
-

-
-

= 

... 

-

LOGIC FOR 

PROBLEM SOLVING 

by 

Robert Kowalski 

Memo No 75 

~o, "' -· }" 
Jel. ,· ✓- • • 

DEPARTMENT OF COMPUTATIONAL LOGIC 
SCHOOL OF ARTIFICIAL INTELLIGENCE 
UNIVERSITY OF EDINBURGH _ _.,_ _______________________ _ 

9HOPE PARK SQUARE EDINBURGH EH8 9NW 



...., 

LOGIC FOR 

PROBLEM SOLVING 

by 

Robert Kowalski 

Memo No 75 

March 1974. 



1 

INTRODUCTION. 

Our thesis is that predicate logic is a useful language for representing 

knowledge. It is useful for stating problems and it is useful for 

representing the pragmatic information necessary for effective problem­

solving. We shall support our thesis by investigating the application of 

predicate logic to problems of syntactic analysis and robot plan-formation. 

We shall investigate the utility of employing predicate logic both as a 

programming language and as a problem-solving language for reducing the 

solution of problems to subproblems. 

We shall argue that the distinction between top-down and bottom-up 

problem-solving, which arises in syntactic analysis, applies more generally 

in predicate logic. It characterises the main difference between different 

proof procedures. Top-down proof procedures are goal-oriented. They 

reduce problems to subproblems with the objective of eventually reducing the 

original problem to a set of solved subproblems. Bottom-up proof procedures 

are consequence-oriented. They derive new solutions (or assertions of fact) 

from old ones with the objective of eventually deriving a solution of the 

original problem. 

The top-down, bottom-up distinction is useful in the robot-plan 

formation problem. The frame axiom asserts that a fact which holds in a 

given state of the world continues to hold in the new state obtained by 

performing an action. Certain facts, which are affected by the action, are 

exceptions to the rule. The frame problem is the problem of the combinatorial 

explosion caused by interpreting the frame axiom bottom-up. Bottom-up inter­

pretation of the frame axiom involves copying facts which hold in old states, 

re-asserting that they continue to hold in new states. Top-down inter­

pretation of the frame axiom involves reducing the problem of determining 

that a fact holds in a new state to the problem of determining that the same 

fact previously held in an earlier state. It is generally considered that 

the frame problem arises as a result of applying predicate logic to the 

representation of knowledge about a changing world, and that the problem 

cannot be solved within the constraints of predicate logic. In our 

formulation, the frame problem is solved in first-order predicate logic by 

the top-down interpretation of the frame axiom. 

Top-down analysis is the key also to the problem-reduction and 

procedural interpretations of predicate logic. In the problem-reduction 

---------- -- -----------
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interpretation, a sentence of the form 

(which is read "B if A1 and ••• and An") is interpreted as a problem-solving 

method which reduces problems of the form B to the set of subproblems 

{A1, ••• ,An}• In the procedural interpretation, the same sentence is 

interpreted as a procedure declaration whose name B identifies the form 

of the procedure calls to which it can respond and whose body { A1, ••• ,An} 

is an unordered set of procedure calls Ai• 

In the problem-reduction interpretation, predicate logic is a more 

satisfactory model of problem-solving than the problem-reduction model 

used in artificial intelligence. Predicate logic deals with the reduction 

of problems to dependent subproblems, which need to be solved compatibly. 

Problems consist of hypotheses and conclusions. Effective problem-solving 

involves a combination of top-down analysis starting from the conclusion of 

the problem and bottom-up analysis starting from the hypotheses. In 

general several problem-solving methods might need to co-operate in order 

to solve a given problem. Individual methods might work in separate 

cases. 

cases. 

Between them the several methods might work in all the possible 

In contrast the usual problem-reduction model deals with the 

reduction of problems to independent subproblems. Problems and subproblems 

have no hypotheses. Problem-solving methods need to be self-sufficient and 

to work independently. 

In the procedural interpretation, predicate logic is a more satisfactory 

programming language than the machine-oriented languages which are used to 

program computers today. Unique among programming languages, predicate 

logic has been designed for the formalisation of human thought. It has a 

simple machine-independent semantics which makes predicate logic programs 

easier to modify and adapt to other purposes, and easier to integrate into 

more complicated programs. Predicate logic programs have no explicit 

input-output distinction. A procedure, written with the intention of 

constructing as output the result of appending one list to another, can be 

used to divide an input list into two parts which are returned as output. 

Since procedure bodies are sets (rather than sequences) of procedure calls, 

scheduling of procedure calls can be made sensitive to the context in which 

the procedure is called. Typically the appropriate scheduling of procedure 

calls depends on the input-output pattern of the procedure call which invokes 

-------------
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the given procedure. Sets of assertions function as data structures. 

Top-down execution of procedures interrogates data structures, whereas 

bottom-up execution manipulates them. 

The ability to combine flexibly top-down and bottom-up analysis is 

provided by the connection graph theorem-proving system. Sentences are 

stored in a graph whose arcs connect procedure calls with matching procedure 

names. Accessing relevant procedures and intersecting bottom-up with top­

down analyses is facilitated by the connections in the graph. 

These topics are treated in the following six chapters; 

Chapter 1 deals with the machine-independent syntax 

and semantics of predicate logic. 

Chapter 2 investigates the parsing problem, its 

predicate logic formulation, and the 

top-down and bottom-up strategies of 

solution. 

Chapter 3 investigates the robot plan-formation 

problem, the frame problem, and 

conditional plans. 

Chapter 4 studies the problem-reduction inter­

pretation of predicate logic. 

Chapter 5 studies the procedural interpretation. 

Chapter 6 introduces the connection graph theorem­

proving system. 
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CHAPTER 1. MACHINE-INDEPENDENT SYNI'AX AND SEMANI'ICS. 

The most outstanding characteristic of predicate logic regarded as a 

programming language is that programs have a simple machine-independent 

semantics. Both the syntax and semantics of predicate logic are further 

simplified by dealing with sentences in clausal form. Before the formal 

definitions, clausal form and such notions as atomic formulas and 

inconsistency will be illustrated in the following example. 

Example of the Fallible Greek. 

(1) Human (Turing) + 

(2) Human (Socrates) + 

(3) Greek (Socrates) + 

(4) Fallible (x) + Human (x) 

(5) + Fallible (x), Greek (x) 

In these five clauses, "Human"r "Greek" and "Fallible" are predicate 

symbols, "Turing" and "Socrates" are constant symbols and "x" is a variable" 

A predicate symbol P applied to a constant or variable t, i.e. P(t}, is an 

atomic formula, read 

"t is P" 

Clauses (1), (2) and (3) unconditionally assert that Turing is human, 

Socrates is human, and Socrates is Greek, respectively. Clause (4) states 

that all humans are fallible by stating literally that x is fallible if x 

is human, no matter what x is. Clause (5) states that no x is both 

fallible and Greek. Clearly (5) contradicts what is implicit in (1)-(4), 

namely that Socrates is both fallible and Greek. We say that (1)-(5) are 

inconsistent. 

The example of the fallible Greek has been used often to explain the 

behaviour of PLANNER programs {18}. Our intention in using this example 

is just the opposite: to show that predicate logic programs can be under­

stood without understanding the behaviour they invoke inside a machine. 

The Syntax of Sentences in Clausal Form. 

A sentence (in clausal form) is a set {c1, ••• ,c} of clauses C .• n l. 

A clause is a pair of sets of atomic formulas 
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The two sets are written without the surrounding curly brackets and are 

separated by a backward arrow. The set { B1, ••• ,B } is the conclusion of 
m 

the clause and the set { A1, ••• ,An} is its hypothesis. The null clause, 

n = 0 and m = 0, is written O . 

An atomic formula (or atom)is an expression 

where Pisa k-ary predicate symbol and t 1, ••• ,~ are terms. 

A term is a variable, a constant symbol, or an expression 

where f is a k-ary function symbol and t1, ••• ,~ are terms. 

The sets of variables, function symbols and predicate symbols are any 

three disjoint sets of objects. Associated with every function symbol and 

predicate symbol is a unique natural number which is its arity. We assume 

there is an unlimited supply of variables and of function symbols and 

predicate symbols of every arity. Constant symbols are function symbols 

of zero-arity. (Thus "Socrates ( )" is a term, whereas "Socrates" is only 

a constant symbol.) 

Because of the different positions they occupy in atomic formulas, it 

is always possible to distinguish between predicate symbols, function symbols 

and variables. It is convenient however to treat constant symbols, standing 

alone, as terms, allowing an expression such as Human (Socrates) to count as 

an atom. This convention introduces ambiguities: it is impossible to 

distinguish between constant symbols and variables only by means of the 

positions they occupy in atoms. The ambiguity is removed by employing 

the convention that the lower case letters 

u,v,w,x,y,z, 

possibly adorned with subscripts or other decorations, are used exclusively 

for variables. Thus in the atom 

Adm(cons(x,nil), cons(y,nil)), 

Adm is a predicate symbol of arity 2, cons a function symbol of arity 2, 

nil a constant symbol, x and y variables. 

In addition to the syntactic form of sentences, syntax includes proof 

theory, which deals with axioms of logic, rules of inference and proof 
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procedures. Proof theory can be used to assign an operational, 

behaviouristic meaning to sentences. Such a use of proof theory corresponds 

to the operational semantics of programming languages: the meaning of a 

program is determined by the behaviour of a machine which executes it. In 

this chapter we are concerned exclusively with the machine-independent 

semantics of predicate logic. 

The Informal Semantics of Predicate Logic. 

Read a sentence { C1, ••• ,cN} as the conjunction of its clauses: 

C1 and ••• and CN. 

Read a clause B1, ••• ,Bm + A1, ••• ,An containing variables x1, ••• ,~ 

as stating that 

for all x1, ••• ,~, 

B1 or ••• or B if Ai and ••• and A. m n 

In the special case m = 0 read 

for no x1, ••• ,xk, A1 and ••• and An. 

Form= 0 and n = 0 read Oas a contradiction. (We use the backward arrow 

B + A, B if A, instead of the more usual forward arrow A~ B, if A then B, 

because it is more convenient for the problem-solving and procedural inter­

pretations of predicate logic.) 

A sentence Sis inconsistent if every way of interpreting the predicate 

symbols and function symbols in S makes S false. If Sis inconsistent then 

it is also said to be unsatisfiable, since no interpretation satisfies Sin 

the sense of making it true. Any sentence containing the null clause or 

such implicit contradictions as P + and + P or P(t) +and+ P(x) is 

obviously unsatisfiable. 

Before defining the semantics of predicate logic more formally, we 

shall illustrate some of the expressive capabilities of predicate logic 

by means of some examples. 

The Factorial example. 

(1) Fact(0,s(0)) + 

(2) Fact(s(x),u) + Fact(x,v), Times(s(x),v,u) 

(3) + Fact(s(s(0)),x) 

Here read Fact(a,b) as stating that the factorial of a is band Times(a,b,c) 
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as stating that a times bis c. n Regard the terms 0,s(0),s(s(0)), ••• ,s (0), ••• 

as numerals denoting the natural numbers: 

term s(a) denotes a+l, the successor of a. 

n s (0) denotes the number n. 

Clause (1) asserts that the factorial of 0 is 1. Clause (2) states 

that the factorial of x+l is x+l times v where vis the factorial of x. 

Clause (3) states that no x is the factorial of 2. 

We assume that Times is interpreted as the Times relation over the 

natural numbers. Therefore clauses (1)-(5) are inconsistent where 

(4) Times(s(0),s(0),s(0)) + 

(5) Times (s (s (0)) ,s (0) ,s (s (0))) + • 

The 

Notice that, regarded as a program for computing the factorial relation, 

(1)-(3) can be understood without reference to an execution mechanism which 

interprets and executes the program. 

Append example. 

(1) Append(nil,x,x) + 

(2) Append(cons(x,y),z,cons(x,u)) + Append(y,z,u) 

(3) + Append(cons(a,nil),cons(b,cons(c,nil)),x) 

Read Append(a,b,c) as stating that the result of appending the list of objects 

b to the list a is the list c. Regard a term cons(a,b) as a list. Its 

first element is a and bis the rest of the list. The constant symbol nil 

denotes the empty list. cons(a,nil) represents the list containing the 

single element a and is abbreviated {a}. cons(b,cons(c,nil)) represents 

the list containing the 2 elements band c, in that order, and is abbreviated 

{b,c}. 

Clause (1) asserts that appending any list x to the empty list results 

in the same list x. Clause (2) states that appending z to a non-empty list, 

whose first element is x and remainder is y, results in a list with the same 

first element x and remainder u which results from appending z toy. 

Clause (3) states that no list results from appending { b,c} to { a} and is 

inconsistent with (1) and (2) which imply that {a,b,c} results from appending 

{b,c} to {a}. 

The use of terms cons(a,b) to represent lists is common in list-processing 

programming languages. Foster's book {15} is a readable introduction to 

list-processing. 
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Admissible Pairs example. 

(1) Adm(x,y) + Double(x,y), Triple(x,y) 

(2) Double(nil,nil) + 

(3) Double(cons(x,y),cons(u,v)) + Times(s(s(O)),x,u), Double(y,v) 

(4) Triple(nil,nil) + 

(5) Triple(cons(x,nil),cons(u,nil)) + 

(6) Triple(cons(x,cons(y,z)),cons(u,v)) + Times(s(s(s(O))) ,u,y) 

Triple(cons(y,z),v). 

(7) + Adm(cons(s(O),u),v) 

Clauses (1)-(6) describe the relation Adm(a,b) which holds between two lists 

a and b when 

= 2a. 
]. 

and 

ai+l = 3bi, for all i < n , 

where a. and b. are the i th elements of the lists a and b respectively. 
]. ]. 

Clause (7) states that no pair of lists a and bis admissible if the first 

element of a is 1. But (7) is inconsistent with (1)-(6) which together 

with the correct interpretation of the Times relation imply that each of the 

pairs 

{ l} and { 2}, { 1,6} and { 2,12}, 

{ 1,6,36} and { 2,12,72}, ••• 

is admissible. 

Horn Clauses. 

The preceding examples have used only Horn clauses 

which contain at most one atom in the conclusion. 

adequate for many applications of predicate logic. 

Horn clauses are 

It is convenient to distinguish and have separate names for four kinds 

of Horn clauses: 

(1) m = O, n = O, D , 
the null clause 

(2) m = 1, n = o, B + 

A Horn clause with no hypothesis is an assertion. 

--- --~-------
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(3) m = O, n ~ o, + A1, ••• ,A. 
n 

A Horn clause with no conclusion is called a goal 

statement. 

(4) m = 1, n ~ O, B + A1, ••• ,A. 
n 

Every other Horn clause is called an operator. 

The motivation for the terminology, "goal statement" and "operator" will be 

explained in the chapter on the problem-reduction interpretation of predicate 

logic. 

The following two examples illustrate the use of non Horn clauses. 

Robert is always working. 

(1) At(Robert,work), At(Robert,home) + 

(2) Working(x) + At(x,work) 

(3) Working(Robert) + At(Robert,home) 

(4) + Working(Robert) 

Robert is either at home or at work. Everyone who is at work is working. 

But Robert is working even if he is at home. To accuse Robert of not working 

is to be inconsistent. 

Subset example. 

(1) Sub(x,y), Memb(arb(x,y),x) + 

(2) Sub(x,y) + Memb(arb(x,y),y) 

(3) + Sub(A,A) 

Clauses (l) and (2) result from rendering in clausal form the definition: 

x is a subset of y if, for all z, 

z is a member of y if z is a member of x. 

Clause (3) asserts that A is not a subset of itself. The inconsistency of 

(1)-(3) is equivalent to the validity of the proposition that every set is 

a subset of itself. 

