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We will define the notions of abstract theorem-proving graph, abstract
theorem-proving problem 2 and search strategy X for #. These concepts
generalize the usual tree (or graph) searching problem and admit Hart,
Nilsson and Raphael (1968) and Pohl (1969) theories of heuristic search.
In particular the admissibility and optimality theorems of Hart, Nilsson and
Raphael generalize for the classes 2 and 2 of diagonal search strategies for
abstract theorem-proving problems. In addition the subclass 2¢ of 2 is
shown to be optimal for 2. Implementation of diagonal search is treated in
some detail for theorem-proving by resolution rules (Robinson 1965).

SEARCH STRATEGIES, COMPLETENESS AND

EFFICIENCY
Completeness and efficiency of proof procedures can be studied only in the
context of search strategies. A system T of inference rules and axioms can
be complete or incomplete for a given class of intended interpretations.
Similarly a search strategy  for T may or may not be complete for obtaining
proofs constructible in T — independently of the completeness of T. A proof
procedure (T, X) consists of a system of inference rules and axioms T together
with a search strategy T for T. The procedure (T, Z) can be complete in
several distinct senses depending upon the completeness of T and X. These
distinct notions of completeness are often confused and this confusion
results in confused discussion regarding the value of complete versus heuristic
methods in automatic theorem-proving.

The situation is no better with regard to discussions of efficiency. Proposals
have been put forward both for increasing the strength of inference systems
and for restricting the application of inference rules. Thus, for instance, w-
order logic is a strong inference system, whereas set-of-support resolution
(Wos, Carson and Robinson 1965) is a restricted inference rule. However it
is only proof procedures (T, £) which can be efficient for proving theorems.
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A system of inference rules and axioms T is potentially efficient only if it
admits a search strategy £ which yields an efficient proof procedure (T, X).
On the other hand, a search strategy = can be efficient for obtaining proofs |
constructible within T regardless of the efficiency of the resulting proof
procedure (T, X), i.e., £ may do a best possible job for an impossible T.

It is interesting that certain inference-related rules can be defined only in
the context of search strategies. Deletion of subsumed clauses is an important
example. The completeness of a deletion strategy for a proof procedure
(T, X) is relative to the completeness of (T, ) and might be better termed
‘compatibility with (T, £)’. Our own proof for the compatibility of deleting
subsumed clauses (Kowalski and Hayes 1969) fails because no regard is
taken of this relativity to search strategies. The compatibility with given
(T, ) of deleting subsumed clauses has been proved for the case where =
is a level saturation search, T is ordinary binary resolution (Robinson 1965)
or AM-clash resolution (Sibert 1969) and deletion is done only after each level
is saturated. Compatibility of the usual deletion rule for most complete T
and for arbitrary X is proved in Kowalski (1970) where counterexamples are
also exhibited for the compatibility and efficiency of alternative rules for
deleting subsumed clauses. The compatibility with given (T, Z) of deleting
tautologies is a much simpler matter — but first proved explicitly for arbitrary
T and most resolution systems T in Kowalski (1970)..

Despite the importance of search strategies, most research in automatic
theorem-proving has concentrated on developing new inference systems which
are either more powerful or more restricted than ones already existing. The
Unit Preference strategy of Wos, Carson and Robinson (1964) seems to be
the basic search strategy employed by most computer programs which
implement resolution rules in proof procedures. Slagle’s Fewest Components
strategy (see Sandewall 1969), Green’s (1969a) partitioning of clauses into
active and passive clauses, and Burstall’s (1968) indexing scheme seem to be
the only other reported proposals for improving search strategies.

’ THEOREM-PROVING GRAPHS

It is disconcerting that none of the research in tree searching techniques has
yielded improved search strategies for theorem-proving. We wholly agree
with Sandewall’s (1967) assessment that searching for paths in trees is not
general enough to represent the searches needed in automatic theorem-
proving. A similar situation exists with respect to and/or trees where search-
ing for subtrees cannot be represented helpfully by searching for paths in
other trees. The notion of theorem-proving graph, defined below, is intended
to extend the usual notion of tree (or graph) and to apply to the theorem-
proving problem without encompassing the notion of and/or tree.

In the theorem-proving problem we begin with an initial non-empty set of
sentences So and with a set of inference rules I'. If ¢ eI" and S is a set of
sentences then ¢ (S) is another set of sentences. ¢ (S) =g if ¢ is not applicable
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to §. In particular ¢(S) =0 if S is not finite. In applications to resolution
systems, Sy is a set of clauses and I consists of a single resolution rule or of
a factoring rule and a separate rule for resolving factors. If ¢ is binary
resolution of factors then ¢(S)=S"#@ if S contains two factors which
resolve or one factor which resolves with itself and each €’ € ' is a resolvent
of the clauses in S. If ¢ is the operation of unifying literals in a single clause
then ¢(S) =S"s#oif S is a singleton, S={C}, and each C’ € §" is a factor of

Given an initial set of sentences S and a set of inference rules I" let S* be
the set of all sentences which can be derived from Sy by iterated application
of the rules in I'. Then each ¢ € I' is a function ¢: 25*—25* defined on subsets
of §* taking subsets of S* as values. Each sentence C € S* can be assigned a
level: if Ce Sy then the level of C is zero, otherwise Ce ¢(S) for some
¢ €T and for some S<.S* and the level of C is one greater than the maximum
of the levels of the sentences D € S. If S, is the set of all sentences of level i
then S* = L<JiSi. Since a sentence C € S* may have several distinct derivations,

