Logical English as an
Executable Computer Language

Robert Kowalski
Imperial College London

&

WORK IN PROGRESS

Together with

Fariba Sadri
Miguel Calejo
Jacinto Davila
Vesko Karadotchev

\ (\ %
\\}\

\\o
Concleszién ©

IT Link Inc. Critique
Planner No. 5R-155
12xY — 600

..

IT LINK

OUT WITH THE PROGRAMMERS...

..INWITH THE LAWYERS?

Who would we expect to be the best person to write a
computer program? A trained programmer, most of u
would reply. Perhaps an unusually inventive end-user,
given access to tools such as code generators, and fourth
generation languages. But a lawyer ...

Well, according to Bob Kowalski, a professor of
computational logic at Imperial College London, lawyers
are just the people. Kowalski, you may recall, devised the
principles of logic programming, on which the PROLOG

language. No matter that it may be a rather specialis
and stilted form of English, it is still much more
accessible tothe average human than any mathematical

—formalism.

An example, according to Kowalski, is the emergency
notice found in London Underground trains:
Press the alarm signal to alert the driver. The
driver will stop immediately if any part of the

train is in a station. If not, the train will proceed
)

Logical English (LE)

modelled on the language of law.

understandable by English speakers
without special training.

suitable for general computation, i.e.
programming, databases and knowledge representation.

prototypes in Prolog

The Language of Law
declarative

describes the legal consequences
of actions and events

logical conditionals and
logical all/every/exists

avoids ambiguity, but
embraces vagueness
(open texture)

passively judges the
behaviour of external agents

The majority of computer languages
imperative

assignment statements

if-then-else,

iteration and loops

unambiguous by design

actively support the
goals of external agents

Smart contracts
actively support the goals of legal agreements.

Examples from

The British Nationality Act
logic programs.

 Asimplified loan agreement
deterministic finite automata.

* Rock, Paper, Scissors
(Lessons and insights from a cryptocurrency lab)
imperatives.

* |SDA Master Agreement
(International Swaps and Derivatives Association)
obligations.

ARTICLES

THE BRITISH NATIONALITY ACT
AS A LOGIC PROGRAM

The formalization of legislation and the development of computer systems to
assist with legal problem solving provide a rich domain for developing and
testing artificial-intelligence technology.

M. J. SERGOT, F. SADRI, R. A. KOWALSKI, F. KRIWACZEK, P. HAMMOND, and H. T. CORY

aro Communications of the ACM May 1986 Volume 29 Number 5

British Nationality Act
Acquisition at Birth

English Logical English (basic level)

1.-(1) A person born in the United
Kingdom after commencement
shall be a British citizen

if at the time of the birth

his father or mother is

(a) a British citizen; or

(b) settled in the United Kingdom.

British Nationality Act
Acquisition at Birth

English

1.-(1) A person born in the Unit
Kingdom after commencement

‘shall be a British citizen

if at the time of the birth

A persorpacquires british citizenship by subsecti

1.1 atatime

if <he persomis born in the uk at the time

the time is after commencement

his father or mother is and another person is the father offhe person>
(a) a British citizen; or or another person is the mother of&he person>

(b) settled in the United Kingdom. @nd the other person is a british citizen at the time
or the other person is settled in the uk at the time.

“a”, “an” or “another” indicates the first occurrence of a logical variable
“the” indicates a later occurrence of the same logical variable in the same sentence.
No “all”, “every” or “some”.

No “all”, “every” or “some” in Basic Logical English

All payments that are specified in some transaction are obligatory.
needs to be rewritten.
For example:

A payment is obligatory
if the payment is specified in a transaction.

Or:

It is an obligation that a payment is made
if the payment is specified in a transaction.

10

Examples from

A simplified loan agreement
deterministic finite automata.

11

O =R VORKING
z I\ PAPER

QFFICE OF FINANCIAL RESEARCH

15-04 | March 26, 2015
Revised March 27, 2017

Contract as Automaton: The Computational
Representation of Financial Agreements

Mark D. Flood
Office of Financial Research

mark.flood@ofr.treasury.gov

Oliver R. Goodenough
Office of Financial Research and Vermont Law School
oliver.goodenough@ofr.treasury.gov

ogoodenough@vermontlaw.edu

12

Agreement

This loan agreement dated June 1, 2014, by and between Lender Bank Co. (“Lender”) and
Borrower Corp. (Borrower), will set out the terms under which Lender will extend credit in the
principal amount of $1,000 to Borrower with an un-compounded interest rate of 5% per annum,
Included in the spedfied payment structure.

lTheloan

At the request of Borrower, to be given on June 1, 2014, tender will advance 51,000 to Borrower
no later than June 2, 2014. If Borrower does not make such a request, this agreement will
terminate.