This example can be used as an argument against the suitability of clausal form 

for the representation of knowledge. It can be argued that the rendering into 

clausal form destroys the intelligibility of the definition of the subset 

relation. 

Alternatively it can be argued that the example shows the limitations 

of machine-independent semantics for understanding sentences in clausal form. 
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Clauses (1) and (2) have a natural,machine-oriented, procedural interpretation: 

In order to show that x is a subset of y, 

(1) assert that arb(x,y) is some arbitrary 

member of x and 

(2) show that arb(x,y) is a member of y. 

The arbitrary element of x has parameters X and yin order to indicate that the 

element arb(A,B) chosen for showing that A is a subset of B is different from 

the one arb(C,D) chosen for showing that C is a subset of D or the one arb(B,A) 

for showing that Bis a subset of A. The procedural interpretation of (1) 

and (2) will be explained more fully in later chapters. 

Formal Semantics of Predicate Logic. 

The following definition, like the definition of sentence in clausal 

form, is presented in a top-down manner. The first definition (of inconsistency) 

explains the goal concept to be defined in terms of other concepts. These 

concepts become the new goal concepts and are themselves defined in terms of 

lower-level concepts. Eventually the definitions terminate with a set of 

primitive, undefined concepts. In contrast, definitions presented in a 

bottom-up manner begin with the primitive concepts and define new concepts in 

terms of ones previously encountered. 

goal concept has been defined. 

The definitions terminate when the 

Top-down presentation of definitions has the advantage that it is goal-

directed. Each definition, as it is presented, is motivated in terms of the 

ro').e it plays in defining the original goal concept. The disadvantage is 

that, since concepts are explained in terms of other undefined concepts, 

definitions cannot be completely understood as they are presented. Just the 

opposite holds for bottom-up presentation. Definitions can be understood as 

soon as they are given. But the motivations for the definitions cannot be 

understood until all the definitions have been completed. 

The distinction between top-down and bottom-up applies in many places. 

It is the difference between analysis (top-down) and synthesis (bottom-up), 

between teleology (top-down) and determinism (bottom-up). It applies both 

to the writing and execution of computer programs and to the discovery and 

justification of theorems and proofs. The distinction between top-down and 

bottom-up and the application of predicate logic to the representation of 

knowledge are the dominating, unifying themes of these lecture notes. 
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A set S = { C1, ••• ,cN} of clauses is inconsistent iff it is false in 

every interpretation I of s. Sis false in I iff one of c 1 f•••,CN is 

false in I. Otherwise Sis true in I. 

A clause C is false in I iff for some substitution o-of variable-free 

terms for variables in C, the clause C er-which results from applying cr- to 

C is false in I. Otherwise C is true in I. 

A variable-free clause B1 , ••• ,B + A1 , ••• ,A is false in I iff all the 
m n 

atoms A1, ••• ,A in the hypothesis are true in I and all the atoms B1, ••• ,B n m 
in the conclusion are false in I. Otherwise the clause is true in I. 

An interpretation I of Sis an assignment of one of true or false to 

all variable-free atomic formulas constructible from the atomic formulas 

which occur ins. With a given interpretation I of Sis associated a 

domain of objects which we assume to be the set of variable-fn,e terms 

constructible from the function symbols (and constants) occurring ins. 

The variable-free terms which can be substituted for variables, in order to 

construct variable-free atomic formulas from atoms occurring ins, are 

chosen from the domain of objects associated with I. 

For the set of clauses (1)-(4) of the example of the fallible Greekv 

the assignment of 

true to Human(Socrates) 

true to Human(Turing) 

true to Greek(Socrates) 

true to Fallible(Socrates) 

true to Fallible(Turing) 

is an interpretation I of (1)-(4). Notice that there are only two different 

variable-free instances of clause (4), 

Fallible(x) + Human(x) • 

Both instances are true in I. Notice that I is the only interpretation of 

(1)-(4) in which (1)-(4) is true. 

But clause (5), + Fallible(x), Greek(x), is false in I. Therefore 

(1)-(5) is inconsistent, since no interpretation of (1)-(5) makes all of 

(1 ) - ( 5) true • 
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CHAPl'ER 2. TOP-DOWN AND BOTI'OM-UP INTERPRETATIONS OF PREDICATE LOGIC. 

The parsing problem, of showing that a string of words forms a 

sentence according to given rules of grammar, can be represented as a 

problem of demonstrating the inconsistency of a set of clauses in predicate 

logic. Different parsing procedures for determining that a string is a 

sentence correspond to different proof procedures for determining the 

inconsistency of a set of clauses. Top-down parsing procedures correspond 

to goal-directed proof procedures which work backwards from the conclusion 

of the theorem to be proved, reducing problems to subproblems, with the 

objective of eventually reducing the original problem to a set of initially 

solved subproblems. Bottom-up parsing procedures correspond to proof 

procedures which work forwards from the initial set of solved problemsv 

deriving new solved problems from old ones, with the objective of 

eventually deriving a solution of the original problem. 

Top-down and bottom-up proof procedures apply generally -co the task 

of demonstrating the inconsistency of sets of clauses. 

The Parsing problem. 

The following informal description of the parsing problem and parsing 

procedures is based on Amarel's treatment described by Foster{ 16}. 

Given a grammar and an initial string of words such as 

"The little mouse likes cheese" 

the parsing problem is to demonstrate that the string is a sentence by 

filling in the triangle 

sentence 

with a parse 

sentence 

noun phrase 

determiner phrase 

little mouse likes 
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The parse tree is constructed in accordance with the rules of grammar. 

In this example, nine rules of grammar have been applied: 

(1) A noun phrase followed by a verb phrase is a 

sentence. 

(2) A determiner followed by an adjective followed 

by a noun is a noun phrase. 

(3) A noun is a noun phrase. 

(4) A verb followed by a noun phrase is a verb phrase. 

( 5) "The II is a determiner. 

(6) "little" is an adjective. 

(7) "mouse" is a noun. 

(8) "likes" is a verb. 

(9) "cheese" is a noun. 

Different ways of filling in the triangle determine different parsing 

procedures. Top-down procedures are determined by filling in the triangle 

from the top downwards. Bottom-up procedures are determined by filling in 

the triangle from the bottom upwards. 

A top-down procedure might involve an unbiased generation of all 

branches in parallel: 

sentence 

or it might be biased towards a left-to-right analysis of the sentence: 

sentence 

det7adj 
,// The little mouse likes 

"'-., "·,, 
"~,, 

'~ .... 
cheese '"" -----~:. 
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Similarly,a bottom-up procedure might generate the parse by an unbiased 

analysis of all components of the string in parallel: 

sentence 

determiner• adj•noun , verb '· .. _ 

• 

The little;mouse -- ---·-. . •- . . 

l , noun 

likes cheese 

Or it might be biased towards a left-to-right investigation: 

sentence 

noun phrase ~-
.....:..,-•... 

determin~r • . adj )no~n-···1 
• I 

i 

---~~--~~t~le l~~seJ~.~~:s __ ~heese _ 

The triangle can be filled in from right-to-left, bi-directionally 

top-down and bottom-up or by any other method. Every method of filling 

in the triangle determines a parsing procedure. For our purposes, it is 

important to distinguish at this time mainly the top-down and bottom-up 

procedures. 

When the parsing problem is formulated in predicate logic, top-down 

and bottom-up parsing procedures correspond to different proof procedures. 

Later in this chapter, top-down and bottom-up proof procedures will be 

defined in detail for the general problem of determining the inconsistency 

of sets of Horn clauses. 

A predicate logic representation of the parsing problem. 

Regard the initial string of words as a graph, the arcs of which are 

labelled by the words occurring in the initial string. A node occurs 

between consecutive words and also at the beginning and end of the string: 
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The initial graph is represented by a set of assertions: 

(1) The(l,2) + 

(2) little(2,3) + 

(3) mouse(3,4) + 

(4) likes(4,5) + 

(5) cheese(5,6) + 

The rules of grammar are formulated as operators: 

(6) S(x,y) + Np(x,z) ,Vp(z,y) 

(7) Np(x,y) + Noun(x,y) 

(8) Np(x,y) + Det(x,u) ,Adj(u,v),Noun(v,y) 

(9) Vp(x,y) + Verb(x,y) 

(10) Vp(x,y) + Verb(x,z),Np(z,y) 

(11) Det(x,y) + The(x,y) 

(12) Adj(x,y) + little(x,y) 

(13) Noun(x,y) + mouse(x,y) 

(14) Verb(x,y) + likes(x,y) 

(15) Noun(x,y) + cheese(x,y) 

The goal of determining that the string of words is a sentence is formulated 

in the goal statement: 

(16) +-S(l,6) 

Clauses (1)-(16) are inconsistent. A proof of their inconsistency involves 

generating a parse of the string as a sentence. 

A more realistic example would include many more clauses of the kind 

(6)-(15) which define the rules of grammar and record the grammatical 

categories of individual words in the vocabulary. In this example only one 

clause (9) is unnecessary for a proof of inconsistency. In more realistic 

examples the number of unnecessary clauses generally exceeds that which is 

necessary for a proof. 

Figure 1 illustrates a refutation of (1)-(16) corresponding to a top-

down, left-to-right parse of the sentence. The refutation is a sequence 

of goal statements beginning with the initial goal statement (16) and 

ending with the empty one. 



Figure 1. 

(6) 

(8) 

(11) 

(1) 

(12) 

(2) 

(13) 

(3) 

(10) 

(14) 

(4) 

(7) 

(15) 

(5) 

16 

o + S(l,6) 

I r + Np(l,z),Vp(z,6) 

o + Det(l,u) ,Adj(u,v) ,Noun(v,z) ,Vp(z,6) 
I 
! 
j r + The(l,u),Adj(u,v),Noun(v,z),vp(z,6) 

o + Adj(2,v) ,Noun(v,z),Vp(z,6) 

i 
I o + little(2,v),Noun(v,z) ,Vp(z,6) 
t 
! 
I 

( Noun(3,z),Vp(z,6) 

o + mouse(3,z) ,Vp(z,6) 

0 + Vp(4,6) 

6 + Verb(4,z),Np(z,6) 
l 
I 
I 
l 
o+ likes(4,z),Np(z,6) 
I 
\ 

J + Np(5,6) 
I 
i 
I 
9+ Noun(5,6) 
l 

1 
I 

cheese(5,6) 0 + 
! 
I 
I 
I 

I 
0 □ 

A top-down refutation of clauses (1)-(16). 
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A derived goal statement Ci+l is obtained from the preceding goal statement 

C. in the sequence by 
l. 

(1) matching, with some substitution 0 of terms for 

variables, the underlined selected atom A in C. 
l. 

with the atom A' in the conclusion of some 

clause C in the initial set (1)-(15) of 

assertions and operators (A8 = A'0), 

(2) deleting the selected atom in C. and replacing 
l. 

it by the set of atoms constituting the hypothesis 

of C, and 

(3) applying the matching substitution e to the 

resulting clause. 

In this example the selection of atoms in goal statements determines that 

the parse is executed in a left-to-right manner 

The(l,2) +-

Det (1, 2) +-

Figure 2. 

little(2,3) +- mouse(3,4) +-

(12) (13) 

Adj (2,3) +-

Np(l,4) +-

likes(4,5) +- i 
' (14) 

1 

Verb(4,5) +- \ 
\ 
\ 

cheese(5,6) +- o 

(15) t 

1 
I 

Noun(5,6) + 

\ 
\ 
\ 
\ 

(7) 
Ji 

Np(5,6) + l 
/ 

/ 
// 

\<~01/ 
Vp(4,6) + V 

(16) 

[j 

A bottom-up refutation of clauses (1)-(16). 
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The refutat1.cn in Figure 2 corresponds to a bottom-up parse which is 

unbiased towards left or right directions. The refutation is a tree of 

assertions beginning with the initial assertions at the tips of the tree 

and ending with the empty assertion at the root. A new assertion is 

derived from its inm:tediate predecessors in the tree 

by matching their atoms with all the atoms in the hypothesis of some 

initial operator 

' .•• ,A I 
n 

The new assertion is 

where 8 is the matching substitution, 

A. 
l. 

A' 
i 

e, for all i < n . 

The operators in the Horn clause representation of the parsing problem 

can be regarded as a program for parsing strings of words as sentences. 

The set of initial assertions function,; 1s 3. data base which records the 

individual words in the initial string. The initial goal statement 

functions as the top level procedure call. Interpreting operators top-down 

uses them as procedures for interrogating the data base. Interpreting 

operators bottom-up uses them to manipulate the data base. 

Our formulation of the parsing problem was obtained jointly with Alain 

Colmerauer and results from representing his Q-system { 8 } in predicate 

logic. It is interesting that the Q-system is a bottom-up parsing procedure. 

The more abstract.. predicate logic formulation of Q-systems is neutral with 

respect to top-down and bottom-up directions. 

Although our example deals only with context-free rules of grammar, 

it is easy to see how to extend the representation in order to deal with 

ccntext-SE0sitive grammars and arbitrary re-writing systems. 
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Search spaces of derivations. 

It is important to distinguish between individual derivations 

determined by a given inference system and whole spaces consisting of all 

the derivations which are determined by the inference system. Figure 3 

shows the search space of all top-down derivations determined by a given 

initial set of clauses and by the selection procedure which selects the 

alphabetically earliest atom in every goal statement. 

c;\; +- A 

A +- C 
+- +- £, E A +- D, E 

D +- E 

? +- E 
E +- F, G 

I F +- H 

}\ +- ~. G F +- I 
I \ 

\ 
G +-\ 

+ H, G 0 +- I' 
.~ .. , 

H I + 

I +-

+ H 9 +- I 
J + 

; K+ J 

oo oO 

Fig:ure 3. A search space of all top-down derivations determined by the 

selection of alphabetically earliest atoms in goal statements. Notice 

that, because the hypothesis of a goal statement is a set of atoms, 

application of the operator D +- E to the goal statement+ E_, E results in 

the goal statement+ E. No operator applies to the goal statement+ Co 

The operator K +- J, and the assertion J +, on the other hand, apply to no 

goal statement in the search space. 
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Figure 4 shows the different search space of top-down derivations 

determined by the same initial set of clauses and by the different 

selection procedure which always selects the alphabetically latest atom 

in goal statements. In both figures, derivations are individual paths 

in the search space structured as a tree. Paths beginning with the 

initial goal statement and ending with the empty clause are refutations. 

+ A 

A+ C 

+c + D, E A+ D, E 

D+ E 

I+ o, F, G E + F, G 

F + H 

F +- I 

G +-

+ D, H 0 + D, _!_ 

I 
H +-

I +-
I 

+ D 0 + D J + 
I 

+ E I + E 

I + F, G + F, G 

K +- J 

+ F F 

+H +I 

i 
Do D 

Figure 4. A search space of derivations determined by the selection of 

alphabetically latest atoms in goal statements. Notice that this selection 

procedure results in a search space having more and longer derivations than 

the search space of Figure 3. 
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Figure 5 shows the search space of all bottom-up derivations for the 

same initial set of clauses. Every legal bottom-up derivation from the 

initial set of clauses is an appropriate subtree in the search space. 

H+ 

F+ ) 
I+ 

F+ 

I J+ 

K+ 

+ A 

A + C 

A+ D, E 

D+ E 

E+ F, G 

F + H 

F + I 

G+ 

H+ 

I + 

0 D J + 

K+ J 

Figure 5. A search space of all bottom-up derivations. Notice that 

the operator A+ C, which interpreted top-down replaces the problem of 

solving A by the problem of solving C, is not applicable botton1 ··up 

because the assertion C + is not attainable. On the other hand, the 

operator K + J, which is not applicable top-down, applies when interpreted 

bottom-up to the initial assertion J +. 

