitions we now have the possibility that the underlying 
Prolog interpreter can go into @ nonterminating loop, This happens already with 
the current state of the database and the query 

   

Which (x x part-of bicycle), 

After successfully printing the first two answers 

wheel 
brake-set 

the system goes into an infinite loop without printing the third answer 

tyre. 

In order to understand why this happens it is necessary to understand something 
about the procedural interpretation and its Prolog realization. But this defeats 
the object of restricting our understanding of logic to the declarative interpreta- 
tion for as long as possible. For the moment we can escape this difficulty by 
noting that the loop can be avoided in this and many similar cases by using 
different relations to distinguish between one-step part-of connections and 
multi-step connections. Pictorially 

part-of 
x y 
—_——e 

contained-in 

part-of contained-in 

  

We can delete the old recursive rule for the part-of relation and replace it by the 
new rules 

xcontainediny if x part-of y 
xcontained-inz if x part-of y 

and y contained in z 

LISTS AS NAMES OF INDIVIDUALS 
The range of applications can be greatly extended by allowing lists as names of 
individuals. The items in a list are separated by spaces and can be constants, 
variables or other lists. Here are some examples: 

John born-on (1 May 1984) 
(John Mary) parents-of (George Jane Alice)
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Itis also possible to have partially specified lists. We use 

(xly) to name the list. > 
which starts with x followed by the list y. 

in the same way that cons(x,y) is used in LISP. We use 

(_ )to name the empty list 

like nil in LISP 

One of the most useful relations over lists is the “belongs-to’ relation: 

x belongs-to (xiy) 
x belongs-to (zy) if x belongs-to y. 

It can be queried as any other relation. It can be used to test that an item 
belongs to a list as if it were written in LISP, e.g. 

Does (Bob belongs-to (George Jane Alice)) 
No. 

But it can also be used to generate items as if it were defined explicitly by a 
relational database, e.g. 

Which (x _ x belongs-to (George Jane Alice) 
and x belongs-to (Bob Mary Jane)) 

Jane 

N-ARY RELATIONS 
For many applications it is natural to use one-place predicates and non-binary 
relations to construct atomic conditions and conclusions. We use the notation 

PI 

where P is the name of an N-ary relation and | isa list of N arguments. Thus we 
can write 

Female (Mary) 
Male (John) 
Eternal-triangle (x y z) if x likes z 

and y likes z 
and x different-from y 

To define the relationship ‘x different-from y"it is convenient to use the notion 
of negation by failure. But first we must introduce the procedural interpretation 

of the language we have introduced so far.
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THE PROCEDURAL INTERPRETATION 

There eventually comes a point, as in the case of certain non-terminating loops 

and negation by failure when something needs to be said about the problem- 
solving behaviour of the computer. It is possible to do so without entering into 

excessive detail. Only three points need to be made: 

(1) The computer uses general rules of the form 
Aif Band C 

backwards to reduce problems of the form A to subproblems of the 
form B and C. It uses atomic sentences A to solve problems directly 
without introducing further subproblems. 

(2) When several sentences (atomic or compound) can be used to solve the 
same problem, they are tried one at a time in the order in which they 
are written, 

(3) When several problems 
Sand C 

need to be solved, they are solved one at a time in the order in which 

they are written. 
The first principle above defines the abstract procedural interpretation. It is 
compatible with both sequential and parallel execution of alternative procedures 
and of several subgoals. For the sake of efficiency the Prolog interpreter uses 
sequential execution determined by textual order for both. 

The procedural interpretation reconciles the controversy over declarative 

versus procedural representations of knowledge. It shows that special-purpose 
procedures can be obtained by applying general-purpose problem-solving strate- 
gies to domain-specific knowledge expressed in symbolic logic. 

Thus the recursive definition of the belongs-to relation given earlier, for 

example, has in addition to its basic declarative interpretation the following 
procedural interpretation: in the special case of showing that an element belongs 
toa list, 

to show x belongs to a list (yz), 
show x is identical to y 

or show x belongs to the list z. 

NEGATION BY FAILURE 

Negative conditions can be used in both queries and general rules, e.g. 
Which (x x belongs-to (George Jane Alice) 

and Not (x belongs-to (Bob Mary Jane))) 
Unhappy (x) if x likes y and Not (y likes x)
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In general a condition 
Not (p) 

is judged to hold if the unnegated Yes—No query 
Does (p) 

fails to hold, ie. returns the answer ‘No’. 
Keith Clark (1978) has shown that negation by failure is equivalent to ordi- nary negation under the closed world assumption. 
Unfortunately, the implementation of negation by failure makes the success or failure of a negative condition dangerously sensitive to the context in which it is executed, For example, given the definition of the belongs-to relation, the query 
Which (x x belongs-to (George Jane Alice) 

and Not (x belongs-to (Bob Mary Jane))) 
correctly gives the answers 

George 
Alice. 