2 Repayment
Subject to the other terms of this agreement, Borrower will repay the loan in the following

payments:
(a) Payment 1, due June 1, 2015, in the amount of $550, representing a payment of 5500 as
half of the principal and interest in the amount of $50.
(b) Payment 2, due June 1, 2016, In the amount of $525, representing a payment of 5500 as
the remaining half of the principal and interest in the amount of $25.

3. Representations and Warranties

The Borrower represents and warrants, at the execution of this agreement, at the request for
the advance of funds and at all times any repayment amount shail be outstanding, the
Borrower's assets shall exceed its labdities as determined under an application of the FASB rules
of accounting.

4 Covenants:

The Borrower covenants that at the execution of this agreement, at the request for the advance

of funds and at all times any repayment amount shall be outstanding it will make timely payment
of all state and federal taxes as and when due.

5_Events of Default
The Borrower will be in default under this agreement upon the occurrence of any of the

following events or conditions, provided they shall remain uncured within a period of two days
after notice Is given to Borrower by Lender of thelr occurrence [such an uncured event an "Event
of Default™):
(a) Borrower shall fail to make timely payment of any amount due to Lender hereunder,
(b) Any of the representation or warranties of Borrower under this agreement shall prove
untrue;
(c) Borrower shall fail to perform any of its covenants under this agreement,

(d) Borrower shall file for bankruptcy or insolvency under any applicable federal or state law.

A default will be cured by the Borrower (1) remedying the potential event of default and (¥)
giving effective notice of such remedy to the Lender. In the event of multiple events of default,

13

1 Day p:
punce last event

Payment made $525

1 Day passes
pmce last event

14

Agreement

This loan agreement dated June 1, 2014, by and between Lender Bank Co. (“Lender”) and
Borrower Corp. (Borrower), will set out the terms under which Lender will extend credit in the
principal amount of 51,000 to Borrower with an un-compounded interest rate of 5% per annum,
included in the specified payment structure.

1. The Loan:

At the request of Borrower, to be given on June 1, 2014, Lendernce 51000 to Borrower
no later than June 2, 2014. |f Borrower does not make such a request, this agreeme

terminate.

15

Or

Agreement

This loan agreement dated June 1, 2014, by and between Lender Bank Co. (“Lender”) and
Borrower Corp. (Borrower), will set out the terms under which Lender will extend credit in the
principal amount of 51,000 to Borrower with an un-compounded interest rate of 5% per annum,
included in the specified payment structure.

1. The Loan:

At the request of Borrower, to be given on June 1, 2014, Lender Gﬁll@vance 51000 to Borrower
no later than June 2, 2014.] If Borrower does not make such a request, this agreement will

terminate.

It is an obligation that the lender advances $1000 to the borrower at a time
and the time is before the end of 2014/6/2
if the borrower has requested $1000 on 2014/6/1.

The lender becomes liable to litigation at a time
if it is the end of 2014/6/2 at the time
and the borrower has requested $1000 on 2014/6/1
and it is not the case that
the lender has advanced $1000 at another time and
the other time is before the end of 2014/6/2. 1o

1. The Loan:
At the reguest of Borrower, to be given on June 1, 2014, Lender will advance 51000 to Borrower
no later than June 2, 2014] If Borrower does not make such a reqguest, this agreement will

terminate.

The contract becomes terminated
when it is the end of 2014/6/1
and it is not the case that
the borrower has requested the loan.

“conclusion when conditions”
means

“conclusion at a time

if conditions at the time”

The contra€t becomes términated at a time

if it is the end of 2014/6/1 at the time
and it is not the case that
the borrower has requested the loan at the time.

translated into Prolog/LPS

(Logical Production System)
(2014/6/1)

terminated

if not requested(borrower, 1000, 2014/6/1).

17

LPS implemented in SWI Prolog running online in SWISH

Using_SWISH to realise interactive web based tutorials for

logic based languages 2019, Jan Wielemaker, Fabrizio Riguzzi, Robert
Kowalski, Torbjorn Lager, Fariba Sadri, Miguel Calejo. In Theory and Practice of Logic
Programming, 19(2), 229-261.

(2014/6/2)
initiates liable to litigation(lender)
if requested(borrower, 1000, 2014/6/1),
not advanced(lender, 1000).