It is worth distinguishing between tree-representations and graph-

representations of derivations and search spaces of derivations. Tree-

representations, such as those employed in Figures 3 - 5, contain distinct 

nodes for distinct ways of deriving the same clause. Graph-representations, 

such as those in Figures 6 and 7, contain a single node for every clause 

no matter how it is derived. Graph-representations suggest proof 

procedures which check, every time a clause is generated, whether the 

clause has been generated redundantly before. Tree-representations 

leave open the option of testing for redundancy. In the sequel, tree­

representations will be used in preference to graph-representations. 
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+- C +- D, E 

+- D, F, G 

F 

+- D, H +- D, I 

0 +- E 

I 
+- F, G 

/ 
+- F 

+B\,/ + I 

/ 

□ 
Figure 6. The graph-representation of the top-down search space of Figure 4. 

H+ 

G+ 

IJ+ 

K +-

o+ 

A+ 

□ 

Figure 7. The graph-representation of the bottom-up search space of Figure 5. 
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Search strategies. 

A proof procedure consists of an inference system and a search 

strategy. The inference system specifies, by means of axioms and rules 

of inference, the search space of all admissible derivations. The search 

strategy determines the sequence in which derivations in the search space 

are generated in the search for a refutation. 

A search strategy can be depth-first, exhausting one line of argument 

before turning to another. It can be breadth-first, exploring all lines 

of argument simultaneously, in parallel. Or it can be merit-directed, 

generating at every stage a derivation of best merit, as determined by 

some procedure which partially orders derivations according to some notion 

of merit. 

Search strategies can be autonomous procedures which generate 

derivations in a sequence determined by their own deliberations. 

Alternatively, they can execute domain-specific sequencing instructions 

formulated and conveyed to the proof procedure by the problem-poser. 

The problem of designing effective search strategies will be 

investigated in more detail in later chapters. 

Formal definitions of top-down and bottom-up derivations. 

A detailed treatment of substitutions, matching and application of 

substitutions to expressions is contained in the next section. 

Let S be a set of Horn clauses and let there be given a selection 

procedure which selects a unique atom from every occurrence of a goal 

statement. A sequence C1, ••. ,CN of goal statements is a top-down derivation 

of CN from S, with top-clause C1 iff (1) and (2): 

(1) C1 e: S. 

(2) For all i < N, the selected 

atom A. in C. 
J 1 

+- A1, • •• ,A. 1 ,A. ,A. l' ... ,A 
J- J J+ n 

matches the atom A in the conclusion of 

some operator or assertion belonging to S, 

A +-B1, ... ,B. 
m 

Ci+l is the new goal statement 

+- (A1, ••• ,Aj-l 'B1, •.• ,Bm,Aj+l' ••. ,An) 0 , 
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where 0 is the substitution which matches 

A, and A. (The variables in A+ B1 , ••• ,B 
J m 

are renamed so that they are distinct from 

all variables in Ci.) 

A derivation of the null clause from Sis a top-down refutation of S. 

In general every atom in an occurrence of a goal statement is a 

candidate for selection. A selection procedure is of the last-in-first-

out kind if in a derived goal statement only a most recently introduced 

atom is selected; i.e. in C. 1 the selected atom is one of 
1+ 

Let S be a set of Horn clauses. A set of assertions is a bottom-up 

derivation from S iff it is implied by (1) an~. (2): 

(1) If A+ belongs to s then 

{A+} 

is a bottom-up der i ~a'.tio~ of A+ from s. 
(2) If, for i~ n, D. is a bottom-up derivation 

1 

of A + from S and if 
i 

A + A1' , ... ,A 1 

n 
is an operator in S such that A1 matches A1' and .. 

• • and A matches A' simultaneously, with matching 
n n 

substitution a, then 

D1 U ... UD U{ A0 +} 
n 

is a bottom-up derivation of A0 + from S. (The 

variables in all the clauses A1 +, ... ,A + and 
n 

A + A 1' , ••• ,A ' are renamed so that no clause 
n 

shares variables with any of the others.) 

In case (2) we allow the operator to be a goal statement + A1' , ••• ,A ' , in n 
which case the new derivation D1 U ••• UD U{O} is a bottom-up refutation 

n 
of s. 

Notice that the set-theoretic representation of bottom-up derivations 

is closer to the graph-representation than it is to the tree-representation. 

Substitutions and matching. 

, . . 
A substitution is a set of substitution components which are assignments 

of terms to variables: 

:= t} 
n 

----------
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No two components have the same variable. The result of applying a 

substitution 8 to an expression X (terr.; , atom, clause, set of expressions) 

is a new expression x8 which differs from X only in that it contains the 

term t. wherever X contains x .• 
i i 

If 8 is the substitution 

then the product 8 o-, where er- is also a substitution, is a new substitution: 

8 er- = { X1 := t1 0- , ••• ,x := t o-} U er·-· 1 

n n 

where a-' is the subset of a-which affects variables different from those 

affected by 8. 

A unifier of a set of expressions Eis a substitution 8 such that E8 

contains exactly one element. A most general unifier of Eis unifier of 

E such that, for every other unifier o-of E, there exists a substitution 

A such that 

If E contains two expressions, E = { A, A'} and. if 8 is a most general uni: ::.::,r 

of E, then the two expressions are said to match and 8 is a qi,~tchin:g 

substitution. (Notice that all most general unifiers are essentially 

equivalent, in the sense that they differ from one another only in the 

different names for the variables they introduce into the expressions they 

are applied to. ) There exist various unification algorithms which compute 

most general unifiers { 49, 51, 58, 2} • 

A simultaneous unifier of a family e:: = { E 1, ••. ,E } of sets of 
n 

expressions is a substitution 8 which unifies each set E., i.e. 
i 

Ei8 is a singleton, all i ~ n. 

A most general simultaneous unifier of e:: is a unifier 0 such that for all 

other unifiers o----there exists a substitution A such that 

If each set in e:: contains two expressions, E. = {A. ,A. '} and if 8 is a most i i i 
general simultaneous unifier of e::,then the pairs A.,A.' are said to match 

i i 

The most general simultaneous unifier 8 of a family e:: can be computed 

by successively unifying individual sets of expressions: 

0 = 81 0z •.• 0 , where 
n 

8 1 is a most general unifier of E1, 

8i+l is a most general unifier of FJ.·.·.,_ :Ii , 

and E1, ... ,E is ~n enumeration of the sets in e::. 
n 
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Every enumeration of the members of E gives rise to the same most general 

simultaneous unifier 0. This fact can usefully be applied in the 

generation of bottom-up derivations to obtain the new assertion 

A0 + 

from the old assertions A1 +, ••• ,An+ using the operator A + A1' 

The most general sumultaneous unifier 0 of the family 

I ••• ,A ' • n 

can be obtained by selecting an enumeration Ai' , ••• ,A ' of the atoms in the 
n 

operator and consecutively matching them with the assertions A.+. The 
l. 

new assertion of A 0 + is the last clause in the sequence of clauses 

( 1) 

(2) 

C 1 is A + A1' , .•• ,A ' 
n 

For all i < N, C, is of the form 
l. 

B + B 1 , ••• , B . l 'B . , Bj l' ••• , B , 
J- _J_ + m 

having a selected atom Bj. Bj matches 

the atom AL in some assertion Ak +. 

c. 1 is 
J.+ 

(B +- B, , ••• ,B. 1 ,B. 1 , ... ,B )0, 
J- J+ m i 

where 0,is the substitution which matches 
1. 

B. and A. 
J 

Factorial example. 

Figure 8. 

(1) 

(2) 

(3) 

(4) 

L: 

(2) 

(2) 

(1) 

(4) 

(5) 

Fact(O,s(O)) + 

Fact(s(x) ,u) + Fact(x,v), Times(s(x),v,u) 

+ Fact(s(s(O)) ,x) 

Times(s(O) ,s(O),s(O)) + 

':'in:::·:: r.c.. (s \0 ,s (0) ,s (s (0))) + 

f + Fact(s(slO)),x) 

b + Fact(s(O),v), Times(s(s(O)) ,v,x) 

b + Fact(O,v.J, Times(s(O),v',v), Times(s(s(O)) ,v,x) 

l + Times (s co.' , s (0) ,v), Times (s (s (O)) ,v ,x) 
I 
~ + Times(s(~(O)) ,s(O) ,x) 

lu 
A search space of all top-down derivations for the factorial example. 
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Figure 8 illustrates the entire search space of all top-down 

derivations determined by a particular selection procedure for the clauses 

(1)-(5) of the factorial example. The single complete derivation in the 

search space can be regarded as a computation of the factorial of 2. 

Figure 9 illustrates the entire search space of all bottom-up 

derivations determined by (1)-(5). 

Fact(O,s(O)) + / Times(s(O) ,s(O) ,s(O)) + 

Fact(s(O),s(O)) Times (s (s (0)) , s (0) , s (s (0))) + 

Fact(s (s (0)) ,s (s (0))) 

(3) 

□ 
Figure 9. The search space of all bottom-up derivations for the factorial 

example. 

Correctness and completeness. 

An inference system is correct if every set of clauses which has a 

refutation is inconsistent. The inference system is complete if every 

inconsistent set of clauses has a refutation" The notions of correctness 

and completeness connect semantics with the proof theoretical part of 

syntax. A correct and complete inference system is one for which the 

notions of inconsistent set of clauses and refutable set coincide. 

The correctness of both top-down and bottom-up inference systems 

is not difficult to verify. 

The completeness of the bottom-up system has been proved by Robinson{so}. 

The system he proves complete is not limited to Horn clauses. The bottom­

up system we consider is closer to the one investigated and proved 

complete in -!21} • 

Completeness for the top-down system has been proved, without the 

restriction to Horn clauses, but only for selection procedures which 

select on a last-in-first-out basis { 30,26,48}. ... ii wJdl~ion, the systems 

proved complete all employ the additional factoring rule of inference which 

is defined in Chapter 6. It is not difficult to prove completeness for the 

top-down system as it has been defined in this Chapter: for Horn clauses, 

without factoring and with no constraints on the selection procedure. 
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Terminology. 

The top-down interpretation of clauses is a version of modus tollens: 

From B + A and+ B 

infer+ A. 

Bledsoe calls this backwards chaining { 3}. 

The bottom-up interpretation of clauses is a version of modus ponens: 

From B + A and A + 

infer B +. 

Bledsoe calls this forwards chaining { J } • 

Both top-down and bottom-up inference are special cases of the 

resolution rule{ 49} defined in Chapter 6. Model elimination{ 28} , linear 

resolution { 29, 32} , ordered linear resolution{ 48}, SL-resolution{ 26} 

and G-deduction{ 37} are top-down inference systems. Hyper-resolution{ SO} 

Pi-deduction{ 50} and M-clash resolution{ 53} are bottom-up systems. 

Kuehner's system{ 27} for Horn clauses combines top-down and bottom-up 

inference. 

Among the top-down systems just mentioned, all except linear 

resolution employ a last-in-first-out selection procedure. The importance 

of relaxing this constraint on the selection procedure is illustrated by 

the admissible pairs example investigated in Chapter 5. 

Linear resolution employs no selection procedure. Given a goal 

statement containing n atoms it potentially investigates then! redundant 

sequences in which the atoms can be selected. 
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CHAPTER 3. ROBOT PLAN FORMATION AND THE FRAME PROBLEM. 

The main problem in artificial intelligence today is to develop 

general languages and methods for representing knowledge satisfactorily 

within the computer. The problem of representation applies to 

(1) the representation of factual knowledge about 

the world and general knowledge about laws 

governing physical relationships and change, and 

(2) the representation of pragmatic knowledge 

necessary for effective problem-solving. 

Adequate systems for the representation of knowledge are a pre­

requisite for problem-solving systems which combine knowledge about the 

world together with knowledge about problem-solving in order to solve 

problems. They are a prerequisite also for learning systems which construct 

their own representation of the world and develop their own problem-solving 

procedures. The failure of problem-solving and learning systems to perform 

satisfactorily can be attributed in large part to the inadequacy of the 

underlying representation system. The importance of representation has 

been argued by McCarthy {35} and by Minsky in the introduction to Semantic 

Information Processing { 39}. 

In this Chapter we investigate the application of predicate logic to 

the representation of factual knowledge and general knowledge about actions 

and change. For simplicity we deal with a one-agent universe. The robot 

plan-formation problem is to construct a sequence of actions which transforms 

an initial state into a goal state, given a description of the initial state 

of the world, of the goal state and of the set of actions which transform 

one state of the world into another. 

In the next two chapters, dealing with the problem-reduction and 

procedural interpretations of predicate logic, we investigate the application 

of predicate logic to the representation of pragmatic knowledge about problem­

solving procedures. 

The use of predicate logic to represent the laws of change typically 

runs into the frame problem: how to state and to deal with the fact that 

almost all assertions which hold true of a given state of the world continue 

to hold true of the new state obtained by applying an action to the old state. 
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Failure to solve the frame problem has led many researchers to reject the 

use of predicate logic for robot plan-formation and to experiment with new 

systems (STRIPS {14}, PLANNER{ 18}). We shall argue that the first part 

of the frame problem is solved by the use of a suitable notation and the 

second part is solved by using the frame axiom top-down instead of bottom-up. 

The robot plan-formation problem. 

We assume that a description of the initial state of the world and of 

the properties desired of a goal state are given. The robot can perform 

various actions which transform one state of the world into another. 

action has associated 

(1) preconditions which must hold true in a state 

in order for the action to be applicable to it, 

(2) an add list of new assertions which hold true 

of the state obtained by applying the action, and 

(3) a delete list of assertions which are the 

exceptions to the general rule that every 

assertion true in the old state remains true in 

the new state obtained by applying the action. 

Each 

The problem is to find a sequence of actions which successively transforms 

the initial state through intermediate states into a goal state. (The 

explicit association of preconditions, add list and delete list with every 

action is due to STRIPS.) 

The predicate logic representation of the robot plan-formation problem 

will be investigated for the simple example in Figure 10 { 37}. 

_fil_ 
p q r p q r 

initial state goal state 

Figure 10. The initial and goal states for a robot plan-formation problem. 

There are three manipulatable objects A, Band C and three places (unmanipu-

latable objects) p, q and r. In the initial state, A is on B, Bis on p and 

C is on r; A, q and Care clear. 

and C is on r. 

In the goal state, A is on B, Bis on C 
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For each x,y and z there is an action, pickup(x,y,z), which allows the 

robot to pickup x from y and to put it down on z. 

The 

(1) The preconditions for the action 

pickup(x,y,z) are that 

x be manipulatable, 

x be clear, 

z be clear, 

x be on y, and 

x be different from z. 

(2) The action adds the assertions that 

x is on z, and 

y is clear. 

(3) The action deletes the assertions that 

x is on y, and 

z is clear= 

simplest solution of the problem is to 

(1) pickup(A,B,q), then 

(2) pickup(B,p,C), and finally 

(3) pickup(A,q,B). 

A predicate logic representation of the robot plan-formation problem. 

Initial state 0. 

State-independent 
assertions. 

Goal state w. 

State space. 

(1) Poss (0) +-

(2) Holds(on(A,B) ,0) +-

(3) Holds (on (B,p) ,0) +-

(4) Holds (on(C,r) ,0) + 

(5) Holds (clear (A) ,0) + 

(6) Holds (clear (q) ,0) + 

(7) Holds (clear (C) ,0) +-

(8) Manip (A) +-

(9) Manip (B) +-

(10) Manip (C) + 

(11) ·+- Holds{on(A,B) ,w), Holds(on(B,C),w), 

Holds(on(C,r),w), Po2s(w) 

(12) Poss(do(x,w)) +- Poss(w), Pact(x,w) 



Preconditions. 

Add list. 