But if the order of the two conditions is reversed, it incorrectly responds that 
there is no answer. This is because the query 

Does (x belongs-to (Bob Mary Jane)) 
succeeds and therefore its negation fails. 

This undesirable state of affairs can be corrected by altering the syntax of 
negation so that variables which should be uninstantiated when the condition is 
executed are explicitly listed as an additional argument of the negation operator, 
When the negative condition is executed, all such listed variables should be 
uninstantiated and all unlisted variables in the condition should be instantiated 
to terms containing no variables. Otherwise a control error occurs. 

A similar solution has been taken in micro-Prolog for universally quantified 
conditions, which can be implemented by negation by failure, 

FOR-ALL 

Sentences such as 

John likes x if (x supplies y) For-All 
(y John wants y) 

ie, John likes anyone who supplies everything he wants, are given the obvious 
procedural interpretation:
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to show John likes x 
find all y such that John wants y 
and show, for each such y, x supplies y. 

This is equivalent to the interpretation it receives when it is rewritten in terms of 

negation by failure. 
John likes x if Not (John wants y and Not (x supplies y)) 

i.e. to show John likes x 
show there is no y such that 

John wants y 
and x does not supply y. 

IS-ALL 
The last of the extensions of Hor clause logic which we have introduced in our 
computer logic lessons is the feature ‘Is-All’, which constructs a list of all answers 
to a query. This list can then be manipulated: for example, by counting its 
elements or summing its elements if they are numbers. For example 

Which (x _ y Is-All (2 John supplies z) 
and y has-cardinality x) 

expresses the English question 
How many items does John supply? 

Because Is-All returns a list possibly containing duplicates the definition of 
‘has-cardinality’ needs to take this into account: 

(._) has-cardinality 0 
(xiy) has-cardinality z if x belongs-to y and y has-cardinality 2 
(xly) has-cardinality 21 

if Not (x belongs-to y) 
and y has-cardinality 22 
and SUM (22 1.21) 

where SUM (x y z) holds if and only if x+y =2. 
‘Is-AIl’, like ‘Not’ and ‘For-All’, is based on the closed world assumption 

that the database contains all the information which needs to be known about 
the relations under consideration. Because of the closed world assumption, these 
three extensions of Horn clause logic can be implemented very efficiently. Given 
appropriate restrictions on the contexts in which they are used, they coincide 
in meaning with their classical counterparts and can be interpreted wholly 
declaratively. A ‘set-of” feature similar to ‘Is-All’ has also been implemented 
in Dec-10 Prolog by David Warren (1981).
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RELATIONSHIP WITH TRADITIONAL MATHEMATICS 
Our emphasis throughout on the declarative reading of logic programs is in the 
spirit which emphasizes program specifications in modern software engineering 
and declarative query languages in modern database systems, It is in harmony, 
moreover, with both modern and traditional approaches to mathematics. 

In contrast to the procedural approach to computing, which conflicts with 
the declarative style of school mathematics, the logic programming approach 
contributes to mathematics as it is actually taught in school. The SUM relation, 
for example, which can be used to add two numbers e.g. 

Which (x SUM (2 2 x)) 

can also be used to subtract, e.g. 

Which (x SUM (x 2.4)) 
Which (x SUM (2.x 4)) 

in the same way that primary school children are asked to fill in the boxes, 
standing for unknowns, in arithmetic relationships: 

2+ 2-0 
Ere 2 

2+0=4. 

  

Compound queries, such as 
Which (xy ) SUM (x y 4) and SUM (0x y)) 

can be used to illustrate the problem of solving several equations in several un- 
knowns. Moreover, the specification of the problem, as represented by the 
query, can be clearly separated from the method of solution. It needs to be 
noted, however, that the built-in predicate SUM currently implemented in 
micro-Prolog will not work for this example. This is because, for the sake of effi- 
ciency, SUM will not run with more than one variable. This problem can be 
dealt with by defining a new SUM predicate in logic. 