(2014/6/1)
initiates terminated
if not requested(borrower, 1000, 2914/6/1)4

18

N

LS}

The history of states and events can be visualised as a state transition diagram

(or derministic finite automaton)

observe
observe
observe
observe

(borrower, 1000) at '2014-06-91T15:08'. % at 15:@0.

(lender, 1008) at '2014-86-02T18:00'.
(borrower,lender, 550) at '2815-06-01T12:00°'.
(borrower,lender, 525) at '2016-06-01T06:00".

= 7- godfa(Timeline).

Timeline =
requested(borrower, 1000,2014/6/1)

advance(lender, 1000)

advanced(lender,1000,2014/6/2)
requested(borrower, 1000,2014/6/1)

pay(borrower,lender,550)

advanced(lender,1000,2014/6/2)
requested(borrower, 1000,2014/6/1)
paid(borrower.lender,550,2015/6/1)

pay(borrower,lender,525)

terminated
advanced(lender,1000,2014/6/2)
requested(borrower, 1000,2014/6/1)
paid(borrower.lender,525,2016/6/1)
paid(borrower.lender,550,2015/6/1)

d >

19

Examples from

Rock, Paper, Scissors
(Lessons and insights from a cryptocurrency lab)
imperatives.

20

Step by step towards creating a safe smart contract: Lessons and insights from a

cryptocurrency lab
K Delmolino, M Arnett, A Kosba, A Miller... - ... Conference on Financial ..., 2016 - Springer

We document our experiences in teaching smart contract programming to undergraduate
students at the University of Maryland, the first pedagogical attempt of its kind. Since smart
contracts deal directly with the movement of valuable currency units between contractual ...

v Y9 Cited by 259 Related articles All 11 versions

Rock—paper—scissors

From Wikipedia, the free encyclopedia

Scissors

beats paper

Each player simultaneously
forms one of three shapes
with an outstretched hand:

21

Rock-paper-scissors in an “early” variant of Logical English

Logical File~ Edit~ Examples ~ Help~

Contracts

@ &Ioan @ life @ &deliuewDelay @ loan @ RockPaperScissorsBaseEN +

S

45
46
47
43
49
50
51
52
53
54
55
56
57
53
59
60
61
b2
63
64
65
66
67
63
RO

LI L D Y S B L A F R [- R ¥ R [P T] [y WL D S W T FLLI L vuLue .

When a playver pays a prize
then the reward that is a number becomes the number minus the prize.

If a first plaver has playved a first choice at a first time

and a second player has plaved a second choice at the first time

and the first plaver is different from the second player

and the first choice beats the second choice

and it is not the case that the game is over at the first time

then initiate the game is over from the first time to a fourth time

and the reward is a prize at the first time

and the first plaver pays the prize from the first time to a second time.

If a first playver has playved a first choice at a first time

and a second player has played a second choice at the first time

and the first player is different from the second player

and it is not the case that the first choice beats the second choice
and it is not the case that the second choice beats the first choice
and it is not the case that the game is over at the first time

then initiate the game is over from the first time to a fourth time
and the reward is a prize at the first time

and a number is half the prize

and the first plaver pays the number from the first time to a second time
and the second playver pays the number from the first time to the second time. 22
Jl'\.

Rock-paper-scissors in LPS on the Ethereum blockchain

O =1 o N

10
11
12
13
14
15
16
17
18
1%
20
21
22
23
24
25
26
27
28
29
30
31

L o L

beats(scissors, paper).
beats(paper, rock).
beats(rock, scissors).

proleqg_events e transaction(latest, From, Input, Wei, To). % Generate events from the blockchain

e transaction(latest,From,Input,Wei,To) initiates played(From,Input,Wei) if
lps my account(To), Wei>0, not played(From, ,).

fluents played(_ Player, Choice, Value), gameOver.

reward(R) at T if
balance(V) at T,
R is round(v+0.9). % keep 10%

balance(B) at T if

=)

findall(v,played(_ ,_ ,V) at T,L), sum list(L,B).

num _players(N) at T if

findall(P, played(P,_,_) at T, L), length(L,H).

false num players(N), N=>2.

pay(Player,Prize) from Tl to T3 if
lps_my account{Us),

% plan / macro action on the bleockchain

e sendTlransaction(Us,Player,Prize,PaymentTx) from T1 to T2,
e_existsTransactionReceipt(PaymentTx) at T3.

if played(P0,Choicel,_) at T1, played(Pl,Choicel,) at T1l, P0%==P1l, beats(Choicel,Choicel), not gameOwver at Tl

then initiate gameOver from Tl, reward(Prize) at Tl, pav(P0,Prize) from T1 to TZ.

if played(P0,Choice,) at T1, played(Pl,Choice,_) at T1l, PO &> Pl, not gameOver at Tl

then initiate gameOver from T1, reward(PFrize) at T1l, Half is Prize/2, pay(P0,Half) from T1l, pay(Pl,Half) from T1l.