Delete list 
to frame axiom. 
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(13) Pact(pickup(x,y,z) ,w) + Manip(x) 

Holds(clear(x) ,w), 

Holds(clear(z),w), 

Holds(on(x,y),w), 

Diff (x, z) 

(14) Holds(on(x,z), do(pickup(x,y,z) ,w)) + 

(15) Holds(clear(y), do(pickup(x,y,z),w)) + 

(16) Holds(u, do(pickup(x,y,z),w)) + Holds(u,w), 

Diff(u,on(x,y)), 

Diff(u,clear(z)). 

The Diff relation holds between two variable-free terms sand t ifs 

and tare syntactically distinct. It is useful to imagine that clauses 

(1)-(16) are supplemented by infinitely many clauses of the form 

Diff (s ,t) + 

for every pair of terms which are not unifiable. Equivalently we might 

imagine (1)-(16) supplemented by the finitely many clauses 

Diff(f(x1, ... ,x ), g(y1, ..• ,y ))~-
n m 

Diff(f(x1, ..• ,x }, f(y1, •.. ,y)) + Diff(x.,y.) 
n n i i 

for every pair of distinct function symbols f and gin case of clauses of the 

first kind and for every n-ary function symbol f and every index i~ n in 

case of clauses of the second kind. In practice the clauses defining the 

Diff relation would be used exclusively in a top-down manner and would be 

compiled. In other words, every occurrence of an atom Diff(s,t) in the 

hypothesis of a clause would be treated as a procedure call to a procedure 

written in an ordinary programming language. 

Instead of writing On (x,y ,w) and Clear (x,w) we treat ''On" and "Clear" 

as function symbols and write Holds(on(x,y),w) and Holds(clear(x),w). This 

notational device solves the first part of the frame problem by allowing the 

use of just a single general frame axiom instead of individual frame axioms 

for each assertion which is preserved by the application of an action. 

The ability to use variables which range over assertions and sentences 

is provided by higher-order logic. The syntactic device of replacing predicate 

symbols by function symbols gives first-order logic the ability to simulate 

this feature of higher-order logic. 
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Top-down and bott~m-up i.nterpret:3.tions of the state space axiom (12). 

Clauses (1)-(l6) are neutral with respect to the top-down and bottom-up 

interpretations. Not .)nly may the entire set of clauses be interpreted 

top-down or bottom-up, but different clauses may be interpreted differently. 

One clause may be executed top-dc,wn and another bottom-up. Even within a 

single clause different atoms might be executed in opposite directions. 

If clause (1.21 1s execut.ed bcttom-up then it is used to derive that a 

new state dc(x,w) is possible given assertions that the old state w is 

possible and that the act1.or: x can be applied in state w. Consistent 

bottom-up execution of (12) begins with the initial state, applies actions 

to produce new states from old states and terminates when it generates a 

state which satisfies the goal state description, Figure 11 illustrates 

part of the search space of all states generated by executing (12) bottom-up. 

p(A,B,q) p(C,r,q) 

4 

do 
Figure 11. Part of the search spa.ce of all states obtained by executing 

clause (12) bottom-up, Here p{x,y,z) abbreviates pickup(x,y,z). The 

letter A, B or C between two arcs in the space indicates the object picked 

up in obtaining the two states at the bottom of the arcs. Distinct states 

are associated with distinct nodes" However states labelled by the same 

number are isomorphi.c in the sense that they are characterised by the same 

set of assertions 

If clause (12) is exacuted top-down then it is used to replace the 

problem of showing that a new state do(x,w) is possLble by the subproblems 

of showing that the old state w is possible and that the action x can be 

applied in w. Consistent top-down exe.:: .::.ior, of (12) begins with the goal 

state description and termi.r,ates when 1 t derives a new goal state description 

which is satisfied by the initial state. In fact the precise behaviour 
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effected by top-down execution of (12) depends on details about the 

selection procedure and about the direction of execution of other clauses. 

Figures 15 and 16 below illustrate part of a search space of all goal 

statements obtained by executing all of the clauses (1)-(16) top-down. 

An interesting combination of execution strategies is obtained when 

clause (12) is activated by the bottom-up execution of the atom Poss(w) 

followed by the top-down execution of Pact(x,w). In-cerpreted in this 

manne~ clause (12) is used, when given an assertion that a state w is 

possible, to derive that the new state do(x,w) is possible by testing first 

that the action x can be performed in w. Such an interpretation of clause 

(12) together with a top-down interpretation of all other clauses is 

illustrated in Figures 13 and 14 below. 

The frame problem and execution strategies for the frame axiom (16). 

The second part of the frame problem arises when the frame axiom (16) 

is executed bottom-up in order to derive, from the assertion that u holds 

in state w, the new assertion that u continues to hold in the state do(x,w). 

By bottom-up interpretation of (16) we mean more precisely that (16) is 

activated by the bottom-up execution of the atom Holds(u,w) followed by 

top-down execution of the atoms Diff(u,on(x,y)) and Diff(u,clear(z)). 

Otherwise if all atoms in the hypothesis of (16) were executed bottom-up 

then the search space of all derivable clauses would include all assertions 

of the form Diff(s,t) + for all pairs of terms s,t which do not unify. 

In more realistic problems than that involved in our three-block 

example, states of the world have a complex structure which can be described 

only by means of a very large number of assertions. In such problems, 

bottom-up interpretation of the frame axiom leads to generation of an 

intolerable number of assertions about derived states of the world. 

Both PLANNER and STRIPS attempt to solve the frame problem by abandoning 

the frame axiom and by using instead special procedures to determine whether 

a fact holds true in a given state: 

To determine whether u holds in do(x,w): 

(1) Check whether u belongs to the add list of x. 

If it does, return success. 

(2) Otherwise, check whether u belongs to the 

delete list of x. If it does return failure. 

------~--- ---
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(3) Otherwise, return the result of determining 

whether u holds in w. 

But this sequence of steps is identical to that involved in running the 

frame axiom (16) and the add list (14), (15) axioms top-down, trying the 

add list before the frame axiom and selecting the atoms Diff(u,on(x,y)) 

and Diff(u,clear(z)) before the atom Holds(u,w) in the hypothesis of the 

frame axiom. 

Bottom-up execution of (1)-(16). 

Figure 12 illustrates a small part of the search space determined by 

bottom-up execution of clauses (1)-(16). (Even in this example all atoms 

having predicate symbol Diff are activated top-down.) Only those 

assertions are demonstrated which concern states belonging to the solution 

path. In general a search strategy would generate many assertions which 

refer to states not belonging to the solution path. 

Pact (p (A,B,q) ,0) +- Pact (p (B,p,C), 1) +- Pact (p (A,q,B), 5) + 

Holds (on (B,p), 1) +- Holds (on (A,q), 5) +- Holds (on(B,C) ,8) + 

Holds (on(C,r) ,1) +- Holds(on(C,r),5) + Holds (on(C,r) ,8) + 

Holds(clear(A),1) + Holds(clear(A} ,5) + Holds (clear (A) ,8) + 

Holds(clear(C) ,1) +- Holds(clear(B),5) + Holds (clear (p) ,8) + 

Poss (1) +- Poss (5) +- Poss (8) + 

Figure 12. Part of the search space of assertions determined by executing 

(1)-(16) bottom-up. As in Figure 11, p(x,y,z) abbreviates pickup(x,y,z). 

1 abbreviates do(pickup(A,B,q) ,0). 

5 abbreviates do(pickup(B,p,C) ,1). 

8 abbreviates do(pickup(A,q,B),5). 

Assertions such as 

Holds(on(A,q) ,1) + 

Holds(clear(B) ,1) +-

Holds (on (B,C), 5) + 

Holds (clear (p) ,5) + 

Holds (on(A,B) ,8) + 

Holds (clear (q) ,8) + 

are not included in Figure 12 because they are special instances of axioms 

in the add list (14) and (15). 
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Bottom-up execution of (12) only. 

Figures 13 and 14 illustrate a small part of the search space 

determined by top-down interpretation of all clauses except (12) which 

is used bottom-up to derive new states from old ones. The selection of 

atoms is determined by the objective of minimising the generation of 

alternative branches in the search space. This criterion of selection 

is elaborated upon and discussed in the next chapter, concerned with the 

problem-reduction interpretation of predicate logic. 

Notice that the solution refutation of Figures 13 and 14 contains 

many subderivations consisting of consecutive steps which have no 

alternatives or else have alternatives which fail in a very few steps. 

The alternatives which do not fail correspond to genuinely alternative 

actions generating new states in the state space illustrated in Figure 11. 

Notice that top-down execution of the frame axiom is more complicated 

than has been suggested in the earlier discussion of the frame problem. 

The complication is that the frame axiom can be used not only to determine 

whether a known fact u holds in a known state do(x,w), but it can also be 

used to generate facts which hold in a known state or to generate states 

in which a known fact holds. More generally, the frame axiom can usefully 

be applied in situations where u and do(x,w) are either partially known 

or totally unknown. This aspect of the behaviour of clauses is connected 

with the lack of input-output distinction in predicate logic programs. It 

is investigated in Chapter 5 which deals with the procedural interpretation 

of predicate logic. 

The mixed top-down, bottom-up interpretation of clauses in this example 

can be simulated by a proof procedure which interprets all clauses top-down: 

rewrite clauses (1), (11) and (12). Use the fact that 

C, not-A+ Bis equivalent to 

C + A,B and 

C + not-A,B is equivalent to 

C, A+ B. 

Write NPoss(t) instead of not-Poss(t). 

(1'), (11') and (12') respectively: 

+ NPoss(O) 

Clauses (1), (11) and (12) become 

(1') 

(11') 

(12') 

NPoss(w} + Holds(on(A,B),w),Holds(on(B,C) ,w) ,Holds(on(C,r) ,w) 

NPoss(w) + NPoss(do(x,w)),Pact(x,w). 
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Top-down interpretation of the new set of clauses is equivalent to the mixed 

interpretation illustrated in Figures 13 and 14. The kind of renaming involved in 

rewriting clauses (1), (11) and (12) has been investigated by Meltzer { 36}. 

(7) 
cr 

(2) 

l 

i 

Poss (0) +-

Poss (do (x,0)) +- Pact (x,0) 

Poss(do(p(x~y,z) ,O)) +@Manip(x'), (i)Holds(clear(x') ,0), 

Holds (clear (z) ,0) , 0) Holds (on (x' ,y) ,0), 

Diff(x' ,z) 

Poss (do (p (A,B, z) ,O)) +- (D Holds (clear (z), 0 ) , (v Diff (A, z) 

Poss (do (p(A,B,q) ,O)) +-

Poss (do (p (x,y, z) , 1)) +-@ Manip (x) , (1) Holds (clear (x) , 1) , 

Holds(clear(z) ,1), Q)Holds(on(x,y) ,1), 

Diff (x, z) 

Poss(do(p(B,p,z) ,1)) +d)Holds(clear(z) ,1) ,@Diff(B,z) 

Poss (do (p (B ,p ,C) , 1)) +-

Figure 13. The initial part of a refutation determined by bottom-up execution 

of clause (12). All branches away from the solution path are illustrated. 

Darkened nodes are terminal nodes containing a selected atom which matches no atom 

on the opposite side of an arrow in an input clause. The numbers preceding 

underlined atoms indicate the relative order in which they or their descendants 

are selected. Unlabelled a.rcs denote responses to activation of an atom 

containing the predicate symbol Diff. 

distracting details. 

Nodes are unlabelled in order to suppress 
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..-,-0 Poss(do(p(B,p,C) ,1)) +­

(11~) 

(13) 
Poss(do(p(x,y,z) ,5)) +-~Manip(x), l)Holds(clear(x) ,5), 

Holds(clear(z) ,5), Holds(on(x,y) ,5), 

Diff(x,z) 

Poss(do(p(A,y,z) ,5)) +- Holds(clear(z),5), Holds(on(A,y) ,5), 

Diff(A,z) 

Poss (do (p (A,q, z) , 5)) +- (i) Holds (clear (z) , 5) , ($ Diff (A, z) 

The remaining part of the refutation whose initial part is illustrated 

in Figure 13. 
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Top-down execution of (1)-(16). 

Figures 15 and 16 illustrate a top-gown refutation of clauses (1)-(16) . 

. --:-:.::-:~ + (J Holds (on (A,B) ,w) ,(~)Holds (on (B,C) ,w) ,(Li Holds (on (C ,r) ,w) ,Poss (w) 

:----rr:p·---·(16) ! 

(1~ 

(1:) ~ 
~ \..1.-., ~ + Holds(on(B,C) ,w'),@iff(on(B,C) ,on(A,y)) ,@Diff(on(B,C) ,clear(B)), 

Figure 15. 

6 Holds(on(C,r) ,w'),G)Diff(on(C,r) ,on(A,y)) ,(4:Diff(on(C,r) ,clear(B)), 

! 
6 l-2, Poss(dotp(A,y,B),w') 
' 
i 
0 
l 
I 

(12)r 

(13) f r ,[Holds (on (B,C) ,w') , (4) Holds (on,. (C, r) ,w') , 1_1; Manip (A) , 
(8) 

Holds(clear(A),w'), Holds(clear(B),w'), 
[ 

Q~ Holds (on (A,y) ,w'), \].. piff (A,B), Poss (w') 
' ' 

Holds (on (C, r) ,w") , (! Diff (on (C ,r) ,on (B,y' )) ,½Diff (on (C, r) , clear (C)) , 

(5.) Holds (clear (A), do (p (B,y' ,C) ,w")), 

,J>1Holds (clear(B), do(p(B,y' ,C) ,w")), 

Holds(on(A,y) ,w") ,•'.JDiff(on(A,y) ,on(B,y')) {4:'Diff(on(A,y) ,clear(C)), 

,---., 
l.J.,.'Poss(do(p(B,y' ,C) ,w")) 

+ Holds(on(C,r) ,w") ,Holds(clear(A) ,w") ,(l)Diff(clear(A) ,on(B,y')), 

(21 Diff (clear (A) , clear (C)),G)Holds (clear (B) , w") ,~Diff (clear (B) ,on (B, y), 

@ Diff (clear (B) ,clear (C)) @Holds (on (A,y) ,w") ,@Manip (B), 

mnas (c±-e-a-r-~4\lt'.'.1, Holds (clear (C) ,w"), Holds (on (B,y') ,w"), 

@oiff (B,C), Poss (w") 

The initial part of a top-down refutation of clauses (1)-(16). The atom 

Bolds(clear(B) ,w") is deleted because it is identical to another atom in the same goal 

statement. 



I+- Holds(on(C,r) ,w") ,Holds(clear(·.J,w") ,(l)Diff(clear(A) ,on(B,y')), 

~ ~Diff(clear(A) ,clear(C)),G)Holds(clear(B) ,w") ,G)Diff(clear(B} ,on(B,y')), 

(9) 

@)Diff (clear (B) ,clear (C)) ,®Holds (on (A,y) ,w") ,@Manip (B), 

Hulds (clearf&t-r~.} ,Holds (clear (C) ,w") ,Holds (on (B,y') ,w"), 

(61Diff(B.C) ,bss(w") 

(16~ 

(16) ~~ -
~ o +-(DHolds(on(C,r) ,do(p(A,B,y) ,w'")) {?)Holds(clear(A) ,do(p(A,B,y) ,w'")), 

(16) i 
o G)Holds (clear (C) ,do (p (A,B,y) ,w"')) ,@Holds (on (B,y') ,do (p (A,B,y) ,w'")), 

c16> I 
6 @Poss (do (p (A, B, y) , w"' )) 

(16) l 
(16) l 
(12) l 
(13) I 

? +{e)Holds (on (C ,r) ,w'"), (1)Diff (on (C,r) ,on (A,B)), (%}Diff (on (C,r) ,clear (y)) , 

% 
6 
6 
6 
' 

@)Holds (clear (A) ,w'") ,Q)Diff (clear (A) ,on (A,B)), Diff (clear (A) ,clear (y)), ,., 
().o)Holds (clear (C) ,w"') ,@):>iff (clear (C) ,on (A ,B)), Diff (clear (C), clear (y}), 

QYHolds (on (B, y') , w'") {§,Diff (on (B, y') , on (A ,B )) ,@))iff (on (B, y') , clear (y)) , 

(J:'Manip(A) ,Holds(cl.garCA)4 ~~~2 ,Holds(clear\~) ,w"'), 

(WHolds (on (A,B) ,w'"), Diff (A,y) ,Poss (w"') 

6 
(3) I 

6 
c2 > I 

6 +-QDiff (clear (A) ,clear (y)), @)Diff (clear (C) ,clear (y)), 
c1> I 

".I- (6) i @Holds(clear(y) ,O),(S)Diff(A,y} ,G)Poss(O) 

1 □ 
~~.2,_~re 16. The remaining part of the top-down refutation whose initial part is 

in Figure 15. 