THE EUCLIDEAN ALGORITHM 
The Euclidean algorithm is a good example of the way in which logic program- 
ming complements and reinforces traditional mathematics teaching. It also 
illustrates the equally important point that classical mathematical techniques 
can be used to verify the correctness of logic programs much more directly than 
they can be used for conventional programs with side effects. A more advanced 
example along these same lines by Clark, McKeeman and Sickel (1982) is the 
derivation of an entire family of definite integration algorithms from a single 
specification 

The Euclidean algorithm computes the greatest common divisor of two non-
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negative integers, In order to understand the algorithm it is necessary first to 
understand its specification, namely the definition of greatest common divisor. 
This can be expressed in computer intelligible terms in our extension of the 
Horn clause subset of logic. We let 

GCD (xy 2) express that 
zis the greatest common divisor of x and y, and 

“z divides x” express that 
Zand x are non-negative integers and z divides x with remainder 0. 

The GCD z of x and y divides both x and y and is> all such common divisors. 
Symbolically: 

GCD (x y z)if (and only if) 
z divides x and z divides y 
and (2 > u) ForAll (u u divides x and u divides y) 

Given an appropriate definition of the ‘divides’ relation, the specification can 
actually be run as a very inefficient program. 

The Euclidean algorithm is more efficient. It uses the division algorithm, 
which 

for every pair of positive integers 
xand y such that x> y, computes 
integers q and r such that 

x=qy+rand0<r<y. 
qis the quotient and r the remainder. 

The Euclidean algorithm is based on the following 

Theorem D. The greatest common divisor of x and y is equal to the greatest 
common divisor of y and r (where r is the remainder of the division 
of x by y as above), 

The algorithm consists in using this equality repeatedly in one direction only 
to reduce the problem of computing 
the GCD of x and y to the subproblems of 
(1) dividing x by y to obtain remainder r and 
(2) finding the GCD of y and +, until r = 0, in which case the GCD is 

the quotient q. 
Applied, for example, to the problem of computing the GCD of 554 and 119 the 
algorithm generates the following sequence of divisions. 

554 = 4X 119 + 68 
119= 1X 68 +51 
68 = 1X S51 +17 
S1=3X 174+ 0 

u
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This shows that the GCD is 17, 
Thus the Euclidean algorithm consists of the controlled unidirectional 

application of the declarative statement of Theorem D above. If we express the 
GCD and the division algorithm in relational form, then the equality in the state- 
ment of the theorem becomes an if-and-only-if and the algorithm reduces to the 
procedural interpretation of the if-half of the theorem. Let 

Division (x qr y) express that 
X, ¥, q, 1 are non-negative integers, 
x<yand 
x=qytrandO<r<y, 

The theorem can then be expressed formally by the conditional equivalence. 
[GCD (x y z) if and only if GCD (y rz)] 

if Division (x qy r). 

The if-half of the equivalence gives the recursive clause of the Euclidean algo- 
rithm: 

EA2. GCD (x yz) if Division (x q yr) 
and GCD (y rz) 

the terminating case of the algorithm is given by the clause 

EAl. GCD (x y y)if Division (x qy 0) 

which is a trivial consequence of the specification of GCD. 

Thus the correctness of the Euclidean algorithm reduces to the problem of 
verifying that EA2 is a logical consequence of the definition of GCD and the 
theorems of arithmetic. This is a purely mathematical problem, For the sake of 
completeness we include the simple proof in Appendix A. 

COMPUTATIONAL GEOMETRY 

Computational geometry affords a more direct comparison between the wholly 
procedural approach of a conventional programming language and the combined 
declarative and procedural approach of logic. 

The purpose of the following discussion is not to advocate a particular 
method for doing graphics in Prolog, but to show how the procedural and de- 
clarative approaches are related. In particular, we do not presume to claim that 
either of the two approaches we shall discuss provide sophisticated graphics 
facilities. On the contrary, the facilities have been deliberately simplified in 
order to facilitate the discussion, 

To start with, we shall show how pictures can be generated, as in a pro- 
cedural language, by means of picture-plans which are sequences of visible and 
invisible vectors, represented by lists. When such a list is interpreted as a list of 
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graphics characters and is output to a screen the result is a picture. Thisapproach 
to generating pictures, described below, is based upon a representation used by 
the author in micro-Prolog using the graphics facilities of the Zenith 289 micro- 
computer. 