June 26, 2018

http://logical®ntracts.com

Reactive rules in LPS behave like imperative programs

if played(P8,Choice®), played(P1l,Choicel), PO\==P1,
beats(Choice®,Choicel), not gameOver, reward(Prize)
then gameOQver, (PO,Prize).

Imperative English

If a player has played a choice and another player has played another choice,

and the choice beats the other choice,
and the game is not over, and the reward is a prize

therend the game andpaythe player the prize.
Declarative English

If a player has played a choice and another player has played another choice,

and the choice beats the other choice,
and the game is not over, and the reward is a prize

then the gameBecomesaver and the playefls paidthe prize.

24

ANALYSIS 18 3 JANUARY 1958

IMPERATIVE AND DEONTIC LOGIC
By P. T. GEACH

The logic of ptoper imperatives is, I think, fairly trivial.
For every proper 1mperat1ve there is a future-tense statement
whose ‘ coming true’ is identical with the fulfilment of the
imperative. This 1s the soutce of everything that can be said
about the inferability, incompatibility, etc. of imperatives; their
being imperatives does not affect these logical interrelations.

25

Examples from

ISDA Master Agreement
(International Swaps and Derivatives Association)
obligations.

ISDA

International Swaps and Derivatives Association, Inc.

2002 MASTER AGREEMENT

dated as of March 22, 2011

Bank of America, N.A. and LKQ Corporation

have entered and/or anticipate entering into one or more transactions (each a “Transaction”) that are or will be

governed by this 2002 Master Agreement, which includes the schedule (the “Schedule™), and the documents and other
confirming evidence (each a “Confirmation’) exchanged between the parties or otherwise effective for the purpose of
confirming or evidencing those Transactions. This 2002 Master Agreement and the Schedule are together referred to

as this “Master Agreement”.

Accordingly, the parties agree as follows:— ISDA Master
- - PUSSibW Agreement
overriding
some clauses
A}
Schedule

/¥ \

Confirmation
A

Confirmation
Z

27

Imperial College
London

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

First Steps Towards Logical English

Author:
Vesko Karadotchev

Submitted in partial fulfillment of the requirements for the MSc degree in MSc
Computing Science of Imperial College London

September 2019

28

2. Obligations

(a) Geeneral Conditions.

(i) Each partf_willDmake each payment or delivery specified in each Confirmation to be made by it,
<Subject to the other provisionsof this Agreement.

It is an obligation that a party performs an action
if the action is specified in a confirmation
and the action is a payment
or the action is a delivery
and it cannot be shown that
it is not the case that it is an obligation that the party performs the action.

An obligation is satisfied
if the obligation is that the party performs an action
and the party performs the action.

An obligation is violated
if it is not the case that the obligation is satisfied.

29

(c) Netting of Payments. If on any date amounts would otherwise be payable:—

(1) in the same currency; and

(1) in respect of the same Transaction,

by each party to the other, then, on such date, each party’s obligation to make payment of any
such amoun @ tomatically satisfied and discharged and, if the aggregate amount that
would otherwise have been payable by one party exceeds the aggregate amount that would
otherwise have been payable by the other party; replaced byyan obligation upon the party by
which the larger aggregate amount would have béemrpayable to pay to the other party the
excess of the larger aggregate amount over the smaller aggregate amount.

It is not the case that
it is an obligation that a party pays to a counterparty
an amount in a currency for a transaction on a date
if itis an obligation that the party pays to the counterparty
a net amount in the currency for the transaction on the date.

