
Logic as a computer
language for children

Robert Kowalski, Department of Computing, Imperial College, London, UK

For many years the artificial intelligence community has engaged in a debate
about the relative merits of procedural versus declarative representations of
knowledge. This debate has spilled over into the educational arena, where com-
putational geometry as realized in Logo is represented as superior to classical
nonprocedural geometry.

The commitment of many artificial intelligence researchers to procedural
representations of knowledge runs counter to the increasing development in
other areas of computing of nonprocedural, declarative programming languages,
database query languages and program specification languages.

It is our belief that the apparent conflict between the declarative and the
procedural can be reconciled by recognizing that, in the words of Pat Hayes

‘computation = controlled deduction (Hayes, 1973)
ie. ‘algorithm — = logic + control’ (Kowalski, 1979a).

A specific example of this is the procedural interpretation of Horn clauses
The application of suitably goal-directed proof-procedures to sentences of

the form

AifBandC

treats them as procedures, which

reduce problems of the form A

to subproblems of the form B and C.

122 LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN

The procedural interpretation of Horn clauses is the logical foundation of the

computer language Prolog, developed and implemented in 1972 by Colmerauer

and his colleagues in Marseille. Prolog, at first almost entirely a European pheno-

menon, has recently gained attention in North America, thanks to McDermott’s

(1980) Sigart article, and in Japan, where it has been selected as the core pro-

gramming language for the fifth generation computer systems of the 1990s

(JIPDEC, 1981).

Because of the procedural interpretation which is the basis of Prolog, there

are two Prolog programming styles: one declarative, the other procedural. Many

Prolog programmers, especially those with a strong Al background, employ a

procedural style. Others, especially those with a software engineering bias,

emphasize the declarative. At Imperial College we are firmly committed to the

declarative style. We recognize that Prolog is an efficient but logically restricted

realization of logic programming ideal, and we use the extralogic features as

rarely as possible. Even then we try to encapsulate them in the definition of

logically defensible extensions of the language or its proof procedures (Kowalski,

1981).
We believe that in the first iteration programs should be written as declara-

tive program specifications. Inefficient specifications can be transformed (pre-

serving the logical intention of the specifications) into more efficient logic pro-

grams. My colleagues, Keith Clark et al. (1977, 1978, 1982), John Darlington

and Chris Hogger (1978a, 1978b, 1981) have made significant contributions

to this methodology.

As a complement to our activities, beginning in September 1980 we have

been teaching logic as a computer language to children, starting at the age of

10. Richard Ennals (1982b) has been responsible for preparing and testing the

teaching materials. Besides the computer science objectives of teaching children

database query methodology, program specification and ultimately program-

ming itself, the project aims both to apply logic to other subjects taught in

school, as well as to teach logic as a subject in its own right. In order to do this

we have concentrated almost entirely on the declarative reading of Prolog

programs.

In the remainder of this paper I shall first sketch the outline of the one and

a half years of the course that has been taught so far. Then I shall address the

relationship between computer logic and classical school mathematics. Finally I

shall compare the treatment of computational geometry in logic with its treat-

ment in a procedurally oriented programming language such as Logo. A more

comprehensive introduction to the children’s form of Prolog can be found in

Clark, Ennals and McCabe (1981).

ATOMIC SENTENCES

The children are first taught to translate between English sentences and the

atomic sentences of Prolog. The following are examples of atomic sentences

constituting a simple database:

LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN 123

John likes Mary
Bob likes Mary
Mary wants bicycle
wheel part-of bicycle
tyre part-of wheel
Bob supplies wheel
Mary supplies brake-set
John supplies bicycle

Each atomic sentence expresses a binary relationship between two individuals
and has the form

name of name of name of
individual relation individual

‘The spaces are significant and serve to separate the names of individuals from the
name of the relation. Such relationships, whether they occur as self-standing
sentences or not, are also called aroms. For the moment only binary relations
are allowed and individuals are named only by constants. Other options are
introduced later.

The language is a sugared-up syntax for a subset of logic. It is compiled by a
micro-Prolog program into micro-Prolog internal syntax (McCabe, 1980-81).
It runs on Z80 microcomputers under the CP/M operating system, Facilities are
provided to

Add
Delete
List
Load and
Save

sentences or sets of sentences. For example,

Add(brake-set part-of bicycle)
augments the part-of relation in the database.

List partof

lists the current state of the part-of relation:

wheel part-of bicycle
tyre part-of wheel
brake-set part-of bicycle

Sentences are listed (and, as we shall sce later, are used) in the order in which
they are stored in the database.