0<

the level of C need not be unique. Since ¢ (S) # o only if S is finite, the set of
sentences which occur in a given derivation of a sentence Ce S* is always
finite. The theorem-proving problem for a triple (So, T, F), F < S*, is that
of generating by means of a search strategy £ some C* e F by iterated
application of the rules in I" beginning with the sentences in S,. For certain
applications it may be required to derive a sentence C* € F having minimum
level in F or, more generally, having minimum cost in F, where cost is
determined by some ‘costing function’ defined on the sentences in S*, The
tree (or graph) searching problem (Doran and Michie 1966, Sandewall
1969) can be interpreted as a theorem-proving problem (S,, I, F) where
each operator o € I" has the property that ¢(S) =0 whenever S is not a
singleton. :

A triple (So, T, F) determines a directed graph whose nodes are single
sentences C e .S*. C’ is an immediate successor of C (i.e., C’ is connected
to C by an arc directed from C to C') if for some SSS* and peT, Ce S
and C’e ¢(S). The situation is similar to that which exists for ordinary
graph searching problems as distinguished from tree searching problems.
Searching in a directed graph for a path from a node a to a node b can be
interpreted as searching in a directed labelled tree for a path from a node
ny, with label ¢(n) =a, to a node ny, with label ¢(n;) =b. The tree search
interpretation of graph searching has the property of representing a single
node c in a graph as distinct nodes ny, .. ., n, in a tree when the node ¢ can
be generated in k different ways as the end node of k different paths from the
initial node a. This property of the tree search representation is one which we
find useful when extended to deal with the more general theorem-proving
problem. In particular the extended tree search representation associates
distinct nodes with distinct derivations. This 1 -1 correspondence between
nodes and derivations allows the number of nodes generated by a search
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strategy ¥ in the course of obtaining a terminal node to be treated as a
measure of the efficiency of Z for the given problem.

We define the notion of an abstract theorem-proving graph (‘abstract
graph’ or simply ‘graph’) (G, s). The extended tree representation of an
interpreted theorem-proving graph (So,I') can be obtained from (G, s) by
labelling the nodes ne G by use of a labelling function ¢: G—S*, and by
interpreting each application of the function s to a subset G'SG as an
application of a function @ e I" to the subset {c(n)|n€ G'}. An abstract
theorem-proving graph is a pair (G, s) where G is a set of nodes, s: 26-52¢
is a successor function defined on subsets of G taking subsets of G as values.
G and s satisfy the following conditions:

(1) s(e)=9.
(2) s(G’) #o implies that G’ is finite.
(3) G’'#G" implies that s(G')ns(G") =0."
(4) Let Po={ne G|n¢s(G') for any G'=G},
let Px+1={ne G|nes(G’) for some G’S‘g‘ &y G NSy #0}.

Then

(a) yo #0o,
(b) G=O\$Jiy 1]
(c) inF;=p for i#].

" The graph (G, s) reduces to an ordinary tree if s(G’) # o implies that G’ is a
singleton. For this case condition (3) states that distinct nodes have distinct
sets of successors. More generally, (3) states that distinct sets of nodes have
distinct sets of successors. It is precisely this condition which ensures that
the graphs (G, s) extend the ordinary tree representation of search spaces.
Condition (4) states that (G, s) is a levelled acyclic directed graph. In other
words each n € G can be assigned a unique level i where n € &;and n ¢ &; for
all j#i. If (So, ') is an interpretation of (G, s) with labelling function c:
G—S*then S;= {c(n)|ne &;} is just the set of labelled nodes of level i. Con-
dition (3) guarantees that for each C € S* and for each distinct derivation of
C from Sy there is a distinct node n € G such that C=c(n). There is no restric-
tion that &, or Sy be finite. The case where & is infinite allows us to deal with
axiom schemes in theorem-proving and more generally with potentially
infinite sets of initial nodes %o.

The successor function s of (G, s) determines a partial ordering of the nodes
in G: n’ is an immediate successor of n (and n an immediate ancestor of n') if
n’ €5(G’) and n e G’ for some G'SG. A node ' is a successor of n (and n an
ancestor of n'), written n'> n, if #’ is an immediate successor of n or if n" is a
successor of an immediate successor of n. We write n<n' if n<n’ or n=n'".
The definition of (G, s) guarantees that for all ne G the set {n'|n’'<n} is
finite, although the set {n’|n'>n} may be infinite. Notice that in the
theorem-proving interpretation of graphs (G, s), a derivation of a sentence
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c(n) consists of all the sentences ¢(n’) where n’<n. Each such derivation
contains only finitely many sentences c¢(n’).

Figure 1 illustrates a graph (G, s) where nodes are represented as pomts
and where points n and n’ are connected by a directed line from n to n’ if n’
is an immediate successor of n. In general it is convenient to picture graphs
as directed downward, so that n lies above n’ if n’ is a successor of n. To
determine in figure 1 if n e s(G’) it suffices to verify that G’ is the set of all
nodes connected to n by an arc directed to n. Thus, for example,

s(n1, n2) = {ns},
s(nz, ng) = {no},
- 8(n3, na) = {n7, ms},
s(n7) = {nmo, n1}, -
s(n2) =s(ns) =s(ng) =s(n1, n2, n) =2.