It is an obligation that a party pays to a counterparty
a net amount in a currency for a transaction on a date

if the net amountis a larger aggregate amount minus a smaller aggregate amount

and the larger aggregate amount is the sum of each amount of each payment by the
party to the counterparty in the currency for the transaction on the date

and the smaller aggregate amount is the sum of each amount of each payment by the
counterparty to the party in the currency for the transaction on the date. 30

Legislation as Logic Programs’
Robert A. Kowalski
Department of Computing

Imperial College of Science, Technology and Medicine
London SW7 2BZ, UK

January 1991
Revised June 1992

Abstract. The linguistic style in which legislation 1s normally written has many

similarities with the language of logic programming. [However, examples of legal

language taken from the British Nationality Act 1981, the University of Michigan
lease termination clause, and the London Underground emergency notice suggest
several ways in which the basic model of logic programming could usefully be
extended. These extensions include the introduction of types, relative clauses, both
ordinary negation and negation by failure, mtegrity constraints, metalevel reasoning
and procedural notation.

31

\ (\ %
\\}\

\\o
Concleszién ©

IT Link Inc. Critique
Planner No. 5R-155
12xY — 600

..

IT LINK

OUT WITH THE PROGRAMMERS...

..INWITH THE LAWYERS?

Who would we expect to be the best person to write a
computer program? A trained programmer, most of u
would reply. Perhaps an unusually inventive end-user,
given access to tools such as code generators, and fourth
generation languages. But a lawyer ...

Well, according to Bob Kowalski, a professor of
computational logic at Imperial College London, lawyers
are just the people. Kowalski, you may recall, devised the
principles of logic programming, on which the PROLOG

language. No matter that it may be a rather specialis
and stilted form of English, it is still much more
accessible tothe average human than any mathematical

—formalism.

An example, according to Kowalski, is the emergency
notice found in London Underground trains:
Press the alarm signal to alert the driver. The
driver will stop immediately if any part of the

train is in a station. If not, the train will proceed
534

For more mformatlon and opinion

C @& docicac.uk/~rak/ Yo

Robert Kowalski

Computational Logic and Computational
Human Thinking: T
L. Thinking e g 2
HOW tO be A I'tl fICIa"y In telligen t - —— s and Distinguished Research Fellow
; nputing
This earlier draft of a book of the same title, published in July 2011 ondon

by Cambridge University Press, presents the principles of

London SW7 2BZ, UK.
Computational Logic, so that they can be applied in everyday life. |

have written the main part of the book informally, both to reach a uk
wider audience and to argue more convincingly that Computational
Logic is useful for human thinking. However, | have also included a
number of additional, more formal chapters for the more advanced
reader.
IMPERIAL COLLEGE LONDON
DEPARTMENT OF COMPUTING
. o TR WD ¢ 2 il
. :
Imperial College Department ¢ __g____F_l_l‘_St_ _S_t.ep.s. .To_w_ard_s_ .L.o.g.l.c.al. Enghsh _____
Author. : ..
LPS : Vesko Karadotchev

Logic Production Systems
< C ® Notsecure | logicalcontracts.com

LPS aims to close the gaj : LiCl . .
Contracts “=egipt

33

Acknowledgements

Fariba Sadri for BNA + LPS
Miguel Calejo for LPS on SWISH + Logical Contracts
Jacinto Davila for preliminary version of Logical English

Vesko Karadotchev for most recent development of Logical English

Thank you

34

Additional background slides

35

A Survey and Classification of Controlled
Natural Languages

Tobias Kuhn*
ETH Zurich and University of Zurich

What is here called controlled natural language (CNL) has traditionally been given many
different names. Especially during the last four decades, a wide variety of such languages
have been designed. They are applied to improve communication among humans, to improve
translation, or to provide natural and intuitive representations for formal notations. Despite
the apparent differences, 11‘ seems sensible to put all these :’mw:moﬁ under the same umbrella.
To bring order tothe varie o

£ l £

- =
[O

al-elassifieation-scheme is presented here.
A comprehensive survey of Erhfznq English-based C NLH is qzrve’n listing and describing 100
youages from 1930 until today. Classification of these languages reveals that then

© 2014 Association for Computational Linguistics

36

c. 61

ELIZABETH 11

British Nationality
Act 1981

1981 CHAPTER 61

An Act to make fresh provision about citizenship and
nationality, and to amend the Immigration Act 1971
as regards the right of abode in the United Kingdom.

[30th October 1981]

E IT ENACTED by the Queen’s most Excellent Majesty, by and
B with the advice and consent of the Lords Spirtual and

Temporal, and Commons, in this present Parliament
assembled, and by the authority of the same, as follows:—

ParT 1
BriTisH CITIZENSHIP
Acquisition affer commencement

1.—(1} A person born in the United Kingdom after com- Acquisition
mencement shall be a British citizen il at the time of the birth by birth or
his father or mother is— adoption,

(a) a British citizen ; or
(b) settled in the Unpited Kingdom.