Assume, for simplicity’s sake, that the screen is related to a coordinate 
system as illustrated below: 

  

In Logo (Papert, 1980) if a graphics turtle is positioned at the origin and pointed 
north then the program segment 

1, PENUP 9. FORWARD 4 
2. FORWARD 12 10, RIGHT 90 
3. RIGHT 90 11, FORWARD 4 
4. FORWARD 10 12. RIGHT 90 
5. LEFT 90 13. FORWARD 4 
6. PENDOWN 14. RIGHT 90 
7. FORWARD 2 15. FORWARD 2 
8. RIGHT 90 

generates the following picture of a square: 

(014)! 
(0 10): 
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A similar program can be written in Prolog using its extralogical printing 
facilities. We prefer instead to represent the sequence of instructions as.a list and 
print it at the top-most level of a query. This turns the drawing into an object 
which can be talked about, manipulated if desired, and printed as output. In 
order to simplify the discussion below, instead of the PENUP, PENDOWN, 
FORWARD, RIGHT and LEFT instructions, we use the following: 

V (visible, i.e, PENDOWN) 
1 (invisible, ie. PENUP) 
(Nx). (North x steps) 
(Ex) (East x steps) 
(Sx) (South x steps) 
(Wx) (West x steps) 

and we specify the initial position of the turtle explicitly. Using the two place 
predicate 

x names y 

to relate a picture-plan x to the corresponding list y of graphics characters, the 
query 

Which (x ((0.0) 1 (N 12) (E 10) V (N 2) 
(E 4) (S4) (W 4) (N 2) names x) 

for example, generates the same picture of the square above. Let us call this 
square §, since we shall refer to it again later, 

Throughout this section we distinguish between picture-plans which are 
sequences of actions and pictures which such picture-plans generate. In general, 
a picture-plan is named by a list whose first item gives the coordinates of the 
origin from which the plan starts, whose second item specifies the mode (one of 
V or 1) which indicates whether subsequent actions are Visible or Invisible and 
whose remaining items are either 

(1) amode or 
(2) avector which is pair giving 

direction (one of N, E, S, W) and 
distance (a positive integer). 

Several picture-plans can result in the same picture. For example, both of the 
lists 

((00)1 14) (N 14) V (W4) (8.4) (E 4) N 4) 
((10 10) V (N 4) (E 4) (S 4) (W4)) 

describe different plans of the same square S. Picture-plans can also be described 
by means of general laws. For example, the relationship 

Square-plan (x y 2)
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which holds when 2 is a picture-plan of a square with south-west corner at point 
x having side of length y is defined by 

P: Square-plan (x y (x V (Ny) (Ey) (Sy) (Wy).)) 

‘The same picture of the square § can now be obtained by asking 

Which (x Square-plan ((10 10) 4 y) 
and y names x). 

To tell whether two plans generate the same picture we can print them and 
compare the results. This may not be satisfactory, however, if the pictures are 
complicated and the screen is erased between pictures. Moreover, it will not 
work for showing that a general program like P above is correct. For this we 
need a specification which is different from the program. We need moreover, 
a formal notion of picture which is distinct from that of picture-plan. 

‘A picture can be regarded as a set of (visible) line segments and can be 
named by a list each item of which is a pair of points. For example, the list 

(((10 10) (10 14)) 
(0 14) (14 14)) 
((10 10) (14 10) 
((14 10) (14 14))) 

names the picture of the square S. Thus a picture is an order-independent set of 
line segments represented by pairs of end points. The order of the end-points in 
a line segment does not matter. Notice that we use the same term ‘picture’ 
both for the visual pattern produced on a screen by printing the object ‘named’ 
by a picture-plan and for its mathematical representation as a set of line seg 
ments, Which of these two notions is intended should be clear from the context. 

The result of a picture-plan is a picture. This relationship 

x draws y 
where y is the picture produced by the picture-plan x, can be described straight- 
forwardly by means of Horn clauses with negation by failure. Rather than give 
the definition here we illustrate it by means of an example, leaving the definition 
to Appendix B, The application of the relationship to the plan 

((0.0)1 (N 12) (E 10) V (N 2) 
(E4)(S 4) (W4) (N 2) 

can be decomposed into a sequence of three steps 

Step I (a) Replace every vector pair of the form (direction distance) by a 
3xuple (base mode end-point) where “base” is the base-point of the 
vector, ‘mode’ describes whether the vector is visible or invisible and 
‘end-point’ is the end-point of the vector, 

