
-

-
-

=

...

-

LOGIC FOR

PROBLEM SOLVING

by

Robert Kowalski

Memo No 75

~o, "' -· }"
Jel. ,· ✓- • •

DEPARTMENT OF COMPUTATIONAL LOGIC
SCHOOL OF ARTIFICIAL INTELLIGENCE
UNIVERSITY OF EDINBURGH _ _.,_ _______________________ _

9HOPE PARK SQUARE EDINBURGH EH8 9NW

....,

LOGIC FOR

PROBLEM SOLVING

by

Robert Kowalski

Memo No 75

March 1974.

1

INTRODUCTION.

Our thesis is that predicate logic is a useful language for representing

knowledge. It is useful for stating problems and it is useful for

representing the pragmatic information necessary for effective problem­

solving. We shall support our thesis by investigating the application of

predicate logic to problems of syntactic analysis and robot plan-formation.

We shall investigate the utility of employing predicate logic both as a

programming language and as a problem-solving language for reducing the

solution of problems to subproblems.

We shall argue that the distinction between top-down and bottom-up

problem-solving, which arises in syntactic analysis, applies more generally

in predicate logic. It characterises the main difference between different

proof procedures. Top-down proof procedures are goal-oriented. They

reduce problems to subproblems with the objective of eventually reducing the

original problem to a set of solved subproblems. Bottom-up proof procedures

are consequence-oriented. They derive new solutions (or assertions of fact)

from old ones with the objective of eventually deriving a solution of the

original problem.

The top-down, bottom-up distinction is useful in the robot-plan

formation problem. The frame axiom asserts that a fact which holds in a

given state of the world continues to hold in the new state obtained by

performing an action. Certain facts, which are affected by the action, are

exceptions to the rule. The frame problem is the problem of the combinatorial

explosion caused by interpreting the frame axiom bottom-up. Bottom-up inter­

pretation of the frame axiom involves copying facts which hold in old states,

re-asserting that they continue to hold in new states. Top-down inter­

pretation of the frame axiom involves reducing the problem of determining

that a fact holds in a new state to the problem of determining that the same

fact previously held in an earlier state. It is generally considered that

the frame problem arises as a result of applying predicate logic to the

representation of knowledge about a changing world, and that the problem

cannot be solved within the constraints of predicate logic. In our

formulation, the frame problem is solved in first-order predicate logic by

the top-down interpretation of the frame axiom.

Top-down analysis is the key also to the problem-reduction and

procedural interpretations of predicate logic. In the problem-reduction

---------- -- -----------

2

interpretation, a sentence of the form

(which is read "B if A1 and ••• and An") is interpreted as a problem-solving

method which reduces problems of the form B to the set of subproblems

{A1, ••• ,An}• In the procedural interpretation, the same sentence is

interpreted as a procedure declaration whose name B identifies the form

of the procedure calls to which it can respond and whose body { A1, ••• ,An}

is an unordered set of procedure calls Ai•

In the problem-reduction interpretation, predicate logic is a more

satisfactory model of problem-solving than the problem-reduction model

used in artificial intelligence. Predicate logic deals with the reduction

of problems to dependent subproblems, which need to be solved compatibly.

Problems consist of hypotheses and conclusions. Effective problem-solving

involves a combination of top-down analysis starting from the conclusion of

the problem and bottom-up analysis starting from the hypotheses. In

general several problem-solving methods might need to co-operate in order

to solve a given problem. Individual methods might work in separate

cases.

cases.

Between them the several methods might work in all the possible

In contrast the usual problem-reduction model deals with the

reduction of problems to independent subproblems. Problems and subproblems

have no hypotheses. Problem-solving methods need to be self-sufficient and

to work independently.

In the procedural interpretation, predicate logic is a more satisfactory

programming language than the machine-oriented languages which are used to

program computers today. Unique among programming languages, predicate

logic has been designed for the formalisation of human thought. It has a

simple machine-independent semantics which makes predicate logic programs

easier to modify and adapt to other purposes, and easier to integrate into

more complicated programs. Predicate logic programs have no explicit

input-output distinction. A procedure, written with the intention of

constructing as output the result of appending one list to another, can be

used to divide an input list into two parts which are returned as output.

Since procedure bodies are sets (rather than sequences) of procedure calls,

scheduling of procedure calls can be made sensitive to the context in which

the procedure is called. Typically the appropriate scheduling of procedure

calls depends on the input-output pattern of the procedure call which invokes

3

the given procedure. Sets of assertions function as data structures.

Top-down execution of procedures interrogates data structures, whereas

bottom-up execution manipulates them.

The ability to combine flexibly top-down and bottom-up analysis is

provided by the connection graph theorem-proving system. Sentences are

stored in a graph whose arcs connect procedure calls with matching procedure

names. Accessing relevant procedures and intersecting bottom-up with top­

down analyses is facilitated by the connections in the graph.

These topics are treated in the following six chapters;

Chapter 1 deals with the machine-independent syntax

and semantics of predicate logic.

Chapter 2 investigates the parsing problem, its

predicate logic formulation, and the

top-down and bottom-up strategies of

solution.

Chapter 3 investigates the robot plan-formation

problem, the frame problem, and

conditional plans.

Chapter 4 studies the problem-reduction inter­

pretation of predicate logic.

Chapter 5 studies the procedural interpretation.

Chapter 6 introduces the connection graph theorem­

proving system.

4

CHAPTER 1. MACHINE-INDEPENDENT SYNI'AX AND SEMANI'ICS.

The most outstanding characteristic of predicate logic regarded as a

programming language is that programs have a simple machine-independent

semantics. Both the syntax and semantics of predicate logic are further

simplified by dealing with sentences in clausal form. Before the formal

definitions, clausal form and such notions as atomic formulas and

inconsistency will be illustrated in the following example.

Example of the Fallible Greek.

(1) Human (Turing) +

(2) Human (Socrates) +

(3) Greek (Socrates) +

(4) Fallible (x) + Human (x)

(5) + Fallible (x), Greek (x)

In these five clauses, "Human"r "Greek" and "Fallible" are predicate

symbols, "Turing" and "Socrates" are constant symbols and "x" is a variable"

A predicate symbol P applied to a constant or variable t, i.e. P(t}, is an

atomic formula, read

"t is P"

Clauses (1), (2) and (3) unconditionally assert that Turing is human,

Socrates is human, and Socrates is Greek, respectively. Clause (4) states

that all humans are fallible by stating literally that x is fallible if x

is human, no matter what x is. Clause (5) states that no x is both

fallible and Greek. Clearly (5) contradicts what is implicit in (1)-(4),

namely that Socrates is both fallible and Greek. We say that (1)-(5) are

inconsistent.

The example of the fallible Greek has been used often to explain the

behaviour of PLANNER programs {18}. Our intention in using this example

is just the opposite: to show that predicate logic programs can be under­

stood without understanding the behaviour they invoke inside a machine.

The Syntax of Sentences in Clausal Form.

A sentence (in clausal form) is a set {c1, ••• ,c} of clauses C .• n l.

A clause is a pair of sets of atomic formulas

5

The two sets are written without the surrounding curly brackets and are

separated by a backward arrow. The set { B1, ••• ,B } is the conclusion of
m

the clause and the set { A1, ••• ,An} is its hypothesis. The null clause,

n = 0 and m = 0, is written O .

An atomic formula (or atom)is an expression

where Pisa k-ary predicate symbol and t 1, ••• ,~ are terms.

A term is a variable, a constant symbol, or an expression

where f is a k-ary function symbol and t1, ••• ,~ are terms.

The sets of variables, function symbols and predicate symbols are any

three disjoint sets of objects. Associated with every function symbol and

predicate symbol is a unique natural number which is its arity. We assume

there is an unlimited supply of variables and of function symbols and

predicate symbols of every arity. Constant symbols are function symbols

of zero-arity. (Thus "Socrates ()" is a term, whereas "Socrates" is only

a constant symbol.)

Because of the different positions they occupy in atomic formulas, it

is always possible to distinguish between predicate symbols, function symbols

and variables. It is convenient however to treat constant symbols, standing

alone, as terms, allowing an expression such as Human (Socrates) to count as

an atom. This convention introduces ambiguities: it is impossible to

distinguish between constant symbols and variables only by means of the

positions they occupy in atoms. The ambiguity is removed by employing

the convention that the lower case letters

u,v,w,x,y,z,

possibly adorned with subscripts or other decorations, are used exclusively

for variables. Thus in the atom

Adm(cons(x,nil), cons(y,nil)),

Adm is a predicate symbol of arity 2, cons a function symbol of arity 2,

nil a constant symbol, x and y variables.

In addition to the syntactic form of sentences, syntax includes proof

theory, which deals with axioms of logic, rules of inference and proof

6

procedures. Proof theory can be used to assign an operational,

behaviouristic meaning to sentences. Such a use of proof theory corresponds

to the operational semantics of programming languages: the meaning of a

program is determined by the behaviour of a machine which executes it. In

this chapter we are concerned exclusively with the machine-independent

semantics of predicate logic.

The Informal Semantics of Predicate Logic.

Read a sentence { C1, ••• ,cN} as the conjunction of its clauses:

C1 and ••• and CN.

Read a clause B1, ••• ,Bm + A1, ••• ,An containing variables x1, ••• ,~

as stating that

for all x1, ••• ,~,

B1 or ••• or B if Ai and ••• and A. m n

In the special case m = 0 read

for no x1, ••• ,xk, A1 and ••• and An.

Form= 0 and n = 0 read Oas a contradiction. (We use the backward arrow

B + A, B if A, instead of the more usual forward arrow A~ B, if A then B,

because it is more convenient for the problem-solving and procedural inter­

pretations of predicate logic.)

A sentence Sis inconsistent if every way of interpreting the predicate

symbols and function symbols in S makes S false. If Sis inconsistent then

it is also said to be unsatisfiable, since no interpretation satisfies Sin

the sense of making it true. Any sentence containing the null clause or

such implicit contradictions as P + and + P or P(t) +and+ P(x) is

obviously unsatisfiable.

Before defining the semantics of predicate logic more formally, we

shall illustrate some of the expressive capabilities of predicate logic

by means of some examples.

The Factorial example.

(1) Fact(0,s(0)) +

(2) Fact(s(x),u) + Fact(x,v), Times(s(x),v,u)

(3) + Fact(s(s(0)),x)

Here read Fact(a,b) as stating that the factorial of a is band Times(a,b,c)

7

as stating that a times bis c. n Regard the terms 0,s(0),s(s(0)), ••• ,s (0), •••

as numerals denoting the natural numbers:

term s(a) denotes a+l, the successor of a.

n s (0) denotes the number n.

Clause (1) asserts that the factorial of 0 is 1. Clause (2) states

that the factorial of x+l is x+l times v where vis the factorial of x.

Clause (3) states that no x is the factorial of 2.

We assume that Times is interpreted as the Times relation over the

natural numbers. Therefore clauses (1)-(5) are inconsistent where

(4) Times(s(0),s(0),s(0)) +

(5) Times (s (s (0)) ,s (0) ,s (s (0))) + •

The

Notice that, regarded as a program for computing the factorial relation,

(1)-(3) can be understood without reference to an execution mechanism which

interprets and executes the program.

Append example.

(1) Append(nil,x,x) +

(2) Append(cons(x,y),z,cons(x,u)) + Append(y,z,u)

(3) + Append(cons(a,nil),cons(b,cons(c,nil)),x)

Read Append(a,b,c) as stating that the result of appending the list of objects

b to the list a is the list c. Regard a term cons(a,b) as a list. Its

first element is a and bis the rest of the list. The constant symbol nil

denotes the empty list. cons(a,nil) represents the list containing the

single element a and is abbreviated {a}. cons(b,cons(c,nil)) represents

the list containing the 2 elements band c, in that order, and is abbreviated

{b,c}.

Clause (1) asserts that appending any list x to the empty list results

in the same list x. Clause (2) states that appending z to a non-empty list,

whose first element is x and remainder is y, results in a list with the same

first element x and remainder u which results from appending z toy.

Clause (3) states that no list results from appending { b,c} to { a} and is

inconsistent with (1) and (2) which imply that {a,b,c} results from appending

{b,c} to {a}.

The use of terms cons(a,b) to represent lists is common in list-processing

programming languages. Foster's book {15} is a readable introduction to

list-processing.

8

Admissible Pairs example.

(1) Adm(x,y) + Double(x,y), Triple(x,y)

(2) Double(nil,nil) +

(3) Double(cons(x,y),cons(u,v)) + Times(s(s(O)),x,u), Double(y,v)

(4) Triple(nil,nil) +

(5) Triple(cons(x,nil),cons(u,nil)) +

(6) Triple(cons(x,cons(y,z)),cons(u,v)) + Times(s(s(s(O))) ,u,y)

Triple(cons(y,z),v).

(7) + Adm(cons(s(O),u),v)

Clauses (1)-(6) describe the relation Adm(a,b) which holds between two lists

a and b when

= 2a.
].

and

ai+l = 3bi, for all i < n ,

where a. and b. are the i th elements of the lists a and b respectively.
].].

Clause (7) states that no pair of lists a and bis admissible if the first

element of a is 1. But (7) is inconsistent with (1)-(6) which together

with the correct interpretation of the Times relation imply that each of the

pairs

{ l} and { 2}, { 1,6} and { 2,12},

{ 1,6,36} and { 2,12,72}, •••

is admissible.

Horn Clauses.

The preceding examples have used only Horn clauses

which contain at most one atom in the conclusion.

adequate for many applications of predicate logic.

Horn clauses are

It is convenient to distinguish and have separate names for four kinds

of Horn clauses:

(1) m = O, n = O, D ,
the null clause

(2) m = 1, n = o, B +

A Horn clause with no hypothesis is an assertion.

--- --~-------

9

(3) m = O, n ~ o, + A1, ••• ,A.
n

A Horn clause with no conclusion is called a goal

statement.

(4) m = 1, n ~ O, B + A1, ••• ,A.
n

Every other Horn clause is called an operator.

The motivation for the terminology, "goal statement" and "operator" will be

explained in the chapter on the problem-reduction interpretation of predicate

logic.

The following two examples illustrate the use of non Horn clauses.

Robert is always working.

(1) At(Robert,work), At(Robert,home) +

(2) Working(x) + At(x,work)

(3) Working(Robert) + At(Robert,home)

(4) + Working(Robert)

Robert is either at home or at work. Everyone who is at work is working.

But Robert is working even if he is at home. To accuse Robert of not working

is to be inconsistent.

Subset example.

(1) Sub(x,y), Memb(arb(x,y),x) +

(2) Sub(x,y) + Memb(arb(x,y),y)

(3) + Sub(A,A)

Clauses (l) and (2) result from rendering in clausal form the definition:

x is a subset of y if, for all z,

z is a member of y if z is a member of x.

Clause (3) asserts that A is not a subset of itself. The inconsistency of

(1)-(3) is equivalent to the validity of the proposition that every set is

a subset of itself.

This example can be used as an argument against the suitability of clausal form

for the representation of knowledge. It can be argued that the rendering into

clausal form destroys the intelligibility of the definition of the subset

relation.

Alternatively it can be argued that the example shows the limitations

of machine-independent semantics for understanding sentences in clausal form.

10

Clauses (1) and (2) have a natural,machine-oriented, procedural interpretation:

In order to show that x is a subset of y,

(1) assert that arb(x,y) is some arbitrary

member of x and

(2) show that arb(x,y) is a member of y.

The arbitrary element of x has parameters X and yin order to indicate that the

element arb(A,B) chosen for showing that A is a subset of B is different from

the one arb(C,D) chosen for showing that C is a subset of D or the one arb(B,A)

for showing that Bis a subset of A. The procedural interpretation of (1)

and (2) will be explained more fully in later chapters.

Formal Semantics of Predicate Logic.

The following definition, like the definition of sentence in clausal

form, is presented in a top-down manner. The first definition (of inconsistency)

explains the goal concept to be defined in terms of other concepts. These

concepts become the new goal concepts and are themselves defined in terms of

lower-level concepts. Eventually the definitions terminate with a set of

primitive, undefined concepts. In contrast, definitions presented in a

bottom-up manner begin with the primitive concepts and define new concepts in

terms of ones previously encountered.

goal concept has been defined.

The definitions terminate when the

Top-down presentation of definitions has the advantage that it is goal-

directed. Each definition, as it is presented, is motivated in terms of the

ro').e it plays in defining the original goal concept. The disadvantage is

that, since concepts are explained in terms of other undefined concepts,

definitions cannot be completely understood as they are presented. Just the

opposite holds for bottom-up presentation. Definitions can be understood as

soon as they are given. But the motivations for the definitions cannot be

understood until all the definitions have been completed.

The distinction between top-down and bottom-up applies in many places.

It is the difference between analysis (top-down) and synthesis (bottom-up),

between teleology (top-down) and determinism (bottom-up). It applies both

to the writing and execution of computer programs and to the discovery and

justification of theorems and proofs. The distinction between top-down and

bottom-up and the application of predicate logic to the representation of

knowledge are the dominating, unifying themes of these lecture notes.

11

A set S = { C1, ••• ,cN} of clauses is inconsistent iff it is false in

every interpretation I of s. Sis false in I iff one of c 1 f•••,CN is

false in I. Otherwise Sis true in I.

A clause C is false in I iff for some substitution o-of variable-free

terms for variables in C, the clause C er-which results from applying cr- to

C is false in I. Otherwise C is true in I.

A variable-free clause B1 , ••• ,B + A1 , ••• ,A is false in I iff all the
m n

atoms A1, ••• ,A in the hypothesis are true in I and all the atoms B1, ••• ,B n m
in the conclusion are false in I. Otherwise the clause is true in I.

An interpretation I of Sis an assignment of one of true or false to

all variable-free atomic formulas constructible from the atomic formulas

which occur ins. With a given interpretation I of Sis associated a

domain of objects which we assume to be the set of variable-fn,e terms

constructible from the function symbols (and constants) occurring ins.

The variable-free terms which can be substituted for variables, in order to

construct variable-free atomic formulas from atoms occurring ins, are

chosen from the domain of objects associated with I.

For the set of clauses (1)-(4) of the example of the fallible Greekv

the assignment of

true to Human(Socrates)

true to Human(Turing)

true to Greek(Socrates)

true to Fallible(Socrates)

true to Fallible(Turing)

is an interpretation I of (1)-(4). Notice that there are only two different

variable-free instances of clause (4),

Fallible(x) + Human(x) •

Both instances are true in I. Notice that I is the only interpretation of

(1)-(4) in which (1)-(4) is true.