------- ---- ---- -------
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Non Horn claus·es and conditional plans. 

The following example is a variation of the Robert-is-always-working 

example. 

In the initial state Robert is either at work or at home depending on 

whether he is healthy or ill. The goal is to get Robert to the circus. 

The only action available is go(x,y,z) which allows x to go from y to z. 

The solution is to construct the conditional plan: 

If Robert is healthy 

then go(Robert,work,circus) 

If Robert is ill 

then go(Robert,home,circus). 

Figure 17 illustrates a top-down solution together with part of the 

search spaceo A theorem-proving system which extends the top-down and 

bottom-up interpretations to non Horn clauses and simulates the refutation 

and search space of Figure 17 is described in Chapter 6. 

Initial state O. 

State-independent 
laws. 

Goal state w. 

State space. 

Precondition. 

Add list. 

Delete list and 
frf'.me , :-:" 0m. 

(1) Poss(O) ~ 

(2) Holds (Healthy (Robert} ,0) ,P.o; is (Ill (Robert_; ,OJ +-

(3) Holds(at(Robert,work) ,w) +- Holds(Healthy(Robert),w) 

(4) Holds(at(Robert,home) ,w) + Holds(Ill(Robert) ,w) 

(5) + Holds(at(Robert,circus) ,w) ,Poss(w) 

(6) Poss(do(x,w)) + Poss(w) ,Pact(x,w) 

(7) Pact(go(x,y,z) ,w) + Holds(at(x,y),w) 

(8) Holds(at(x,z) ,do(go(x,y,z) ,w))+-

(9) Holds(u,do(go(x,y,z) ,w)) + Holds(u,w) ,Diff(u,at(x,y)) 

(9 ) ~t + Holds(at(Robert,circus) ,w) ,Poss(w) 

~ ,u,b + Poss(do(go(Robert,y,circus) ,w') 
(6) 

9 ~ Poss(w') ,Pact(go(Robert,y,circus),w') 
< 7) I A+ Poss(w') ,Holds(at(Robert,y) ,w') 

/ \ 

(3)/ \,(4) 
y:= work y:= home 

// '\ 
.. Poss (w') ,Holds (Healthy (Robert) ,w') \(2)// .. Poss (w') ,Holds (Ill (Robert) ,w') 

y'+ Poss(O) 

(1)1 □ 
Figure 17. A top-down solution of the problem of getting Robert to the circus. 



CHAPTER 4. THE PROBLEM-REDUCTION INTERPRETATION OF PREDICATE LOGIC. 

Problem-reduction is a method of problem-solving which has often been 

applied explicitly or implicitly in Artificial Intelligence { 42} and 

other disciplines. We shall argue that the problem reduction model used 

in Artificial Intelligence, the reduction of problems to independent 

subproblems, corresponds to the top-down execution of variable-free Horn 

clauses. Compared with proof procedures for predicate logic, such a model 

of problem-solving is inadequate for three reasons: 

(1) Effective problem-solving involves the reduction of 

problems to dependent subproblems. The compatibility 

requ~red of solutions to dependent subproblems 

corresponds to the presence of common variables in 

distinct atoms of a goal statement. 

(2) Problems and subproblems generally have both 

hypotheses and conclusions. In such situations 

a useful problem-solving strategy is to combine 

both bottom-up interpretation starting with the 

hypotheses of the problem and top-down interpretation 

starting with the conclusion. The association of 

hypotheses with subproblems involves the use of non 

Horn clauses. 

(3) Problem-reduction often needs to be supplemented by 

case analysis. The solution of a problem may 

require the cooperation of several problem-solving 

methods, each of which solves the problem in a special 

case. The various methods solve the problem 

cooperatively when between them they exhaust all 

possible cases. In predicate logic,case analysis is 

dealt with by means of non Horn clauses. 

The problem-reduction interpretation of predicate logic was observed 

by Kowalski and Kuehner { 26} and was investigated in more detail by Loveland 

and Stickel { 31}. Other authors { 12, 54 } have investigated the application 

of problem-reduction methods to the solution of goal statements containing 

atoms with distinct variables. 
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The and-or tree representation of problem-reduction. 

In the problem-reduction model of Artificial Intelligence the task 

is to find a solution to an initially given problem, using a given set of 

operators which reduce problems to (independent) subproblems and a given 

set of initially solved subproblems. The task is accomplished by 

repeatedly applying operators to unsolved subproblems, replacing them by 

other subproblems, terminating successfully when the initial problem has 

been replaced by a set of initially solved subproblems. 

In the and-or tree representation of a problem-reduction task, every 

node is labelled by a problem: 

(1) The root node is labelled by the initial problem. 

(2) If a problem B labels a node and if an operator 

reduces B to subproblems A1, ... ,An then the node 

is connected by a directed arc to each one of n 

successor nodes labelled by the individual 

problems A1, ... ,An 

B 

The set of n successor nodes is said to be a bundle 

associated with the given operator. Successors are 

organised into bundles in order to distinguish whether 

different successors of the same node are determined 

by the same operator or by different operators. 

(3) If the problem labelling a node is an initially 

solved problem then it has a bundle containing one 

successor labelled by the mark of success D. 
A finite subtree of an and-or tree is a solution if 

(1) it contains the root node and 

(2) whenever it contains a node, not labelled by D, 
it contains a single bundle of successor nodes. 



44 

Figure 18 illustrates the and-or tree representation for a simple 

problem-reduction task. The same figure contains the variables-free Horn 

clause representation and the two distinct solutions of the initial problem. 

A Initial 12roblem + A 

012erators A+ E 

E E+ H, I 

E+ F 

H 
InitiallX solved 
problems H+ 

I + 

□ D F + 

and-or tree representation variable-free Horn clause representation 

A 

H I 

□ □ 
one solution the other solution 

Figure 18. The and-or tree and predicate logic representations of a 

simple problem-reduction task. 

The and-or graph re12resentation is obtained from the and-or tree by 

identifying nodes labelled by the same problem. Figure 19 illustrates 

both the and-or tree and the and-or graph representations of the same 

problem-reduction task. 
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C o 

G 

D □ F 

□ □ 

Initial problem 

Operators 

Ini.tially solved 
problems 

+- A 

A +- C 

A+- D, E 

D +- F, G 

D +- H 

E +- D 

E +- A 

F +-

G +-

H +-

and-or tree representation variable-free Horn clause representation 

C 

and-or graph representation 

Figure 19. The and-or tree, and-or graph and predicate logic representations of 

the same problem-reduction task. 

The problem-reduction interpretation of Horn clauses. 

(1) Interpret a goal statement 

+- A1, ••• ,An 

containing variables x1, ... ,xk 

as a command: 

Find x1 ••• and ¾ which solve 

the problems A1 ••• and An. 

Any substitution of terms for variables 

which solves A1 ••• and An is a solution 

of the goal statement. 
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(2) Interpret an assertion 

as a solved problem. It solves with 

solution 8 only problems A •• ~1l.ch r:.a·.:ch 

B with matching substitution 8. 

(3) Interpret an operator 

B +- A1 , ••• ,A 
n 

as a solution method. It reduces the 

solution of problems A which match B 

(with matching substitution 8) to the 

solution of the goal statement 

+- A1 e , ... ,A e 
n 

If 8 1 is a solution of the goal statement 

then e e I is a solution of A. 

(4) Interpret the null clause as an empty 

set of problems and therefore as a 

mark of success. 

The problem-reduction interpretation of Horn clauses is basically a 

top-down interpretation. It differs, however, from the top-down interpre·i:ation 

defined earlier in that it does not specify how the solution of goal statements 

is to be related to the solution of individual problems. In particular the 

problem-reduction interpretation leaves open the possibility that a goal 

statement 

+- A1, ... ,A 
n 

might be solved by 

(1) independently solving the individual subproblems 

A1 ••• and A, obtaining individual solutions 
n 

8 1 ••• and 8 , and then 
n 

(2) finding a most general substitution 8 such that 

= ... =a e . n 

The most general common solution eie of the individual subproblems Ai is a 

solution of the goal statement. Such a method of solving goal statements 

is most useful when the individual subproblems are independent (i.e. share 

no variables). Then the most general common solution always exists and 

is the union 8 1 V .•• U 8 of the individual solutions 8 1 , ••• , 8 • 
n n 

In the 

general case this solution method suggests a notion of generalised and-or 

tree which deals with the dependencies between subproblems. 
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Figures 20 and 21 illustrate generalised and-or trees fox the fallibl~ 

Greek and the parsing problems. Each bundle of successor nodes is labelled 

by the output component of the substitution which matches the problem with 

the atom in the conclusion of the operator or solved problem which generate, 

the bundle. The output component of a substitution is the part which 

affects only variables in the problem being solved. 

Fallible(x) Greek(x) 

x:== Socrates 

Human(x) □ 
x:= 

/ TuriL 
0 )---' 

\x:= Socrates 
\ 

\ ' -
0 LJ 

Figure 20. The generalised and-or tree, problem-reduction interpretation 

of the fallible Greek problem. 

_,.,.., _ ___.o~ ( 1, 6) 
,,· '--

---

...... / .. 

- / \ 

Np(\_z~),/ _.--· 

--~t(l,u) r Adj.(u,v) ~oun(v,z)\~ lNoun(l,z) Verb(z,6) 
I I \ ' l / \ \ 

1..,.,e (l,u) !little (u,v)~ {_ \ __ \ likes (z,6) 
u:=i: 2 1 ,v.- 3fv.-5 

u:• 2 ·- 3 j tz:=41z:=6 ,- v.- ' w O b r oC 

}N,2ure 21. 

\ :cblem. 

The generalised and-or tree, problem-reduction interpretation of the parsing 

Darkened nodes represent unsolvable problems. Certain labels of nodea ancJ area 

,\,x,:i (iitllitted for lack of space. 
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Most solution methods for problem-reduction tasks (reducing problems 

to independent subproblems) generate nodes directly in the and-or tree or 

and-or graph representation {41,22,33}. Other methods {7, 9} are 

variations of ones which generate nodes in a top-down search space of goal 

statements. When subproblems are independent, the methods which generate 

nodes directly in and-or trees or graphs avoid redundancies hidden in the 

top-down goal statement method. 

□ + H 

C 

This is illustrated in Figure 22. 

+ C 

+ H,E:_,G 

□ 

+ A 

A + C 

A+ D,E 

D + F,G 

D + H 

E+D 

E+A 

F+ 

G+ 

H+ 

Figure 22. A top-down search space of goal statements for the problem-

reduction task of Figure 19. The hidden redundancy here, which is not 

involved in the and-or tree and and-or graph representations, is the 

investigation of all ways of solving E duplicated for all ways of solving D. 

More generally, given a goal statement+ A,B, n ways of solving A, m ways 

of solving Band the selection of A before B, the goal statement search space 

contains n.m branches where the and-or tree would contain n+m branches. 

However, when subproblems are dependent, the goal statement method 

facilitates the communication of information about solutions from one sub-

problem in a goal statement to another. Such communication makes it 

possible to avoid investigating a solution of a subproblem when it is 

incompatible with solutions to other subproblems in the same goal statement. 

It may be that the goal statement method, supplemented by a procedure which 

generates new assertions as lemmas whenever subproblems are solved, can avoid 

its redundancies while retaining the advantage of investigating subproblems 
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in the context of the goal statements in which they occur. Methods for 

generating and using lemmas were first proposed by Loveland {28} and 

later investigated by other authors {26 }. In the sequel we shall not 

investigate further the method of searching for solutions directly in 

generalised and-or trees and shall reserve our attention instead for the 

top-down method of generating goal statements. 

The selection of subproblems in goal statements. 

Successful problem-solving depends importantly on the sequence in which 

problems are investigated for solution. Selection of different subproblems 

in the same goal statement gives rise to different search spaces. One 

search space can be easier to search than another. 

Figure 23 shows the different search spaces determined by different 

choices of subproblems in the initial goal statement of the fallible Greek 

example. Choosing different subproblems is the difference between finding 

an x which is fallible and then testing that it is Greek,and finding an x 

which is Greek and then testing that it is fallible. Here, as in so many 

examples, the smaller search space is obtained by selecting the subproblem 

which can be solved in the least number of different ways. 

+ Fallible(x), Greek(x) 

+ Human(x), Greek(x) 

+ Greek(Turing) • 

+ Fallible(x) ,Greek(x) l 
+ Fallible(Socrates) 

+ Human(Socrates) l 
□ l 

]~ Greek(Socrates) 

Different search spaces obtained by selecting different subproblems 

in the initial goal statement of the fallible Greek example. 
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In the parsing problem, the selection of subproblems determines the 

sequence in which top-down analysis investigates different parts of the 

initial string of words. One selection procedure determines a left-to-

right analysis, whereas another procedure determines an analysis from 

right-to-left. Indeed, for every sequence of words in the initial string, 

there exists a selection procedure which investigates those words in the 

order in which they occur in the given sequence. 

In general, a useful (and potentially most efficient) sequence of 

investigation is the one determined by the Principle of procrastination 

(Donald Kuehner's name for the selection rule used in SL-resolution {26}): 

Select the subproblem which can be solved in 

the least number of different ways. 

The number of different ways a problem can be solved can be measured by the 

number of different assertions and operators which match the problem. 

This number can be computed efficiently using the connection graph theorem-

proving system investigated in Chapter 6. A more useful measure still can 

be obtained by using connection graphs to facilitate n-level look-ahead to 

estimate the number of different solution methods n-steps long {23}. 

A more dramatic illustration of the importance of selection procedures 

(and of the utility of the principle of procrastination) is provided by 

the factorial example. In the second goal statement of Figure 8 

+ Fact(s(O) ,v) ,Times(s(s(O)) ,v,x) 

it is necessary to select one of two subproblems. The selection and 

solution of Fact(s(O) ,v) before Times(s(s(O)) ,v,x) results in the deterministic 

algorithm which 

(1) finds the unique v which is the factorial 

of one, and then 

(2) finds the unique x which is two times v. 

The selection and solution of Times(s(s(O)) ,v,x) before Fact(s(O) ,v) results 

in the highly non-deterministic algorithm which 

(1) generates pairs (v,x) such that two times 

vis x, and then 

(2) tests that vis the factorial of one. 

In this example, the difference between the choice of different subproblems 

is the difference between a usable deterministic algorithm for computing 

-- ------ -----------------------
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factorial and a useless non-deterministic one. As in the previous 

example, the smaller search space is the one determined by the principle 

of procrastination. 

Bottom-up and bi-directional methods for problem-reduction tasks. 

Problem-reduction tasks can be solved by bottom-up and by combined 

top-down, bottom-up methods. Indeed both pure bottom-up solution methods 

{20,33} and combined methods {22} have been investigated for the pre­

predicate logic formulation of problem-reduction. 