If the graph of figure 1 is interpreted as a resolution graph by a labelling
function ¢: G-S* then the two clauses ¢(n7) and c(ng) must be all the re-
solvents of the pair ¢(n3), ¢(ns). The clause ¢(ng) resolves with none of the
clauses ¢(n,;), 1<i<14. The clauses c(n0) and c(n11) are either factors of
¢(n7) or are obtained from c(n7) by resolving c(n7) with itself, If C= c(ng) =
¢(n7) =c(n14) then C has three derivations, two of level one and one of level
three. Derivations are not necessarily represented by derivation trees. For
instance the derivation of ¢(ny3) consists of the clauses c(ny), c(m), c(n3)
¢(ng), ¢(ng), c(n7), c(no), c(n1), c(m3). The clause c(n2) is used twice in
the derivation of ¢(ny3) but is represented by only one node in G.

An abstract theorem-proving problem with non-negative costs (‘abstract
problem with costs’ or simply ‘problem’) is a tuple = (G, s F, g) where
F =G, the set of terminal nodes for 2 (or solution nodes), and g: G-R,
the costing function of 2, (R, the set of real numbers) are such that

(1) ne & implies that s(G’) =& whenever ne G'<=G,
(2) () g(n)=0forallneG,
(b)if nes(ny,...,n) (we write s(ny, ..., n) mstead of
s({m,’....m}) then g(n)>max g(n).
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A solution to the problem 2 is obtained by constructing an algorithm T
which generates from %y a node ne #. Each node ne & is assigned a cost
and it is often required to solve 2 by generating a node n € & having minimal
cost in &Z. If g(n) =0 for all n € G then in effect we have a problem without
costs. Alternatively g(n) may be taken to be the level of », the number of
nodes n’'<n or any other value which satisfies (3) above. In applications to
resolution theory g(n) is usually taken to be the level of the clause ¢(n).
For ne &y we do not require that g(n) =0. This freedom allows us to assign
different costs to distinct nodes in &y and is especially useful when & is
infinite. The set & may be empty in which case the problem has no.
solution. In resolution applications when & = {ne G|c(n) =1} then & is
empty if the set So={c(n)|n € Fo} is satisfiable. The general problem
P=(G, s, F, g) reduces to the ordinary tree searching problem when (G, s)
is a tree.

SEARCH STRATEGIES FOR ABSTRACT THEOREM-

PROVING PROBLEMS .
A search strategy X for 2 is a function X : 26—2C¢ which generates subsets
of G from other subsets of G. Given such a function X for # we define the
sets T, of nodes already generated by T before the (i+1)th stage and £, of
nodes which are candidates for generation by T at the (i+ 1)th stage:

Zo=0, o=, ‘ (1)

Ti+1 =2,~UE(Z,),

Sivi=({nlnes(G’), G'SLia}ul) L, . (2)
We require that X satisfy

()l (3)

The set of nodes T(Z,;), chosen from the set of candidates £, is the set of
nodes newly generated by X at the (i+ 1)th stage. (Itis easy to verify that ;,nE,=
o for all i>0.) The function T should be interpreted as selecting subsets G’
of X; and generating nodes ne€s(G’) which have not been previously
generated. The definitions above only partially formalize the intuitive notion
of search strategy for P. In particular the search strategies X are never allowed
to display any redundancy, i.e., generate the same node twice. This restriction
is not essential because given any concrete, possibly redundant, algorithm for
generating nodes in G there corresponds a unique search strategy X which,
except for redundancies, generates the same nodes in the same order.

Notice that X(Z,) may contain more than one node — as is common with
resolution strategies which simultaneously generate several resolvents of a
single clash or several factors of a single clause. Notice too that nodes in &,
can be generated at any stage. We do not require that £(Z,) contain a node
ne F when EnF #o. If 2 is an ordinary tree search problem then the
definition of search strategy for 2 provides a formal notion which applies
to the usual strategies employed in searching for nodes in trees.
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A search strategy X for = (G, s, F, g) is complete for ? if for all ne G
there exists an i>0 such that n € Z,. It is possible to define completeness in
this way since we do not insist that ¥ generates no additional nodes after

_generating a first node n* € #. We say that T terminates at stage i>0 if
FNZi—1=0 and either (1) FNI,;#0 or (2) £,=%;-1. In the first case T
terminates with a solution and without a solution in the second case.

In the terminology of Hart, Nilsson and Raphael (1968), a search strategy
T is said to be admissible for 2 if X is complete for & and terminates with a
solution having least cost in & if F#p, ie., n*e FNE, FNI,_1=0
implies that g(n*) <g(n) for all n € &. In resolution applications admissible
search strategies are of special interest for robot control and automatic
program writing (Green 1969b) where minimal cost solutions are related to
simplest strategies and most efficient programs. More generally intuition
suggests that, in the absence of special information about the location of
non-minimal solutions, admissible search strategies will tend to be more
efficient than non-admissible strategies for finding arbitrary solutions. An
important step towards formalizing this intuition has already been made in
the optimality theorems of Hart, Nilsson and Raphael (1968).