(b) absorbing the origin into the base of the first 3-tuple, and
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(c) absorbing individual modes into subsequent 3-tuples: 
(@_ 0)1@ 12) (012) 1 C012) 
((10 12) V (10 14) (10 14) V (14 14) 
((14 14) V (14 10)) (14 10) V (10 10) 

((10 10) V (10 12))) 

Step 2 (a) Delete all 3 tuples with mode I and 

(b) replace every 3-tuple of the form 
(base V end-point) by the pair 
(base end-point): 

(((10 12) (10 14)) (10 14) (14 14) 
(14.14) (14 10)) (14 10) (10 10)) 
((10 10) (10 12))) 

Step 3 Coalesce colinear, contiguous line segments: 
(10 10) (10 14) (10.14) (14 14)) 
(14 14) (14 10)) (14 10) (10 10))) 

We can use the concept of picture and the ‘draws’ relation to generate pictures 
directly from specifications of the line segments they contain, For example, the 
query 

Which (x y draws (((10 10) (10 14)) 
(10 14) (14 14)) 
(14 14) (14 10)) 
((14 10) (10 10))) 

and y names x) 

generates the picture of the square S, 
To prove that the definition P of the ‘square-plan’ relation correctly defines 

the notion of square, we need a specification. To simplify matters and to save 
space, given the restricted nature of the pictures we can draw, it suffices to 
specify a square as a set of four line segments of equal length, connecting four 
points, every point being the end-point of exactly two segments, More formally, 

if we let the relation 

Square (x yz) 

express that 2 is a square with south-west comer at point x having sides of 
length y, then the notion of square is specified by 

Square ((x1 y1) y z) if (and only if) 
SUM (x1 y x2) 

and SUM (yl y y2)
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and z equals (((x1 y1) (x1 y2)) 
(G1 y2) (x2 y2)) 
((x2 y2) Q2 yl) 
(x2 y1) I y1)). 

Here *x equals y’ simply expresses that the lists x and y contain the same line 
segments, where the order of the end-points of line segments does not matter. 
Its Horn clause ‘definition’ is given in Appendix B. 

We can use our intuitive understanding of the ‘draws’ and the ‘equals’ 
relations to give an informal correctness proof that 

For all x, y,21 and 22 
if Square-plan (x y 21) 
and 21 draws 22 
then Square (x y 22) 

Absorb ((base mode (direction distance) | list) 
((base mode end-point) | newlist) 
if Move (base direction distance end-point) 

and Absorb (end-point mode | list) newlist) 
Absorb ((base mode new-mode —_| list) newlist) 

if Absorb ((base new-mode | list) newlist) 
Absorb ((base mode) ( )) 

Move ((x y) Nz (x y1))if SUM (y_zyl) 
Move ((x y)S z (x y1)) if SUM (yl zy) 
Move ((x y) E z (x1 y)) if SUM (x. 2x1) 
Move ((x y) W z (x1 y)) if SUM (x1 zx) 

Visible (((base I end-point) | list) newlist) 
if Visible (list newlist) 

Visible (((base V end-point) | list) 
((base end-point) | newlist)) 

if Visible (list newlist) 

Visible () ()) 

Coalesce (lines newlines) 
if Select (lines linel interlines) 
and Select interline} line? restlines) 
and Combine (line1 line? line3) 
and Coalesce ((line3 | restlines) newlines) 

Coalesce (lines lines) 
if Not (Select (lines line! interlines) 
and Select (interlines line2 restlines) 
and Combine (line] line 2 line3))
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Select ((xly) x y) 
Select (x |y) u (x|v)) if Select (y uv) 

Combine (line! line2 (x1 y1) (x1 y3))) 
if (line! line2) equals 

((@X1 1) (x1 -y2)) (x1 ¥2) (XI y3)) 
and yl <y2and y2<y3 

Combine (line! line2 (x1 y1) (x1 y2))) 
if (line] line2) equals 

((@X1 yl) (x1 y2)) (Gey) (x1 y3))) 
and yl <y3 and y3 <y2 

Combine (line! line2 ((x1 y1) (x3 y1))) 
if (line! line2) equals 

(x1 y1) (x2 y1)) (x2 y1) @3 y1))) 
and x1 <x2 and x2 <x3 

Combine (line] line2 (x1 y1) (x2 y1))) 
if (linel line2) equals 

(CQL v1) 02 y1)) (x1 y1) (x3 1) 
and x1 <x3 and x3 <x2 

x equals y if x permutation-of y 
() permutation-of () 
(xly) permutation-of z if x same-seg x1 

and Select (z x’ 2') 
and y permutation-of 2’ 

x same-seg x 
(pl p2) same-seg (p2 pl) 

Proof. Assume Square-plan ((c1 c2) LA) and A draws B. We need to show 

Square ((c1 €2) LB). 