A good heuristic for combining top-down and bottom-up strategies is 

a generalisation {22} of one formulated by Pohl {45} for path-finding 

problems: 

Choose at every stage the direction which gives 

rise to the least number of alternatives. 

In the top-down direction, the number of alternatives is the total number 

of different ways of matching atoms in operators with selected atoms in 

goal statements. In the bottom-up direction, it is the total number of 

different ways of matching atoms in operators with assertions. In the 

connection graph theorem-proving system the Pohl heuristic and the principle 

of procrastination are unified in a single heuristic of preference for the 

line of least resistance. 

In realistic problem-solving situations, involving a single initial 

problem and a large set of problem-solving methods and initially solved 

problems, the Pohl heuristic avoids the combinatorially explosive behaviour 

of pure bottom-up solution methods. In such a situation, where top-down 

derivation of new subproblems from old ones is problem-specific behaviour, 

bottom-up derivation of new solved problems from old ones is problem­

independent, general-purpose behaviour, not directed toward the particular 

problem at hand. The rate of growth of the search space is correspondingly 

much faster in the bottom-up direction than it is in the top-down direction. 

In these situations, the Pohl heuristic dictates the selection of the top­

down direction of search. 

In experimental situations { 46 } bottom-up strategies compare well 

with top-down strategies. Typically in such situations, the set of solved 

problems is unrealistically small and consists only of those assertions 
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which are necessary to solve the initial problem. Bottom-up execution 

does not lead to the general-purpose, problem-independent behaviour 

characteristic of more realistic situations. Such experimental results 

give a misleading picture of the relationship between top-down and bottom-up 

solution methods. 

It would be wrong, '1owever, to argue that bottom-up methods are of 

value only in unrealistic situations. Typically the initial set of 

assertions contains both general-purpose, problem-independent assertions 

and special-purpose assertions which constitute part of the formulation of 

the initial problem. The parsing example, for instance, contains only 

assertions of the problem-specific kind. The distinction between problem-

independent and problem-specific assertions leads to bi-directional 

strategies of the Bledsoe variety {4}: 

Problems should be solved by a combined strategy 

which works bottom-up beginning with the initial 

problem-specific assertions and top-down beginning 

with the initial goal statement. 

Within those constraints the Pohl heuristic is useful for deciding how to 

divide attention and effort between the two directions of search. 

We have just considered the situation in which the initial problem 

consists of both problem-specific assertions and goal statement. More 

generally it is useful to consider situations in which the subproblems 

generated by top-down analysis also consist of both assertions and subgoals. 

The association of problem-specific assertions with subproblems requires the 

use of non Horn clauses. 

Reduction of problems to subproblems consisting of assertions and goal statement. 

read 

A non clausal sentence 

A +- (B +- C) 

A if (C implies B) 

becomes two clauses 

A+- B 

A, C +-

In the problem-reduction interpretation they can be regarded as stating that 

in order to solve A, solve Band assume C. 
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Matching a goal statement +A' (where A' matches A with matching 

substitution 8) with the two clauses gives rise to a new goal statement 

and an assertion: 

+ B 8 

C 8 + 

The definition of subset conforms to this pattern: 

(1) Sub(x,y) + Member(arb(x,y),y) 

(2) Sub(x,y) , Member(arb(x,y),x) + 

Together (1) and (2) can be interpreted as stating that 

in order to show that x is a subset of y, show that 

arb(x,y) belongs toy, where 

arb(x,y) is some member of x. 

In fact, (1) and (2) can be used not only to show that a given set x is a 

subset of y, but also to generate subsets x of a given set y, supersets y 

of a given set x or pairs x,y standing in the subset relation. 

of predicate logic "programs" is elaborated upon in Chapter 5. 

This feature 

Figure 24 illustrates the use of (1) and (2) to solve the problem 

(3) + Sub(A,A) 

of showing that every set is a subset of itself. The form of the search 

space illustrated has not been defined but it is consistent with the informal 

problem-reduction interpretation and it can be simulated by the connection 

graph theorem-proving system of Chapter 6. 

9 + Sub(A,A) 

(1/\fl 
+ Member (arb (A,A) ,A)\ ), M-er (arb (A,A) ,A)+ 

~~ 
Figure 24. A search space with a mixed top-down, bottom-up representation 

for the problem of showing that every set is a subset of itself. 



The use of non Horn clauses to reduce problems to subproblems 

consisting of assertions and goal statement is related to the use of non 

Horn clauses to achieve cooperation of different methods for solving the 

same problem by case analysis. 

Cooperation of problem-solving methods by case analysis. 

Robot plan-formation tasks requiring the construction of conditional 

plans can be interpreted as problem-reduction tasks needing case analysis 

for their solution. 

Such an application of case analysis is needed, for example, to solve 

the problem of getting Robert to the circus. The initial problem 

eventually reduces to the problem of finding Robert's location: 

+ Holds(at(Robert,y),w'). 

Two different operators match the problem 

Holds(at(Robert,home) ,w) + Holds(ill(Robert),w), 

Holds(at(Robert,work) ,w) + Holds(healthy(Robert) ,w). 

Neither operator is able to succeed independently of the other. Each operator 

working alone succeeds in only one of the two cases asserted by the initial 

nor: Horn clause 

Holds (healthy (Robert) ,0) ,Holds (ill (Robert) ,0) + . 

Cooperatively the two operators solve the problem by exhausting all the cases, 

Figure 25 illustrates a similar use of case analysis to enable the 

cooperation of different operators for solving the problem of showing that 

Robert is always working. 

/

,+ Working(Robert) 

(2 \ ,3) 

+ At (Robert,work) +- At (Robert,home) 

(1) At(Robert,work), At(Robert,home) + 

(2) Working(x) + At(x,work) 

(3) Working(Robert) + At(Robert,home) 

Figure 25. A search space illustrating the use of a non 'iorn clause for 

enabling the cooperation of operators by case analysis. 

----------------
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We have seen how the two clauses in the definition of the subset 

relation can be interpreted as reducing a problem to a subproblem 

consisting of an assertion and a subgoal. It is also possible to interpret 

the same clauses as two different operators for solving the problem of 

showing x is a subset of y: 

(1) Sub(x,y) + Member(arb(x,y),y) 

(2) Sub(x,y) + not-Member(arb(x,y),x) 

It is necessary to reinterpret the second clause as an operator which 

replaces the problem of showing that x is a subset of y by the problem of 

showing that arb(x,y) is not a member of x. With this interpretation (1) 

and (2) behave as different ways of solving the same problem. Sometimes 

one method works independently of the other. At other times both methods 

need to cooperate. Figure 26 shows that (1) alone is sufficient for 

solving the problem of showing that every set A is a subset of the universal 

set U. Figure 27 shows that (2) alone is sufficient for solving the problem 

of showing that the empty set~ is a subset of every set A. Figure 28, on 

the other hand, shows that (1) and (2) need to cooperate in order to solve 

the problem of showing that A is a subset of B, where A contains no more 

than a and band B contains a, band c. 

+ Sub (A,U) 

+ not-Member(arb(A,U) ,A) 

(3) Member(x,U) + 

Figure 26. A top-down search space determined by the problem of 

showing that every set is a subset of the universal set (defined by 

clause(3)). 



+ Member(arb(~,A),A) 

(4) not-Member (x,~) + 
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Sub(~,A) 

(2) 

+ not-Member(arb(~,A),~) 

(4) 

oO 

Figure 27. A top-down search space determined by the problem of showing 

that the empty set (defined by (4)) is a subset of every set. 

+ Member (arb (A,B) ,B) 
// 

(5),,,,/ 
// (6) 

+ a (arb (A,B)) <b (arb (A,B)) 
,, 

---., . 

(5) Member(x,B) + a(x) 

(7) Member(x,B) + c(x) 

(6) Member(x,B) + b(x) 

(8) a(x),b(x) + Member(x,A) 

Figure 28. A mixed top-down bottom-up search space for the problem of showing 

A is a subset of B. 
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CHAPTER 5. THE PROCEDURAL INTERPRETATION OF PREDICATE LOGIC. 

A Horn clause 

B +- A1, ... ,A 
n 

is interpreted as the declaration of a procedure whose name is Band whose 

body { A1, ••. ,A } is a set of procedure calls A. • Top-down derivations are n i 

computations. Generation of a new goal statement from an old goal statement 

by matching the selected procedure call A. with the name A of a procedure 
1 

A +- B1, .•. ,B 
m 

is procedure invocation. 

The distinction between the input and output variables of a procedure 

declaration depends upon the context in which it is invoked. For a given 

procedure invocation, the input variables are the variables in the procedure 

declaration which are affected by the matching substitution. The variables 

affected in the procedure call are the output variables. Computation 

proceeds by successive approximation. The output component of the matching 

substitution transmits partial output which improves the current approximation 

to the desired fully specified output. 

The absence of an explicit input-output distinction has important 

consequences. In particular a procedure can be defined for the purpose of 

testing that a given n-tuple of terms holds in a given relationship. The 

same procedure can also be used to generate as output any subset of terms 

in the n-tuple, given the other terms as input. 

A program, consisting of a set of clauses, is activated by an initial 

goal statement. The output of the program is the output component of any 

solution of the activating initial goal statement. 

Predicate logic programs incorporate many features of standard 

programming languages. In particular, they include recursion, the ability 

of a procedure to contain a procedure call to another copy of itself. 

Recursion is used when a procedure declaration contains a procedure call 

which matches the name of another copy of the same procedure declaration. 
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Regarded as a programming language predicate logic is non­

deterministic in three different ways. 

(1) Several procedures can have a name which matches 

a selected procedure call. In such a situation, 

a given program and activating goal statement 

determine several computations. The order in 

which different computations are generated is 

not determined. 

Distinct computations can give rise to 

distinct solutions, 

x:= t1 ... and x:= t 
- -n 

of the initial goal statement. (x is the 

m-tuple of variables occurring in the initial 

goal statement and t. is an m-tuple of terms.) 
-1. 

It is not determined which solution will be 

returned as output. 

(2) The selection of different procedure calls in 

the same goal statement gives rise to different 

search spaces of computations. The program 

does not determine how procedure calls are 

selected. 

(3) Several procedure calls may need to cooperate 

in order to execute successfully a given 

selected procedure call. 

output may be ambiguous: 

x:= t1 ..• or x:= t . 
- - - -n 

The resulting 

Such an output does not determine the value 

of the output variables!_ unambiguously. 

These three different kinds of non-determinism are often confused in the 

theory of computation. In particular the first and third kinds of non­

determinism are easily confused because of the ambiguity of and and 2!:.• 

In the procedural interpretation, terms function as the data structures 

whioh are manipulated by the program and serve as its input and output. 
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Such a use of terms as data structures gives predicate logic many of the 

characteristics of a list-processing language such as LISP { }. Top-

down execution of clauses corresponds to the standard way of interpreting 

programs. Bottom-up execution generally leads to problem-independent, 

combinatorially explosive behaviour. 

In other programs, sets of problem-specific assertions function as 

data structures. Top-down execution of clauses interrogates the data base 

of assertions. Bottom-up execution manipulates it, adding new assertions, 

possibly deleting old ones. The parsing problem is a good example of such 

a program. The wider use of sets of assertions as data structures promises 

to make a useful contribution to the general methodology of computer 

programming. 

The procedural interpretation of Horn clauses. 

A goal statement 

is a set of procedure calls. 

B+-A1, ... ,A 
n 

A Horn clause 

is a declaration of a procedure whose name is Band whose body is the set 

of procedure calls A .. 
1. 

The null clause 

□ 

If n = 0 then the procedure has an empty body. 

is interpreted as the halt statement. 

The name of a procedure identifies the procedure calls to which it can 

respond. It asserts the names of the problems which it can solve. 

Thus the definition of factorial consists of two procedure declarations: 

(1) Fact(O,s(O)) +-

(2) Fact(s(x),u) +- Fact(x,v),Times(s(x) ,v,u). 

The first procedure responds to procedure calls which match its name 

Fact(O,s(O)). It replaces such a procedure call by an empty set of procedure 

calls and returns as output the output component of the matching substitution. 

The second procedure likewise responds to procedure calls which match its 

name Fact(s(x),u). It replaces such a call by the non-empty set of procedure 
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calls 

(Fact(x,v) ,Times(s(x),v,u)) 0I 

where 61 is the input component of the matching substitution 0, h 

returns as an approximation to its output the output compo:-;ent~ of 8 

Notice that the procedural interpretation is identicaJ_ to the t.:::,p-down 

interpretation of Horn clauses. Computations are top-down der:Lvcttions and 

successfully terminating computations are refutations,. 

in Figure 9 is a successfully terminating computation" 

x:= s(s(O)) 

The single refutation 

ThE solution 

of the initial goal statement is the desired output of the pr;Jgra'L 

Computation by successive approximation to output, 

In conventional programming languages, functions, subroutines and 

procedures return output only when they have successfully termlnated 

computation. In predicate logic, at every stage of a computation, a 

procedure transmits partial output to the calling environment 1rhe 

successive partial outputs accumulate and generate successive apprcx1mat1ons 

to t.he output" These successive approximations are generated whett,er or 

not the computation eventually succeeds. 

Figure 29 illustrates the computation, by successive approx1.mati0n, of 

the list which results from appending cons(3,nil) to cons(2,cons(l,nil)), 

x .- cons (2,u) 

u := cons(l,u') 

u' : = cons ( 3, nil) 

I+ Append(cons(2,cons(l,nil)) ,cons(3,nil) ,x) 

(2) 

+ Append(cons(l,nil),cons(3,nil) ,u) 

(2) 

+ Append(nil,cons(3,nil) ,u') 

(1) 

□ 
(1) Append(nil,x,x) + 

(2) Append(cons(x,y) ,z,cons(x,u)) + Append(y,z,u) 

Figure 29. Computation by successive approxlmation to outpuL 
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Every step in the computation adds new information about the output 

variable x. After the first step it is determined that 

x is cons(2,u) 

whether or not the computation eventually succeeds. After the second step 

x is cons(2,cons(l,u')). 

Finally, after the third step, the output variable is fully specified, 

x is cons(2,cons(l,cons(3,niI))), 

and the computation terminates successfully. 

Because of the lack of exp:i~it input-output distinction, computation 

can proceed by successive apprcximation to input as well as to output. 

The utility of both kinds of computation by approximation will be discussed 

later in connection with the admissible pairs example. 

No input-output dist.incb.on. 

The lack of explicit input-output distinction has as one of its 

consequences that a procedure defined with the intention of generating output 

!_, given input~, can also be used to generate~ as output, given!_ as input. 

Thus the procedure Append(s,t,u) might be defined with the purpose of 

generating as output u the list which results from appending together the 

two lists sand t given as input" In a conventional list-processing 

language the procedure could be used only to compute the input-output 

relation for which it was defined. But in predicate logic the same 

procedure can be used to test that Append(s,t,u) holds given s, t and u as 

input, to generates from t and u, to generate t from sand u, to gene.tate 

sand t from u, or in general to generate any subset of {s,t,u} given the 

rest of the set as input. There are 2 3 such input-output relations which 

are computed by the single procedure Append. 

Figure 30 illustrates the use. of Append to compute the list x such that 

cons(2,cons(l,cons(3,nil)J) results from appending cons(3,nil) to x. Although 

the search space contains an unsuccessfully terminating computation it contains 

only one successful one. 
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x := cons(2,y) 

I A . . ppend (x, cons ( 3, nil) , cons ( 2 ,cons (1, cons ( 3, nil)))) 

I ( 2) 

f lpoend(y,cons(3,nil),cons(l,cons(3,nil)» 

y : = cons ( 1 , y ' ) I ( 2) 

y' := 

. MAp~~=d ~y 1 
, cons,: 3, nil) , cons ( 3, nil)) 

nil (l) ( 2) y .- cons(3,y ) 

D o Append (y", cons ( 3 ,nil) ,nil) 

Figure 30. 

relation. 