We define the notion of a search strategy Z for a problem 2= (G, s, ¥, g)
being compatible with a merit ordering < defined on the nodes of G. For the
moment we require only that < be reflexive and defined for all pairs of nodes
in G. We write n;<n, (ny has better merit than ny) when n;<n, and not
ny<Xmy. We write nyxn; (ny and n; have equal merit) if ny<Xn; and n,<n,.
A search strategy X for & is compatible with a merit ordering < if for all
i<0,

(1) £, o implies that £(Z,;) # ¢,

(2) ne Z(Z,) implies that n<n’ for all #’ € £,

In other words £ always generates, from a non-empty set 2,, at least one
node n € £, and no node n’ € £, which is not generated by T has better merit
than any node n € £, which is generated by Z. Since a node n may have better
merit than an ancestor n’'<n, X need not generate nodes in order of merit.
Distinct strategies  and X’ for the same & compatible with the same merit
ordering =<{ differ only with regard to tie breaking rules for choosing which
nodes to generate from a set of candidates having equal merit. If < is the
trivial ordering, n<Xn’ for all n, n’ € G, then <X is a merit ordering for G and
any search strategy T for & is compatible with <. If < is the ordering by
levels, n<Xn’ if and only if n € &, n’ € & and i<i’, then any search strategy
for 2 compatible with < is a level saturation (or breadth first) strategy for
2. If < is the ordering by costs, n<Xn’ if and only if g(n) <g(n'), then T
compatible with =< is a cost saturation strategy for 2. If < is the inverse
ordering by levels, n<X#' if and only if ne &, n'e &y and i=i’, then T
compatible with =<{ is a depth first strategy for 2.

Lemma 1 states the fundamental properties of search strategies £ com-
patible with merit orderings: (a) any node n; € G is generated by X before
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any node »; which has worse merit than 7, and than all the ancestors of n,
(b) if ny is generated before n, then ny or some ancestor of nz has worse or
equal merit to n;.

Lemma 1

Let 2=(G, 5, #, g) be a problem, < a merit ordering for G and X a search
strategy for 2 compatible with <.
(a) If n; € £, and n, € G are such that n<m; for all n<ny then my ey -1
(b) If m € Z; and n; € X(Z;) then ny<n for some n<n,.
Proof. (a) Let n; be generated at the (j+ Dth stage, i.e.,,m € X(Z;), m ¢ T;and
Jj<i.Ifn ¢ T, then for some n<m,n¢ Z;andn e £, But n<ny and therefore
¥ is not compatible with < since it generates my 1nstead of n at the (j+ l)th
stage. Therefore n; € Z; and n; € Z,_; since j<i.

(b) Suppose n<m for all n<n,. Then by (a), np€ Zy-1 and therefore
m ¢ Z(Z). :
A merit ordering <X for G is 8-finite if for all n € G the set {n’ € G|n'<Xn}
is finite (compare Hart, Nilsson and Raphael 1968). The importance of
S-finite merit orderings is a consequence of Theorem 1: any search strategy
compatible with a §-finite merit ordering is complete. Any merit ordering
for a finite set G is é-finite. Ordering by levels is d-finite if & is finite and
5(G") is finite for all G'< G, under the same conditions inverse ordering by

levels is not é-finite if G is infinite (by Konig’s Lemma).

Theorem 1

If 2=(G, s, #,g) is a problem, < a J-finite merit ordering for Gand Z a
search strategy for 2 compatible with =<, then X is complete for 2.

Proof. Let n* € G be given. We need to show that n* € Z; for some j>0.
If G is finite then G= u 2, since £,#2 implies that Z(Z,;) #08 and since
Z(Z)NE;=0o.

Otherwise if G is infinite let #’ <n* be a node such that n<xn’ for all n<n*.
Since < is d-finite, since £,#0 implies that £(Z,) # o and since Z(T;)cE,
it follows that for some j>0 and for some n € Z; n'<m, and therefore
n<ny for all n<n* and by Lemma 1 (a), n* € Z;.

HEURISTIC FUNCTIONS AND DIAGONAL SEARCH

There is special interest in merit orderings which can be expressed in terms
of the cost function g of 2=(G, s, #, g) and of an additional heuristic
function & (Hart, Nilsson and Raphael 1968, Nilsson 1968, Pohl 1969).
A heuristic function h for 2 is a function h: G—R such that h(n) >0, for all
neG. Let f(n) =g(n) +h(n) for all ne G. The intended interpretation of
the heuristic function 4 is that f(n) =g(n) +h(n) is an estimate of the cost
g(n*) of a terminal node n* € &, such that n<a*, i.e., A(n) is an estimate of
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g(n*) —g(n). If it is desired that X be admissible then A(n) is intended to
estimate the minimum value of g(n*)—g(n) for n* € & such that
n<n*,

Suppose, for example, that we know of a given problem 2= (G, so, o,
£o) that if it has a solution then its minimum cost is k. Suppose for simplicity
that no n e Gy has cost go(n) greater than k. Given only this information
then an appropriate definition of a heuristic function ko for 2, is hy(n) =
k—go(n) for all n e Gy.

Suppose that a given problem 2,=(G, 51, 1, &1) is interpreted as a
resolution problem by a labelling function ¢: Gy— S*. Suppose that the in-
ference rules I consist of a factoring operation for unifying two literals in a
clause and of a separate resolution rule for resolving at most two factors.
Let g1(n) be the level of n and F1= {n|c(n) =0}. For n e Gy let I(c(n)) be
the length of c(n) (number of literals in ¢(n)). The heuristic function A, for
2, is defined by letting hy(n) be the expected length of ¢(n):

" (1) for ne &Ly, hi(n)=I(c(n)),
(2) for ¢(n) a resolvent of ¢(ny) and c(nz), b1 (n) =I(c(ny)) +1(c(n2)) =2,
(3) for ¢(n) a factor of ¢(n’) (the result of unifying two literals in ¢(n’))
h(n)=I(c(n')) —1.

To the extent that merging does not occur (i.e., so long as A;(n) =I(c(n))),
hi(n) is a lower bound on the value of gi(n*) —g((n) for ¢(n*) =[] when
c(n) occurs in a derivation of [J.