(2) A new-born infant who, after commencement, is found
abandoned in the United Kingdom shall, unless the contrary
is shown, be deemed for the purposes of subsection (1)—

(@) to have been born in the United Kingdom after com-
mencement ; and
(b) to have been born to a parent who at the time of

the birth was a British citizen or settled inn the United
Kingdom.

Thursday April 16 1987 X11{

Robert Kowalski on criticism of a project to put the British Nationality Act into Prolog

How the logic of the law is put on trial

o R e oo ek
strong reactions. Su
like mel find it harg to con-
tain their enthusiasm. Others,
like Philip Leith, mggrted by
Brian Bloomfield (Computer
Guardian, March 26), find it
hard to control their hostility.
At first, from its beginning
in 1972, logic programming
led a quiet and relatively un-
noticed existence, until the
Japanese identified it as the
key to their fifth generation
comruting project. Most m
fessional computer scien
were taken by surprise and
judged the Japanese J:ropos-
als to be confused and naive,
Software engineers decried
the lack of attention to ortho-
dox software engineering
principles. Artificial Intelli-
gence researchers criticised
the attention given to the log-
ic programming langu‘gc
Prolog In preference e
more popular language Lisp.
The major responses to the
Japanese challenge, such as
MCC in the USA, Alvey in
Britain and Esprit in the
EEC, did their best to avoid
imitating the Japanese.
Slowly over the past six
years attitudes have begun to
change without any special
rromotlon outsld?l .lapga(:E log-
c prommmulxg as ome
accepted into the mainstream
of comruung.
But logic p ming is
still vulnerable to attack,
because unlike other
approaches to compuunfn it
also aims to give insiﬁht to
problem-solving by humans
and not only by computers. In
his article Brian Bloomfield
reports Philip Leith's attack
on our use of logic program-
ming at Imperial College to
formalise the 1981 British
Nulonalltg Act. These
attacks are based upon a mis-
representation of our work.
ur use logic to
formalise tion is based
:n the thesis th‘;td athc&
uman knowled
can usefully be &‘mnhted as

ical content which can be
subjected to the rigorous
application of logical deduc-

ons. Many of us believe that
such logical analysis can
feroﬁtably be applied to writ-

n legislation, whether the
resulting deductions are then
performed gvy human or by
computer. We believe that
logical analysis can help to
clarify and simplify legisla-
tion, identify inconsistencies
and determine its logical im-
plications. We believe that
such clarity and rigour can
be achieved without sacrific-
ing flexibility and
compassion.

In our work we have used
Prolog as a means of testing
our analysis of legislation by
means of computers. We
found Prolog to a power-
ful, tho ar from perfect,
tool for this purpose.

There are very significant
differences between logic,
logic programming and Pro-
log. These differences are too
complex to do justice to them
in so little a space. I shall
concentrate, therefore,
entirely on explaining our
views about the role of logic.

Bloomfield's article states
that our work on the British
Nationality Act was support-
ed b{ the Government with a
grant from the Alvey pro-
gramme. On the contrary, our
work on the British Nation-
ality Act was started before
the rogramme came
into existence. As we
explained in our May 1986
Communications of the ACM
article, we chose the British
Nationality Act for purely
academic reasons, to test our
theories about the value of
{:ﬂcal analysis applied to

w.
Com;

with other legis-
lation it is reiatively self-con-
tained and yet ciently

lex that its implications
Sv hard 1o 'detennine’ by

common sense reasonin
alone. We were aware o
claims that the British

plications. It was our belief
that a rigorous logical
analysis of the Act would
help to make any such impli-
cations apparent. It is especi-
ally regrettable, therefore,
that unjustified insinuations
of a racist character to our
work have distracted atien-
tion from more substantial
issues, 4

Philip Leith further mis-
represents our position as
identifying the legal process
with the rigid application of
rules embodying a single in-
terpretation of legislation.
Nowhere do we ourselves
make such a claim. We are
fully aware that the provi-
sions laid down in legislation
are only one source of the
law. Contrary to the claims of
our critics, we have always
maintained that our British
Nationality Act formalisation
can only be used to deter-
mine what consequences fol-
low from a given interpreta-
tion of the Act.

At no time have we ever
proposed that our program
could be used to decide ques-
tions of British citizenship
autonomously by computer.