Use of the same procedure to compute a different input-output 

Non-determinism1: 

procedure call. 

The scheduling of procedures when several match a 

Typically a procedure is defined with the intention of using it to 

compute a function (in the case of Append, to compute the unique list which 

results from appending together two other lists given as input). Used in 

the way originally intended, the procedure behaves deterministically in the 

sense that it computes a unique output for a given set of inputs. (In the 

case of Append, the procedure behaves deterministically in the stronger, 

more important, sense that the search space of computations contains no 

branch points.) 

The inverse of a function is generally many-valued and therefore not a 

function. Using a procedure to compute the inverse of the function originally 

intended changes the procedure from one which behaves deterministically to one 

which behaves non-deterministically. In particular, Append is many-valued 

when it is used to output a pair of lists s,t which partitions a list u, given 

as input (so that the relation Append(s,t,u) holds between input and output). 

Such an application of Append is non-deterministic1 because the space of 

computations contains branch points. Figure 31 illustrates such a branching 

search space of computations, determined by the problem of partitioning the 

list cons ( 2, cons (1, cons ( 3, nil))) . 

Notice the economy obtained by structuring the space of computations as 

a tree. In particular, the two different partitions 

x:= cons(2,cons(l,nil)), y:= cons(3,nil) and 

x:= cons(2,cons(l,cons(3,nil))) , y:= nil 

are obtained from the same initial computation of the common approximate 

solution 

x:::o cons(2,cons(l,x")). 
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x:= 

y:= 
/ 

+- Append(x,y,cons(2,cons(l,cons(3,nil))}) 

nil \. -~:= cons(2,x') 
cons(2,cons(l,cons(3,nil) \. 

D ✓\ +- Append(x' ,y,cons (1,cons (3,nil})) 

cons ,cons ,ni Yx' = •• = __ nil (1 (3 'l)) \• := cons (1,x") 

Do /~+-Append(x",y,cons(3,nil}) 

x":= nil ✓ 
. x" := cons (3 x'") y : = cons ( 3, nil) ' 

0 d ;" :: ::~ t ~ Append(x"', y,nil) 

Figure 31. Non-determinism1 a branching space of computations. 

The non-determinism associated with a branching search space of 

computations concerns the scheduling of the processor(s) which generates 

computations in the search for one which terminates succes~t~lly. The 

scheduling of the processor is not determined by the program. When several 

procedures match a given procedure call, it is not determined which procedure 

will be tried first. Nor is it determined whether one will be tried before 

the others or whether all will be tried simultaneously (in parallel). When 

the initial goal statement has several distinct solutions (associated with 

different successful computations) it is not determined which solution the 

processor will return as the output of the program. 

Non-determinism2 : The scheduling of procedure calls in the body of a procedure. 

The body of both a goal statement and a procedure declaration is a set of 

procedure calls. In a conventional programming language the body of a 

procedure is likely to be a sequence of procedure calls. In predicate logic, the 

procedure definition does not specify the sequence in which procedure calls are 

to be executed. For this reason predicate logic programs are non-deterministic. 

It is not determined2 which procedure call should be activated first. Nor is 

it determined2 whether one procedure call should be executed without inter-

pretation and terminated before the activation of the others. It is not 

even determined2 whether one call should be executed before another or whether 

all should be executed in parallel. 
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An example of the non-determinism2 of the scheduling of procedure 

calls in a goal statement 

+ Fact(s(O) ,v) ,Times(s(s(O)) ,v,u) 

was discussed in the preceding chapter. Activation of the Fact procedure 

call before the Times procedure call results in the usual deterministic1, 

recursive algorithm for computing factorial. Activation of Times before 

Fact results in an intolerably inefficient, but none-the-less correct, 

non-deterministic 1 algorithm. In general the scheduling of procedure 

calls determines2 the size of the search space of all computations. 

Different scheduling rules determine 2 different search spaces,some of which 

may be significantly easier to search than others. 

Effective scheduling of procedure calls depends importantly on the 

input-output distribution of variables in the procedure call which activates 

the given procedure. For example, when the procedure 

Grandparent(x,y) + Parent(x,z) ,Parent(z,y) 

is used to test whether x is a grandparent of y, it does not matter greatly 

which procedure call, Parent(x,z) or Parent(z,y), is activated before the 

other. According to the principle of procrastination, if x has fewer than 

two children z, then it is better to find a child of x and then test that 

it is a parent of y. But if x has more than two children then it is better 

to find a parent of y and then test that it is a child of x. 

More important is the scheduling of procedure calls in this example 

when only one of x and y is given as input and the other is desired as output. 

If it is required to find a grandchild y of x then it is important first to 

find a child z of x and then to find a child y of z. But if it is required 

to find a grandparent x of y then it is much better to find a parent z of y 

and then to find a parent x of z than it is first to find a pair x, z such 

that x is a parent of z and then to test that z is a parent of y. 

It is important therefore for the scheduling of procedure calls in the 

body of a procedure to be sensitive to the context in which it is called. 

To fix scheduling by a single initial ordering of procedure calls is to 

define a scheduling appropriate for the initially intended input-output 

relation, but possibly unusable for other input-output relations. As 

important as this point is, some critics have wrongly judged that dynamic 

scheduling is less efficient than static ordering {43}. 
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Another restriction on the scheduling of procedure calls, which it is 

useful to remove, ie the restriction that procedure calls be executed last­

in-first-outo Given, for example, the goal statement 

+ P(x,y),Q(y) 

where P is selected before Q and where x is input variable and y is output 

variable, the successive approximations to the output of Pare transmitted 

as successive approximations to the input of Q. If execution proceeds in 

a last-in-first-out manner, then Q is selected only after P successfully 

terminates and the variable y is fully specified. In many situations, 

however, it is possible and desirable to interrupt the execution of P and 

to run Q with partially specified input, returning to the execution of P 

when Q desires further specification of its input. Such a method of 

combining the execution of P and Q is especially useful when P non-

deterministically generates a number of different outputs y. If Q 

terminates unsuccessfully for some partial specification of y, then it is 

possible to abandon the computation of P which gave rise to that value of y. 

This is illustrated in Figure 32. 

list {2,1,3} is replaced by 

+ Perm({2,l,3},y) ,Ord(y) 

The initial goal, which is to sort the 

the goal of generating a permutation of {2,1,3} and testing that it is ordered. 

Instead of executing the goal statement last-in-first-out and waiting until 

Perm generates the fully specified permutation {2,1,3} before recognising 

that it is not ordered, Ord tests the partially specified output cons(2,cons(l,x)) 

of Perm, recognises that it is not ordered and abandons the corresponding branch 

of the search space, 

Removing the last-in-first-out restriction on the scheduling of procedure 

calls is useful in some cases. In other cases, such as in the admissible 

pairs example, it is essential. There it is necessary to execute the two 

procedure calls Double(x,y) and Triple(x,y) in parallel, communicating partial 

output from one procedure call to serve as partial input for the other. Unlike 

the preceding example, where Perm could run without the help of Ord, in this 

example, netther Double nor Triple could run with tolerable efficiency without 

help from the other. The execution of Double and Triple as communicating, 

parallel processes is shown in Figure 33. 
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(1) Sort(x,y) + Perm(x,y) ,Ord(y) 

(2) Perm(nil,nil) + 

(3) Perm(z,cons(x,y)) + Delete(x,z,z') ,Perm(z' ,y) 

(4) Delete(x,cons(x,y) ,y) + 

(5) Delete (x, cons (y, z) ,cons (y ,u)) + Delete (x, z ,uj 

(6) Ord (nil) + 

(7) Ord(cons(x,nil)) + 

(8) Ord(cons(x,cons(y,z))) + LE(x,y), Ord(cons(y,z)) 

(9) LE(x,x) + (10) LE(l,2) + 

( ll) LE ( 2, 3) + ( 12) LE ( 1, 3) + 

(3) 

+ Sort({ 2,1,3},y) 

+ Perm({ 2,1,3},y) ,Ord(y) 

y:= cons(x,y') 

+ Delete(x,{ 2,1,3},z'),Perm(z' ,y'),Ord(cons(x,y')) 

x:= 2, z':={1,3} 

_ + Perm ({ 1, 3} , y' ) , Ord ( cons ( 2 , y' ) ) 
I 
I 

(3) ly' := cons(x' ,y") 

I __ /i + Delete (x' ,{ 1, 3}, z') ,Perm(z' ,y") ,Ord (cons (2 ,cons (x' ,y"))) 

(/( 4) l x ' : = 1 , z ' : = { 3} 

o (
8

)0

1 
+ Perm({ 3},y"),Ord(cons(2,cons(l,y"))) 

+ Perm({ 3},y") ,LE(2,1) ,Ord(cons(l,y")) 

Figure 32. An unsuccessful attempt to sort { 2,1, 3} by generating 

a partially specified permutation cons(2,cons(l,y")) which is not ordered. 
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0

1 + Adm (cons (1, y), u) 

+- Double(cons(l,y),u) ,Triple(cons(l,y) ,u) 

I u:= cons(u',v) 

+- Times(2,l,u'),Double(y,v),Triple(cons(l,y),cons(u' ,v)) 

u' := 2 

+- Double(y,v),Triple(cons(l,y) ,cons(2,v)) 

y:= cons (y' ,z) 

+- Double (cons (y' ,z) ,v) ,Times (3,2,y') ,Triple (cons (y' ,z) ,v) 

y' := 6 

+- Double (cons (6,z) ,v) ,Triple (cons (6,.z) ,v) 

v: = cons ( u" , v ' ) 

+- Times(2,6,u") ,Double(z,v') ,Triple(cons(6,z) ,cons(u",v')) 

u" := 12 

+ Double(z,v') ,Triple(cons(6,z) ,cons(12,v')) 

z:= nil 
v':=nil 

+- Double(nil,nil) 

□ 

The execution of Double and Triple in the admissible pairs 

example as a pair of communicating, parallel processes. 
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Non-determinism 3 The underspecification of output. 

The problem of getting Robert to the circus 

+ Holds(at(Robert,circus),w) 

can be thought of as an initial procedure call with output variable w. 

With this interpretation, the successful computation illustrated in 

Figure 17 is arrived at by combining by means of case analysis two different 

computations, each with a different associated approximation to the desired 

output. The final output computed in this way is "underspecified" 

w:= do(go(Robert,home,circus),O) 

~ do(go(Robert,work,circus),O). 

If instead of the case statement 

Holds (healthy (Robert),O),Holds (ill (Robert) ,0) + 

we had the two (consistent) assertions 

Holds (heal thy (Robert) ,0) + 

Holds (ill (Robert) ,0) + 

then the output would have been "overdefined" 

w:= do(go(Robert,home,circus),O) 

and do (go (Robert,work,circus) ,0). 

In fact the processor returns upon termination only one of the two possible 

outputs. It is not determined 1 which of the two results it returns. 

In this example the ambiguity between and and or does not arise. It 

does arise however in the parsing example. 

correctly such a fact as 

It is not clear how to express 

the word "fish" can be used as either a noun or a verb. 

Should it be interpreted as a non Horn clause 

Noun(x,y) ,Verb(x,y) + Fish(x,y) 

or as two Horn clauses 

Noun(x,y) + Fish(x,y) 

Verb(x,y) + Fish(x,y). 

The Horn clause interpretation is consistent with the previous formulation 

of the parsing problem in Chapter 2 and has been applied to the parsing of 

ambiguous sentences elsewhere {23}. It is not known, however, whether the 

parsing problem can be consistently formulated with the non Horn clause 

interpretation. 
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Sets of assertions as data structures. 

The factorial, append, and admissible pairs examples illustrate the 

use of terms as data structures. The parsing example (and to a more 

limited extent, the robot plan-formation example also) illustrates the use 

of sets of assertions as data structures. 

When terms are used as data structures, top-down execution of procedures 

behaves similarly to recursive execution in conventional programming languages. 

Bottom-up execution is problem-independent and combinatorially explosive. 

Its only application seems to be in the theory of computation where it can 

be used to justify certain rules, such as Scott induction, for proving 

properties of programso 

When sets of problem-specific assertions are used as data structures, 

top-down execution of procedures interrogates the data base. Bottom-up 

execution is problem-dependent manipulation of the data base, deriving new 

assertions from old ones. In some cases the procedure which derives the 

new assertion from the old one may contain the only atom which matches the 

old assertion. In such a case, the old assertion can be deleted when the 

new one is generatedo Then bottom-up execution behaves as a destructive 

assignment operation which overwrites part of the contents of the data base. 

The deletion of clauses after all operators have been applied to some 

selected atom (of which destructive assignment in the data base of 

assertions is a special case) is a characteristic feature of the connection 

graph theorem-proving system. 

It is instructive to compare the previous formulation of the parsing 

problem with a different formulation which uses terms as data structures. 

(1) +- S (cons (The,cons (little,cons (mouse,cons (likes,cons (cheese,nil)}}))) 

(2) S(z) +- Np(x) ,Vp(y) ,Append(x,y,z) 

(3) Np(x) +- Noun(x) 

(4) Np(u) +- Det(x),Adj(y) ,Noun(z) ,Append(x,y,v) ,Append(v,z,u) 

(5) Vp(x) +- Verb(x) 

(6) Vp(z) + Verb(x) ,Np(y) ,Append(x,y,z) 

( 7) Det ( cons (The, nil)) +-

( 8) Adj (cons (little,nil)) + 

(9) Noun ( cons (mouse, nil)) +-

( 10) Verb (cons (likes,nil)) +­

(11) Noun (cons (cheese,nil)) +-
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Here the assertions (7)-(11) are problem-independent. In a realistic 

parsing problem they would constitute a small subset of a larger set 

containing such assertions as 

Noun (cons (girl,r,il)) +­

Verb (cons (guides ,nil)) +-

which are irrelevant to the particular problem at hand. Therefore bottom-up 

execution of (1)-(11) is problem-independent. The problem-dependent 

information is encoded in the term in the initial goal statement. The 

components of this list-like data structure cannot be overwritten as they 

can be when the problem-specific data is encoded as a set of assertions 

and is manipulated bottom-up by a connection graph theorem-prover. 

Notice also in this example the procedure calls Append,which have no 

analogue in the earlier formulation of the parsing problem. When sets of 

assertions are used as data structures, the program has direct access to the 

individual assertions in those sets. Direct access to assertions is like 

direct access to the components of an array. When terms are used as data 

structures, then special procedures like Append need to be invoked in order 

to access the contents of data structures. 

A still less satisfactory formulation of the parsing problem is the one 

suggested by the formalism of formal language theory. The function symbol f 

is an associative concatenation function. The associativity off needs to 

be dealt with by supplementing clauses (1)-(11) below with axioms of 

associativity or by modifying the matching algorithm { 44}. 

(1) +- S(f(The,f(little,f(mouse,f(likes,cheese))))) 

(2) S(f(x,y)) +- Np(x) ,Vp(y) 

(3) Np(x) +- Noun(x) 

(4) Np(f(x,f(y,z))) +- Det(x) ,Adj (y) ,Noun(z) 

(5) Vp(x1 +- Verb(x) 

(6) Vp(f(x,y)) + Verb(x) ,Np(y) 

(7) Det (The) *· 

(8) Adj (little) +-

(9) Noun (mouse) +-

(10) Verb(likes) +­

(11) Noun (cheese) +-

This formulation of the parsing problem, although easy to read, suffers from 

all the problems of the preceding formulation which uses lists as data 
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structures. Moreover, it suffe.rs additional problems with the treatment 

of the concatenation functiono 

The satisfactcry behaviour of predicate logic programs depends upon 

good programming style. Different programs for solving the same problem 

can be logically equivalent but can have very different pragmatic 

characteristics. 