The costing function g and heuristic-function 4 allow us to define two
important classes of search strategies for 2. Given 2= (G, s, #,g) and h
a heuristic function for 2. Let the merit orderings <, and <{,, for G be
defined for all ny, n; € G, by

(1) ny <anyif and only if f(m) <f(n2),
(2) m <2 if and only if f(m) <f(n2) and h(n) <h(nz2) when f(n) =

S(n2).

A search strategy Z for 2 is a diagonal search strategy for 2 and h (written
Ze9(2, h)) if and only if X is compatible with the merit ordering <.
Z is an upwards diagonal search strategy for 2 and h (£ € 9*(2, h)) if and
only if X is compatible with the merit ordering <. Notice that 24(2, h)c
29(2, h) and that 24(2, h) =D (2P, h) if h(n)=0for all ne G.

Except for minor differences, the search strategies £ € 2(2, h) coincide
with those investigated in Hart, Nilsson and Raphael (1968) for the case of
ordinary tree search. The search strategies X € 2%(2, h) differ from those in
2 (2, h) by generating, from among candidate nodes which have equal merit
for <4, those nodes whose cost is estimated to be closest to the cost of a
solution node. In the case of the problem 2, and heuristic function A,
defined above, fo(n) =go(n) +ho(n) =k for all ne Gy. All nodes in G have
equal merit for search strategies T € 2(Zo, hy). For X € 24(2,, hy) nodes
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which have cost closer to k have better merit than nodes which have smaller
cost. In case go(n) is the level of n for all ne Gy then X € 2%(P, hy) is a
depth-first search strategy, which intuitively seems the most efficient search
strategy for &, given only the information that a minimal solution of 2, -
must have level k. Concrete search algorithms for T € 924(£y, k) are discussed
in the next section.

(0,0)

: N\
g
Figure 2

The terminology, diagonal and upwards diagonal search, is suggested by
representing nodes n € G as occupying positions in the plane with coordinates
(h(n), g(n)), where h increases rightwards away from the origin and g
increases downwards away from the origin (see figure 2). e 2(2, k)
attempts to generate nodes on consecutive diagonals in order of increasing
distance from the origin (0, 0). In addition if T € 2%(2, h) then X attempts
to generate nodes, lying on a given diagonal d, upwards in order of increasing
h. If <4 or <, are d-finite then each diagonal contains only finitely many
nodes n € G and for every diagonal d there are only finitely many diagonals
which contain nodes # € G and which are closer than d to (0, 0).
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Figure 3 illustrates Lemma 1 and Theorem 1 for a problem & and for a
search strategy Z € 2%(2, h) where =<, is assumed to be J-finite. The node
n* e has minimum cost in & and »’<n* is a node having worst merit
in the set consisting of n* and all ancestors of #*. The node 7 € G has better
merit than #* and n"<n has worst merit in the set consisting of » and all
ancestors of 7. Dots represent nodes, lying on diagonals, generated by %
before the generation of n*. The small circles represent nodes generated by
Z after the generation of n*. The diagonal d contains the node »’. By Lemma 1,
X generates n* before generating nodes having worse merit than »’, ie.,
before generating nodes lying above n’ on d and before generating nodes lying

on diagonals to the right of d.

0.0) — . b

n* e

nk*

v
g
Figure 3

The heuristic function 4 satisfies no conditions other than h(n*) =J(n**)
=0 and those imposed by the 5-finiteness of <4« T may fail to be admissible
because some n** € # having worse merit than n* will be generated before
n* if n** and all ancestors of n** have better merit than #’. The node ne G
will not be generated before n* if 1" lies to the right of d or above n’ on d.
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UPWARDS DIAGONAL SEARCH STRATEGIES FOR

RESOLUTION
The algorithm =* defined below approximates an upwards diagonal search
strategy for the resolution problem £ and heuristic function 4;. The same
algorithm X* when applied to the resolution problem £, and heuristic
function h, defined below is a pure upwards diagonal search strategy for
2, and h,. The admissibility and optimality theorems of the next section
apply to Z* for &, and h, and to T* for #; and h;, except when merging
occurs in 2. A search strategy which differs inessentially from X* has been
implemented in Por-2 by Miss Isobel Smith for a problem and heuristic
function similar to &; and 4.

The definition and identification of the problem .% was motivated by a
suggestion of Mr Donald Kuehner. #2= (G, 52, F2, g2) differs from 2; by
interpreting clauses ¢(n) as lists of literals and by explicitly exhibiting and
assigning cost to the operation (treated as a special case of factoring) of
identifying two copies of the same literal within a clause. The length /(c(n))
of ¢(n) is defined as the number of literals in the clause ¢(n), counting
duplications. g»(n) and hy(n) are still defined respectively as the level of n
and expected length of ¢(n). h2(n) =I(c(n)) for all ne G, and hy(n) is
always a lower bound on the value of g2(n*)—ga2(n) when n<n* and
n*e Fr={neGylc(n)=0}.

Throughout the remainder of this section, #=(G, s, #,g) and A are
either 2, and Ay or 2; and h,. The definition of £* for £ and 4 is the same for
both of these cases except for the details remarked upon at the end of this
section.

Clauses c(n) are stored upon the generation of n in cells A(i,j) of a
two-dimensional array 4. ¢(n) is stored in A(i, j) if I(c(n)) =i and g(n) =j.
Although it is natural to represent cells A(i,j) as lists of clauses, we write
c(n) e A(i, j) if c¢(n) is stored in A (i, j) when n is generated. The merit of a
node n € G is defined to be the cell A(h(n), g(n)). The cell A4(7, j) is said to
be better than A(i',j') (written A(i, ))<A(¥,j)) if

(1) i+j<i'+j or '

(2) i+j=i'+j and i<i'.