In the early part of the course emphasis is placed on translation between
informal English and this simple subset of logic. For example, the English
sentence

124 LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN

John and Bob like Mary

is translated into two atomic sentences

John likes Mary
Bob likes Mary.

But the English sentence
John and Bob like themselves

is ambiguous.
It is a major objective of the project to teach the relationship between

natural language syntax and its semantics, where as a first approximation the
semantics are expressed in symbolic logic. This is thought to be an important
object in its own right as a contribution to the more effective use of natural
Ianguage: to teach the distinction between English sentences which are clear and
precise and English sentences which are imprecise or meaningless.

ATOMIC QUERIES

It is generally believed in the computer industry that significantly more people
can be expected to interact with computers as database users rather than as com-
puter programmers. It is with this in mind that we introduce database queries
as early as possible.

The simplest queries involve only a single atom and are of the Yes—No
variety:

Does (John likes John)
No

Does (John likes Mary)
Yes

Does (Mary likes John)
No

The system as it is currently implemented uses the closed world assumption
(Clark, 1978). If information cannot be derived from the database then the sys-
tem assumes it to be false, This blanket assumption is, of course, extremely
dangerous. For example, given the current state of the database:

Does (pedal part-of bicycle)
No.

It is typical of computing systems today to act as though they ‘know it all’.
Perhaps it is just as well to encourage a healthy suspicion of computers as early
as possible.

More complicated than Yes—No queries are queries with variables standing
for unknown individuals, For example,

LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN 125

Which (x John likes x)
Mary

Which (x x likes Mary)
John
Bob.

Each such query has the form

Which (output-pattern conditions)

where the output pattern can be a single variable, ie. one of
X,ys2,X, Y,Z, x1, x2, etc,

or a list of names of individuals (including variables) enclosed in parentheses

and separated by spaces, e.g.

(&y)
(the answer is x) (happy x)

Each condition is either a simple atom (with variables standing for unknown
individuals) or as we shall see later a conjunction of atoms. Thus we.can ask

Which (x y) x part-of y)
(wheel bicycle)
(tyre wheel)
(brake-set bicycle)

Which ((the answer is x) x likes Mary)
(the answer is John)
(the answer is Bob)

Which ((happy x) Mary likes x)
No answer.

We shall see later that lists themselves can be used as names of individuals.

COMPOUND QUERIES
Several atoms joined by ‘and’ and separated by spaces can be used as the condi-
tions of a query

Does (John likes Mary and Mary likes John)
No

Which (x Mary wants x and Bob supplies x)
No answer

Which (x Mary wants x and Bob supplies y and y part-of x)
bicycle.

128 LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN

Compound queries provide a rich source of examples for analysing the meanings
of English sentences. They are adequate, in particular, for expressing the mean-
ing of the English questions

Who supplies something Mary wants?
Who supplies a part of a part of a bicycle?

GENERAL RULES
Instead of asking the same form of compound query over and over again, e.g.

Which (x x likes Mary and Mary likes x)
Which (x x likes John and John likes x)
Which ((x y) x likes y and y likes x)

it is possible to define a new relation by means of a general rule and query it
instead.

Add (x friends-with y if x likes y and y likes x)
Which (x x friends-with Mary)
Which (x x friends-with John)
Which ((x y) x friends-with y)

A general rule has the form

conclusion if conditions

where ‘conclusion’ is an atom and ‘conditions’ is a conjunction of atoms (con-
nected by ‘and’ and separated by spaces). Atomic sentences can be regarded as

general rules which have no conditions. This means that variables can be used in

atomic sentences, e.g.

Add (Bob likes x)

i.e. Bob likes everything.
Whereas variables in queries stand for unknown individuals, variables in

general rules stand for any individual. All occurrences of the same variable in
the same sentence stand for the same arbitrary individual. However, there is
absolutely no connection between variables in different sentences even though
they may have the same name. Thus the two sentences

x is female if x ismother-of y

xismale if x isfatherof y

do not in any way imply that an individual might be both male and female,

The use of general rules promotes a database user to a programmer — or

more accurately, because we have been using only the declarative semantics of

{queries and general rules, to a program specifier.

LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN 127

RECURSION
General rules can be used to augment relations already in the database,

Add (Mary likes x if x likes Mary),

Here the general rule is recursive. Our experience has been that such recursion,
stripped of its operational semantics, causes no conceptual difficulties for
10-11-year-old children,

Not every recursion is quite so easy. Consider for example, the ‘part-of”
relation. At this stage, this describes only the relationship between a part and its
immediate subparts. There is nothing to imply, for example, that

iftyre is part of wheel
and wheel is part of bicycle
then tyre is part of bicycle.

Such an inference, however, is a special case of the recursive general rule

xpartofz if x partof y
and y part-of z.

It can help to understand such recursions if we picture them graphically (Deli-
yanni and Kowalski, 1979),

SEMANTIC NETWORKS
Suppose that we have three individuals, x, y, 2, pictorially:

x y 2
. . °

and that they are connected by part-of relationships

x Partof 7% part-of
aie a Be

then we can add a new part-of relationship between x and z.

part-of partof
x y x
<— tee

Such pictorial representations can certainly help to formulate and understand
general rules. However, they are no substitute for the linear syntax, They bear a
similar relationship to the logic of binary relations that Venn diagrams bear to
the logic of one-place predicates, ic. sets.

128 LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN

Loops
With recursive definitions we now have the possibility that the underlying
Prolog interpreter can go into @ nonterminating loop, This happens already with
the current state of the database and the query

Which (x x part-of bicycle),

After successfully printing the first two answers

wheel
brake-set

the system goes into an infinite loop without printing the third answer

tyre.

In order to understand why this happens it is necessary to understand something
about the procedural interpretation and its Prolog realization. But this defeats
the object of restricting our understanding of logic to the declarative interpreta-
tion for as long as possible. For the moment we can escape this difficulty by
noting that the loop can be avoided in this and many similar cases by using
different relations to distinguish between one-step part-of connections and
multi-step connections. Pictorially

part-of
x y
—_——e

contained-in

part-of contained-in

We can delete the old recursive rule for the part-of relation and replace it by the
new rules

xcontainediny if x part-of y
xcontained-inz if x part-of y

and y contained in z

LISTS AS NAMES OF INDIVIDUALS
The range of applications can be greatly extended by allowing lists as names of
individuals. The items in a list are separated by spaces and can be constants,
variables or other lists. Here are some examples:

John born-on (1 May 1984)
(John Mary) parents-of (George Jane Alice)

LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN 129

Itis also possible to have partially specified lists. We use

(xly) to name the list. >
which starts with x followed by the list y.

in the same way that cons(x,y) is used in LISP. We use

(_)to name the empty list

like nil in LISP

One of the most useful relations over lists is the “belongs-to’ relation:

x belongs-to (xiy)
x belongs-to (zy) if x belongs-to y.

It can be queried as any other relation. It can be used to test that an item
belongs to a list as if it were written in LISP, e.g.

Does (Bob belongs-to (George Jane Alice))
No.

But it can also be used to generate items as if it were defined explicitly by a
relational database, e.g.

Which (x _ x belongs-to (George Jane Alice)
and x belongs-to (Bob Mary Jane))

Jane

N-ARY RELATIONS
For many applications it is natural to use one-place predicates and non-binary
relations to construct atomic conditions and conclusions. We use the notation

PI

where P is the name of an N-ary relation and | isa list of N arguments. Thus we
can write

Female (Mary)
Male (John)
Eternal-triangle (x y z) if x likes z

and y likes z
and x different-from y

To define the relationship ‘x different-from y"it is convenient to use the notion
of negation by failure. But first we must introduce the procedural interpretation

of the language we have introduced so far.

130 LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN

THE PROCEDURAL INTERPRETATION

There eventually comes a point, as in the case of certain non-terminating loops

and negation by failure when something needs to be said about the problem-
solving behaviour of the computer. It is possible to do so without entering into

excessive detail. Only three points need to be made:

(1) The computer uses general rules of the form
Aif Band C

backwards to reduce problems of the form A to subproblems of the
form B and C. It uses atomic sentences A to solve problems directly
without introducing further subproblems.

(2) When several sentences (atomic or compound) can be used to solve the
same problem, they are tried one at a time in the order in which they
are written,

(3) When several problems
Sand C

need to be solved, they are solved one at a time in the order in which

they are written.
The first principle above defines the abstract procedural interpretation. It is
compatible with both sequential and parallel execution of alternative procedures
and of several subgoals. For the sake of efficiency the Prolog interpreter uses
sequential execution determined by textual order for both.

The procedural interpretation reconciles the controversy over declarative

versus procedural representations of knowledge. It shows that special-purpose
procedures can be obtained by applying general-purpose problem-solving strate-
gies to domain-specific knowledge expressed in symbolic logic.