We must assume that sentence P is the only sentence defining the Square-plan 
relation, This implies that 

A=((cl c2) V(NL) (EL) (SL) (WL)) 
Since A draws B, 

Bequals(((clc2) (ce c2#L)) 
((cle2#L)  (cl+L e2+L)) 
((cl#L e24L) (c1+L 2)) 
((l#Le2) (cl c2))) 

which directly implies 

Square ((cl c2) LB).
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In this example both the Square-plan program and the Square specification can 
be expressed in Horn clause logic, In a conventional programming language such 
as Logo only the analogue of the Square-plan program can be represented. No 
attention is given to the specification, disregarding concerns of program correct- 
ness; and no attention is given to classical geometry, disregarding actual mathe- 
matical practice, 
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APPENDIX A — PROOF OF THEOREM EA2 

We assume the normal properties of division as well as the specification of GCD 
and present the proof in conventional informal mathematical style and notation. 

Assume 

(1) A= QB+R, where O<R<B and 

( CisGCD of Band R 

we want to show 

Cis GCD of A and B. 

Because of (2) and the definition of GCD, 

C divides both B and R. 

But then C divides the right-hand side of equation (1) and therefore it divides 

left-hand side as well — namely 
C divides A. 

But then C is a common divisor of both A and B. 
It remains to show that C is > any D which divides both A and B. So 

suppose, to the contrary, that some D> C divides both A and B. Then D divides 
the left-hand side of 

A-QB=R 

and therefore it divides the right-hand side as well, i.e. 
D divides R and B 

and since it is more than C, C cannot be GCD of R and B, which contradicts our 
original assumption.
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APPENDIX B 

Here to aid readability lower-case identifiers are used for variables. Upper-case 
letters are used for constants. 

x draws y if Absorb (x x1) and Visible (x1 x2) 
and Coalesce (x2 y). 

Absorb( (base mode (direction distance) | list) 

((base mode end-point) | newlist) 
if Move (base direction distance end-point) 

and Absorb (end-point mode | list) newlist) 

Absorb( (base mode new-mode __| list) newlist) 
if Absorb ( (base new-mode | list) newlist) 

Absorb( (base mode) ( )) 

Move ( (x y) Nz(x yl) if SUM (y z yl) 
Move ( (x y)S z(x y1)) if SUM (yl zy) 

Move ( (x y) Ez (x1 y)) if SUM (x 2x1) 
Move ( (x y) Wz (x1 y)) if SUM (x1 zx) 

Visible ( ((base I end-point) | list) newlist) 
If Visible (list newlist) 

Visible ( ((base V end-point) | list) 
((base end-point) | newlist) ) 

if Visible (list newlist) 

Visible(() ()) 

Coalesce (lines newlines) 
if Select (lines line 1 interlines) 

and Select (interline line2 restlines) 
and Combine (line1 line2 line3) 
and Coalesce —_{ (line3 | restlines) newlines) 

Coalesce (lines lines) 
if Not(Select (lines line | interlines) 

and Select _(interlines line? restlines) 
and Combine (line line2 line3) ) 

Select ((xly) x y) 
Select ((xly) u (x1v)) if Select (y uv) 

Combine (line! line2 ((x1 y1) (x1 y3))) 
if (line! line2) equals 

(x1 y1) (1 y2)) (1 y2) (x1 y3))) 
and yl <y2and y2<y3
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Combine (lil line2 ((x1 y1) (x1 y2))) 
if (line! line2) equals 

((Gx1 y1) (x1 y2)) (x1 yl) (1 3) 
and yl <y3 and y3<y2 

Combine (ine1 line2 ((x1 y1) (x3 y1))) 
if (line! line2) equals 

(@x1 yl) 2 yl) (2 y) (3 yl) 
and x1 <x2 and x2<x3 

Combine (line! line2 **x1 y1) (x2 y1))) 
if (Jine} line2) equals 

((Gx1_y1) (x2 y1)) (1 _y1) G3 yl) 
and x] <x3 and x3 <x2 

x equals y if x permutation-of y 
() permutation of () 
(xly) permutation of z if x same-seg x" 

and Select (2 x’ z’) 
and y permutation-of 2’ 

x same-seg x 
(p1 p2) same seg (p2 pl) 
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