We have always empha-
sised that the application of
logic and logic programming,
in any context, needs to be
embedded within a frame-

work for assimilating know-
ledge, for revising beliefs
and for comparing alterna-

tive systems of belief. It is
precisely because reasoni
in law requires such Q
flexibility that we have
regarded it as an ideal do-
main to test and compare
alternative theories of formal
reasoning.

But even restricting our
attention, as we did in our
study of the British Nation-
ality Act, to the formalisation
of written legislation, we
believe that logical analysis
can h:lle iden and elimi-
nate ntended ambiguities
without forcing us to resolve
ones which are deliberate.

actual legislation deliberate-
ly incorporates vague con-
cepts such as bein{aof “good
character” and “intending to
reside in the United
Kingdom.” Indeed it is
largely through the presence
of such concepts, admittin
different interpretations, tha
law achieves much of its flex-
ibility and apparent resis-
tance to logical analysis.
.Our thesis is that legisla-
tion can be formalised in log-
ical terms without needing to
specify any interpretation of
vague concepts.
For example, we can repre-
sent the fact that being of
ood character and intending
reside in the United King-
dom are necessary conditions
for entitlement to naturalise
as a British citizen. But we do
not need to define the mean-
ing of the conditions in order
to do so. Logical conse-
quences derived from such a
representation of legislation
invariably contain such con-
ditions as explicit qualifica-
tions. Thus we would not be
able to derive an unqualified
conclusion that Mary is
entitled to naturalise as a
British citizen, for example,
But we mlghi be able to
derive that according to the
legislation Mary would be
entitled to naturalise as a
British citizen if she were
'{:dged to be of good charac-
r. We believe that in such a
way we can account both for
the flexibility of legislation
as well as for its fundamen-
tally logical character.
ere are other kinds of
ambiguity in legislation
which do not have such a
benign character and which
are generally not intended by
the legislator. This is exem-
plified by rules such as “a
rson is entitled to benefit
if he has at least one de-
gendent child and he has
een unemploxed for six
months or he is incapable of
work.” Here the ambiguity
concerns wheger or not a

entitled to benefit X if he
does not have any children.
This ambiguity needs to be
resolved before the rule can
be logically formalised. We
believe that the identifica-
tion and elimination of such
ambiguities, which do not
stand up to logical analysis,
is valuable in its own right.

No one seriously doubts
that logic is an essential tool
for solving scientific and
engineering problems. But
even in ese domains it
needs to be combined with
the creative discovery of
appropriate assumptions and
tempered by an awareness
and a concern for the human
implications of the conclu-
sions. ¢ does not deter-
mine what we should take as
our assumptions. However,
once the assumptions have
been given it helps us to
determine their logical con-
sequences. Similarly, logic
does not decide whether a
given consequence is or is
not acceptable. But if the
consequence is jud to be
unacceptable it helps us to
identify the assumptions that
must be rejected or modified.

Without clear but flexible
rules applied with due atten-
tion to logie, bureaucrats and
judges would be free to reach
arbitrary, inscrutable, and
unjustified decisions, Politi-
cians could exercise power
without accounting for their
deeds.

We believe that there are
powerful practical and ethi-
cal arguments in favour of
bringing more logic to bear
on human affairs. These argu-
ments deserve to be analysed
and vigorou debated. To
the extent, however, that
such debate consists largely
of misrepresentation, it dise
tracts attention from more
important matters.

Robert Kowalski is Prof
of Computational Logic at
Imperial College of Science and
?cc!'mologv, University of

My le
box of

awyers are about the

last people most of us

would think of put-
ting in charge of our com-
puters because they are
often thought verbose and
given to obscurantism.

Robert Kowalski, profes-
sor of computational logic
at London’s Imperial Coll-
ege of Science, Technology
and Medicine, disagrees. In
fact he thinks that the next
generation of computer sci-
entists should be recruited
from the law, not mathe-
matics.

At their best, says Profes-
sor Kowalski, who has just
published a paper drawing
parallels between legisla-
tion and logic program-
ming, lawyers are capable

e

ricks

the train is in a station” — |

is, in effect, a wo

piece of programming.
Most computer scientists

automatically fall back o

mathematics to i

what a program should do,

says the professor, but it

may also be possible to
achieve the same results in
lain Englist

Take the specification for

sorting a sequence. Ren-
dered in the kind of English
which a

might be at home with
rather than in mathe-
matical symbols, one might
say, suggests professor
Wh that “the result
of sorting a sequence
should be an ordered per-
mutation of the input se-