But clause (5), + Fallible(x), Greek(x), is false in I. Therefore

(1)-(5) is inconsistent, since no interpretation of (1)-(5) makes all of

(1) - (5) true •

12

CHAPl'ER 2. TOP-DOWN AND BOTI'OM-UP INTERPRETATIONS OF PREDICATE LOGIC.

The parsing problem, of showing that a string of words forms a

sentence according to given rules of grammar, can be represented as a

problem of demonstrating the inconsistency of a set of clauses in predicate

logic. Different parsing procedures for determining that a string is a

sentence correspond to different proof procedures for determining the

inconsistency of a set of clauses. Top-down parsing procedures correspond

to goal-directed proof procedures which work backwards from the conclusion

of the theorem to be proved, reducing problems to subproblems, with the

objective of eventually reducing the original problem to a set of initially

solved subproblems. Bottom-up parsing procedures correspond to proof

procedures which work forwards from the initial set of solved problemsv

deriving new solved problems from old ones, with the objective of

eventually deriving a solution of the original problem.

Top-down and bottom-up proof procedures apply generally -co the task

of demonstrating the inconsistency of sets of clauses.

The Parsing problem.

The following informal description of the parsing problem and parsing

procedures is based on Amarel's treatment described by Foster{ 16}.

Given a grammar and an initial string of words such as

"The little mouse likes cheese"

the parsing problem is to demonstrate that the string is a sentence by

filling in the triangle

sentence

with a parse

sentence

noun phrase

determiner phrase

little mouse likes

13

The parse tree is constructed in accordance with the rules of grammar.

In this example, nine rules of grammar have been applied:

(1) A noun phrase followed by a verb phrase is a

sentence.

(2) A determiner followed by an adjective followed

by a noun is a noun phrase.

(3) A noun is a noun phrase.

(4) A verb followed by a noun phrase is a verb phrase.

(5) "The II is a determiner.

(6) "little" is an adjective.

(7) "mouse" is a noun.

(8) "likes" is a verb.

(9) "cheese" is a noun.

Different ways of filling in the triangle determine different parsing

procedures. Top-down procedures are determined by filling in the triangle

from the top downwards. Bottom-up procedures are determined by filling in

the triangle from the bottom upwards.

A top-down procedure might involve an unbiased generation of all

branches in parallel:

sentence

or it might be biased towards a left-to-right analysis of the sentence:

sentence

det7adj
,// The little mouse likes

"'-., "·,,
"~,,

'~
cheese '"" -----~:.

14

Similarly,a bottom-up procedure might generate the parse by an unbiased

analysis of all components of the string in parallel:

sentence

determiner• adj•noun , verb '· .. _

•

The little;mouse -- ---·-. . •- . .

l , noun

likes cheese

Or it might be biased towards a left-to-right investigation:

sentence

noun phrase ~-
.....:..,-•...

determin~r • . adj)no~n-···1
• I

i

---~~--~~t~le l~~seJ~.~~:s __ ~heese _

The triangle can be filled in from right-to-left, bi-directionally

top-down and bottom-up or by any other method. Every method of filling

in the triangle determines a parsing procedure. For our purposes, it is

important to distinguish at this time mainly the top-down and bottom-up

procedures.

When the parsing problem is formulated in predicate logic, top-down

and bottom-up parsing procedures correspond to different proof procedures.

Later in this chapter, top-down and bottom-up proof procedures will be

defined in detail for the general problem of determining the inconsistency

of sets of Horn clauses.

A predicate logic representation of the parsing problem.

Regard the initial string of words as a graph, the arcs of which are

labelled by the words occurring in the initial string. A node occurs

between consecutive words and also at the beginning and end of the string:

15

The initial graph is represented by a set of assertions:

(1) The(l,2) +

(2) little(2,3) +

(3) mouse(3,4) +

(4) likes(4,5) +

(5) cheese(5,6) +

The rules of grammar are formulated as operators:

(6) S(x,y) + Np(x,z) ,Vp(z,y)

(7) Np(x,y) + Noun(x,y)

(8) Np(x,y) + Det(x,u) ,Adj(u,v),Noun(v,y)

(9) Vp(x,y) + Verb(x,y)

(10) Vp(x,y) + Verb(x,z),Np(z,y)

(11) Det(x,y) + The(x,y)

(12) Adj(x,y) + little(x,y)

(13) Noun(x,y) + mouse(x,y)

(14) Verb(x,y) + likes(x,y)

(15) Noun(x,y) + cheese(x,y)

The goal of determining that the string of words is a sentence is formulated

in the goal statement:

(16) +-S(l,6)

Clauses (1)-(16) are inconsistent. A proof of their inconsistency involves

generating a parse of the string as a sentence.

A more realistic example would include many more clauses of the kind

(6)-(15) which define the rules of grammar and record the grammatical

categories of individual words in the vocabulary. In this example only one

clause (9) is unnecessary for a proof of inconsistency. In more realistic

examples the number of unnecessary clauses generally exceeds that which is

necessary for a proof.

Figure 1 illustrates a refutation of (1)-(16) corresponding to a top-

down, left-to-right parse of the sentence. The refutation is a sequence

of goal statements beginning with the initial goal statement (16) and

ending with the empty one.

Figure 1.

(6)

(8)

(11)

(1)

(12)

(2)

(13)

(3)

(10)

(14)

(4)

(7)

(15)

(5)

16

o + S(l,6)

I r + Np(l,z),Vp(z,6)

o + Det(l,u) ,Adj(u,v) ,Noun(v,z) ,Vp(z,6)
I
!
j r + The(l,u),Adj(u,v),Noun(v,z),vp(z,6)

o + Adj(2,v) ,Noun(v,z),Vp(z,6)

i
I o + little(2,v),Noun(v,z) ,Vp(z,6)
t
!
I

(Noun(3,z),Vp(z,6)

o + mouse(3,z) ,Vp(z,6)

0 + Vp(4,6)

6 + Verb(4,z),Np(z,6)
l
I
I
l
o+ likes(4,z),Np(z,6)
I
\

J + Np(5,6)
I
i
I
9+ Noun(5,6)
l

1
I

cheese(5,6) 0 +
!
I
I
I

I
0 □

A top-down refutation of clauses (1)-(16).

17

A derived goal statement Ci+l is obtained from the preceding goal statement

C. in the sequence by
l.

(1) matching, with some substitution 0 of terms for

variables, the underlined selected atom A in C.
l.

with the atom A' in the conclusion of some

clause C in the initial set (1)-(15) of

assertions and operators (A8 = A'0),

(2) deleting the selected atom in C. and replacing
l.

it by the set of atoms constituting the hypothesis

of C, and

(3) applying the matching substitution e to the

resulting clause.

In this example the selection of atoms in goal statements determines that

the parse is executed in a left-to-right manner

The(l,2) +-

Det (1, 2) +-

Figure 2.

little(2,3) +- mouse(3,4) +-

(12) (13)

Adj (2,3) +-

Np(l,4) +-

likes(4,5) +- i
' (14)

1

Verb(4,5) +- \
\
\

cheese(5,6) +- o

(15) t

1
I

Noun(5,6) +

\
\
\
\

(7)
Ji

Np(5,6) + l
/

/
//

\<~01/
Vp(4,6) + V

(16)

[j

A bottom-up refutation of clauses (1)-(16).

18

The refutat1.cn in Figure 2 corresponds to a bottom-up parse which is

unbiased towards left or right directions. The refutation is a tree of

assertions beginning with the initial assertions at the tips of the tree

and ending with the empty assertion at the root. A new assertion is

derived from its inm:tediate predecessors in the tree

by matching their atoms with all the atoms in the hypothesis of some

initial operator

' .•• ,A I
n

The new assertion is

where 8 is the matching substitution,

A.
l.

A'
i

e, for all i < n .

The operators in the Horn clause representation of the parsing problem

can be regarded as a program for parsing strings of words as sentences.

The set of initial assertions function,; 1s 3. data base which records the

individual words in the initial string. The initial goal statement

functions as the top level procedure call. Interpreting operators top-down

uses them as procedures for interrogating the data base. Interpreting

operators bottom-up uses them to manipulate the data base.

Our formulation of the parsing problem was obtained jointly with Alain

Colmerauer and results from representing his Q-system { 8 } in predicate

logic. It is interesting that the Q-system is a bottom-up parsing procedure.

The more abstract.. predicate logic formulation of Q-systems is neutral with

respect to top-down and bottom-up directions.

Although our example deals only with context-free rules of grammar,

it is easy to see how to extend the representation in order to deal with

ccntext-SE0sitive grammars and arbitrary re-writing systems.

19

Search spaces of derivations.

It is important to distinguish between individual derivations

determined by a given inference system and whole spaces consisting of all

the derivations which are determined by the inference system. Figure 3

shows the search space of all top-down derivations determined by a given

initial set of clauses and by the selection procedure which selects the

alphabetically earliest atom in every goal statement.

c;\; +- A

A +- C
+- +- £, E A +- D, E

D +- E

? +- E
E +- F, G

I F +- H

}\ +- ~. G F +- I
I \

\
G +-\

+ H, G 0 +- I'
.~ .. ,

H I +

I +-

+ H 9 +- I
J +

; K+ J

oo oO

Fig:ure 3. A search space of all top-down derivations determined by the

selection of alphabetically earliest atoms in goal statements. Notice

that, because the hypothesis of a goal statement is a set of atoms,

application of the operator D +- E to the goal statement+ E_, E results in

the goal statement+ E. No operator applies to the goal statement+ Co

The operator K +- J, and the assertion J +, on the other hand, apply to no

goal statement in the search space.

20

Figure 4 shows the different search space of top-down derivations

determined by the same initial set of clauses and by the different

selection procedure which always selects the alphabetically latest atom

in goal statements. In both figures, derivations are individual paths

in the search space structured as a tree. Paths beginning with the

initial goal statement and ending with the empty clause are refutations.

+ A

A+ C

+c + D, E A+ D, E

D+ E

I+ o, F, G E + F, G

F + H

F +- I

G +-

+ D, H 0 + D, _!_

I
H +-

I +-
I

+ D 0 + D J +
I

+ E I + E

I + F, G + F, G

K +- J

+ F F

+H +I

i
Do D

Figure 4. A search space of derivations determined by the selection of

alphabetically latest atoms in goal statements. Notice that this selection

procedure results in a search space having more and longer derivations than

the search space of Figure 3.

21

Figure 5 shows the search space of all bottom-up derivations for the

same initial set of clauses. Every legal bottom-up derivation from the

initial set of clauses is an appropriate subtree in the search space.

H+

F+)
I+

F+

I J+

K+

+ A

A + C

A+ D, E

D+ E

E+ F, G

F + H

F + I

G+

H+

I +

0 D J +

K+ J

Figure 5. A search space of all bottom-up derivations. Notice that

the operator A+ C, which interpreted top-down replaces the problem of

solving A by the problem of solving C, is not applicable botton1 ··up

because the assertion C + is not attainable. On the other hand, the

operator K + J, which is not applicable top-down, applies when interpreted

bottom-up to the initial assertion J +.

It is worth distinguishing between tree-representations and graph-

representations of derivations and search spaces of derivations. Tree-

representations, such as those employed in Figures 3 - 5, contain distinct

nodes for distinct ways of deriving the same clause. Graph-representations,

such as those in Figures 6 and 7, contain a single node for every clause

no matter how it is derived. Graph-representations suggest proof

procedures which check, every time a clause is generated, whether the

clause has been generated redundantly before. Tree-representations

leave open the option of testing for redundancy. In the sequel, tree­

representations will be used in preference to graph-representations.

22

+- C +- D, E

+- D, F, G

F

+- D, H +- D, I

0 +- E

I
+- F, G

/
+- F

+B\,/ + I

/

□
Figure 6. The graph-representation of the top-down search space of Figure 4.

H+

G+

IJ+

K +-

o+

A+

□

Figure 7. The graph-representation of the bottom-up search space of Figure 5.

23

Search strategies.

A proof procedure consists of an inference system and a search

strategy. The inference system specifies, by means of axioms and rules

of inference, the search space of all admissible derivations. The search

strategy determines the sequence in which derivations in the search space

are generated in the search for a refutation.

A search strategy can be depth-first, exhausting one line of argument

before turning to another. It can be breadth-first, exploring all lines

of argument simultaneously, in parallel. Or it can be merit-directed,

generating at every stage a derivation of best merit, as determined by

some procedure which partially orders derivations according to some notion

of merit.

Search strategies can be autonomous procedures which generate

derivations in a sequence determined by their own deliberations.

Alternatively, they can execute domain-specific sequencing instructions

formulated and conveyed to the proof procedure by the problem-poser.

The problem of designing effective search strategies will be

investigated in more detail in later chapters.

Formal definitions of top-down and bottom-up derivations.

A detailed treatment of substitutions, matching and application of

substitutions to expressions is contained in the next section.

Let S be a set of Horn clauses and let there be given a selection

procedure which selects a unique atom from every occurrence of a goal

statement. A sequence C1, ••. ,CN of goal statements is a top-down derivation

of CN from S, with top-clause C1 iff (1) and (2):

(1) C1 e: S.

(2) For all i < N, the selected

atom A. in C.
J 1

+- A1, • •• ,A. 1 ,A. ,A. l' ... ,A
J- J J+ n

matches the atom A in the conclusion of

some operator or assertion belonging to S,

A +-B1, ... ,B.
m

Ci+l is the new goal statement

+- (A1, ••• ,Aj-l 'B1, •.• ,Bm,Aj+l' ••. ,An) 0 ,

24

where 0 is the substitution which matches

A, and A. (The variables in A+ B1 , ••• ,B
J m

are renamed so that they are distinct from

all variables in Ci.)

A derivation of the null clause from Sis a top-down refutation of S.

In general every atom in an occurrence of a goal statement is a

candidate for selection. A selection procedure is of the last-in-first-

out kind if in a derived goal statement only a most recently introduced

atom is selected; i.e. in C. 1 the selected atom is one of
1+

Let S be a set of Horn clauses. A set of assertions is a bottom-up

derivation from S iff it is implied by (1) an~. (2):

(1) If A+ belongs to s then

{A+}

is a bottom-up der i ~a'.tio~ of A+ from s.
(2) If, for i~ n, D. is a bottom-up derivation

1

of A + from S and if
i

A + A1' , ... ,A 1

n
is an operator in S such that A1 matches A1' and ..

• • and A matches A' simultaneously, with matching
n n

substitution a, then

D1 U ... UD U{ A0 +}
n

is a bottom-up derivation of A0 + from S. (The

variables in all the clauses A1 +, ... ,A + and
n

A + A 1' , ••• ,A ' are renamed so that no clause
n

shares variables with any of the others.)

In case (2) we allow the operator to be a goal statement + A1' , ••• ,A ' , in n
which case the new derivation D1 U ••• UD U{O} is a bottom-up refutation

n
of s.

Notice that the set-theoretic representation of bottom-up derivations

is closer to the graph-representation than it is to the tree-representation.

Substitutions and matching.

, . .
A substitution is a set of substitution components which are assignments

of terms to variables:

:= t}
n

25

No two components have the same variable. The result of applying a

substitution 8 to an expression X (terr.; , atom, clause, set of expressions)

is a new expression x8 which differs from X only in that it contains the

term t. wherever X contains x .•
i i

If 8 is the substitution

then the product 8 o-, where er- is also a substitution, is a new substitution:

8 er- = { X1 := t1 0- , ••• ,x := t o-} U er·-· 1

n n

where a-' is the subset of a-which affects variables different from those

affected by 8.

A unifier of a set of expressions Eis a substitution 8 such that E8

contains exactly one element. A most general unifier of Eis unifier of

E such that, for every other unifier o-of E, there exists a substitution

A such that

If E contains two expressions, E = { A, A'} and. if 8 is a most general uni: ::.::,r

of E, then the two expressions are said to match and 8 is a qi,~tchin:g

substitution. (Notice that all most general unifiers are essentially

equivalent, in the sense that they differ from one another only in the

different names for the variables they introduce into the expressions they

are applied to.) There exist various unification algorithms which compute

most general unifiers { 49, 51, 58, 2} •

A simultaneous unifier of a family e:: = { E 1, ••. ,E } of sets of
n

expressions is a substitution 8 which unifies each set E., i.e.
i

Ei8 is a singleton, all i ~ n.

A most general simultaneous unifier of e:: is a unifier 0 such that for all

other unifiers o----there exists a substitution A such that

If each set in e:: contains two expressions, E. = {A. ,A. '} and if 8 is a most i i i
general simultaneous unifier of e::,then the pairs A.,A.' are said to match

i i

The most general simultaneous unifier 8 of a family e:: can be computed

by successively unifying individual sets of expressions:

0 = 81 0z •.• 0 , where
n

8 1 is a most general unifier of E1,

8i+l is a most general unifier of FJ.·.·.,_ :Ii ,

and E1, ... ,E is ~n enumeration of the sets in e::.
n

26

Every enumeration of the members of E gives rise to the same most general

simultaneous unifier 0. This fact can usefully be applied in the

generation of bottom-up derivations to obtain the new assertion

A0 +

from the old assertions A1 +, ••• ,An+ using the operator A + A1'

The most general sumultaneous unifier 0 of the family

I ••• ,A ' • n

can be obtained by selecting an enumeration Ai' , ••• ,A ' of the atoms in the
n

operator and consecutively matching them with the assertions A.+. The
l.

new assertion of A 0 + is the last clause in the sequence of clauses

(1)

(2)

C 1 is A + A1' , .•• ,A '
n

For all i < N, C, is of the form
l.

B + B 1 , ••• , B . l 'B . , Bj l' ••• , B ,
J- _J_ + m

having a selected atom Bj. Bj matches

the atom AL in some assertion Ak +.

c. 1 is
J.+

(B +- B, , ••• ,B. 1 ,B. 1 , ... ,B)0,
J- J+ m i

where 0,is the substitution which matches
1.

B. and A.
J

Factorial example.

Figure 8.

(1)

(2)

(3)

(4)

L:

(2)

(2)

(1)

(4)

(5)

Fact(O,s(O)) +

Fact(s(x) ,u) + Fact(x,v), Times(s(x),v,u)

+ Fact(s(s(O)) ,x)

Times(s(O) ,s(O),s(O)) +

':'in:::·:: r.c.. (s \0 ,s (0) ,s (s (0))) +

f + Fact(s(slO)),x)

b + Fact(s(O),v), Times(s(s(O)) ,v,x)

b + Fact(O,v.J, Times(s(O),v',v), Times(s(s(O)) ,v,x)

l + Times (s co.' , s (0) ,v), Times (s (s (O)) ,v ,x)
I
~ + Times(s(~(O)) ,s(O) ,x)

lu
A search space of all top-down derivations for the factorial example.