Thus the recursive definition of the belongs-to relation given earlier, for

example, has in addition to its basic declarative interpretation the following
procedural interpretation: in the special case of showing that an element belongs
toa list,

to show x belongs to a list (yz),
show x is identical to y

or show x belongs to the list z.

NEGATION BY FAILURE

Negative conditions can be used in both queries and general rules, e.g.
Which (x x belongs-to (George Jane Alice)

and Not (x belongs-to (Bob Mary Jane)))
Unhappy (x) if x likes y and Not (y likes x)

LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN 131

In general a condition
Not (p)

is judged to hold if the unnegated Yes—No query
Does (p)

fails to hold, ie. returns the answer ‘No’.
Keith Clark (1978) has shown that negation by failure is equivalent to ordi- nary negation under the closed world assumption.
Unfortunately, the implementation of negation by failure makes the success or failure of a negative condition dangerously sensitive to the context in which it is executed, For example, given the definition of the belongs-to relation, the query
Which (x x belongs-to (George Jane Alice)

and Not (x belongs-to (Bob Mary Jane)))
correctly gives the answers

George
Alice.

But if the order of the two conditions is reversed, it incorrectly responds that
there is no answer. This is because the query

Does (x belongs-to (Bob Mary Jane))
succeeds and therefore its negation fails.

This undesirable state of affairs can be corrected by altering the syntax of
negation so that variables which should be uninstantiated when the condition is
executed are explicitly listed as an additional argument of the negation operator,
When the negative condition is executed, all such listed variables should be
uninstantiated and all unlisted variables in the condition should be instantiated
to terms containing no variables. Otherwise a control error occurs.

A similar solution has been taken in micro-Prolog for universally quantified
conditions, which can be implemented by negation by failure,

FOR-ALL

Sentences such as

John likes x if (x supplies y) For-All
(y John wants y)

ie, John likes anyone who supplies everything he wants, are given the obvious
procedural interpretation:

132 LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN

to show John likes x
find all y such that John wants y
and show, for each such y, x supplies y.

This is equivalent to the interpretation it receives when it is rewritten in terms of

negation by failure.
John likes x if Not (John wants y and Not (x supplies y))

i.e. to show John likes x
show there is no y such that

John wants y
and x does not supply y.

IS-ALL
The last of the extensions of Hor clause logic which we have introduced in our
computer logic lessons is the feature ‘Is-All’, which constructs a list of all answers
to a query. This list can then be manipulated: for example, by counting its
elements or summing its elements if they are numbers. For example

Which (x _ y Is-All (2 John supplies z)
and y has-cardinality x)

expresses the English question
How many items does John supply?

Because Is-All returns a list possibly containing duplicates the definition of
‘has-cardinality’ needs to take this into account:

(._) has-cardinality 0
(xiy) has-cardinality z if x belongs-to y and y has-cardinality 2
(xly) has-cardinality 21

if Not (x belongs-to y)
and y has-cardinality 22
and SUM (22 1.21)

where SUM (x y z) holds if and only if x+y =2.
‘Is-AIl’, like ‘Not’ and ‘For-All’, is based on the closed world assumption

that the database contains all the information which needs to be known about
the relations under consideration. Because of the closed world assumption, these
three extensions of Horn clause logic can be implemented very efficiently. Given
appropriate restrictions on the contexts in which they are used, they coincide
in meaning with their classical counterparts and can be interpreted wholly
declaratively. A ‘set-of” feature similar to ‘Is-All’ has also been implemented
in Dec-10 Prolog by David Warren (1981).

LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN 133

RELATIONSHIP WITH TRADITIONAL MATHEMATICS
Our emphasis throughout on the declarative reading of logic programs is in the
spirit which emphasizes program specifications in modern software engineering
and declarative query languages in modern database systems, It is in harmony,
moreover, with both modern and traditional approaches to mathematics.

In contrast to the procedural approach to computing, which conflicts with
the declarative style of school mathematics, the logic programming approach
contributes to mathematics as it is actually taught in school. The SUM relation,
for example, which can be used to add two numbers e.g.

Which (x SUM (2 2 x))

can also be used to subtract, e.g.

Which (x SUM (x 2.4))
Which (x SUM (2.x 4))

in the same way that primary school children are asked to fill in the boxes,
standing for unknowns, in arithmetic relationships:

2+ 2-0
Ere 2

2+0=4.