Thus a node n € G has better upwards diagonal merit than a node'n’ € G if and
only if the merit of n is better than the merit of n’, equivalently n<Xn’ if and
only if A(h(n), g(n))<A(h(n"), g(n')). Notice that for 2, and h;, ne G,
has merit A(i, j) if and only if ¢(n) € A(i, j). For 2 and 4y, if n € Gy has
merit A(i,j) then c(n) € A(¥’', j) where i’=I(c(n)) <h(n)=i. Z*, on the
whole, attempts to generate nodes of merit A(i,j) before attempting to
generate nodes of worse merit A(i’,j')>A(, j) A node of merit 4(i,j) is
generated either

(0) by inserting into 4 (i, 0), when j=0, a clause c(n) where I(c(n)) =i
and g(n) 0,
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(1) by unifying two literals within a clause ¢(n) € A(i+1,j—1) or

(2) by resolving a factor c(n1) € A(i, j1) with a factor ¢(n) € A(iy, /)
where n; may be identical to n; and where

i=i+i~-2 and
j=max (i, j2) +1.

Z* employs two subalgorithms for generating nodes n € G. The principal
subalgorithm, Fill(i, j), generates in all possible ways, from nodes already
generated, nodes n of merit A(J, j) which have worse merit than all their
ancestors. Fill(i, j) terminates when all such nodes have been generated.
Fill(#',j"), where A(#,j") is the next cell after 4(J, j), begins when Fill(i, 1))
terminates. £* begins by invoking Fill(0, 0).

Whenever a node no is generated by Fill(i, j) the second subalgorithm
Recurse(c(ng)) interrupts Fill(i, j) and generates in all possible ways, from
nodes already generated, nodes » which are immediate successors of ng and
which are of merit 4(i1, j1) better than A(7, j). In general whenever a node
n is generated, either directly by Fill(i, j) or by some call of Recurse(c(n'))
which is local to Fill(i, j), Recurse(c(n)) generates, from nodes already
generated, immediate successors of 7 which are of better merit than A(j, j).
Notice that if » is generated by Recurse(c(n’)) during Fill(i, j) then n has
better merit than some ancestor of merit A(i, /). Notice too that the depth
of recursion involved in Recurse(c(n’)) is bounded by the sum i+j.

REMARKS

(1) If 2 and h are 2, and h, and if ¢(ng) is generated directly by Fili(i, j)
then ¢(no) € A(i,j) and the only immediate successors of ny which are of
better merit than A (i, j) are nodes ny € A(i—1,j+1). Any such n, generated
by. Recurse(c(no)) is obtained either by factoring c(ng) or by resolving
¢(mo) with a unit clause ¢(n) of level g(n) <j. More generally if np is generated
by Recurse during Fill(i, j) and if c(no) € A(io,jo) then it is easy to verify
that io+jo=i+j and any immediate successor of ny of better merit than
A, j) is of merit A(ip—1,jo+1).

(2) If 2 and h are 2 and hy then * may fail to do upwards diagonal search
because of merging, i.e., nodes may be generated by Recurse which have
worse merit than other candidates for generation. Suppose that ng is generated
by Fill(i, j) and that ¢(no) € A(¥’, j) where i’ <i. Suppose that ny and n, of
merit A(i'~1, j+1) are generated by Recurse(c(n)), ny before ny. Suppose
that n3 of merit A(i'~1,j+2)<A(i,j) is generated by Recurse(c(n)).
Then n; has better merit than n3 but n3 is generated before n, since Recurse
(¢(m)) must terminate before Recursec(ny)) generates n,.

(3) For both 2y, by and 2, ks, Z* has the desirable property of attempting
to resolve every unit clause ¢(#) with all previously generated units c(m)
as soon as c(mo) is generated. If nmo is generated during Fill(i, J) and if
c(no) € A(1, o) and c(m) e A(1, j,) then A(0, max (jo, 1) + 1)<A(i,j) and
an attempt will be made to resolve ¢(ng) with ¢(n;) during Recurse(c(ng)).
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(4) Suppose that Fill(i, j) has just begun, then X* has not yet generated any
nodes of merit worse than A4(J,j). Thus if # has merit A(i, j) then either
J=0and g(n) =0 or ¢(n) is a resolvent of factors ¢(m) and c(n) and both
np and n, are of merit better than A(7, j). In order to generate all such nodes
n it suffices to attempt to resolve all clauses ¢(n1) with clauses ¢(n,) where
) C]EA(l,k),CzEA(i—l+2,j—l)
for 0<k<j—1and 1<I Elif iiseven or 1<I< H'Tl if i is odd.
(5) The details for generating nodes during Recurse(c(n)) have already been
discussed for &, and h, in remark (1). For &1 and h; these details are more
complicated. Suppose that n has been generated during Fill(i*, j*) and that
c(n) € A(i, j). The following procedure will generate, without redundancy,
from nodes generated before n, immediate successors of # which are of better
merit than A(i*, j*): ' '
(a) First resolve ¢(n) with clauses in A(#, j') where j—1<j' <i*+j*—i+2,
in order of decreasing j’, and for given j’, where 1<i'<i*+j*—j'—i+1in
arbitrary order but preferably in order of increasing #'.
(b) Next generate factors of ¢(n) by attempting to unify, in all possible
ways, two literals in ¢(n).
(¢) Finally resolve ¢(n) with clauses in A(i’,j') where 1 <i'i* 4 j*—i—
j+1; 0<j'<jin arbitrary order but preferably in order of increasing i’.