27

Figure 8 illustrates the entire search space of all top-down

derivations determined by a particular selection procedure for the clauses

(1)-(5) of the factorial example. The single complete derivation in the

search space can be regarded as a computation of the factorial of 2.

Figure 9 illustrates the entire search space of all bottom-up

derivations determined by (1)-(5).

Fact(O,s(O)) + / Times(s(O) ,s(O) ,s(O)) +

Fact(s(O),s(O)) Times (s (s (0)) , s (0) , s (s (0))) +

Fact(s (s (0)) ,s (s (0)))

(3)

□
Figure 9. The search space of all bottom-up derivations for the factorial

example.

Correctness and completeness.

An inference system is correct if every set of clauses which has a

refutation is inconsistent. The inference system is complete if every

inconsistent set of clauses has a refutation" The notions of correctness

and completeness connect semantics with the proof theoretical part of

syntax. A correct and complete inference system is one for which the

notions of inconsistent set of clauses and refutable set coincide.

The correctness of both top-down and bottom-up inference systems

is not difficult to verify.

The completeness of the bottom-up system has been proved by Robinson{so}.

The system he proves complete is not limited to Horn clauses. The bottom­

up system we consider is closer to the one investigated and proved

complete in -!21} •

Completeness for the top-down system has been proved, without the

restriction to Horn clauses, but only for selection procedures which

select on a last-in-first-out basis { 30,26,48}. ... ii wJdl~ion, the systems

proved complete all employ the additional factoring rule of inference which

is defined in Chapter 6. It is not difficult to prove completeness for the

top-down system as it has been defined in this Chapter: for Horn clauses,

without factoring and with no constraints on the selection procedure.

28

Terminology.

The top-down interpretation of clauses is a version of modus tollens:

From B + A and+ B

infer+ A.

Bledsoe calls this backwards chaining { 3}.

The bottom-up interpretation of clauses is a version of modus ponens:

From B + A and A +

infer B +.

Bledsoe calls this forwards chaining { J } •

Both top-down and bottom-up inference are special cases of the

resolution rule{ 49} defined in Chapter 6. Model elimination{ 28} , linear

resolution { 29, 32} , ordered linear resolution{ 48}, SL-resolution{ 26}

and G-deduction{ 37} are top-down inference systems. Hyper-resolution{ SO}

Pi-deduction{ 50} and M-clash resolution{ 53} are bottom-up systems.

Kuehner's system{ 27} for Horn clauses combines top-down and bottom-up

inference.

Among the top-down systems just mentioned, all except linear

resolution employ a last-in-first-out selection procedure. The importance

of relaxing this constraint on the selection procedure is illustrated by

the admissible pairs example investigated in Chapter 5.

Linear resolution employs no selection procedure. Given a goal

statement containing n atoms it potentially investigates then! redundant

sequences in which the atoms can be selected.

29

CHAPTER 3. ROBOT PLAN FORMATION AND THE FRAME PROBLEM.

The main problem in artificial intelligence today is to develop

general languages and methods for representing knowledge satisfactorily

within the computer. The problem of representation applies to

(1) the representation of factual knowledge about

the world and general knowledge about laws

governing physical relationships and change, and

(2) the representation of pragmatic knowledge

necessary for effective problem-solving.

Adequate systems for the representation of knowledge are a pre­

requisite for problem-solving systems which combine knowledge about the

world together with knowledge about problem-solving in order to solve

problems. They are a prerequisite also for learning systems which construct

their own representation of the world and develop their own problem-solving

procedures. The failure of problem-solving and learning systems to perform

satisfactorily can be attributed in large part to the inadequacy of the

underlying representation system. The importance of representation has

been argued by McCarthy {35} and by Minsky in the introduction to Semantic

Information Processing { 39}.

In this Chapter we investigate the application of predicate logic to

the representation of factual knowledge and general knowledge about actions

and change. For simplicity we deal with a one-agent universe. The robot

plan-formation problem is to construct a sequence of actions which transforms

an initial state into a goal state, given a description of the initial state

of the world, of the goal state and of the set of actions which transform

one state of the world into another.

In the next two chapters, dealing with the problem-reduction and

procedural interpretations of predicate logic, we investigate the application

of predicate logic to the representation of pragmatic knowledge about problem­

solving procedures.

The use of predicate logic to represent the laws of change typically

runs into the frame problem: how to state and to deal with the fact that

almost all assertions which hold true of a given state of the world continue

to hold true of the new state obtained by applying an action to the old state.

30

Failure to solve the frame problem has led many researchers to reject the

use of predicate logic for robot plan-formation and to experiment with new

systems (STRIPS {14}, PLANNER{ 18}). We shall argue that the first part

of the frame problem is solved by the use of a suitable notation and the

second part is solved by using the frame axiom top-down instead of bottom-up.

The robot plan-formation problem.

We assume that a description of the initial state of the world and of

the properties desired of a goal state are given. The robot can perform

various actions which transform one state of the world into another.

action has associated

(1) preconditions which must hold true in a state

in order for the action to be applicable to it,

(2) an add list of new assertions which hold true

of the state obtained by applying the action, and

(3) a delete list of assertions which are the

exceptions to the general rule that every

assertion true in the old state remains true in

the new state obtained by applying the action.

Each

The problem is to find a sequence of actions which successively transforms

the initial state through intermediate states into a goal state. (The

explicit association of preconditions, add list and delete list with every

action is due to STRIPS.)

The predicate logic representation of the robot plan-formation problem

will be investigated for the simple example in Figure 10 { 37}.

fil
p q r p q r

initial state goal state

Figure 10. The initial and goal states for a robot plan-formation problem.

There are three manipulatable objects A, Band C and three places (unmanipu-

latable objects) p, q and r. In the initial state, A is on B, Bis on p and

C is on r; A, q and Care clear.

and C is on r.

In the goal state, A is on B, Bis on C

31

For each x,y and z there is an action, pickup(x,y,z), which allows the

robot to pickup x from y and to put it down on z.

The

(1) The preconditions for the action

pickup(x,y,z) are that

x be manipulatable,

x be clear,

z be clear,

x be on y, and

x be different from z.

(2) The action adds the assertions that

x is on z, and

y is clear.

(3) The action deletes the assertions that

x is on y, and

z is clear=

simplest solution of the problem is to

(1) pickup(A,B,q), then

(2) pickup(B,p,C), and finally

(3) pickup(A,q,B).

A predicate logic representation of the robot plan-formation problem.

Initial state 0.

State-independent
assertions.

Goal state w.

State space.

(1) Poss (0) +-

(2) Holds(on(A,B) ,0) +-

(3) Holds (on (B,p) ,0) +-

(4) Holds (on(C,r) ,0) +

(5) Holds (clear (A) ,0) +

(6) Holds (clear (q) ,0) +

(7) Holds (clear (C) ,0) +-

(8) Manip (A) +-

(9) Manip (B) +-

(10) Manip (C) +

(11) ·+- Holds{on(A,B) ,w), Holds(on(B,C),w),

Holds(on(C,r),w), Po2s(w)

(12) Poss(do(x,w)) +- Poss(w), Pact(x,w)

Preconditions.

Add list.

Delete list
to frame axiom.

32

(13) Pact(pickup(x,y,z) ,w) + Manip(x)

Holds(clear(x) ,w),

Holds(clear(z),w),

Holds(on(x,y),w),

Diff (x, z)

(14) Holds(on(x,z), do(pickup(x,y,z) ,w)) +

(15) Holds(clear(y), do(pickup(x,y,z),w)) +

(16) Holds(u, do(pickup(x,y,z),w)) + Holds(u,w),

Diff(u,on(x,y)),

Diff(u,clear(z)).

The Diff relation holds between two variable-free terms sand t ifs

and tare syntactically distinct. It is useful to imagine that clauses

(1)-(16) are supplemented by infinitely many clauses of the form

Diff (s ,t) +

for every pair of terms which are not unifiable. Equivalently we might

imagine (1)-(16) supplemented by the finitely many clauses

Diff(f(x1, ... ,x), g(y1, ..• ,y))~-
n m

Diff(f(x1, ..• ,x }, f(y1, •.. ,y)) + Diff(x.,y.)
n n i i

for every pair of distinct function symbols f and gin case of clauses of the

first kind and for every n-ary function symbol f and every index i~ n in

case of clauses of the second kind. In practice the clauses defining the

Diff relation would be used exclusively in a top-down manner and would be

compiled. In other words, every occurrence of an atom Diff(s,t) in the

hypothesis of a clause would be treated as a procedure call to a procedure

written in an ordinary programming language.

Instead of writing On (x,y ,w) and Clear (x,w) we treat ''On" and "Clear"

as function symbols and write Holds(on(x,y),w) and Holds(clear(x),w). This

notational device solves the first part of the frame problem by allowing the

use of just a single general frame axiom instead of individual frame axioms

for each assertion which is preserved by the application of an action.

The ability to use variables which range over assertions and sentences

is provided by higher-order logic. The syntactic device of replacing predicate

symbols by function symbols gives first-order logic the ability to simulate

this feature of higher-order logic.

33

Top-down and bott~m-up i.nterpret:3.tions of the state space axiom (12).

Clauses (1)-(l6) are neutral with respect to the top-down and bottom-up

interpretations. Not .)nly may the entire set of clauses be interpreted

top-down or bottom-up, but different clauses may be interpreted differently.

One clause may be executed top-dc,wn and another bottom-up. Even within a

single clause different atoms might be executed in opposite directions.

If clause (1.21 1s execut.ed bcttom-up then it is used to derive that a

new state dc(x,w) is possible given assertions that the old state w is

possible and that the act1.or: x can be applied in state w. Consistent

bottom-up execution of (12) begins with the initial state, applies actions

to produce new states from old states and terminates when it generates a

state which satisfies the goal state description, Figure 11 illustrates

part of the search space of all states generated by executing (12) bottom-up.

p(A,B,q) p(C,r,q)

4

do
Figure 11. Part of the search spa.ce of all states obtained by executing

clause (12) bottom-up, Here p{x,y,z) abbreviates pickup(x,y,z). The

letter A, B or C between two arcs in the space indicates the object picked

up in obtaining the two states at the bottom of the arcs. Distinct states

are associated with distinct nodes" However states labelled by the same

number are isomorphi.c in the sense that they are characterised by the same

set of assertions

If clause (12) is exacuted top-down then it is used to replace the

problem of showing that a new state do(x,w) is possLble by the subproblems

of showing that the old state w is possible and that the action x can be

applied in w. Consistent top-down exe.:: .::.ior, of (12) begins with the goal

state description and termi.r,ates when 1 t derives a new goal state description

which is satisfied by the initial state. In fact the precise behaviour

34

effected by top-down execution of (12) depends on details about the

selection procedure and about the direction of execution of other clauses.

Figures 15 and 16 below illustrate part of a search space of all goal

statements obtained by executing all of the clauses (1)-(16) top-down.

An interesting combination of execution strategies is obtained when

clause (12) is activated by the bottom-up execution of the atom Poss(w)

followed by the top-down execution of Pact(x,w). In-cerpreted in this

manne~ clause (12) is used, when given an assertion that a state w is

possible, to derive that the new state do(x,w) is possible by testing first

that the action x can be performed in w. Such an interpretation of clause

(12) together with a top-down interpretation of all other clauses is

illustrated in Figures 13 and 14 below.

The frame problem and execution strategies for the frame axiom (16).

The second part of the frame problem arises when the frame axiom (16)

is executed bottom-up in order to derive, from the assertion that u holds

in state w, the new assertion that u continues to hold in the state do(x,w).

By bottom-up interpretation of (16) we mean more precisely that (16) is

activated by the bottom-up execution of the atom Holds(u,w) followed by

top-down execution of the atoms Diff(u,on(x,y)) and Diff(u,clear(z)).

Otherwise if all atoms in the hypothesis of (16) were executed bottom-up

then the search space of all derivable clauses would include all assertions

of the form Diff(s,t) + for all pairs of terms s,t which do not unify.

In more realistic problems than that involved in our three-block

example, states of the world have a complex structure which can be described

only by means of a very large number of assertions. In such problems,

bottom-up interpretation of the frame axiom leads to generation of an

intolerable number of assertions about derived states of the world.

Both PLANNER and STRIPS attempt to solve the frame problem by abandoning

the frame axiom and by using instead special procedures to determine whether

a fact holds true in a given state:

To determine whether u holds in do(x,w):

(1) Check whether u belongs to the add list of x.

If it does, return success.

(2) Otherwise, check whether u belongs to the

delete list of x. If it does return failure.

------~--- ---

35

(3) Otherwise, return the result of determining

whether u holds in w.

But this sequence of steps is identical to that involved in running the

frame axiom (16) and the add list (14), (15) axioms top-down, trying the

add list before the frame axiom and selecting the atoms Diff(u,on(x,y))

and Diff(u,clear(z)) before the atom Holds(u,w) in the hypothesis of the

frame axiom.

Bottom-up execution of (1)-(16).

Figure 12 illustrates a small part of the search space determined by

bottom-up execution of clauses (1)-(16). (Even in this example all atoms

having predicate symbol Diff are activated top-down.) Only those

assertions are demonstrated which concern states belonging to the solution

path. In general a search strategy would generate many assertions which

refer to states not belonging to the solution path.

Pact (p (A,B,q) ,0) +- Pact (p (B,p,C), 1) +- Pact (p (A,q,B), 5) +

Holds (on (B,p), 1) +- Holds (on (A,q), 5) +- Holds (on(B,C) ,8) +

Holds (on(C,r) ,1) +- Holds(on(C,r),5) + Holds (on(C,r) ,8) +

Holds(clear(A),1) + Holds(clear(A} ,5) + Holds (clear (A) ,8) +

Holds(clear(C) ,1) +- Holds(clear(B),5) + Holds (clear (p) ,8) +

Poss (1) +- Poss (5) +- Poss (8) +

Figure 12. Part of the search space of assertions determined by executing

(1)-(16) bottom-up. As in Figure 11, p(x,y,z) abbreviates pickup(x,y,z).

1 abbreviates do(pickup(A,B,q) ,0).

5 abbreviates do(pickup(B,p,C) ,1).

8 abbreviates do(pickup(A,q,B),5).

Assertions such as

Holds(on(A,q) ,1) +

Holds(clear(B) ,1) +-

Holds (on (B,C), 5) +

Holds (clear (p) ,5) +

Holds (on(A,B) ,8) +

Holds (clear (q) ,8) +

are not included in Figure 12 because they are special instances of axioms

in the add list (14) and (15).

36

Bottom-up execution of (12) only.

Figures 13 and 14 illustrate a small part of the search space

determined by top-down interpretation of all clauses except (12) which

is used bottom-up to derive new states from old ones. The selection of

atoms is determined by the objective of minimising the generation of

alternative branches in the search space. This criterion of selection

is elaborated upon and discussed in the next chapter, concerned with the

problem-reduction interpretation of predicate logic.

Notice that the solution refutation of Figures 13 and 14 contains

many subderivations consisting of consecutive steps which have no

alternatives or else have alternatives which fail in a very few steps.

The alternatives which do not fail correspond to genuinely alternative

actions generating new states in the state space illustrated in Figure 11.

Notice that top-down execution of the frame axiom is more complicated

than has been suggested in the earlier discussion of the frame problem.

The complication is that the frame axiom can be used not only to determine

whether a known fact u holds in a known state do(x,w), but it can also be

used to generate facts which hold in a known state or to generate states

in which a known fact holds. More generally, the frame axiom can usefully

be applied in situations where u and do(x,w) are either partially known

or totally unknown. This aspect of the behaviour of clauses is connected

with the lack of input-output distinction in predicate logic programs. It

is investigated in Chapter 5 which deals with the procedural interpretation

of predicate logic.

The mixed top-down, bottom-up interpretation of clauses in this example

can be simulated by a proof procedure which interprets all clauses top-down:

rewrite clauses (1), (11) and (12). Use the fact that

C, not-A+ Bis equivalent to

C + A,B and

C + not-A,B is equivalent to

C, A+ B.

Write NPoss(t) instead of not-Poss(t).

(1'), (11') and (12') respectively:

+ NPoss(O)

Clauses (1), (11) and (12) become

(1')

(11')

(12')

NPoss(w} + Holds(on(A,B),w),Holds(on(B,C) ,w) ,Holds(on(C,r) ,w)

NPoss(w) + NPoss(do(x,w)),Pact(x,w).

37

Top-down interpretation of the new set of clauses is equivalent to the mixed

interpretation illustrated in Figures 13 and 14. The kind of renaming involved in

rewriting clauses (1), (11) and (12) has been investigated by Meltzer { 36}.

(7)
cr

(2)

l

i

Poss (0) +-

Poss (do (x,0)) +- Pact (x,0)

Poss(do(p(x~y,z) ,O)) +@Manip(x'), (i)Holds(clear(x') ,0),

Holds (clear (z) ,0) , 0) Holds (on (x' ,y) ,0),

Diff(x' ,z)

Poss (do (p (A,B, z) ,O)) +- (D Holds (clear (z), 0) , (v Diff (A, z)

Poss (do (p(A,B,q) ,O)) +-

Poss (do (p (x,y, z) , 1)) +-@ Manip (x) , (1) Holds (clear (x) , 1) ,

Holds(clear(z) ,1), Q)Holds(on(x,y) ,1),

Diff (x, z)

Poss(do(p(B,p,z) ,1)) +d)Holds(clear(z) ,1) ,@Diff(B,z)

Poss (do (p (B ,p ,C) , 1)) +-

Figure 13. The initial part of a refutation determined by bottom-up execution

of clause (12). All branches away from the solution path are illustrated.

Darkened nodes are terminal nodes containing a selected atom which matches no atom

on the opposite side of an arrow in an input clause. The numbers preceding

underlined atoms indicate the relative order in which they or their descendants

are selected. Unlabelled a.rcs denote responses to activation of an atom

containing the predicate symbol Diff.

distracting details.

Nodes are unlabelled in order to suppress

Figure 14.