Compound queries, such as
Which (xy) SUM (x y 4) and SUM (0x y))

can be used to illustrate the problem of solving several equations in several un-
knowns. Moreover, the specification of the problem, as represented by the
query, can be clearly separated from the method of solution. It needs to be
noted, however, that the built-in predicate SUM currently implemented in
micro-Prolog will not work for this example. This is because, for the sake of effi-
ciency, SUM will not run with more than one variable. This problem can be
dealt with by defining a new SUM predicate in logic.

THE EUCLIDEAN ALGORITHM
The Euclidean algorithm is a good example of the way in which logic program-
ming complements and reinforces traditional mathematics teaching. It also
illustrates the equally important point that classical mathematical techniques
can be used to verify the correctness of logic programs much more directly than
they can be used for conventional programs with side effects. A more advanced
example along these same lines by Clark, McKeeman and Sickel (1982) is the
derivation of an entire family of definite integration algorithms from a single
specification

The Euclidean algorithm computes the greatest common divisor of two non-

194 LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN

negative integers, In order to understand the algorithm it is necessary first to
understand its specification, namely the definition of greatest common divisor.
This can be expressed in computer intelligible terms in our extension of the
Horn clause subset of logic. We let

GCD (xy 2) express that
zis the greatest common divisor of x and y, and

“z divides x” express that
Zand x are non-negative integers and z divides x with remainder 0.

The GCD z of x and y divides both x and y and is> all such common divisors.
Symbolically:

GCD (x y z)if (and only if)
z divides x and z divides y
and (2 > u) ForAll (u u divides x and u divides y)

Given an appropriate definition of the ‘divides’ relation, the specification can
actually be run as a very inefficient program.

The Euclidean algorithm is more efficient. It uses the division algorithm,
which

for every pair of positive integers
xand y such that x> y, computes
integers q and r such that

x=qy+rand0<r<y.
qis the quotient and r the remainder.

The Euclidean algorithm is based on the following

Theorem D. The greatest common divisor of x and y is equal to the greatest
common divisor of y and r (where r is the remainder of the division
of x by y as above),

The algorithm consists in using this equality repeatedly in one direction only
to reduce the problem of computing
the GCD of x and y to the subproblems of
(1) dividing x by y to obtain remainder r and
(2) finding the GCD of y and +, until r = 0, in which case the GCD is

the quotient q.
Applied, for example, to the problem of computing the GCD of 554 and 119 the
algorithm generates the following sequence of divisions.

554 = 4X 119 + 68
119= 1X 68 +51
68 = 1X S51 +17
S1=3X 174+ 0

u

LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN 135,

This shows that the GCD is 17,
Thus the Euclidean algorithm consists of the controlled unidirectional

application of the declarative statement of Theorem D above. If we express the
GCD and the division algorithm in relational form, then the equality in the state-
ment of the theorem becomes an if-and-only-if and the algorithm reduces to the
procedural interpretation of the if-half of the theorem. Let

Division (x qr y) express that
X, ¥, q, 1 are non-negative integers,
x<yand
x=qytrandO<r<y,

The theorem can then be expressed formally by the conditional equivalence.
[GCD (x y z) if and only if GCD (y rz)]

if Division (x qy r).

The if-half of the equivalence gives the recursive clause of the Euclidean algo-
rithm:

EA2. GCD (x yz) if Division (x q yr)
and GCD (y rz)

the terminating case of the algorithm is given by the clause

EAl. GCD (x y y)if Division (x qy 0)

which is a trivial consequence of the specification of GCD.

Thus the correctness of the Euclidean algorithm reduces to the problem of
verifying that EA2 is a logical consequence of the definition of GCD and the
theorems of arithmetic. This is a purely mathematical problem, For the sake of
completeness we include the simple proof in Appendix A.

COMPUTATIONAL GEOMETRY

Computational geometry affords a more direct comparison between the wholly
procedural approach of a conventional programming language and the combined
declarative and procedural approach of logic.

The purpose of the following discussion is not to advocate a particular
method for doing graphics in Prolog, but to show how the procedural and de-
clarative approaches are related. In particular, we do not presume to claim that
either of the two approaches we shall discuss provide sophisticated graphics
facilities. On the contrary, the facilities have been deliberately simplified in
order to facilitate the discussion,

To start with, we shall show how pictures can be generated, as in a pro-
cedural language, by means of picture-plans which are sequences of visible and
invisible vectors, represented by lists. When such a list is interpreted as a list of

196 LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN

graphics characters and is output to a screen the result is a picture. Thisapproach
to generating pictures, described below, is based upon a representation used by
the author in micro-Prolog using the graphics facilities of the Zenith 289 micro-
computer.