ADMISSIBILITY AND OPTIMALITY OF &2 AND 9«
Let 2= (G, s, #, g) be an abstract theorem-proving problem. For n € G let

H(n) = {g(n*) —g(n)|n* e F, n<n*},

h*(n) =inf H(n) when H(n) #0,

h*(n) = when H(n)=0.
Then when n<n*, for some n* € &, h*(n) is the greatest lower bound on the
additional cost over g(n) of g(n*). The heuristic function 4 is intended to be
an estimate of A*. The only property of oo needed below is that k< co for all
real numbers k. Since we do not allow A(n) =c0, it is often impossible to
construct a heuristic function 5 which gives a perfect estimate of A*, In
particular it is impossible to incorporate into a definition of 4 any information
that a node » is not an ancestor of a node n* € #. However such heuristic
information can be applied to a problem £ by defining a new problem 2’
which differs from 2 by containing no such nodes z. Alternatively it is possible
to allow h(n) = o in which case several complexities need to be introduced in
preceding definitions (e.g., in the definition of d-finiteness).

A heuristic function 4 for & satisfies the lower bound condition for 2 if

h(n) <h*(n) for allne G,

i.e., if h(n)<g(n*)—g(n) whenever n*e # and n<n*. Thus the lower
bound condition constrains in effect only the value of A(n) when n is an
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ancestor of some solution node. Recall that h, satisfies the lower bound
condition for &; while /; does the same for 21 except for merging.

Lemma 2 states certain fundamental properties of heuristic functions A
satisfying the lower bound condition: (a) #(n*)=0 for n*e &, (b) no
‘ancestor of a solution node n* e & has worse diagonal merit than n*,
(¢) there exists a solution node n* € & having minimum cost in & if diagonal

merit is S-finite.

Lemma 2
Let 2= (G, s, #, g) be an abstract theorem-proving problem and let the
heuristic function 4 for & satisfy the lower bound condition.

(a) If n* € & then h(n*) =h*(n*) =0 and therefore f(n*) =g(n*).
(b) If n* € # and n<n* then f(n) <f(n*).
() If <q is O-finite then for some n*e F g(n*)<g(n) for all ne &,
provided & #g.
Proof. (a) is obvious, since H(n*) = {0} and h*(n*)=0.
(b) If n* € &# and n<n* then h(n) <g(n*)—g(n).
But then f(n) =g(n) +h(n) <g(n*)=f(n*).
(c) If <4 is o-finite then for all ne G, the set {n'|f(n’)<f(n),n' € G} is
finite. In particular for ne & the set {n’|g(n’) <g(n),n’ € &} is finite and
therefore contains an element #* such that g(n*) is minimal. But then
g(n*)<g(n')foralln' e #.

Theorem 2

If <4is &-finite for 2= (G, s, F, g) and if h satisfies the lower bound condi-
tion for 2 then X € 2(2, k) is admissible for 2.

Proof. Assume that ##¢. Let n* € F be such that g(n*) <g(n) for all
ne % (such an n* € & exists by Lemma 2(c)). By Theorem 1, ¥ is complete
and therefore there is a stage i such that for some »,

ne#nk; and FnI_i=g.

Suppose that X is not admissible for 2, Then g(n*) <g(n). But, by Lemma 2,
for all n'<n*, f(n') <f(n*) =g(n*) <f(n). So f(n') <f(n) for all n'<n*,
But then n'<n for all n’<n*. By Lemma 1(a), n*eX,_; and therefore
F NI, 1+, contrary to assumption,.

Theorem 2 specializes to a generalization of Theorem 1 in Hart, Nilsson
and Raphael (1968) when s(G’) =g for all G’ G which are not singletons.
In particular it is not necessary to require that &, be finite or that g(n) be
strictly greater than g(n’) whenever n’<n. Since the specialization yields a
tree representation of graph search, it is unnecessary to distinguish between
the cost g(n) and the total cost along some minimal path to n.

Figure 4 illustrates Lemma 2 and Theorem 2. 2, T, n*, n’, n and n" are as
in figure 3, but 4 satisfies the lower bound condition. By Lemma 2, n’ lies
on the same diagonal d as does n*. X is admissible since any n** € & having
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(0,0) d

n* ¢

v
Figure 4

worse merit than »n* lies on a diagonal to the right of d and is not generated
before n*. It is still possible for a node n € G to have better merit than n* and
not be generated before n* because n” has worse merit than ',

To prove the appropriate extension of the Hart—Nilsson—~Raphael Theorem
on the optimality of X € 2%, we need to formulate an assumption equivalent
to their ‘consistency assumption’. The reader familiar with Hart, Nilsson and
Raphael (1968) will easily convince himself that the following condition is
equivalent to the consistency assumption. We say that the evaluation function
f satisfies the monotonicity condition if

Jf(')Y<f(n) for n"<nand
f(n*)=g(n*) for n*e &F.

(The first condition is equivalent to
h(n)Zh(n') — (g(n) —g(n")) for n’<n.)