38

..-,-0 Poss(do(p(B,p,C) ,1)) +­

(11~)

(13)
Poss(do(p(x,y,z) ,5)) +-~Manip(x), l)Holds(clear(x) ,5),

Holds(clear(z) ,5), Holds(on(x,y) ,5),

Diff(x,z)

Poss(do(p(A,y,z) ,5)) +- Holds(clear(z),5), Holds(on(A,y) ,5),

Diff(A,z)

Poss (do (p (A,q, z) , 5)) +- (i) Holds (clear (z) , 5) , ($ Diff (A, z)

The remaining part of the refutation whose initial part is illustrated

in Figure 13.

39

Top-down execution of (1)-(16).

Figures 15 and 16 illustrate a top-gown refutation of clauses (1)-(16) .

. --:-:.::-:~ + (J Holds (on (A,B) ,w) ,(~)Holds (on (B,C) ,w) ,(Li Holds (on (C ,r) ,w) ,Poss (w)

:----rr:p·---·(16) !

(1~

(1:) ~
~ \..1.-., ~ + Holds(on(B,C) ,w'),@iff(on(B,C) ,on(A,y)) ,@Diff(on(B,C) ,clear(B)),

Figure 15.

6 Holds(on(C,r) ,w'),G)Diff(on(C,r) ,on(A,y)) ,(4:Diff(on(C,r) ,clear(B)),

!
6 l-2, Poss(dotp(A,y,B),w')
'
i
0
l
I

(12)r

(13) f r ,[Holds (on (B,C) ,w') , (4) Holds (on,. (C, r) ,w') , 1_1; Manip (A) ,
(8)

Holds(clear(A),w'), Holds(clear(B),w'),
[

Q~ Holds (on (A,y) ,w'), \].. piff (A,B), Poss (w')
' '

Holds (on (C, r) ,w") , (! Diff (on (C ,r) ,on (B,y')) ,½Diff (on (C, r) , clear (C)) ,

(5.) Holds (clear (A), do (p (B,y' ,C) ,w")),

,J>1Holds (clear(B), do(p(B,y' ,C) ,w")),

Holds(on(A,y) ,w") ,•'.JDiff(on(A,y) ,on(B,y')) {4:'Diff(on(A,y) ,clear(C)),

,---.,
l.J.,.'Poss(do(p(B,y' ,C) ,w"))

+ Holds(on(C,r) ,w") ,Holds(clear(A) ,w") ,(l)Diff(clear(A) ,on(B,y')),

(21 Diff (clear (A) , clear (C)),G)Holds (clear (B) , w") ,~Diff (clear (B) ,on (B, y),

@ Diff (clear (B) ,clear (C)) @Holds (on (A,y) ,w") ,@Manip (B),

mnas (c±-e-a-r-~4\lt'.'.1, Holds (clear (C) ,w"), Holds (on (B,y') ,w"),

@oiff (B,C), Poss (w")

The initial part of a top-down refutation of clauses (1)-(16). The atom

Bolds(clear(B) ,w") is deleted because it is identical to another atom in the same goal

statement.

I+- Holds(on(C,r) ,w") ,Holds(clear(·.J,w") ,(l)Diff(clear(A) ,on(B,y')),

~ ~Diff(clear(A) ,clear(C)),G)Holds(clear(B) ,w") ,G)Diff(clear(B} ,on(B,y')),

(9)

@)Diff (clear (B) ,clear (C)) ,®Holds (on (A,y) ,w") ,@Manip (B),

Hulds (clearf&t-r~.} ,Holds (clear (C) ,w") ,Holds (on (B,y') ,w"),

(61Diff(B.C) ,bss(w")

(16~

(16) ~~ -
~ o +-(DHolds(on(C,r) ,do(p(A,B,y) ,w'")) {?)Holds(clear(A) ,do(p(A,B,y) ,w'")),

(16) i
o G)Holds (clear (C) ,do (p (A,B,y) ,w"')) ,@Holds (on (B,y') ,do (p (A,B,y) ,w'")),

c16> I
6 @Poss (do (p (A, B, y) , w"'))

(16) l
(16) l
(12) l
(13) I

? +{e)Holds (on (C ,r) ,w'"), (1)Diff (on (C,r) ,on (A,B)), (%}Diff (on (C,r) ,clear (y)) ,

%
6
6
6
'

@)Holds (clear (A) ,w'") ,Q)Diff (clear (A) ,on (A,B)), Diff (clear (A) ,clear (y)), ,.,
().o)Holds (clear (C) ,w"') ,@):>iff (clear (C) ,on (A ,B)), Diff (clear (C), clear (y}),

QYHolds (on (B, y') , w'") {§,Diff (on (B, y') , on (A ,B)) ,@))iff (on (B, y') , clear (y)) ,

(J:'Manip(A) ,Holds(cl.garCA)4 ~~~2 ,Holds(clear\~) ,w"'),

(WHolds (on (A,B) ,w'"), Diff (A,y) ,Poss (w"')

6
(3) I

6
c2 > I

6 +-QDiff (clear (A) ,clear (y)), @)Diff (clear (C) ,clear (y)),
c1> I

".I- (6) i @Holds(clear(y) ,O),(S)Diff(A,y} ,G)Poss(O)

1 □
~~.2,_~re 16. The remaining part of the top-down refutation whose initial part is

in Figure 15.

------- ---- ---- -------

41

Non Horn claus·es and conditional plans.

The following example is a variation of the Robert-is-always-working

example.

In the initial state Robert is either at work or at home depending on

whether he is healthy or ill. The goal is to get Robert to the circus.

The only action available is go(x,y,z) which allows x to go from y to z.

The solution is to construct the conditional plan:

If Robert is healthy

then go(Robert,work,circus)

If Robert is ill

then go(Robert,home,circus).

Figure 17 illustrates a top-down solution together with part of the

search spaceo A theorem-proving system which extends the top-down and

bottom-up interpretations to non Horn clauses and simulates the refutation

and search space of Figure 17 is described in Chapter 6.

Initial state O.

State-independent
laws.

Goal state w.

State space.

Precondition.

Add list.

Delete list and
frf'.me , :-:" 0m.

(1) Poss(O) ~

(2) Holds (Healthy (Robert} ,0) ,P.o; is (Ill (Robert_; ,OJ +-

(3) Holds(at(Robert,work) ,w) +- Holds(Healthy(Robert),w)

(4) Holds(at(Robert,home) ,w) + Holds(Ill(Robert) ,w)

(5) + Holds(at(Robert,circus) ,w) ,Poss(w)

(6) Poss(do(x,w)) + Poss(w) ,Pact(x,w)

(7) Pact(go(x,y,z) ,w) + Holds(at(x,y),w)

(8) Holds(at(x,z) ,do(go(x,y,z) ,w))+-

(9) Holds(u,do(go(x,y,z) ,w)) + Holds(u,w) ,Diff(u,at(x,y))

(9) ~t + Holds(at(Robert,circus) ,w) ,Poss(w)

~ ,u,b + Poss(do(go(Robert,y,circus) ,w')
(6)

9 ~ Poss(w') ,Pact(go(Robert,y,circus),w')
< 7) I A+ Poss(w') ,Holds(at(Robert,y) ,w')

/ \

(3)/ \,(4)
y:= work y:= home

// '\
.. Poss (w') ,Holds (Healthy (Robert) ,w') \(2)// .. Poss (w') ,Holds (Ill (Robert) ,w')

y'+ Poss(O)

(1)1 □
Figure 17. A top-down solution of the problem of getting Robert to the circus.

CHAPTER 4. THE PROBLEM-REDUCTION INTERPRETATION OF PREDICATE LOGIC.

Problem-reduction is a method of problem-solving which has often been

applied explicitly or implicitly in Artificial Intelligence { 42} and

other disciplines. We shall argue that the problem reduction model used

in Artificial Intelligence, the reduction of problems to independent

subproblems, corresponds to the top-down execution of variable-free Horn

clauses. Compared with proof procedures for predicate logic, such a model

of problem-solving is inadequate for three reasons:

(1) Effective problem-solving involves the reduction of

problems to dependent subproblems. The compatibility

requ~red of solutions to dependent subproblems

corresponds to the presence of common variables in

distinct atoms of a goal statement.

(2) Problems and subproblems generally have both

hypotheses and conclusions. In such situations

a useful problem-solving strategy is to combine

both bottom-up interpretation starting with the

hypotheses of the problem and top-down interpretation

starting with the conclusion. The association of

hypotheses with subproblems involves the use of non

Horn clauses.

(3) Problem-reduction often needs to be supplemented by

case analysis. The solution of a problem may

require the cooperation of several problem-solving

methods, each of which solves the problem in a special

case. The various methods solve the problem

cooperatively when between them they exhaust all

possible cases. In predicate logic,case analysis is

dealt with by means of non Horn clauses.

The problem-reduction interpretation of predicate logic was observed

by Kowalski and Kuehner { 26} and was investigated in more detail by Loveland

and Stickel { 31}. Other authors { 12, 54 } have investigated the application

of problem-reduction methods to the solution of goal statements containing

atoms with distinct variables.

43

The and-or tree representation of problem-reduction.

In the problem-reduction model of Artificial Intelligence the task

is to find a solution to an initially given problem, using a given set of

operators which reduce problems to (independent) subproblems and a given

set of initially solved subproblems. The task is accomplished by

repeatedly applying operators to unsolved subproblems, replacing them by

other subproblems, terminating successfully when the initial problem has

been replaced by a set of initially solved subproblems.

In the and-or tree representation of a problem-reduction task, every

node is labelled by a problem:

(1) The root node is labelled by the initial problem.

(2) If a problem B labels a node and if an operator

reduces B to subproblems A1, ... ,An then the node

is connected by a directed arc to each one of n

successor nodes labelled by the individual

problems A1, ... ,An

B

The set of n successor nodes is said to be a bundle

associated with the given operator. Successors are

organised into bundles in order to distinguish whether

different successors of the same node are determined

by the same operator or by different operators.

(3) If the problem labelling a node is an initially

solved problem then it has a bundle containing one

successor labelled by the mark of success D.
A finite subtree of an and-or tree is a solution if

(1) it contains the root node and

(2) whenever it contains a node, not labelled by D,
it contains a single bundle of successor nodes.

44

Figure 18 illustrates the and-or tree representation for a simple

problem-reduction task. The same figure contains the variables-free Horn

clause representation and the two distinct solutions of the initial problem.

A Initial 12roblem + A

012erators A+ E

E E+ H, I

E+ F

H
InitiallX solved
problems H+

I +

□ D F +

and-or tree representation variable-free Horn clause representation

A

H I

□ □
one solution the other solution

Figure 18. The and-or tree and predicate logic representations of a

simple problem-reduction task.

The and-or graph re12resentation is obtained from the and-or tree by

identifying nodes labelled by the same problem. Figure 19 illustrates

both the and-or tree and the and-or graph representations of the same

problem-reduction task.

45

C o

G

D □ F

□ □

Initial problem

Operators

Ini.tially solved
problems

+- A

A +- C

A+- D, E

D +- F, G

D +- H

E +- D

E +- A

F +-

G +-

H +-

and-or tree representation variable-free Horn clause representation

C

and-or graph representation

Figure 19. The and-or tree, and-or graph and predicate logic representations of

the same problem-reduction task.

The problem-reduction interpretation of Horn clauses.

(1) Interpret a goal statement

+- A1, ••• ,An

containing variables x1, ... ,xk

as a command:

Find x1 ••• and ¾ which solve

the problems A1 ••• and An.

Any substitution of terms for variables

which solves A1 ••• and An is a solution

of the goal statement.

46

(2) Interpret an assertion

as a solved problem. It solves with

solution 8 only problems A •• ~1l.ch r:.a·.:ch

B with matching substitution 8.

(3) Interpret an operator

B +- A1 , ••• ,A
n

as a solution method. It reduces the

solution of problems A which match B

(with matching substitution 8) to the

solution of the goal statement

+- A1 e , ... ,A e
n

If 8 1 is a solution of the goal statement

then e e I is a solution of A.

(4) Interpret the null clause as an empty

set of problems and therefore as a

mark of success.

The problem-reduction interpretation of Horn clauses is basically a

top-down interpretation. It differs, however, from the top-down interpre·i:ation

defined earlier in that it does not specify how the solution of goal statements

is to be related to the solution of individual problems. In particular the

problem-reduction interpretation leaves open the possibility that a goal

statement

+- A1, ... ,A
n

might be solved by

(1) independently solving the individual subproblems

A1 ••• and A, obtaining individual solutions
n

8 1 ••• and 8 , and then
n

(2) finding a most general substitution 8 such that

= ... =a e . n

The most general common solution eie of the individual subproblems Ai is a

solution of the goal statement. Such a method of solving goal statements

is most useful when the individual subproblems are independent (i.e. share

no variables). Then the most general common solution always exists and

is the union 8 1 V .•• U 8 of the individual solutions 8 1 , ••• , 8 •
n n

In the

general case this solution method suggests a notion of generalised and-or

tree which deals with the dependencies between subproblems.

47

Figures 20 and 21 illustrate generalised and-or trees fox the fallibl~

Greek and the parsing problems. Each bundle of successor nodes is labelled

by the output component of the substitution which matches the problem with

the atom in the conclusion of the operator or solved problem which generate,

the bundle. The output component of a substitution is the part which

affects only variables in the problem being solved.

Fallible(x) Greek(x)

x:== Socrates

Human(x) □
x:=

/ TuriL
0)---'

\x:= Socrates
\

\ ' -
0 LJ

Figure 20. The generalised and-or tree, problem-reduction interpretation

of the fallible Greek problem.

_,.,.., _ ___.o~ (1, 6)
,,· '--

...... / ..

- / \

Np(_z~),/ _.--·

--~t(l,u) r Adj.(u,v) ~oun(v,z)\~ lNoun(l,z) Verb(z,6)
I I \ ' l / \ \

1..,.,e (l,u) !little (u,v)~ {_ \ __ \ likes (z,6)
u:=i: 2 1 ,v.- 3fv.-5

u:• 2 ·- 3 j tz:=41z:=6 ,- v.- ' w O b r oC

}N,2ure 21.

\ :cblem.

The generalised and-or tree, problem-reduction interpretation of the parsing

Darkened nodes represent unsolvable problems. Certain labels of nodea ancJ area

,\,x,:i (iitllitted for lack of space.

48

Most solution methods for problem-reduction tasks (reducing problems

to independent subproblems) generate nodes directly in the and-or tree or

and-or graph representation {41,22,33}. Other methods {7, 9} are

variations of ones which generate nodes in a top-down search space of goal

statements. When subproblems are independent, the methods which generate

nodes directly in and-or trees or graphs avoid redundancies hidden in the

top-down goal statement method.

□ + H

C

This is illustrated in Figure 22.

+ C

+ H,E:_,G

□

+ A

A + C

A+ D,E

D + F,G

D + H

E+D

E+A

F+

G+

H+

Figure 22. A top-down search space of goal statements for the problem-

reduction task of Figure 19. The hidden redundancy here, which is not

involved in the and-or tree and and-or graph representations, is the

investigation of all ways of solving E duplicated for all ways of solving D.

More generally, given a goal statement+ A,B, n ways of solving A, m ways

of solving Band the selection of A before B, the goal statement search space

contains n.m branches where the and-or tree would contain n+m branches.

However, when subproblems are dependent, the goal statement method

facilitates the communication of information about solutions from one sub-

problem in a goal statement to another. Such communication makes it

possible to avoid investigating a solution of a subproblem when it is

incompatible with solutions to other subproblems in the same goal statement.

It may be that the goal statement method, supplemented by a procedure which

generates new assertions as lemmas whenever subproblems are solved, can avoid

its redundancies while retaining the advantage of investigating subproblems

49

in the context of the goal statements in which they occur. Methods for

generating and using lemmas were first proposed by Loveland {28} and

later investigated by other authors {26 }. In the sequel we shall not

investigate further the method of searching for solutions directly in

generalised and-or trees and shall reserve our attention instead for the

top-down method of generating goal statements.

The selection of subproblems in goal statements.

Successful problem-solving depends importantly on the sequence in which

problems are investigated for solution. Selection of different subproblems

in the same goal statement gives rise to different search spaces. One

search space can be easier to search than another.

Figure 23 shows the different search spaces determined by different

choices of subproblems in the initial goal statement of the fallible Greek

example. Choosing different subproblems is the difference between finding

an x which is fallible and then testing that it is Greek,and finding an x

which is Greek and then testing that it is fallible. Here, as in so many

examples, the smaller search space is obtained by selecting the subproblem

which can be solved in the least number of different ways.

+ Fallible(x), Greek(x)

+ Human(x), Greek(x)

+ Greek(Turing) •

+ Fallible(x) ,Greek(x) l
+ Fallible(Socrates)

+ Human(Socrates) l
□ l

]~ Greek(Socrates)

Different search spaces obtained by selecting different subproblems

in the initial goal statement of the fallible Greek example.

so

In the parsing problem, the selection of subproblems determines the

sequence in which top-down analysis investigates different parts of the

initial string of words. One selection procedure determines a left-to-

right analysis, whereas another procedure determines an analysis from

right-to-left. Indeed, for every sequence of words in the initial string,

there exists a selection procedure which investigates those words in the

order in which they occur in the given sequence.

In general, a useful (and potentially most efficient) sequence of

investigation is the one determined by the Principle of procrastination

(Donald Kuehner's name for the selection rule used in SL-resolution {26}):

Select the subproblem which can be solved in

the least number of different ways.

The number of different ways a problem can be solved can be measured by the

number of different assertions and operators which match the problem.

This number can be computed efficiently using the connection graph theorem-

proving system investigated in Chapter 6. A more useful measure still can

be obtained by using connection graphs to facilitate n-level look-ahead to

estimate the number of different solution methods n-steps long {23}.

A more dramatic illustration of the importance of selection procedures

(and of the utility of the principle of procrastination) is provided by

the factorial example. In the second goal statement of Figure 8

+ Fact(s(O) ,v) ,Times(s(s(O)) ,v,x)

it is necessary to select one of two subproblems. The selection and

solution of Fact(s(O) ,v) before Times(s(s(O)) ,v,x) results in the deterministic

algorithm which

(1) finds the unique v which is the factorial

of one, and then

(2) finds the unique x which is two times v.

The selection and solution of Times(s(s(O)) ,v,x) before Fact(s(O) ,v) results

in the highly non-deterministic algorithm which

(1) generates pairs (v,x) such that two times

vis x, and then

(2) tests that vis the factorial of one.

In this example, the difference between the choice of different subproblems

is the difference between a usable deterministic algorithm for computing

-- ------ -----------------------

51

factorial and a useless non-deterministic one. As in the previous

example, the smaller search space is the one determined by the principle

of procrastination.

Bottom-up and bi-directional methods for problem-reduction tasks.