Assume, for simplicity’s sake, that the screen is related to a coordinate
system as illustrated below:

In Logo (Papert, 1980) if a graphics turtle is positioned at the origin and pointed
north then the program segment

1, PENUP 9. FORWARD 4
2. FORWARD 12 10, RIGHT 90
3. RIGHT 90 11, FORWARD 4
4. FORWARD 10 12. RIGHT 90
5. LEFT 90 13. FORWARD 4
6. PENDOWN 14. RIGHT 90
7. FORWARD 2 15. FORWARD 2
8. RIGHT 90

generates the following picture of a square:

(014)!
(0 10):

LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN 137

A similar program can be written in Prolog using its extralogical printing
facilities. We prefer instead to represent the sequence of instructions as.a list and
print it at the top-most level of a query. This turns the drawing into an object
which can be talked about, manipulated if desired, and printed as output. In
order to simplify the discussion below, instead of the PENUP, PENDOWN,
FORWARD, RIGHT and LEFT instructions, we use the following:

V (visible, i.e, PENDOWN)
1 (invisible, ie. PENUP)
(Nx). (North x steps)
(Ex) (East x steps)
(Sx) (South x steps)
(Wx) (West x steps)

and we specify the initial position of the turtle explicitly. Using the two place
predicate

x names y

to relate a picture-plan x to the corresponding list y of graphics characters, the
query

Which (x ((0.0) 1 (N 12) (E 10) V (N 2)
(E 4) (S4) (W 4) (N 2) names x)

for example, generates the same picture of the square above. Let us call this
square §, since we shall refer to it again later,

Throughout this section we distinguish between picture-plans which are
sequences of actions and pictures which such picture-plans generate. In general,
a picture-plan is named by a list whose first item gives the coordinates of the
origin from which the plan starts, whose second item specifies the mode (one of
V or 1) which indicates whether subsequent actions are Visible or Invisible and
whose remaining items are either

(1) amode or
(2) avector which is pair giving

direction (one of N, E, S, W) and
distance (a positive integer).

Several picture-plans can result in the same picture. For example, both of the
lists

((00)1 14) (N 14) V (W4) (8.4) (E 4) N 4)
((10 10) V (N 4) (E 4) (S 4) (W4))

describe different plans of the same square S. Picture-plans can also be described
by means of general laws. For example, the relationship

Square-plan (x y 2)

138 LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN

which holds when 2 is a picture-plan of a square with south-west corner at point
x having side of length y is defined by

P: Square-plan (x y (x V (Ny) (Ey) (Sy) (Wy).))

‘The same picture of the square § can now be obtained by asking

Which (x Square-plan ((10 10) 4 y)
and y names x).

To tell whether two plans generate the same picture we can print them and
compare the results. This may not be satisfactory, however, if the pictures are
complicated and the screen is erased between pictures. Moreover, it will not
work for showing that a general program like P above is correct. For this we
need a specification which is different from the program. We need moreover,
a formal notion of picture which is distinct from that of picture-plan.

‘A picture can be regarded as a set of (visible) line segments and can be
named by a list each item of which is a pair of points. For example, the list

(((10 10) (10 14))
(0 14) (14 14))
((10 10) (14 10)
((14 10) (14 14)))

names the picture of the square S. Thus a picture is an order-independent set of
line segments represented by pairs of end points. The order of the end-points in
a line segment does not matter. Notice that we use the same term ‘picture’
both for the visual pattern produced on a screen by printing the object ‘named’
by a picture-plan and for its mathematical representation as a set of line seg
ments, Which of these two notions is intended should be clear from the context.