of a clarity and precision of quence”.
expression that matches Concepts such as “order”
that of math- and “permu-
legmat]i::ians. ‘La tation” alg
ut lawyers \My turn can als
have an ad- CIS bedefineﬁbn
vantage over natural
s same would make fune s
mathematic- 4 maths.
ans hesays, ideal program’ fhan maths.
in that they .) quence
comm-uni- writers might be re-
cate in Eng- as
lish, a langu- ordered “if
age accessible to us all for every pair of elements in |
rather than only to a closed the sequence the earlier one
circle of the initiated. is smaller than or equal to
Best of all, he says, are the later element in the
legal draftsmen. What they sequence”.
are really doing when they
draft laws is writing pro- rofessor Kowalski
say§:-“lf you gave the

lg;'ams expressed in human

ts o g [teng

39

ATTORNEY
GENERAL'S

DEPARTMENT

Office of Legislative Drafting

15 April 1993

Professor Robert Kowalski

Department of Computing

Imperial College of Science, Technology and Medicine
180 Queen’s Gate

London SW7 2BZ

ENGLAND

Dear Professor Kowalski

LEGISLATION AS LOGIC PROGRAMS

Ior araIllIlg Ul UCIC&GL\/U O e G

approaches between them vary conmderably? [was interested to see that your redratted
versions of subsections 1 (1) and 1 (2) of the British Nationality Act 1981 were more like
the way this Office would draft provisions of that kind than were the original provisions.

40

-
Contract as Automaton O] R
|

? | Deterministic Finite Automaton (DFA)
? as a chain of event and consequence:
- — Start state (g,) at the top
— Terminal states (3) at bottom
— “Happy” or intended path traced
in green

— More “interesting” ramifications
traced in black

LIy
ws
s
/ | . .
| \ Fayiucs
\ i
™ e i 128 |
- - Yo / d
[Lrwas [Lae et ks B0 r A
", - - ™ . L i
T — S _ T - e P g
‘L; e i " ;__ -= — _;&-I-E;nrufr‘—-_—_ =

Iy OFFICE OF FINANCIAL RESEARCH

The history of states and events can be visualised as a timeline (or Gantt chart)

observe

[T

observe
observe

(W H]

4 observe

= ?- go(Timeline).

Timeline =
Jul Oct

Events

advanced(A.B.C) | lender,1000,2014/6/2

paid(A,B,C,D)

requested(A,B.C) || porrower,1000,2014/6/1

terminated

Jul Oct

Jan

Jan

Apr Jul Oct Jan Apr

borrower,lender,550,2015/6/1

Apr Jul Oct Jan Apr

(borrower, 1608) at '2014-06-81T15:08'. % at 15:60.
(lender, 1000) at '2014-96-92T18:00'.
(borrower,lender, 550) at '2015-86-01T12:00".
(borrower,lender, 525) at '2016-06-01T©6:00".

Jul Oc

borrower,ler

terminated

Jul Oc

42

A smart contract in an imperative programming language

11
12 def player_input(choice):

13 if num_players < 2 and msg.value == 1000:
14 reward += msg.value

15 player [num_players].address = msg.sender
16 player [num_players].choice = choice

17 num_players = num_players + 1

18 return(0)

19 else:

20 return(-1)

21 def finalize():

22 p0 = player[0].choice

23 pl = player[1].choice

24 # If player 0 wins

25 if check_winner[p0] [pl] == O:

26 send(0,player[0] .address, reward)
27 return(0)

28 # If player 1 wins

20 elif check_winner[p0O] [pl] == 1:

30 send(0,player[1].address, reward)
31 return(1)

32 # If no one wins

a3 else:

a4 send (0,player[0] .address, reward/2)
a5 send(0,player[1] .address, reward/2)

6 return(2)

C @ Not secure | Ips.doc.ic.ac.uk @ W 2 ’ & m C

Imperial College Department of Comy
London

LPS

Logic Production Systems

ome

LPS aims to close the gap between logical and imperative computer languages, by performir
actions to generate models to make goals of the logical form if antecedent then consequen.
Model generation serves as a global imperative, which generates commands to make conse
true whenever antecedents become true.

Logical LOGICAL CONTRACTS

Contracts Simplicity in smartcontracts

Contact Us Logical Contracts Server Logical Contracts at RuleML+RR 2018

LOGICAL CONTRACT A logical representation of a legal document that is close to natural,
human language, but executable by computer.

It can be used to:

« monitor compliance of the parties to a contract.

« enforce compliance, by issuing warnings and remedial actions.
e explore logical consequences of hypothetical scenarios.

e query and update the Ethereum blockchain