Problem-reduction tasks can be solved by bottom-up and by combined

top-down, bottom-up methods. Indeed both pure bottom-up solution methods

{20,33} and combined methods {22} have been investigated for the pre­

predicate logic formulation of problem-reduction.

A good heuristic for combining top-down and bottom-up strategies is

a generalisation {22} of one formulated by Pohl {45} for path-finding

problems:

Choose at every stage the direction which gives

rise to the least number of alternatives.

In the top-down direction, the number of alternatives is the total number

of different ways of matching atoms in operators with selected atoms in

goal statements. In the bottom-up direction, it is the total number of

different ways of matching atoms in operators with assertions. In the

connection graph theorem-proving system the Pohl heuristic and the principle

of procrastination are unified in a single heuristic of preference for the

line of least resistance.

In realistic problem-solving situations, involving a single initial

problem and a large set of problem-solving methods and initially solved

problems, the Pohl heuristic avoids the combinatorially explosive behaviour

of pure bottom-up solution methods. In such a situation, where top-down

derivation of new subproblems from old ones is problem-specific behaviour,

bottom-up derivation of new solved problems from old ones is problem­

independent, general-purpose behaviour, not directed toward the particular

problem at hand. The rate of growth of the search space is correspondingly

much faster in the bottom-up direction than it is in the top-down direction.

In these situations, the Pohl heuristic dictates the selection of the top­

down direction of search.

In experimental situations { 46 } bottom-up strategies compare well

with top-down strategies. Typically in such situations, the set of solved

problems is unrealistically small and consists only of those assertions

52

which are necessary to solve the initial problem. Bottom-up execution

does not lead to the general-purpose, problem-independent behaviour

characteristic of more realistic situations. Such experimental results

give a misleading picture of the relationship between top-down and bottom-up

solution methods.

It would be wrong, '1owever, to argue that bottom-up methods are of

value only in unrealistic situations. Typically the initial set of

assertions contains both general-purpose, problem-independent assertions

and special-purpose assertions which constitute part of the formulation of

the initial problem. The parsing example, for instance, contains only

assertions of the problem-specific kind. The distinction between problem-

independent and problem-specific assertions leads to bi-directional

strategies of the Bledsoe variety {4}:

Problems should be solved by a combined strategy

which works bottom-up beginning with the initial

problem-specific assertions and top-down beginning

with the initial goal statement.

Within those constraints the Pohl heuristic is useful for deciding how to

divide attention and effort between the two directions of search.

We have just considered the situation in which the initial problem

consists of both problem-specific assertions and goal statement. More

generally it is useful to consider situations in which the subproblems

generated by top-down analysis also consist of both assertions and subgoals.

The association of problem-specific assertions with subproblems requires the

use of non Horn clauses.

Reduction of problems to subproblems consisting of assertions and goal statement.

read

A non clausal sentence

A +- (B +- C)

A if (C implies B)

becomes two clauses

A+- B

A, C +-

In the problem-reduction interpretation they can be regarded as stating that

in order to solve A, solve Band assume C.

53

Matching a goal statement +A' (where A' matches A with matching

substitution 8) with the two clauses gives rise to a new goal statement

and an assertion:

+ B 8

C 8 +

The definition of subset conforms to this pattern:

(1) Sub(x,y) + Member(arb(x,y),y)

(2) Sub(x,y) , Member(arb(x,y),x) +

Together (1) and (2) can be interpreted as stating that

in order to show that x is a subset of y, show that

arb(x,y) belongs toy, where

arb(x,y) is some member of x.

In fact, (1) and (2) can be used not only to show that a given set x is a

subset of y, but also to generate subsets x of a given set y, supersets y

of a given set x or pairs x,y standing in the subset relation.

of predicate logic "programs" is elaborated upon in Chapter 5.

This feature

Figure 24 illustrates the use of (1) and (2) to solve the problem

(3) + Sub(A,A)

of showing that every set is a subset of itself. The form of the search

space illustrated has not been defined but it is consistent with the informal

problem-reduction interpretation and it can be simulated by the connection

graph theorem-proving system of Chapter 6.

9 + Sub(A,A)

(1/\fl
+ Member (arb (A,A) ,A)\), M-er (arb (A,A) ,A)+

~~
Figure 24. A search space with a mixed top-down, bottom-up representation

for the problem of showing that every set is a subset of itself.

The use of non Horn clauses to reduce problems to subproblems

consisting of assertions and goal statement is related to the use of non

Horn clauses to achieve cooperation of different methods for solving the

same problem by case analysis.

Cooperation of problem-solving methods by case analysis.

Robot plan-formation tasks requiring the construction of conditional

plans can be interpreted as problem-reduction tasks needing case analysis

for their solution.

Such an application of case analysis is needed, for example, to solve

the problem of getting Robert to the circus. The initial problem

eventually reduces to the problem of finding Robert's location:

+ Holds(at(Robert,y),w').

Two different operators match the problem

Holds(at(Robert,home) ,w) + Holds(ill(Robert),w),

Holds(at(Robert,work) ,w) + Holds(healthy(Robert) ,w).

Neither operator is able to succeed independently of the other. Each operator

working alone succeeds in only one of the two cases asserted by the initial

nor: Horn clause

Holds (healthy (Robert) ,0) ,Holds (ill (Robert) ,0) + .

Cooperatively the two operators solve the problem by exhausting all the cases,

Figure 25 illustrates a similar use of case analysis to enable the

cooperation of different operators for solving the problem of showing that

Robert is always working.

/

,+ Working(Robert)

(2 \ ,3)

+ At (Robert,work) +- At (Robert,home)

(1) At(Robert,work), At(Robert,home) +

(2) Working(x) + At(x,work)

(3) Working(Robert) + At(Robert,home)

Figure 25. A search space illustrating the use of a non 'iorn clause for

enabling the cooperation of operators by case analysis.

55

We have seen how the two clauses in the definition of the subset

relation can be interpreted as reducing a problem to a subproblem

consisting of an assertion and a subgoal. It is also possible to interpret

the same clauses as two different operators for solving the problem of

showing x is a subset of y:

(1) Sub(x,y) + Member(arb(x,y),y)

(2) Sub(x,y) + not-Member(arb(x,y),x)

It is necessary to reinterpret the second clause as an operator which

replaces the problem of showing that x is a subset of y by the problem of

showing that arb(x,y) is not a member of x. With this interpretation (1)

and (2) behave as different ways of solving the same problem. Sometimes

one method works independently of the other. At other times both methods

need to cooperate. Figure 26 shows that (1) alone is sufficient for

solving the problem of showing that every set A is a subset of the universal

set U. Figure 27 shows that (2) alone is sufficient for solving the problem

of showing that the empty set~ is a subset of every set A. Figure 28, on

the other hand, shows that (1) and (2) need to cooperate in order to solve

the problem of showing that A is a subset of B, where A contains no more

than a and band B contains a, band c.

+ Sub (A,U)

+ not-Member(arb(A,U) ,A)

(3) Member(x,U) +

Figure 26. A top-down search space determined by the problem of

showing that every set is a subset of the universal set (defined by

clause(3)).

+ Member(arb(~,A),A)

(4) not-Member (x,~) +

56

Sub(~,A)

(2)

+ not-Member(arb(~,A),~)

(4)

oO

Figure 27. A top-down search space determined by the problem of showing

that the empty set (defined by (4)) is a subset of every set.

+ Member (arb (A,B) ,B)
//

(5),,,,/
// (6)

+ a (arb (A,B)) <b (arb (A,B))
,,

---., .

(5) Member(x,B) + a(x)

(7) Member(x,B) + c(x)

(6) Member(x,B) + b(x)

(8) a(x),b(x) + Member(x,A)

Figure 28. A mixed top-down bottom-up search space for the problem of showing

A is a subset of B.

57

CHAPTER 5. THE PROCEDURAL INTERPRETATION OF PREDICATE LOGIC.

A Horn clause

B +- A1, ... ,A
n

is interpreted as the declaration of a procedure whose name is Band whose

body { A1, ••. ,A } is a set of procedure calls A. • Top-down derivations are n i

computations. Generation of a new goal statement from an old goal statement

by matching the selected procedure call A. with the name A of a procedure
1

A +- B1, .•. ,B
m

is procedure invocation.

The distinction between the input and output variables of a procedure

declaration depends upon the context in which it is invoked. For a given

procedure invocation, the input variables are the variables in the procedure

declaration which are affected by the matching substitution. The variables

affected in the procedure call are the output variables. Computation

proceeds by successive approximation. The output component of the matching

substitution transmits partial output which improves the current approximation

to the desired fully specified output.

The absence of an explicit input-output distinction has important

consequences. In particular a procedure can be defined for the purpose of

testing that a given n-tuple of terms holds in a given relationship. The

same procedure can also be used to generate as output any subset of terms

in the n-tuple, given the other terms as input.

A program, consisting of a set of clauses, is activated by an initial

goal statement. The output of the program is the output component of any

solution of the activating initial goal statement.

Predicate logic programs incorporate many features of standard

programming languages. In particular, they include recursion, the ability

of a procedure to contain a procedure call to another copy of itself.

Recursion is used when a procedure declaration contains a procedure call

which matches the name of another copy of the same procedure declaration.

58

Regarded as a programming language predicate logic is non­

deterministic in three different ways.

(1) Several procedures can have a name which matches

a selected procedure call. In such a situation,

a given program and activating goal statement

determine several computations. The order in

which different computations are generated is

not determined.

Distinct computations can give rise to

distinct solutions,

x:= t1 ... and x:= t
- -n

of the initial goal statement. (x is the

m-tuple of variables occurring in the initial

goal statement and t. is an m-tuple of terms.)
-1.

It is not determined which solution will be

returned as output.

(2) The selection of different procedure calls in

the same goal statement gives rise to different

search spaces of computations. The program

does not determine how procedure calls are

selected.

(3) Several procedure calls may need to cooperate

in order to execute successfully a given

selected procedure call.

output may be ambiguous:

x:= t1 ..• or x:= t .
- - - -n

The resulting

Such an output does not determine the value

of the output variables!_ unambiguously.

These three different kinds of non-determinism are often confused in the

theory of computation. In particular the first and third kinds of non­

determinism are easily confused because of the ambiguity of and and 2!:.•

In the procedural interpretation, terms function as the data structures

whioh are manipulated by the program and serve as its input and output.

59

Such a use of terms as data structures gives predicate logic many of the

characteristics of a list-processing language such as LISP { }. Top-

down execution of clauses corresponds to the standard way of interpreting

programs. Bottom-up execution generally leads to problem-independent,

combinatorially explosive behaviour.

In other programs, sets of problem-specific assertions function as

data structures. Top-down execution of clauses interrogates the data base

of assertions. Bottom-up execution manipulates it, adding new assertions,

possibly deleting old ones. The parsing problem is a good example of such

a program. The wider use of sets of assertions as data structures promises

to make a useful contribution to the general methodology of computer

programming.

The procedural interpretation of Horn clauses.

A goal statement

is a set of procedure calls.

B+-A1, ... ,A
n

A Horn clause

is a declaration of a procedure whose name is Band whose body is the set

of procedure calls A ..
1.

The null clause

□

If n = 0 then the procedure has an empty body.

is interpreted as the halt statement.

The name of a procedure identifies the procedure calls to which it can

respond. It asserts the names of the problems which it can solve.

Thus the definition of factorial consists of two procedure declarations:

(1) Fact(O,s(O)) +-

(2) Fact(s(x),u) +- Fact(x,v),Times(s(x) ,v,u).

The first procedure responds to procedure calls which match its name

Fact(O,s(O)). It replaces such a procedure call by an empty set of procedure

calls and returns as output the output component of the matching substitution.

The second procedure likewise responds to procedure calls which match its

name Fact(s(x),u). It replaces such a call by the non-empty set of procedure

60

calls

(Fact(x,v) ,Times(s(x),v,u)) 0I

where 61 is the input component of the matching substitution 0, h

returns as an approximation to its output the output compo:-;ent~ of 8

Notice that the procedural interpretation is identicaJ_ to the t.:::,p-down

interpretation of Horn clauses. Computations are top-down der:Lvcttions and

successfully terminating computations are refutations,.

in Figure 9 is a successfully terminating computation"

x:= s(s(O))

The single refutation

ThE solution

of the initial goal statement is the desired output of the pr;Jgra'L

Computation by successive approximation to output,

In conventional programming languages, functions, subroutines and

procedures return output only when they have successfully termlnated

computation. In predicate logic, at every stage of a computation, a

procedure transmits partial output to the calling environment 1rhe

successive partial outputs accumulate and generate successive apprcx1mat1ons

to t.he output" These successive approximations are generated whett,er or

not the computation eventually succeeds.

Figure 29 illustrates the computation, by successive approx1.mati0n, of

the list which results from appending cons(3,nil) to cons(2,cons(l,nil)),

x .- cons (2,u)

u := cons(l,u')

u' : = cons (3, nil)

I+ Append(cons(2,cons(l,nil)) ,cons(3,nil) ,x)

(2)

+ Append(cons(l,nil),cons(3,nil) ,u)

(2)

+ Append(nil,cons(3,nil) ,u')

(1)

□
(1) Append(nil,x,x) +

(2) Append(cons(x,y) ,z,cons(x,u)) + Append(y,z,u)

Figure 29. Computation by successive approxlmation to outpuL

61

Every step in the computation adds new information about the output

variable x. After the first step it is determined that

x is cons(2,u)

whether or not the computation eventually succeeds. After the second step

x is cons(2,cons(l,u')).

Finally, after the third step, the output variable is fully specified,

x is cons(2,cons(l,cons(3,niI))),

and the computation terminates successfully.

Because of the lack of exp:i~it input-output distinction, computation

can proceed by successive apprcximation to input as well as to output.

The utility of both kinds of computation by approximation will be discussed

later in connection with the admissible pairs example.

No input-output dist.incb.on.

The lack of explicit input-output distinction has as one of its

consequences that a procedure defined with the intention of generating output

!_, given input~, can also be used to generate~ as output, given!_ as input.

Thus the procedure Append(s,t,u) might be defined with the purpose of

generating as output u the list which results from appending together the

two lists sand t given as input" In a conventional list-processing

language the procedure could be used only to compute the input-output

relation for which it was defined. But in predicate logic the same

procedure can be used to test that Append(s,t,u) holds given s, t and u as

input, to generates from t and u, to generate t from sand u, to gene.tate

sand t from u, or in general to generate any subset of {s,t,u} given the

rest of the set as input. There are 2 3 such input-output relations which

are computed by the single procedure Append.

Figure 30 illustrates the use. of Append to compute the list x such that

cons(2,cons(l,cons(3,nil)J) results from appending cons(3,nil) to x. Although

the search space contains an unsuccessfully terminating computation it contains

only one successful one.

62

x := cons(2,y)

I A . . ppend (x, cons (3, nil) , cons (2 ,cons (1, cons (3, nil))))

I (2)

f lpoend(y,cons(3,nil),cons(l,cons(3,nil)»

y : = cons (1 , y ') I (2)

y' :=

. MAp~~=d ~y 1
, cons,: 3, nil) , cons (3, nil))

nil (l) (2) y .- cons(3,y)

D o Append (y", cons (3 ,nil) ,nil)

Figure 30.

relation.

Use of the same procedure to compute a different input-output

Non-determinism1:

procedure call.

The scheduling of procedures when several match a

Typically a procedure is defined with the intention of using it to

compute a function (in the case of Append, to compute the unique list which

results from appending together two other lists given as input). Used in

the way originally intended, the procedure behaves deterministically in the

sense that it computes a unique output for a given set of inputs. (In the

case of Append, the procedure behaves deterministically in the stronger,

more important, sense that the search space of computations contains no

branch points.)

The inverse of a function is generally many-valued and therefore not a

function. Using a procedure to compute the inverse of the function originally

intended changes the procedure from one which behaves deterministically to one

which behaves non-deterministically. In particular, Append is many-valued

when it is used to output a pair of lists s,t which partitions a list u, given

as input (so that the relation Append(s,t,u) holds between input and output).

Such an application of Append is non-deterministic1 because the space of

computations contains branch points. Figure 31 illustrates such a branching

search space of computations, determined by the problem of partitioning the

list cons (2, cons (1, cons (3, nil))) .

Notice the economy obtained by structuring the space of computations as

a tree. In particular, the two different partitions

x:= cons(2,cons(l,nil)), y:= cons(3,nil) and

x:= cons(2,cons(l,cons(3,nil))) , y:= nil

are obtained from the same initial computation of the common approximate

solution

x:::o cons(2,cons(l,x")).

63

x:=

y:=
/

+- Append(x,y,cons(2,cons(l,cons(3,nil))})

nil \. -~:= cons(2,x')
cons(2,cons(l,cons(3,nil) \.

D ✓\ +- Append(x' ,y,cons (1,cons (3,nil}))

cons ,cons ,ni Yx' = •• = __ nil (1 (3 'l)) \• := cons (1,x")

Do /~+-Append(x",y,cons(3,nil})

x":= nil ✓
. x" := cons (3 x'") y : = cons (3, nil) '

0 d ;" :: ::~ t ~ Append(x"', y,nil)

Figure 31. Non-determinism1 a branching space of computations.

The non-determinism associated with a branching search space of

computations concerns the scheduling of the processor(s) which generates

computations in the search for one which terminates succes~t~lly. The

scheduling of the processor is not determined by the program. When several

procedures match a given procedure call, it is not determined which procedure

will be tried first. Nor is it determined whether one will be tried before

the others or whether all will be tried simultaneously (in parallel). When

the initial goal statement has several distinct solutions (associated with

different successful computations) it is not determined which solution the

processor will return as the output of the program.

Non-determinism2 : The scheduling of procedure calls in the body of a procedure.

The body of both a goal statement and a procedure declaration is a set of

procedure calls. In a conventional programming language the body of a

procedure is likely to be a sequence of procedure calls. In predicate logic, the

procedure definition does not specify the sequence in which procedure calls are

to be executed. For this reason predicate logic programs are non-deterministic.

It is not determined2 which procedure call should be activated first. Nor is

it determined2 whether one procedure call should be executed without inter-

pretation and terminated before the activation of the others. It is not

even determined2 whether one call should be executed before another or whether

all should be executed in parallel.

64

An example of the non-determinism2 of the scheduling of procedure

calls in a goal statement

+ Fact(s(O) ,v) ,Times(s(s(O)) ,v,u)

was discussed in the preceding chapter. Activation of the Fact procedure

call before the Times procedure call results in the usual deterministic1,

recursive algorithm for computing factorial. Activation of Times before

Fact results in an intolerably inefficient, but none-the-less correct,

non-deterministic 1 algorithm. In general the scheduling of procedure

calls determines2 the size of the search space of all computations.