The result of a picture-plan is a picture. This relationship

x draws y
where y is the picture produced by the picture-plan x, can be described straight-
forwardly by means of Horn clauses with negation by failure. Rather than give
the definition here we illustrate it by means of an example, leaving the definition
to Appendix B, The application of the relationship to the plan

((0.0)1 (N 12) (E 10) V (N 2)
(E4)(S 4) (W4) (N 2)

can be decomposed into a sequence of three steps

Step I (a) Replace every vector pair of the form (direction distance) by a
3xuple (base mode end-point) where “base” is the base-point of the
vector, ‘mode’ describes whether the vector is visible or invisible and
‘end-point’ is the end-point of the vector,

(b) absorbing the origin into the base of the first 3-tuple, and

LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN 139

(c) absorbing individual modes into subsequent 3-tuples:
(@_ 0)1@ 12) (012) 1 C012)
((10 12) V (10 14) (10 14) V (14 14)
((14 14) V (14 10)) (14 10) V (10 10)

((10 10) V (10 12)))

Step 2 (a) Delete all 3 tuples with mode I and

(b) replace every 3-tuple of the form
(base V end-point) by the pair
(base end-point):

(((10 12) (10 14)) (10 14) (14 14)
(14.14) (14 10)) (14 10) (10 10))
((10 10) (10 12)))

Step 3 Coalesce colinear, contiguous line segments:
(10 10) (10 14) (10.14) (14 14))
(14 14) (14 10)) (14 10) (10 10)))

We can use the concept of picture and the ‘draws’ relation to generate pictures
directly from specifications of the line segments they contain, For example, the
query

Which (x y draws (((10 10) (10 14))
(10 14) (14 14))
(14 14) (14 10))
((14 10) (10 10)))

and y names x)

generates the picture of the square S,
To prove that the definition P of the ‘square-plan’ relation correctly defines

the notion of square, we need a specification. To simplify matters and to save
space, given the restricted nature of the pictures we can draw, it suffices to
specify a square as a set of four line segments of equal length, connecting four
points, every point being the end-point of exactly two segments, More formally,

if we let the relation

Square (x yz)

express that 2 is a square with south-west comer at point x having sides of
length y, then the notion of square is specified by

Square ((x1 y1) y z) if (and only if)
SUM (x1 y x2)

and SUM (yl y y2)

140 LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN

and z equals (((x1 y1) (x1 y2))
(G1 y2) (x2 y2))
((x2 y2) Q2 yl)
(x2 y1) I y1)).

Here *x equals y’ simply expresses that the lists x and y contain the same line
segments, where the order of the end-points of line segments does not matter.
Its Horn clause ‘definition’ is given in Appendix B.

We can use our intuitive understanding of the ‘draws’ and the ‘equals’
relations to give an informal correctness proof that

For all x, y,21 and 22
if Square-plan (x y 21)
and 21 draws 22
then Square (x y 22)

Absorb ((base mode (direction distance) | list)
((base mode end-point) | newlist)
if Move (base direction distance end-point)

and Absorb (end-point mode | list) newlist)
Absorb ((base mode new-mode —_| list) newlist)

if Absorb ((base new-mode | list) newlist)
Absorb ((base mode) ())

Move ((x y) Nz (x y1))if SUM (y_zyl)
Move ((x y)S z (x y1)) if SUM (yl zy)
Move ((x y) E z (x1 y)) if SUM (x. 2x1)
Move ((x y) W z (x1 y)) if SUM (x1 zx)

Visible (((base I end-point) | list) newlist)
if Visible (list newlist)

Visible (((base V end-point) | list)
((base end-point) | newlist))

if Visible (list newlist)

Visible () ())

Coalesce (lines newlines)
if Select (lines linel interlines)
and Select interline} line? restlines)
and Combine (line1 line? line3)
and Coalesce ((line3 | restlines) newlines)

Coalesce (lines lines)
if Not (Select (lines line! interlines)
and Select (interlines line2 restlines)
and Combine (line] line 2 line3))

LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN 141

Select ((xly) x y)
Select (x |y) u (x|v)) if Select (y uv)

Combine (line! line2 (x1 y1) (x1 y3)))
if (line! line2) equals

((@X1 1) (x1 -y2)) (x1 ¥2) (XI y3))
and yl <y2and y2<y3

Combine (line! line2 (x1 y1) (x1 y2)))
if (line] line2) equals

((@X1 yl) (x1 y2)) (Gey) (x1 y3)))
and yl <y3 and y3 <y2

Combine (line! line2 ((x1 y1) (x3 y1)))
if (line! line2) equals

(x1 y1) (x2 y1)) (x2 y1) @3 y1)))
and x1 <x2 and x2 <x3

Combine (line] line2 (x1 y1) (x2 y1)))
if (linel line2) equals

(CQL v1) 02 y1)) (x1 y1) (x3 1)
and x1 <x3 and x3 <x2

x equals y if x permutation-of y
() permutation-of ()
(xly) permutation-of z if x same-seg x1

and Select (z x’ 2')
and y permutation-of 2’

x same-seg x
(pl p2) same-seg (p2 pl)

Proof. Assume Square-plan ((c1 c2) LA) and A draws B. We need to show

Square ((c1 €2) LB).