Notice that for &, the evaluation function fo=g,+h, satisfies the mono-
tonicity condition whereas for £; the function fi=gi+/ is monotonic
except for merging. ' :
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Figure 5 illustrates upwards diagonal search when the function f satisfies
the monotonicity condition. 2, Z, n*, n’, n and n" are as in figures 3 and 4.
By Lemma 3, 4 satisfies the lower bound condition and therefore ¥ is admis-
sible and n’ lies on the same diagonal as n*. The monotonicity condition

‘implies that if » has better diagonal merit than n* then all ancestors of n
have better merit than #* and therefore, by Lemma 1, #n is generated before

Figure 5
Lemma 3

Let 2= (G, s, #,g) be an abstract theorem-proving problem, let » be a
heuristic function for 2, and let f satisfy the monotonicity condition, where
S(n) =g(n) +h(n), neG. Then

(a) h satisfies the lower bound condition,
(b)if Ze 2(2, h), m € Z; and n; € () then f(m) <f(n2).

Proof. (a) h satisfies the lower bound condition if A(n)<g(n*)—g(n)
whenever n* € # and n<n*.
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But monotonicity of f implies that
S(n)=g(n) +h(n) <f(n*)= g(n"‘)
So h(n)<g(n*)—g(n).
(b) Suppose the contrary, namely that n; € Z,, n, e £(Z,;) and f(n;)> f(n2).
But then, since f(n') < f(n2) <f(n1) for all n’ <ny, it follows that n'<n; for
all n”’<n;. By Lemma 1(a), n € Z,1, contradicting the assumption that
meZ(Zy).

For the case of ordinary graphs, the optimality theorem (Theorem 2) of
Hart, Nilsson and Raphael (1968) compares, in effect, search strategies
T e 2(2, h) with strategies X' € 2(2, h') where h'(n) <h(n) for all ne G
and where f=g+h is monotonic. [In Hart, Nilsson and Raphael (1968) the
search strategy X’ is assumed only to be ‘no better informed’ than X - we
interpret this to mean that 4'(n) <h(n)and '€ 2(2, h).] If £, and X', are
the first sets which contain nodes n* € # then X, X', UG’ where G’ is the set
of nodes n € £, which have diagonal merit equal to n* e Z,n4%, i.e., before
termination X’ generates all the nodes generated by X except possibly for
unlucky choices by X of nodes tied for merit with the solution node n* e Z,.
Theorem 3 below generalizes Theorem 2 of Hart, Nilsson and Raphael
(1968) and implies in addition that 2* is an optimal subclass of 2.

It should be noted that the monotonicity condition on fin Theorem 3 can
be replaced by the lower bound condition on 4 with the result that £’ may
now fail to generate nodes in the larger set G’ of nodes n e I; where some
n"<n has diagonal merit tied with the solution node n* € Z;. A special case
of this modification of Theorem 3 is illustrated by the example of figure 6,
following the proof of Theorem 3.

Theorem 3
Let #=(G, s, #, g) and let h and &’ be heuristic functions for £ such that
h'(n) < h(n) forn € G.

Let f(n) =g(n) +h(n) and f'(n) =g(n) + ' (n). Suppose that fis monotonic.
Given T € 24(2, h) and ' € 2(2, I'), suppose that

n 6.97(\2;, FNIi-1=0 a,

meFnL'yand FNIi-1=g0.
Then X, X{uG* where ' ‘

G*={n|neZ; and for some n'<ny, f(n)=f(n')=f(m) and

h(n)<h(n')}.
Proof. X' satisfies the lower bound condition since A’(n) <h(n) for all
n e G and since I satisfies the lower bound condition. Therefore both X and
¥’ are admissible and g(m) =g(n2), f(n) =f(n2). Suppose that ne X, and
that n ¢ Xi. It suffices to show that n e G*.
By Lemma 1(b), neX, implies that n<,n’ for some »n'<n;. But by

Lemma 3(b), since fis monotonic
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Sf(n) <f(m),
Sy <f(m),
S(n")<f(n) for all " <n.
-But &'(n") <h(n") implies
S (7")<f(n"). So
[(7")<f(n) for all n" <n.
Also n¢ Zi and n; € Zi imply by Lemma 1(a) that for some n"<n, n"3=un,,
ie.,

S ()2 (n)=f(m). So
S(n)2f(m) and
S(n)=1(m).

n=< ' implies

S() <f(n') <f(m). So
S(n)=/(n")=f(m) and
h(n)<h(n'), ie.,
ne G*.

Figure 6 compares nodes generated, before the generation of a given
n*e &, by different search strategies Z;€ 2(2, h;) for a fixed problem
?=(G, s, F, g) and for different heuristic functions 4,. #; (n) is assumed to be
a greatest lower bound on the value of A*(n) when n<n*, where n* has least
cost in . Nodes n € G are represented as points with co-ordinates (A;(n),
g(n)). The node n’ has worst upwards diagonal merit in the set consisting

(0,0) dy dy dy dy

s

n

> Iy

do

n* /
d;
ds

ds dw

Figure 6
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of n* and the ancestors of n*. The functions A, are defined by k,(n) =ih1(n)
forallne G, 0<ieRR.

For 0<i< 1, k; satisfies the lower bound condition for # and Z, is admis-
sible for 2, Z, need not be admissible for 2 when i>1. The area to the left
of the line d; contains nodes generated by X, before the generation of n*.
For 0<i<1, X, generates all the nodes generated by Z;. For i> 1, Z; generates
all the nodes left of d; which have been generated by Z;. No X, is more efficient
than Xy, if i>1. Some Z, may generate fewer nodes than Xy, if i> 1, but this
possibility becomes more remote as { increases. However even for large i, ¥;
may be more efficient than X for generating solution nodes of arbitrary cost.
A more thorough analysis of relationships similar to those discussed here has

been made by Ira Pohl (1969, 1970).
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