Different scheduling rules determine 2 different search spaces,some of which

may be significantly easier to search than others.

Effective scheduling of procedure calls depends importantly on the

input-output distribution of variables in the procedure call which activates

the given procedure. For example, when the procedure

Grandparent(x,y) + Parent(x,z) ,Parent(z,y)

is used to test whether x is a grandparent of y, it does not matter greatly

which procedure call, Parent(x,z) or Parent(z,y), is activated before the

other. According to the principle of procrastination, if x has fewer than

two children z, then it is better to find a child of x and then test that

it is a parent of y. But if x has more than two children then it is better

to find a parent of y and then test that it is a child of x.

More important is the scheduling of procedure calls in this example

when only one of x and y is given as input and the other is desired as output.

If it is required to find a grandchild y of x then it is important first to

find a child z of x and then to find a child y of z. But if it is required

to find a grandparent x of y then it is much better to find a parent z of y

and then to find a parent x of z than it is first to find a pair x, z such

that x is a parent of z and then to test that z is a parent of y.

It is important therefore for the scheduling of procedure calls in the

body of a procedure to be sensitive to the context in which it is called.

To fix scheduling by a single initial ordering of procedure calls is to

define a scheduling appropriate for the initially intended input-output

relation, but possibly unusable for other input-output relations. As

important as this point is, some critics have wrongly judged that dynamic

scheduling is less efficient than static ordering {43}.

65

Another restriction on the scheduling of procedure calls, which it is

useful to remove, ie the restriction that procedure calls be executed last­

in-first-outo Given, for example, the goal statement

+ P(x,y),Q(y)

where P is selected before Q and where x is input variable and y is output

variable, the successive approximations to the output of Pare transmitted

as successive approximations to the input of Q. If execution proceeds in

a last-in-first-out manner, then Q is selected only after P successfully

terminates and the variable y is fully specified. In many situations,

however, it is possible and desirable to interrupt the execution of P and

to run Q with partially specified input, returning to the execution of P

when Q desires further specification of its input. Such a method of

combining the execution of P and Q is especially useful when P non-

deterministically generates a number of different outputs y. If Q

terminates unsuccessfully for some partial specification of y, then it is

possible to abandon the computation of P which gave rise to that value of y.

This is illustrated in Figure 32.

list {2,1,3} is replaced by

+ Perm({2,l,3},y) ,Ord(y)

The initial goal, which is to sort the

the goal of generating a permutation of {2,1,3} and testing that it is ordered.

Instead of executing the goal statement last-in-first-out and waiting until

Perm generates the fully specified permutation {2,1,3} before recognising

that it is not ordered, Ord tests the partially specified output cons(2,cons(l,x))

of Perm, recognises that it is not ordered and abandons the corresponding branch

of the search space,

Removing the last-in-first-out restriction on the scheduling of procedure

calls is useful in some cases. In other cases, such as in the admissible

pairs example, it is essential. There it is necessary to execute the two

procedure calls Double(x,y) and Triple(x,y) in parallel, communicating partial

output from one procedure call to serve as partial input for the other. Unlike

the preceding example, where Perm could run without the help of Ord, in this

example, netther Double nor Triple could run with tolerable efficiency without

help from the other. The execution of Double and Triple as communicating,

parallel processes is shown in Figure 33.

66

(1) Sort(x,y) + Perm(x,y) ,Ord(y)

(2) Perm(nil,nil) +

(3) Perm(z,cons(x,y)) + Delete(x,z,z') ,Perm(z' ,y)

(4) Delete(x,cons(x,y) ,y) +

(5) Delete (x, cons (y, z) ,cons (y ,u)) + Delete (x, z ,uj

(6) Ord (nil) +

(7) Ord(cons(x,nil)) +

(8) Ord(cons(x,cons(y,z))) + LE(x,y), Ord(cons(y,z))

(9) LE(x,x) + (10) LE(l,2) +

(ll) LE (2, 3) + (12) LE (1, 3) +

(3)

+ Sort({ 2,1,3},y)

+ Perm({ 2,1,3},y) ,Ord(y)

y:= cons(x,y')

+ Delete(x,{ 2,1,3},z'),Perm(z' ,y'),Ord(cons(x,y'))

x:= 2, z':={1,3}

_ + Perm ({ 1, 3} , y') , Ord (cons (2 , y'))
I
I

(3) ly' := cons(x' ,y")

I __ /i + Delete (x' ,{ 1, 3}, z') ,Perm(z' ,y") ,Ord (cons (2 ,cons (x' ,y")))

(/(4) l x ' : = 1 , z ' : = { 3}

o (
8

)0

1
+ Perm({ 3},y"),Ord(cons(2,cons(l,y")))

+ Perm({ 3},y") ,LE(2,1) ,Ord(cons(l,y"))

Figure 32. An unsuccessful attempt to sort { 2,1, 3} by generating

a partially specified permutation cons(2,cons(l,y")) which is not ordered.

Figure 33.

67

0

1 + Adm (cons (1, y), u)

+- Double(cons(l,y),u) ,Triple(cons(l,y) ,u)

I u:= cons(u',v)

+- Times(2,l,u'),Double(y,v),Triple(cons(l,y),cons(u' ,v))

u' := 2

+- Double(y,v),Triple(cons(l,y) ,cons(2,v))

y:= cons (y' ,z)

+- Double (cons (y' ,z) ,v) ,Times (3,2,y') ,Triple (cons (y' ,z) ,v)

y' := 6

+- Double (cons (6,z) ,v) ,Triple (cons (6,.z) ,v)

v: = cons (u" , v ')

+- Times(2,6,u") ,Double(z,v') ,Triple(cons(6,z) ,cons(u",v'))

u" := 12

+ Double(z,v') ,Triple(cons(6,z) ,cons(12,v'))

z:= nil
v':=nil

+- Double(nil,nil)

□

The execution of Double and Triple in the admissible pairs

example as a pair of communicating, parallel processes.

68

Non-determinism 3 The underspecification of output.

The problem of getting Robert to the circus

+ Holds(at(Robert,circus),w)

can be thought of as an initial procedure call with output variable w.

With this interpretation, the successful computation illustrated in

Figure 17 is arrived at by combining by means of case analysis two different

computations, each with a different associated approximation to the desired

output. The final output computed in this way is "underspecified"

w:= do(go(Robert,home,circus),O)

~ do(go(Robert,work,circus),O).

If instead of the case statement

Holds (healthy (Robert),O),Holds (ill (Robert) ,0) +

we had the two (consistent) assertions

Holds (heal thy (Robert) ,0) +

Holds (ill (Robert) ,0) +

then the output would have been "overdefined"

w:= do(go(Robert,home,circus),O)

and do (go (Robert,work,circus) ,0).

In fact the processor returns upon termination only one of the two possible

outputs. It is not determined 1 which of the two results it returns.

In this example the ambiguity between and and or does not arise. It

does arise however in the parsing example.

correctly such a fact as

It is not clear how to express

the word "fish" can be used as either a noun or a verb.

Should it be interpreted as a non Horn clause

Noun(x,y) ,Verb(x,y) + Fish(x,y)

or as two Horn clauses

Noun(x,y) + Fish(x,y)

Verb(x,y) + Fish(x,y).

The Horn clause interpretation is consistent with the previous formulation

of the parsing problem in Chapter 2 and has been applied to the parsing of

ambiguous sentences elsewhere {23}. It is not known, however, whether the

parsing problem can be consistently formulated with the non Horn clause

interpretation.

69

Sets of assertions as data structures.

The factorial, append, and admissible pairs examples illustrate the

use of terms as data structures. The parsing example (and to a more

limited extent, the robot plan-formation example also) illustrates the use

of sets of assertions as data structures.

When terms are used as data structures, top-down execution of procedures

behaves similarly to recursive execution in conventional programming languages.

Bottom-up execution is problem-independent and combinatorially explosive.

Its only application seems to be in the theory of computation where it can

be used to justify certain rules, such as Scott induction, for proving

properties of programso

When sets of problem-specific assertions are used as data structures,

top-down execution of procedures interrogates the data base. Bottom-up

execution is problem-dependent manipulation of the data base, deriving new

assertions from old ones. In some cases the procedure which derives the

new assertion from the old one may contain the only atom which matches the

old assertion. In such a case, the old assertion can be deleted when the

new one is generatedo Then bottom-up execution behaves as a destructive

assignment operation which overwrites part of the contents of the data base.

The deletion of clauses after all operators have been applied to some

selected atom (of which destructive assignment in the data base of

assertions is a special case) is a characteristic feature of the connection

graph theorem-proving system.

It is instructive to compare the previous formulation of the parsing

problem with a different formulation which uses terms as data structures.

(1) +- S (cons (The,cons (little,cons (mouse,cons (likes,cons (cheese,nil)}})))

(2) S(z) +- Np(x) ,Vp(y) ,Append(x,y,z)

(3) Np(x) +- Noun(x)

(4) Np(u) +- Det(x),Adj(y) ,Noun(z) ,Append(x,y,v) ,Append(v,z,u)

(5) Vp(x) +- Verb(x)

(6) Vp(z) + Verb(x) ,Np(y) ,Append(x,y,z)

(7) Det (cons (The, nil)) +-

(8) Adj (cons (little,nil)) +

(9) Noun (cons (mouse, nil)) +-

(10) Verb (cons (likes,nil)) +­

(11) Noun (cons (cheese,nil)) +-

70

Here the assertions (7)-(11) are problem-independent. In a realistic

parsing problem they would constitute a small subset of a larger set

containing such assertions as

Noun (cons (girl,r,il)) +­

Verb (cons (guides ,nil)) +-

which are irrelevant to the particular problem at hand. Therefore bottom-up

execution of (1)-(11) is problem-independent. The problem-dependent

information is encoded in the term in the initial goal statement. The

components of this list-like data structure cannot be overwritten as they

can be when the problem-specific data is encoded as a set of assertions

and is manipulated bottom-up by a connection graph theorem-prover.

Notice also in this example the procedure calls Append,which have no

analogue in the earlier formulation of the parsing problem. When sets of

assertions are used as data structures, the program has direct access to the

individual assertions in those sets. Direct access to assertions is like

direct access to the components of an array. When terms are used as data

structures, then special procedures like Append need to be invoked in order

to access the contents of data structures.

A still less satisfactory formulation of the parsing problem is the one

suggested by the formalism of formal language theory. The function symbol f

is an associative concatenation function. The associativity off needs to

be dealt with by supplementing clauses (1)-(11) below with axioms of

associativity or by modifying the matching algorithm { 44}.

(1) +- S(f(The,f(little,f(mouse,f(likes,cheese)))))

(2) S(f(x,y)) +- Np(x) ,Vp(y)

(3) Np(x) +- Noun(x)

(4) Np(f(x,f(y,z))) +- Det(x) ,Adj (y) ,Noun(z)

(5) Vp(x1 +- Verb(x)

(6) Vp(f(x,y)) + Verb(x) ,Np(y)

(7) Det (The) *·

(8) Adj (little) +-

(9) Noun (mouse) +-

(10) Verb(likes) +­

(11) Noun (cheese) +-

This formulation of the parsing problem, although easy to read, suffers from

all the problems of the preceding formulation which uses lists as data

71

structures. Moreover, it suffe.rs additional problems with the treatment

of the concatenation functiono

The satisfactcry behaviour of predicate logic programs depends upon

good programming style. Different programs for solving the same problem

can be logically equivalent but can have very different pragmatic

characteristics.

But even the best program will not evoke reasonable behaviour from an

unreasonable program executor. As mentioned in Chapter 2, until recently

most proof procedures for predicate logic have behaved as very unreasonable

executors of predicate logic programs. The recent elaboration of top-down

and connection graph theorem-provers has significantly improved the quality

of inference systems. There remains the problem of improving the

intelligence of search strategieso

Selection of direction and scheduling 0f procedures and procedure calls.

Predicate logic programs do not specify the direction (top-down or

bottom-up) in which procedures should be executed. When several procedures

match a given procedure call, they do not specify how the different procedures

should be scheduled. When. several procedure calls occur in the body of a

given procedure declaration or goal statement, they do not specify how the

different procedure calls should be scheduled. The specification of these

choices can be made either by the processor. without help from the program

writer or by the programmer in a separate auxiliary language. In the

latter case it is desirable to separate the machine-independent statement

of the predicate logic program from the machine-oriented specifications in

the auxiliary language.

Autonomous search strategies for scheduling the generation of clauses

have been investigated for both top-down and bottom-up theorem-proving { 20,38,59}.

These strategies use merit orderlngs or evaluation functions to guide the

generation of clauses ln the search space. Arguments against the adequacy

of such search strategies have been advanced by Hayes { :i., 1 7}. He argues

convincingly that the kind of information employed in these strategies is not

the kind of information needed for effective problem-solving. He argues also

that the information necessary t:.:i control the behaviour of the processor can

be most effectively supplied by t.he prc,grammer in a separate auxiliary

control languageo We end0rse his concluslon that the design of autonomous

search strategies is not a useful short-term research objective, whereas the

design of effective control languages is.

72

The control of search strategies concerns the scheduling of different

procedures which match the same procedure call. Useful control primitives

for scheduling procedures can be found in programming languages like

PLANNER {18}, MICROPLANNER { 55}, CONNIVER { 56}, POPLER { 10}, SAIL { 13},

QA4 { 52} and QLISP { 47} and can be applied in predicate logic.

The recommendation list, which allows a user to specify the sequence

in which different procedures should be tried, is a control primitive of

this sort.

The control methods used to sequence procedure calls in conventional

programming languages are generally restricted to sequential execution,

parallel execution and execution by co-routines. These methods are

insensitive to variations in the distribution of input and output variables.

For this reason they are not entirely adequate for controlling execution in

predicate logic programs. Fortunately, the principle of procrastination,

which delays the execution of a procedure call when it matches many procedure

names, is a useful autonomous control strategy which works in surprisingly

many cases. To the extent that it fails in a number of important cases,

it needs to be improved or supplemented by user-specified advice conveyed

to the processor in an auxiliary control language.

Finally, especially when sets of assertions are used as data structures,

the processor has to choose between top-down and bottom-up execution. In

programming languages of the PLANNER family, the direction in which procedures

are to be executed is specified in advance by the types associated with

procedure declarations (consequent theorem type if the direction is top-down,

antecedent theorem type if it is bottom-up). Moreover each procedure call

is assigned the type of the procedures which it is allowed to invoke. The

Bledsoe and Pohl heuristics, on the other hand, are context-dependent,

direction-choosing strategies of the autonomous kind. Other autonomous

strategies apply, moreover, when the connections between matching procedure

calls and procedure names are explicitly represented in a connection graph.

These heuristics will be discussed in the next chapter.

Both autonomous strategies and control languages have useful contributions

to make towards the more effective selection of direction and scheduling of

procedures and procedure calls. Some day it may be possible to design

entirely autonomous strategies which execute programs satisfactorily without

help from the programmer. In the meantime it will be necessary for the

programmer to help the program executor by communicating to it in an auxiliary

control language the control information needed for satisfactory execution

of programs.

73

The pragmatic content of predicate logic programs.

It is a common view that predicate logic is a specification language,

whose "programs" have semantic but not pragmatic content. This view is

taken by Hayes { 17} who would incorporate all pragmatic information into

the advice written in the auxiliary control language.

Our contrary view is that to ignore the pragmatic aspects of predicate

logic programs is to encourage the writing of "uncontrollable" programs.

Different programs which have the same semantic content can have very

different pragmatic characteristics. One program might be regarded as a

useful specification of the problem, but be unusable for efficient

computation. Another equivalent program might run efficiently but be

difficult to recognise as computing the same intended input-output relation.

Proving the correctness of such a program amounts to proving its equivalence

to the specification program.

A good example of the pragmatic content of predicate logic programs is

~rovided by the sorting problem studied by van Emden {11}. The previous

program for sorting lists,

Sort(x,y) + Perm(x,y) ,Ord(y),

is best regarded as a specification of sortedness. Even the scheduling of

procedure calls which uses Ord to monitor the partial output of Perm does

not produce an efficient sorting algorithm. But straightforward sequential

execution produces Quicksort { :.J} from the following program:

Sort*(nil,nil) +

Sort*(cons(x,y) ,z) + Part(x,y,u,v) ,Sort*(u,u'),

Sort*(v,v'),

Append(u' ,cons(x,v') ,z).

Here Part(x,y,u,v) holds when u is the list of all members of y which are

less than or equal to x and vis the list of all members of y which are

greater than x.

Sort and Sort* are equivalent in the sense that Sort(s,t) and

Sort* (s, t) hold for the same pairs of te:cms s, t. Sort is useful for

specifying the notion of sortedness but useless for efficiently sorting

lists. Sort* is efficient for sorting lists but less convincing as a

specification of sortedness.

74

First-order predicate logic has the limitation that proceduLeS cannot

serve as data structures to be interrogated and manipulated by other

procedures. This limitation can be overcome by employing higher-order

instead of first-order logic. Unfortunately, at the present time there

do not seem to exist for higher-order logic proof procedures which behave

as reasonable program executors. The situation may improve with time.

But until then it is possible to solve the problem without leaving first­

order logic.

The Holds predicate used in the robot plan-formation problem provides

a way of using first-order logic to gain some of the expressive power and

problem-solving capabilities of higher-order logic. First-order set

theory provides similar capabilities, as do first-order theories of lambda­

conversion. In particular, Moore has written a first-order predicate

logic program to interpret higher-order programs written in a LISP-like

language, BAROQUE { 40}. It may be that eventually proof procedures for

higher-order logic will be improved and will provide a more satisfactory

programming language than first-order logic.

Another problem of predicate logic is the problem of programming style.

In particular, the choice of data. structures, terms or sets of assertions,

is especially important. It would be beneficial to obtain for other

problem domains the advantages gained in the parsing example by using sets

of assertions instead of terms. It would be useful to reformulate the

previously investigated list-processing problems using sets of assertions to

represent lists. In the robot plan-formation problem, the use of sets of

assertions to represent states might have interesting new implications for

the frame problem.

A related problem of programming style concerns the effective use of

non Horn clauses. The use of non Horn clauses to declare a data base of

assertions local to a given procedure call has been:. _J..,_,,_, _;__ c..:...ed in the subset

examples. It seems likely that such applications of non Horn clauses have

wider applicability.