We must assume that sentence P is the only sentence defining the Square-plan
relation, This implies that

A=((cl c2) V(NL) (EL) (SL) (WL))
Since A draws B,

Bequals(((clc2) (ce c2#L))
((cle2#L) (cl+L e2+L))
((cl#L e24L) (c1+L 2))
((l#Le2) (cl c2)))

which directly implies

Square ((cl c2) LB).

142 LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN

In this example both the Square-plan program and the Square specification can
be expressed in Horn clause logic, In a conventional programming language such
as Logo only the analogue of the Square-plan program can be represented. No
attention is given to the specification, disregarding concerns of program correct-
ness; and no attention is given to classical geometry, disregarding actual mathe-
matical practice,

ACKNOWLEDGEMENT
This paper is based on an invited lecture at the 1982 European Conference on
Artificial Intelligence at Orsay, France. The author is grateful to the Science
Research Council and the Nuffield Foundation for supporting the Schools
Computer Logic Project.

APPENDIX A — PROOF OF THEOREM EA2

We assume the normal properties of division as well as the specification of GCD
and present the proof in conventional informal mathematical style and notation.

Assume

(1) A= QB+R, where O<R<B and

(CisGCD of Band R

we want to show

Cis GCD of A and B.

Because of (2) and the definition of GCD,

C divides both B and R.

But then C divides the right-hand side of equation (1) and therefore it divides

left-hand side as well — namely
C divides A.

But then C is a common divisor of both A and B.
It remains to show that C is > any D which divides both A and B. So

suppose, to the contrary, that some D> C divides both A and B. Then D divides
the left-hand side of

A-QB=R

and therefore it divides the right-hand side as well, i.e.
D divides R and B

and since it is more than C, C cannot be GCD of R and B, which contradicts our
original assumption.

LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN 143

APPENDIX B

Here to aid readability lower-case identifiers are used for variables. Upper-case
letters are used for constants.

x draws y if Absorb (x x1) and Visible (x1 x2)
and Coalesce (x2 y).

Absorb((base mode (direction distance) | list)

((base mode end-point) | newlist)
if Move (base direction distance end-point)

and Absorb (end-point mode | list) newlist)

Absorb((base mode new-mode __| list) newlist)
if Absorb ((base new-mode | list) newlist)

Absorb((base mode) ())

Move ((x y) Nz(x yl) if SUM (y z yl)
Move ((x y)S z(x y1)) if SUM (yl zy)

Move ((x y) Ez (x1 y)) if SUM (x 2x1)
Move ((x y) Wz (x1 y)) if SUM (x1 zx)

Visible (((base I end-point) | list) newlist)
If Visible (list newlist)

Visible (((base V end-point) | list)
((base end-point) | newlist))

if Visible (list newlist)

Visible(() ())

Coalesce (lines newlines)
if Select (lines line 1 interlines)

and Select (interline line2 restlines)
and Combine (line1 line2 line3)
and Coalesce —_{ (line3 | restlines) newlines)

Coalesce (lines lines)
if Not(Select (lines line | interlines)

and Select _(interlines line? restlines)
and Combine (line line2 line3))

Select ((xly) x y)
Select ((xly) u (x1v)) if Select (y uv)

Combine (line! line2 ((x1 y1) (x1 y3)))
if (line! line2) equals

(x1 y1) (1 y2)) (1 y2) (x1 y3)))
and yl <y2and y2<y3

144 LOGIC AS A COMPUTER LANGUAGE FOR CHILDREN

Combine (lil line2 ((x1 y1) (x1 y2)))
if (line! line2) equals

((Gx1 y1) (x1 y2)) (x1 yl) (1 3)
and yl <y3 and y3<y2

Combine (ine1 line2 ((x1 y1) (x3 y1)))
if (line! line2) equals

(@x1 yl) 2 yl) (2 y) (3 yl)
and x1 <x2 and x2<x3

Combine (line! line2 **x1 y1) (x2 y1)))
if (Jine} line2) equals

((Gx1_y1) (x2 y1)) (1 _y1) G3 yl)
and x] <x3 and x3 <x2

x equals y if x permutation-of y
() permutation of ()
(xly) permutation of z if x same-seg x"

and Select (2 x’ z’)
and y permutation-of 2’

x same-seg x
(p1 p2) same seg (p2 pl)

©Robert Kowalski