In the recent past, significant advances have been made by abandoning

the use of the Equality predicate. It seems reasonable to expect that

further advances will be made by continued investigations into the

pragmatics of programming style,

75

Finally, perhaps the most important problem concerns the details of

implementation: how best to represent clauses inside the computer? The

Boyer-Moore structure-sharing representation { 6} provides one solution,

which needs to be improved. Such an improvement might be suggested by

studying the application to predicate logic of the Bobrow-Wegbreit { S }

implementation methods.

Another, less difficult, problem of implementation concerns the design

of a useful external form for predicate logic programso In particular

the external form might admit sentences in non clausal form, such as

A +- (B +- C)

instead of

and A, C + ,

and

instead of

B +-A1, •• o,A
m n

A programming language based on predicate logic, .ffiOLOG, has been

implemented at the University of Aix-Marseille, Luminy. It uses a last-

in-first-out, top-down theorem-prover as interpreter and uses backtracking

to sequence procedures. Despite the limitations of the program executor,

PROLOG is surprisingly fast and easy to useo PROLOG programs have been

written for natural language question-answering (Colmerauer and Pasero),

symbolic integration (Bergman and Kanoui), and robot-plan formation (Warren).

76

CHAPI'ER 6. CONNECTION GRAPHS.

In Chapter 2 we defined two theorem-proving systems, one top-down,

the other bottom-up, both restricted to Horn clauses. In other chapters

we found useful applications for mixed top-down and bottom-up execution

and for non Horn clauses to associate local data with subproblems and to

achieve the cooperation of different procedures by case analysis. In

this chapter we shall define a system which provides the ability to mix

directions of execution and to deal adequately with non Horn clauses.

The new theorem-proving system has other desirable properties. All

clauses are stored in a graph. An atom in the hypothesis of a clause

is connected by a link in the graph to another atom in the conclusion of a

different clause if the two atoms match. Storing clauses by means of the

connections between them has the desirable consequence that all atoms in

assertions and goal statements are directly linked to atoms in the procedures

which can operate on them. When an atom in an assertion or goal statement

is activated, the matching procedures are accessed without searching through

the entire set of procedures but by following links in the connection graph.

The intersection of bi-directional top-down and bottom-up strategies is

facilitated since intersection can occur only by means of links in the

graph.

The generation of new clauses is accomplished by activating links in

the connection graph. Top-down execution is performed by activating a

link between a goal statement and a procedure; bottom-up execution by

activating a link between assertions and a procedure. When a link is

activated the associated clause is generated, added to the graph and links

between atoms in the new clause and atoms in the rest of the graph are

constructed from the links on the parent clauses. The activated link is

deleted from the graph.

At any time any link in the graph can be activated. If the link

selected for activation connects two procedures, then the new clause is

itself a procedure. Macro--processing of procedure calls in conventional

programming languages is a special case of such derivation of new procedures.

If an atom in a clause is linked to no other atoms in the graph, then

all links connected to that atom have already been activated and deleted

from the graph. The entire clause containing the unlinked atom may also

77

be deleted from the graph. This operation of deleting clauses containing

unlinked atoms is of great importance" It means that a goal statement

can be deleted when all procedures which apply to Lts selected atom have

already been used to generate new goal statements. It means that an

assertion can be deleted when all procedures containing matching atoms have

been applied to the assertion in order to derive new assertions. When

macro-processing is used to generate new procedures from old ones, it

justifies deletion of the old procedures.

A precise definition of the connection graph theorem-proving system

is given at the end of this chapter, after the informal description and

examples.

The initial connection graph, deletion of clauses containing unlinked atoms

and deletion of tautologies.

Figure 34 illustrates the initial connection graph for the set of clauses

in the example of the fallible Greeko

+ Fallible(x) ,Greek(x)

+ Human(y)

~Socrates

Greek(Soc~ates) ~

y:= Socrates

Human(Turing) +

Figure 34. The initial connection graph for the fallible Greek example.

Given an initial set of clauses, the initial connection graph is obtained

by inserting, for every pair of matching atoms Bi and Cj on opposite sides of

the arrow in distinct clauses, a link between the two atoms:

B 1 , • • • , B . , • o • , B *" A 1 , • • • , A
i m n

The link is labelled by the matching substitution 0. For the purpose of

matching,variables in clauses are renamed in such a way that distinct clauses

have distinct variables.

78

Robinson's purity principle {49} implies that any clause containing

an unlinked atom can be deleted from a set of clauses without affecting its

consistency (or inconsistency). Figure 35 illustrates application of the

purity principle to transform an initial connection graph. The set of

clauses in the initial connection graph is inconsistent if and only if the

set of clauses in the transformed connection graph is inconsistent.

+- A

A +- C A+ D,E

K +- J F +- H F f- I

J +- H+ I +-

F f- H F +- I

I --(--

Figure 35. Transformation of the initial connection graph for the set of

clauses in Figures 3-7.

contain unlinked atoms.

Clauses A+- l- auu K <- J are deleted because they

After K + J is deleted, the clause J +- contains an

unlinked atom and is also deleted from the graph.

79

Without affecting the consistency of a set of clauses, a clause can

be deleted if it is a tautology, i.e. if it contains identical atoms on

different sides of the arrow. Figure_36 illustrates the transformation

of a connection graph by successive deletion of tautologies and by application

of the purity principle.

A+- A,B --B+-

+- A-A+- C-C +-

Figure 36. Deletion of a tautology. The clause A+- A,B is deleted because

it is a tautology.

atom.

But then B +- is deleted because it now contains an unlinked

The activation of links in connection graphs.

The basic operation in connection graphs is that of deriving a new clause

by activating a link connecting atoms in the parent clauses. The new clause

is added to the graph and the activated link is deleted.

new clause are linked to atoms in other clauses,

The atoms in the

The new links are found not by searching the entire graph for atoms

which match the new atoms in the new clause but by testing whether the

atoms A which are linked to atoms Bin the parent clauses match the

atoms B' in the new clause which descend from B. Thus every new link

descends from one or more old links connecting atoms in the parent clauses

to other clauses in the graph.

Figures 37 and 38 illustrate the successive activation of links

connected to goal statements, simulating a top-down refutation of the

fallible Greek example.

Figures 39 - 43 illustrate a mixed top-down, bottom-up analysis for

the parsing problem. Ppplication of the purity principle in order to

delete clauses takes place as soon as possible and is not displayed explicitly.

80

+ Fallible(x) ,Greek(x)

o/ '~
Fallible(y) + Human(y) Greek(Socrates) +

~
Human(Socrates) + Human(Turing) +

+ Fallible(x),Greek(x) + Human(x),Greek(x)

~
CV'--..........

Fallible(y) + Human(y)

Hwnan (Socrates) + Human (Turing)+

JI
\Y

+ Human (x), Greek(x)

n ~
Human (Socrates) + Human (Turing) + Greek (Socrates) +

Figure 37. Top-down activation of links for the fallible Greek example.

The second graph is obtained from the first by activating link ©. The

new links @ , G) and ® descend from the old links @, @and @
respectively. The third graph is obtained from the second by deleting

clauses containing unlinked atoms. The links@, G) and 0 connected

to the deleted clauses are also deleted. Substitutions labelling links

are omitted in order to simplify the figure.

81

+ Human(Socrates) + Human (x) , Greek (x)

',,,,{i)

®
®fa_/_ ... ·

.,,,,,,..,-- .~--- 0'
.... ,.... -

',,

Human (Socrates) + Human (Turing) ~- Greek(Socrates) +

li
+ Human(Socrates)

□

Human(Socrates) +

Figure 38. Continuation of the top-down activation of links initiated

in Figure 37. The first graph in this figure is obtained by activating

link @ in the last graph of Figure 37. Link G3) descends from G) .
The attempt to construct a link ® descending from @ fails. The

second graph is obtained from the first by successively deleting all

clauses which contain unlinked atoms, Finally the null clause is obtained

by activating the only link 0 which remains in the graph.

Typically such deletion of clauses is made possible by the activation and

deletion of links which gives rise to unlinked atoms. In particular, if

the activated link is the only link connected to an atom in one of the

parent clauses, then that parent clause is deleted when the link is

activated. In favourable circumstances, the activated link is the only

link connected to both atoms at the ends of the link in the parent clauses.

In such cases, bcth parent clauses are deleted when the link is activated.

82

+ S(l,6)

0

S(x,y) +Vp(z,y) , Np(x,z)

/./
_,,.,.,,,,---"/

Vp(x,y) + Verb(x,y) Vp(x,y) + Verb(x,z),Np(z,yy'

-~/ ----
oc:::::;__ _____ ~-----

Verb(x,y) + likes(x,y) Np(x,y)
I

0/'
I

likes(4,S) + Det(x,y) + The(x,y) Jldj(x,y) + little(x,y)

The (1,2) + little (2, 3) + lioun(x,y) + cheese(x,y)

o/
' mouse(3,4) +- cheese (5,6) +

Figure 39. The initial connection graph for the parsing problem. The links

0)-@ are selected for activation because deletion of those links allows all the

parent clauses to be deleted from the graph. Activation of (D
analysis of the sentence and activation of@ - 0 initiates a

initiates a top-down

bottom-up analysis.

83

i
Vp(x,y) +- Verb(x,y) Vp(x,y) +- Verb(x,z), Np(z,y)

1
j

. ---- ~

~
7,,,~@ ------------ ______ ---~- --- '_ I
// --~ °_ I

/ ' I
/--- -...-:..=:--·-·· .. •· ----· -- "-...,/

Verb(4,5) +- Np(x,y) +- Det(x,u), ·Adj (u,v) ,Noun(v,y) Np(x,y) +- Noun(x,y)

~ . ~ /1
, I

!
"~, I

G)/ @,
·,,

I y
I

.,· ",.
! ' •

Det(l,2) +- Adj (2,3) +- l.\ioun (3, 4) +- Noun (5 ,6) +-

Figure 40. The connection graph which results from activating links Q - @
........._ fo'

in :.: gure 39, k:tivation of links (.2) and ~) generates two new clauses and

---results in the deletion of t.he three parent clauses. k:tivation of { 9 results
'--·

in the deletion of both parent clauses. Subsequent activation of the descendant

of link @' in the new clause results in deletion of both parents, one of them

the clause just generated. ktivation of (i) - @ corresponds to bottom-up

analysis.

Vp (4, 5) +-

Figure 41.

Figure 40.

+ Vp(z,6), Np(l,z) -- -·
/

✓-~-

/ e'
Vp(4,y) + Np(5,y)

,,.

Np(l,y) +- Noun(3,y) Np(x,y) +- Noun(x,y)
r·,.... ~

I ' ------ //

~- - LI ',, __ .--·~ /

,J , /

~--- ✓

Noun (3 ,4) + Noun(5,6) +-

The connection graph which results from activating (~ - Q:__o) in

The dotted lines represent unsuccessful attempts to add new links,

descending from old links, to the graph. k:tivation of@ corresponds to top-

down analysis and results in the deletion of both parent clauses"

84

Noun (3,4) + Noun (5 ,6) +

Figure 42"

Figure 41.

The connection graph which results from activating @ in

ktivation of @ - @ corresponds to bottom-up analysis,

generates three new assertions but results in the deletion of the four

parent clauses.

+ Np(S,6) ,Np(l,4)

' -----1

ffi □
Np (1 , 4) + Np (5 , 6) +

Figure 43. The connection graph which results from activating @ - @
in Figure 42. Activation of link @ and then the descendant of @
connected to the new clause results in the generation of the null clause

and in the deletion of all other clauses.

Resolution.

The selection of links for activation in a connection graph is like the

selection of atoms in a goal statement in the top-down interpretation: at

every stage, any link may be selected. The new clause obtained by

activating a link is called a resolvent of the two parent clauses connected

by the link. The resolvent associated with a link between two clauses

U { B} + CQ.

~
+ e,u {C}

is the clause

8.5

Resolution as originally defined { 49} incorporates the additional

operation of factoring clauses. A clause ce is a factor of a clause C,

~l \J O O O u CB + (O_l u • • • u (D_ , m n

if 8 is a most general simultaneous unifier of the family of sets of atoms

For example the clause Grandparent(x,y) +Parent(x,z) ,Parent(z,y) has two

factors:
Grandparent(x,y) + Parent(x,x) and

Grandparent(x,y) + Parent(x,z) ,Parent(z,y).

Later we shall see an example which requires the use of the factoring

operation.

Top-down generation of goal statements and bottom-up generation of

assertions are special cases of resolution. In addition, resolution deals

with the activation of links between two procedures and with the activation

of links connected to non Horn clauses.

Figures 44 and 45 and Figures 46-48 illustrate alternative connection

graph refutations of the non Horn clause, Robert-is-always-working example.

The first refutation (Figures 44 and 45) proceeds basically in the top-down

direction, whereas the second refutation (Figures 46-48) proceeds basically

bottom-up.

+ Working (Robert)

~~
Working (x) + A.t (x,work) Working (Robert) + , :. (Robert,home)

~ /
At (Robert,work), At (Robert,home) +-

Figure 44. The initial connection graph for the Robert-is-always-working

example. k:tivation of links @ and (D initiates a top-down analysis and

results in the deletion of the three parent clauses.

+· At(Robert,work)

\
0\

86

+-At (Robert,home)

/4
At(Robert,work), At(Robert,home)"'

□

Figure 45. The connection graph which results from the activation of

links {2:' and@ in Figure 44. Activation of 0 results in the deletion

of the two parent clauses. Activation of the descendant of G) in the

resolvent results in the generation of the null clause and in the deletion

of all other clauses.

+- Working(Robert)

----•-..

~,/- ~--. ·-
.,..,.

·--Working(x) +- At(x,work) Working (Robert) + At (Robert,home)

-~
0 ·"'

'-
At (Robert,work) ,At (Robert,home) +-

Figure 46. The initial connection graph for the Robert-is-always-working

example. Activation of 0) initiates a kind of bottom-up analysJ_ s.

+- Working (Robert)

__ 92--------------------0_.
Working (Robert) ,At (Robert,home) +- Working(Robert) +- At(Robert,home)

----··---------
(?)

Figure 47. The connection graph which results from the ~ctivation of G)
in Figure 46. Activation of@ continues the kind of bottom-up analysis

begun in Figure 45.

+- Working (Robert)

I □
Working (Robert) +·

Figure 48. The connection graph which results from the activation of 0
in Figure 47. The only link in this graph descends from both links (v and

(v in Figure 4 7.

null clause.

Activation of this link results in the generation of the

87

Figures 49-53 illustrate an alternative refutation of the set of

clauses in the parsing problem. The activation of links G ,0 and @
in this example derives new procedures from old ones.

+- S(l,6)
t

0

S(x,y) +- Vp(z,y),Np(x,z)

Vp(x,y) +- Verb(x,y)

,~:'\ ,,,,./
\2-"

Vp(x,y) +- Verb(x,z),Np(z,y)

\
\
\

oe::::::::::__ ______ ------ ______ , .. · ·-..~
Verb(x,y) +- likes(x,y) Np(x,y) +- Det(x,u), Adj (u,v) ,Noun(v,y) Np(x,y) +- Noun(x,y)

I
likes(4,5) +- Det(x,y) +- The(x,y) Adj (x,y) +- little(x,y)

r
r;--,,;

'0/
1

The (1, 2) +- little(2,3) +-

mouse (3 , 4) +- cheese (5,6) +-

Figure 49. The initial connection graph for the parsing problem. Pctivation of links

(D - (j) results in the deletion of all the parent clauses. Pctivation of G) and 0
derives new procedures from old ones and is an example of macroprocessing: all procedure

calls Verb(s,t) are eliminated from the program.

1• also eliminated.

The definition of the Verb procedure

Figure so.
Figure 49.

88

+ Vp(z,6) ,Np(l,z)

Det(l,2) + Adj(2,3)+ Noun (3,4) +

The connection graph which results from activating

Act ... ·Jation of@,(~) and @ and then the descendant

Noun(S,6) +

,,.........,, r-::;--... .
\2:_,J - 0 in

-" of ~ results

in the deletion of all parent clauses.

Vp (4, 5) +

Figure 51.

Figure SO.

Np(l,y) + Noun(3,y) Np(x,y) + Noun(x,y)

\·---- ---~ .. ---- I \ ./ --- ~-: .. -... / ..
Noun (3,4) + Noun (5 , 6) +-

The connection graph which results from activating © - @ in

J.l.ctivation of links @ and @ corresponds to top-down analysis,

whereas activation of @ derives a new procedure from old procedures.

89

+ Vp(z,6) ,Noun(3,z) +- Vp(z,6),Noun(l,z)

I
I
L

Vp (4 ,y)

,,.//,,,­

+- Noun(S,y)

. \
\

\

Noun(3,4) +-

'
' '

I
I

I

f

,1

' ' ' ,' I

/ I

•
I
I

Noun{S,6) +-

Figure 52.
r,-:;\ ~ v-~

The connection graph which results from activating links

in Figure SL

3 +- Vp (z, 6) , Noun (3, z) ---=--- Noun (3, 4) +

□
' ~ Vp (4 ,y) +- Noun (5 ,y) ---=---Noun (5 ,6) +-

Figure 53. The connection graph which results from deleting clauses

containing unlinked atoms in the graph of Figure 52. Activating @
and ~i and then the descendant of @ results in generation of the null

clause.

Self-resolving clauses.

Before defining the connection graph theorem-proving system more

precisely we need to illustrate the treatment of self-resolving clauses and

factoring.

A self-resolving clause is one which resolves with a copy of itself.

For example

l·_ppend(cons(x,y) ,z,cons(x,u)) + Append(y,z,u)

resolves with the copy

Append(cons(x' ,y') ,z' ,cons(x' ,u')) +- ~pend(y' ,z' ,u')

90

Amatching substitution is

y:= cons(x' ,y'), z:= z', u:= cons(x' ,u')

and the corresponding resolvent is

Append(cons (x,cons (x' ,y')) , z', cons (x,cons (x' ,u'))) +- Append(y' ,z' ,u').

Figures 54-56 illustrate a combined top-down, bottom-up strategy for

appending the list {3} to {2,1}.

+- Append (cons (2, cons (1, nil)) , cons (3, nil), w)

,J)L v
--- 0

Jppend (cons (x,y), z,cons (x,u)) + Append (y, z,u)---'------ Append (nil ,x,x) +-

Figure 54. The initial connection graph for appending {3} to {2,1}.

The link 0 is a "pseudo-link" representing the real link between atoms

in different copies of the self-resolving clause. Pseudo-links are not

activated directly but are used to help construct the new links connected

to atoms in newly generated clauses. Activation of link (D initiates

a top-down execution strategy. The new derived goal stc, tement replaces

the old goal statement.

+- Jppend(cons(l,nil) ,cons(2,nil) ,w')

'2>D(iL--~=------ 0 --.._ ·-- \::_} '" --- --" --Jppend (cons (x, y) , z, cons (x, u)) +- Append (y, z ,u) .1 >;4\ -- ',;:~-,c,:~ ;nil ,x,:<) +-

0
Figure 55. The connection graph which results from activating (Din

Figure 54. The new link@ descends from the pseudo-link (i). The

unsuccessful link® descends from@- 1\ctivation of link 0 results

in the deletion of the parent assertion and executes the recursive Append

procedure bottom-up.

91

+ Append(cons(l,nil),cons(2,nil),w')

........ _

·...__ -.
Jppend(cons(x,y) ,z,cons(x,u)) + Append(y,z,u)---·-'...,'-"-•Append(cons(x,nil} ,z,cons(x,z)} +

~

Figure 56. The connection graph which results from activating@ in

Figure 57. The new link 0 descends from the pseudo-link (2). The new

link 0 descends from 0 . A:::tivation of (D intersects the top-down

and bottom-up analyses and results in the generation of the null clause.

Factoring and the soldiers.

In the following example the factoring operation is necessary in order

to obtain a refutation:

Suppose that

Show that

(1) all soldiers kill all people who do not kill

themselves, and

(2) all soldiers kill only people who do not kill

themselves.

(3) there are no soldiers.

In a non clausal form of predicate logic (1) and (2) become (1'} and (2'}

respectively:

(1') Kill(x,y) + not-Kill(y,y) ,Sold(x)

(2') not-Kill(y,y) + Kill(x,y),Sold(x)

In clausal form (1') and (2') are respectively (l") and (2"). The negation

of (3) is (3"):

(1") Kill(x,y) ,Kill(y,y) + Sold(x)

(2 ·' J -+· Kill (x, y) , Kill (y, y) , Sold (x)

(3") Sold (Robert) +

Here Robert is an arbitrary name for the soldier whose existence is expected

to contradict (3). The set of clauses { (1 "), (2"), (3")} ie1 1.r,con:nstent.

Figures 57-59 illustrate an unsuccessful attempt to obtain a connection graph

refutation without use of the factoring operation. The successful refutation

92

obtained in Figure 59 is made possible by adding to the graph the factor

Kill(Robert,Robert) +

of the clause

Kill(Robert,y), Kill(y,y) +

already in the graph.

/x,_~

+ Kill(x,y),Kill(y,y) ,Sold(x)

Sold (Robert) ~

Figure 57. The initial connection graph for the soldiers example.

J\ctivation of Q) and@ results in the deletion of the three parent

clauses.

Kill(Robert,y), ~ill(y,y) +

I'•· /-1
' _,,.,,- I

·,,,,,/" l
... ,, !

'•·-----1
+ Fill(Robert,y), Kill(y,y)

Figure 58.

Figure 57.

The connection graph obtained by activating --~' and G) in

There exists no way of activating links which eventually

results in the generation of the null clause. In order to obtain a

refutation it is necessary to add to the graph a factor of either one or

both of the clauses in the graph.

Kill (Robert,Robert) ~

-<-· Kill (Robert,y), Kill (y,y)

Figure 59 .· The graph which

clauses in the graph. The new

the link ~) descends from i.3)
then of the descendant of 1'41;)

\ /

results from adding d factor of one of the

link 6 descends from both 0 --~nd ®
and ® Activation of link \!~') and

results in generation of ~he null clause.

93

Definition of the connection graph theorem-proving system.

The following definition makes more precise the connectJ,," ::iraph

theorem-proving system illustrated in the preceding examples" In order

to simplify the definition, pseudo-links are not made expl1_c1 t

(1) Initialise the graph. Let S be the set of all factors

of clauses in the initial set of clauses. Form the

initial connection graph by inserting a link betwe2r.1 all

matching atoms on different sides of the arrow in

different clauses in S. Label each link by the

matching substitution

(2) Repeat the following procedure until the null clause

is generated.

(a) Select a link in the graph. Activate it

by generating the associated resolvent and

all its factors. Delete the activated link,

Add the resolvent and its factors to the graph-

(b) Co,mcct the atoms in the new clauses by links

to other atoms in the graph.

Suppose that an atom L0 in a new clause

descends from an atom Lin one of the parent

clauses. Suppose that the old atom Lis cc,nr.2cted

by a link to an occurrence of an atom K. If the

substitution er- labelling the link between Land K

is compatible with 6, then insert a link between

the new atom L8 and the occurrence of K. L3bel

the link by the matching substitution.

Suppose that an a tom in a new clause rna '- ,:hes

an atom on the other side of the arrow in an,.:;d,et

new clause or in one of the parent clauses.

Insert a link between the matching atoms and

label it by the matching substitution.

(c) Delete from the graph any tautology and any

clause containing an unlinked atom. Delete all

links connected to atoms in the deleted clause.

-- ---- -- -- ----------------

94

The generation of all factors of input clauses and of resolvent< J s

excessively redundant. Redundancy can be controlled by imposing

restrictions on the factoring operation. The following res tr ictiun'c

have proved useful in other theorem-proving systems.

(1) Idem-factoring ({25} , {21}) .

Only generate factors C9 of non Horn clauses C

of the form

cB u G
l 2 +

where 0 is a most general unifier of (~ 1 • Do not

activate any links connected to atoms in ~ .:0 in the

factor ce .

(2) m-factoring ({21} , {26}) •

Generate all factors of input clauses. Generate

only those factors of resolvents which do not identify

distinct atoms from the same parent.

Neither of these factoring methods makes special use of the conneccicn graph

structure. It may be that more satisfactory factoring methods wilJ_ be

obtained by relating the generation of factors to the presence of ce1tdin

links in the connection graph.

The selection and activation of links is non-deterministic. D 1.ffe,rent

sequences for scheduling the activation of links should lead to C,e same

result and should differ only by leading to that result with more er Les3

efficiency. In order to secure this objective it ls necessary t.,:;, .:1v::.id

methods of selection which indefinitely postpone the activation of ._;e:::tain

links needed for a refutation. This can be achieved by employing ;c3election

methods which eventually select every link for activation.

In addition to employing negative criteria which guard against dw

dangers of indefinite postponement, it is necessary to use positive cr1ser1_a

which prefer the selection of one link to another. These criteria ca!l be

formulated by the user and conveyed to the theorem-prover in an auxiliary

control language. Or they can be general-purpose strategies which are

pre-programmed into the theorem-prover. In either case, it is preferable

in general to select links whose activation least complicates the graph"

95

Simplification takes place when the resolvent replaces both its parents

or when it replaces one of its parents but contains fewer atoms and links

than the deleted parent. The selection of links, which temporarily

complicate the graph but eventually simplify it, is facilitated by the

look-ahead computations described in {23}. Preference should also be

given to the selection of links connected to clauses which descend from

the initial goal statement or problem-specific assertions. The combination

of these two preference strategies combines in connection graphs the

principle of procrastination with the Pohl and Bledsoe heuristics.

Amore detailed investigation of connection graphs, emphasising

their historical relationship with top-down resolution systems, is reported

in the original publication {23}.

REFERENCES.

{1} Anderson, D.B. and Hayes, P.J.

or the logicians' folly'.

Edinburgh, 1972.

'An arraignment of theorem-proving

D .. C.L. Memo No 54, University of

{2} Baxter, L.D. 'An efficient unific&tion algo:rithm'. Applied

Analysis and Computer Science Technical Report CS-73-23,

University of Waterloo, 1973.

{3} Bledsoe, W.W. 'Splitting and reduction heuristics in automatic

theorem-proving'. Artificial Intelligence ~, l'."71, pp. 55-77.

{4} Bledsoe, W.W. and Bruell, P. 'A man-machine theorem-proving system'.

Third International Joint Conference on Artificial Intelligence,

1973, pp .. 56-65.

{5} Bobrow, D.G. and Wegbreit, B .. 'A model for control structures for

artificial intelligence programming languages'.

IJCAI, Stanford, California, August 1973.

Proceedings of

{6} Boyer, R.S. and Moore JS. 'The sharing of structure in theorem-proving

programs'" Machine Intelligence 7, (eds Meltzer, B. and Michie, D.)

Edinburgh University Press, 1972, pp. 101-16.

{7} Chang, C.L. and Slagle, J.R. 'An admissable algorithm for searching

and/or graphs'°' Artificial Intelligence~, 1971, pp. 117-28.

{8} Colmerauer, A. 'Les systemes-Q OU un formalisme pour analyser et

synthetise:r. des phrases sur ordinateur'. Publication interne No 43,

Dept d'Informatique, Universite de Montreal.

{9} Daniel, L. 'And-or graphs and critical path'. To appear in the

Proceedings of IFIP 1974.

{lo} Davies, J .. 'POPLER l. 5 Reference Manual' . T.P.U. Report No. 1,

University of Edinburgh, May 1973.

{11} Emden, M.H. van 'Predicate logic as a specification language for

automatic programming'. In preparation.

'The utility of independent subgoals in theorem-proving'.

Information and Control, April. 197L

{13} Feldman, J"A. et al. 'Recent developments in SAIL - an ALGOL-based

language for artificial intelligence'. FJCC, 1972.

{14} Fikes, R.E. and Nilsson, N.J. 'STRIPS: a new approach to the

application of theorem-proving to problem solving'. Artificial

Intelligence ~, 1971, pp .. 189-208c

REFERENCES (continued)

List ProcessL-1g, Macdonald/Elsevier, 1967. · {15} Foster, J.M.

{16} Foster, J.M.

{17} Hayes, P.J.

Automatic Syntactic Anaiysis, Macdonald/Elsevier, 1970.

"Computat.L:m ,md deduction '1 • Internal memo, University

of Essex, 1973.

{18} Hewitt, C. 'Descriptl:::r, and ·theoretical analysis (using schemata) of

PLANNER: a langJ.age for prov.ing theorems and manipulating models

in a robot.' AI Memo No 251, MIT , Project MAC, April 1972.

{19} Hoare, C.A.R. 'A.lge:r ithm 64 ° " Comm A.C.M., Vol. 4, 1961, p. 321.

{20} Kowalski, R. 'Search strategies fer theorem-proving'. Machine

Intelligence 5, (eds. Meltzer, B. and Michie, D.) Edinburgh

University Press, 1969, pp. 181-201

{21} Kowalski, R. 'Studies in the completeness and efficiency of theorem-

proving by resoluticn". PhoD. Thesis, University of Edinburgh, 1970.

{22} Kowalski, R. 'And-or graphs, theorem-proving graphs and bi-directional

search'. Machine Intelligence 7 , (eds Meltzer, B. and Michie, D.)

Edinburgh University Press, 1972" pp. 167-94.

{23} Kowalski, R.

Memo 1~0 74, Un.iversity :::,f Edinburgh, 1973.

{24} Kowalski, R. 'Predicate 1.ogic as prcgramming language'. To appear

in the Proceedings of IF IP 1974.

{25} Kowalski, R. and Hayes, P,J. 'Semantic trees in automatic theorem-

proving'. Machine Intelligence 4, (eds Meltzer, B. and Michie, D.)

Edinburgh University Press, 1968, pp.87-101.

{26} Kowalski, R. and Kuehner, D 'L1near resolution with selection

function'c Artif1ciai Intelligence l, 1971, pp. 227-60.

{27} Kuehner, D. 'Some special purpose resolution systems'. Machine

Intelligence 7, ;eds, Meltzer, B. and Michie, D.), Edinburgh

University Press, l.972, pp. ll7-28c

{28} Loveland, D. W. 'A simplified format f 1.)r the model-elimination

theorem-proving procedure'. J .. A.C.M., vol. 16, 1969, pp. 349-63.

{29} Loveland, D.W. 'A l~near format for resolution'. Proceedings IRIA

Symposium on Autc•m::i.tic Dsmonstration, Versailles, France, Springer­

Verlag, 1970, pp. 147-62"

{30} Loveland, D.W. "A unifying view of some linear Herbrand procedures'.

J.A.C.M. Vol. 19, 19~2, pp.366-84

REFERENCES (continued)

. {31} Loveland, D.W. and Stickel, M.E. 'A hole in goal trees: some

guidance from resolution theory'. Third International Joint

Conference on Artificial Intel1i_gence, 1973, pp. 153-161.

{32} Luckham, D. 'Refinement theorems in resolution theory'. Proceedings

IRIA Symposium on Automatic Demonstration, Versailles, France,

Springer-Verlag, 1970, pp. 162-90.

· {33} Martelli, A. and Montanari, u. '.:'l'.'iditive and/or graphs'. Third

International Joint Conference on Artificial Intelligence, Stanford

University, 1973, pp. 1-11.

{34} McCarthy, J. et al. 'LISP 1.5 Programmers'Manual'. MIT Press 1962.

{35} McCarthy, J. 'Programs with common sense'. Reprinted in Semantic

Information Processing (ed. Minsky, M.) MIT Press, 1968.

{36} Meltzer, B. 'Theorem-proving for computers: some results on

resolution and renaming'. Computer Journal, Vol. 8, 1966, pp. 341-3.

{37} Michie, D., Ross, R. and Shannan, G.J. 'G-deduction'. Machine Intelligence

(eds Meltzer, B. and Michie, D.) Edinburgh University Press, 1972, pp.141-65.

{38} Minker, J., Fishman, D.H. and McSkimin,J.R. 'The Q* algorithm-~ . . ·-· t r a. tegy

for a deductive question-answering system'. Third International Joint

Conference on Artificial Intelligence, Stanford University, 1973,

pp. 31-7.

{39} Minsky, M.L. 'Descriptive languages and problem solving'. Semantic

Information Processing (ed. Minsky, M.) MIT Press, 1968.

{40} Moore, J s. 'Computational logic: structure sharing and proof of

program properties, Part I'.

Edinburgh.

D.C.L. Memo No (7, University of

{41} Nilsson, N.J. 'Searching problem solving and game playing trees for

minimal cost solutions'. Proceedings IFIP Congress, 1968, pp. 125-30.

{42} Nilsson, N.J. 'Problem solving methods in artificial intelligence'.

McGraw-Hill, 1971.

{43} Overbeek, R.A. 'Review of "Some special purpose resolution system".'

Computing Reviews, Vol. 14, No 10, 1973, p. 469.

{44} Plotkin, G.D. 'Building-in equational theories'. Machine Intelligence 7

(eds Meltzer, B. and Michie, D.)Edinburgh University Press, 1972,

pp. 73-90.

{45} Pohl, I. 'Bi-directional search'. Machine Intelligence 7, (eds Meltzer, B.

and Michie, D.) Edinburgh University Press, 1972, pp. 127-40.

REFERENCES (continued)

{46} Reboh, R. et al. 'Study of automatic theorem-proving'. Artificial

Intelligence Center Technical Note 75, Stanford Research Institute,

November 1972.

{47} Reboh, R. and Sacerdoti, E. 'A preliminary QLISP Manual'. SRI

AI Center Technical Note 81, August 1973.

{48} Reiter, R. 'Two results on ordering for resolution with merging and

linear format'. J.A.C.M. Vol. 15, No 4, 1971, pp. 630-46.

{49} Robinson, J.A. 'A machine-oriented logic based on the resolution

principle'. Journal of the Association for Computing Machinery,

Vol. 12, 1965, pp. 23-41.

{so} Robinson, J.A. 'Automatic deduction with hyper-resolution'.

International Journal of Computer Mathematics, Vol. 1, 1965,

pp. 227-34.

{51} Robinson, J.A. 'Computational logic: the unification computation'.

Machine Intelligence 6, (eds Meltzer, B. and Michie, D.) Edinburgh

University Press, 1971, pp. 63-72.

{52} Rulifson, J.F. et al. 'QA4: a procedural calculus for intuitive

reasoning'. SRI AI Center Technical Note 73, November 1973.

{53} Slagle, J.R.

resolution' .

'l\utoma tic theo:r:~ir.-.. provir.g with rm.~m.::ble and normntic

J.A.C.M. Vol. 14, 1967, pp. 687-97.

{54} Slagle, J.R. 'Heuristic search programs'. Theoretical Approaches to

Non-numerical problem-solving, Lecture notes in Operations Research

and Mathematical Systems No 28, Springer-Verlag, 1970.

{SS} Sussman, G.J. and Winograd, T. 'MICRO-PLANNER Reference Manual'. AI

Memo No. 203, MIT Project MAC, July 1970.

· {56} Sussman, G.J. and McDermott, D.V. 'Why conniving is better than

planning'. AI Memo No 255A, MIT Project MAC, April 1972.

{57} Sussman, G.J. 'A computational model of skill acquisition'. Ph.D.

Thesis, MIT, 1973.

{58} Venurini-Zilli, M. 'Complexity of the unification algorithm'.

Internal Report, Istituto per le Applicazioni del Calcolo, Rome, 1973.

{59} Wos, L., Carson, D.F. and Robinson, G.A. 'The unit preference strategy

in theorem-proving'. Proceedings of the AFIPS 1964 Fall Joint

Computer Conference, Vol. 26, pp. 616-21.

ACKNOWLEDGEMENTS.

These lecture notes were prepared for a course of six lectures on

predicate logic as a programming language in artificial intelligence in

the Advanced Course on The Foundations of Computer Science, 20-30 May 1974,

Amsterdam, The Netherlands. I am indebted to Professor de Bakker for his

invitation to contribute to the lecture course and for his encouragement

in the preparation of these lecture notes. Earlier versions of these

lectures were presented in June 1973 at the Polytechnic of Milan and the

Laboratorio de Elettronica Industriale in Padua, and in October 1973 in

the School of Artificial Intelligence, University of Edinburgh.

The material in these lecture notes owes much to the beneficial

interactions I have had with my colleagues, Alain Colmerauer, Maarten van

Emden, Pat Hayes, Phillipe Roussel and David Warren. Maarten van Emden

and Luis Pereira have helped by reading through the final draft of these

notes. Mrs Jean Parker helped by typing these notes under difficult

conditions and with great competence.

	Introduction
	1. Machine-independent syntax and semantics
	2. Top-down and bottom-up interpretations of predicate logic
	3. Robot plan formation and the frame problem
	4. The proble-reduction interpretation of predicate logic
	5. The procedural interpretation of predicate logic
	6. Connection graphs
	References
	Acknowledgements