But even the best program will not evoke reasonable behaviour from an 

unreasonable program executor. As mentioned in Chapter 2, until recently 

most proof procedures for predicate logic have behaved as very unreasonable 

executors of predicate logic programs. The recent elaboration of top-down 

and connection graph theorem-provers has significantly improved the quality 

of inference systems. There remains the problem of improving the 

intelligence of search strategieso 

Selection of direction and scheduling 0f procedures and procedure calls. 

Predicate logic programs do not specify the direction (top-down or 

bottom-up) in which procedures should be executed. When several procedures 

match a given procedure call, they do not specify how the different procedures 

should be scheduled. When. several procedure calls occur in the body of a 

given procedure declaration or goal statement, they do not specify how the 

different procedure calls should be scheduled. The specification of these 

choices can be made either by the processor. without help from the program 

writer or by the programmer in a separate auxiliary language. In the 

latter case it is desirable to separate the machine-independent statement 

of the predicate logic program from the machine-oriented specifications in 

the auxiliary language. 

Autonomous search strategies for scheduling the generation of clauses 

have been investigated for both top-down and bottom-up theorem-proving { 20,38,59}. 

These strategies use merit orderlngs or evaluation functions to guide the 

generation of clauses ln the search space. Arguments against the adequacy 

of such search strategies have been advanced by Hayes { :i., 1 7}. He argues 

convincingly that the kind of information employed in these strategies is not 

the kind of information needed for effective problem-solving. He argues also 

that the information necessary t:.:i control the behaviour of the processor can 

be most effectively supplied by t.he prc,grammer in a separate auxiliary 

control languageo We end0rse his concluslon that the design of autonomous 

search strategies is not a useful short-term research objective, whereas the 

design of effective control languages is. 
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The control of search strategies concerns the scheduling of different 

procedures which match the same procedure call. Useful control primitives 

for scheduling procedures can be found in programming languages like 

PLANNER {18}, MICROPLANNER { 55}, CONNIVER { 56}, POPLER { 10}, SAIL { 13}, 

QA4 { 52} and QLISP { 47} and can be applied in predicate logic. 

The recommendation list, which allows a user to specify the sequence 

in which different procedures should be tried, is a control primitive of 

this sort. 

The control methods used to sequence procedure calls in conventional 

programming languages are generally restricted to sequential execution, 

parallel execution and execution by co-routines. These methods are 

insensitive to variations in the distribution of input and output variables. 

For this reason they are not entirely adequate for controlling execution in 

predicate logic programs. Fortunately, the principle of procrastination, 

which delays the execution of a procedure call when it matches many procedure 

names, is a useful autonomous control strategy which works in surprisingly 

many cases. To the extent that it fails in a number of important cases, 

it needs to be improved or supplemented by user-specified advice conveyed 

to the processor in an auxiliary control language. 

Finally, especially when sets of assertions are used as data structures, 

the processor has to choose between top-down and bottom-up execution. In 

programming languages of the PLANNER family, the direction in which procedures 

are to be executed is specified in advance by the types associated with 

procedure declarations (consequent theorem type if the direction is top-down, 

antecedent theorem type if it is bottom-up). Moreover each procedure call 

is assigned the type of the procedures which it is allowed to invoke. The 

Bledsoe and Pohl heuristics, on the other hand, are context-dependent, 

direction-choosing strategies of the autonomous kind. Other autonomous 

strategies apply, moreover, when the connections between matching procedure 

calls and procedure names are explicitly represented in a connection graph. 

These heuristics will be discussed in the next chapter. 

Both autonomous strategies and control languages have useful contributions 

to make towards the more effective selection of direction and scheduling of 

procedures and procedure calls. Some day it may be possible to design 

entirely autonomous strategies which execute programs satisfactorily without 

help from the programmer. In the meantime it will be necessary for the 

programmer to help the program executor by communicating to it in an auxiliary 

control language the control information needed for satisfactory execution 

of programs. 
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The pragmatic content of predicate logic programs. 

It is a common view that predicate logic is a specification language, 

whose "programs" have semantic but not pragmatic content. This view is 

taken by Hayes { 17} who would incorporate all pragmatic information into 

the advice written in the auxiliary control language. 

Our contrary view is that to ignore the pragmatic aspects of predicate 

logic programs is to encourage the writing of "uncontrollable" programs. 

Different programs which have the same semantic content can have very 

different pragmatic characteristics. One program might be regarded as a 

useful specification of the problem, but be unusable for efficient 

computation. Another equivalent program might run efficiently but be 

difficult to recognise as computing the same intended input-output relation. 

Proving the correctness of such a program amounts to proving its equivalence 

to the specification program. 

A good example of the pragmatic content of predicate logic programs is 

~rovided by the sorting problem studied by van Emden {11}. The previous 

program for sorting lists, 

Sort(x,y) + Perm(x,y) ,Ord(y), 

is best regarded as a specification of sortedness. Even the scheduling of 

procedure calls which uses Ord to monitor the partial output of Perm does 

not produce an efficient sorting algorithm. But straightforward sequential 

execution produces Quicksort { :.J} from the following program: 

Sort*(nil,nil) + 

Sort*(cons(x,y) ,z) + Part(x,y,u,v) ,Sort*(u,u'), 

Sort*(v,v'), 

Append(u' ,cons(x,v') ,z). 

Here Part(x,y,u,v) holds when u is the list of all members of y which are 

less than or equal to x and vis the list of all members of y which are 

greater than x. 

Sort and Sort* are equivalent in the sense that Sort(s,t) and 

Sort* (s, t) hold for the same pairs of te:cms s, t. Sort is useful for 

specifying the notion of sortedness but useless for efficiently sorting 

lists. Sort* is efficient for sorting lists but less convincing as a 

specification of sortedness. 
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First-order predicate logic has the limitation that proceduLeS cannot 

serve as data structures to be interrogated and manipulated by other 

procedures. This limitation can be overcome by employing higher-order 

instead of first-order logic. Unfortunately, at the present time there 

do not seem to exist for higher-order logic proof procedures which behave 

as reasonable program executors. The situation may improve with time. 

But until then it is possible to solve the problem without leaving first­

order logic. 

The Holds predicate used in the robot plan-formation problem provides 

a way of using first-order logic to gain some of the expressive power and 

problem-solving capabilities of higher-order logic. First-order set 

theory provides similar capabilities, as do first-order theories of lambda­

conversion. In particular, Moore has written a first-order predicate 

logic program to interpret higher-order programs written in a LISP-like 

language, BAROQUE { 40}. It may be that eventually proof procedures for 

higher-order logic will be improved and will provide a more satisfactory 

programming language than first-order logic. 

Another problem of predicate logic is the problem of programming style. 

In particular, the choice of data. structures, terms or sets of assertions, 

is especially important. It would be beneficial to obtain for other 

problem domains the advantages gained in the parsing example by using sets 

of assertions instead of terms. It would be useful to reformulate the 

previously investigated list-processing problems using sets of assertions to 

represent lists. In the robot plan-formation problem, the use of sets of 

assertions to represent states might have interesting new implications for 

the frame problem. 

A related problem of programming style concerns the effective use of 

non Horn clauses. The use of non Horn clauses to declare a data base of 

assertions local to a given procedure call has been:. _J..,_,,_, _;__ c..:...ed in the subset 

examples. It seems likely that such applications of non Horn clauses have 

wider applicability. 

In the recent past, significant advances have been made by abandoning 

the use of the Equality predicate. It seems reasonable to expect that 

further advances will be made by continued investigations into the 

pragmatics of programming style, 
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Finally, perhaps the most important problem concerns the details of 

implementation: how best to represent clauses inside the computer? The 

Boyer-Moore structure-sharing representation { 6} provides one solution, 

which needs to be improved. Such an improvement might be suggested by 

studying the application to predicate logic of the Bobrow-Wegbreit { S } 

implementation methods. 

Another, less difficult, problem of implementation concerns the design 

of a useful external form for predicate logic programso In particular 

the external form might admit sentences in non clausal form, such as 

A +- (B +- C) 

instead of 

and A, C + , 

and 

instead of 

B +-A1, •• o,A 
m n 

A programming language based on predicate logic, .ffiOLOG, has been 

implemented at the University of Aix-Marseille, Luminy. It uses a last-

in-first-out, top-down theorem-prover as interpreter and uses backtracking 

to sequence procedures. Despite the limitations of the program executor, 

PROLOG is surprisingly fast and easy to useo PROLOG programs have been 

written for natural language question-answering (Colmerauer and Pasero), 

symbolic integration (Bergman and Kanoui), and robot-plan formation (Warren). 
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CHAPI'ER 6. CONNECTION GRAPHS. 

In Chapter 2 we defined two theorem-proving systems, one top-down, 

the other bottom-up, both restricted to Horn clauses. In other chapters 

we found useful applications for mixed top-down and bottom-up execution 

and for non Horn clauses to associate local data with subproblems and to 

achieve the cooperation of different procedures by case analysis. In 

this chapter we shall define a system which provides the ability to mix 

directions of execution and to deal adequately with non Horn clauses. 

The new theorem-proving system has other desirable properties. All 

clauses are stored in a graph. An atom in the hypothesis of a clause 

is connected by a link in the graph to another atom in the conclusion of a 

different clause if the two atoms match. Storing clauses by means of the 

connections between them has the desirable consequence that all atoms in 

assertions and goal statements are directly linked to atoms in the procedures 

which can operate on them. When an atom in an assertion or goal statement 

is activated, the matching procedures are accessed without searching through 

the entire set of procedures but by following links in the connection graph. 

The intersection of bi-directional top-down and bottom-up strategies is 

facilitated since intersection can occur only by means of links in the 

graph. 

The generation of new clauses is accomplished by activating links in 

the connection graph. Top-down execution is performed by activating a 

link between a goal statement and a procedure; bottom-up execution by 

activating a link between assertions and a procedure. When a link is 

activated the associated clause is generated, added to the graph and links 

between atoms in the new clause and atoms in the rest of the graph are 

constructed from the links on the parent clauses. The activated link is 

deleted from the graph. 

At any time any link in the graph can be activated. If the link 

selected for activation connects two procedures, then the new clause is 

itself a procedure. Macro--processing of procedure calls in conventional 

programming languages is a special case of such derivation of new procedures. 

If an atom in a clause is linked to no other atoms in the graph, then 

all links connected to that atom have already been activated and deleted 

from the graph. The entire clause containing the unlinked atom may also 
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be deleted from the graph. This operation of deleting clauses containing 

unlinked atoms is of great importance" It means that a goal statement 

can be deleted when all procedures which apply to Lts selected atom have 

already been used to generate new goal statements. It means that an 

assertion can be deleted when all procedures containing matching atoms have 

been applied to the assertion in order to derive new assertions. When 

macro-processing is used to generate new procedures from old ones, it 

justifies deletion of the old procedures. 

A precise definition of the connection graph theorem-proving system 

is given at the end of this chapter, after the informal description and 

examples. 

The initial connection graph, deletion of clauses containing unlinked atoms 

and deletion of tautologies. 

Figure 34 illustrates the initial connection graph for the set of clauses 

in the example of the fallible Greeko 

+ Fallible(x) ,Greek(x) 

+ Human(y) 

~Socrates 

Greek(Soc~ates) ~ 

y:= Socrates 

Human(Turing) + 

Figure 34. The initial connection graph for the fallible Greek example. 

Given an initial set of clauses, the initial connection graph is obtained 

by inserting, for every pair of matching atoms Bi and Cj on opposite sides of 

the arrow in distinct clauses, a link between the two atoms: 

B 1 , • • • , B . , • o • , B *" A 1 , • • • , A 
i m n 

The link is labelled by the matching substitution 0. For the purpose of 

matching,variables in clauses are renamed in such a way that distinct clauses 

have distinct variables. 
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Robinson's purity principle {49} implies that any clause containing 

an unlinked atom can be deleted from a set of clauses without affecting its 

consistency (or inconsistency). Figure 35 illustrates application of the 

purity principle to transform an initial connection graph. The set of 

clauses in the initial connection graph is inconsistent if and only if the 

set of clauses in the transformed connection graph is inconsistent. 

+- A 

A +- C A+ D,E 

K +- J F +- H F f- I 

J +- H+ I +-

F f- H F +- I 

I --(--

Figure 35. Transformation of the initial connection graph for the set of 

clauses in Figures 3-7. 

contain unlinked atoms. 

Clauses A+- l- auu K <- J are deleted because they 

After K + J is deleted, the clause J +- contains an 

unlinked atom and is also deleted from the graph. 
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Without affecting the consistency of a set of clauses, a clause can 

be deleted if it is a tautology, i.e. if it contains identical atoms on 

different sides of the arrow. Figure_36 illustrates the transformation 

of a connection graph by successive deletion of tautologies and by application 

of the purity principle. 

A+- A,B --B+-

+- A-A+- C-C +-

Figure 36. Deletion of a tautology. The clause A+- A,B is deleted because 

it is a tautology. 

atom. 

But then B +- is deleted because it now contains an unlinked 

The activation of links in connection graphs. 

The basic operation in connection graphs is that of deriving a new clause 

by activating a link connecting atoms in the parent clauses. The new clause 

is added to the graph and the activated link is deleted. 

new clause are linked to atoms in other clauses, 

The atoms in the 

The new links are found not by searching the entire graph for atoms 

which match the new atoms in the new clause but by testing whether the 

atoms A which are linked to atoms Bin the parent clauses match the 

atoms B' in the new clause which descend from B. Thus every new link 

descends from one or more old links connecting atoms in the parent clauses 

to other clauses in the graph. 

Figures 37 and 38 illustrate the successive activation of links 

connected to goal statements, simulating a top-down refutation of the 

fallible Greek example. 

Figures 39 - 43 illustrate a mixed top-down, bottom-up analysis for 

the parsing problem. Ppplication of the purity principle in order to 

delete clauses takes place as soon as possible and is not displayed explicitly. 
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+ Fallible(x) ,Greek(x) 

o/ '~ 
Fallible(y) + Human(y) Greek(Socrates) + 

~ 
Human(Socrates) + Human(Turing) + 

+ Fallible(x),Greek(x) + Human(x),Greek(x) 

~ 
CV'--.......... 

Fallible(y) + Human(y) 

Hwnan (Socrates) + Human (Turing)+ 

JI 
\Y 

+ Human (x), Greek(x) 

n ~ 
Human (Socrates) + Human (Turing) + Greek (Socrates) + 

Figure 37. Top-down activation of links for the fallible Greek example. 

The second graph is obtained from the first by activating link ©. The 

new links @ , G) and ® descend from the old links @, @and @ 
respectively. The third graph is obtained from the second by deleting 

clauses containing unlinked atoms. The links@, G) and 0 connected 

to the deleted clauses are also deleted. Substitutions labelling links 

are omitted in order to simplify the figure. 
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+ Human(Socrates) + Human (x) , Greek (x) 

',,,,{i) 

® 
®fa_/_ ... · 

.,,,,,,..,-- .~--- 0' 
.... ,.... -

',, 

Human (Socrates) + Human (Turing) ~- Greek(Socrates) + 

li 
+ Human(Socrates) 

□ 

Human(Socrates) + 

Figure 38. Continuation of the top-down activation of links initiated 

in Figure 37. The first graph in this figure is obtained by activating 

link @ in the last graph of Figure 37. Link G3) descends from G) . 
The attempt to construct a link ® descending from @ fails. The 

second graph is obtained from the first by successively deleting all 

clauses which contain unlinked atoms, Finally the null clause is obtained 

by activating the only link 0 which remains in the graph. 

Typically such deletion of clauses is made possible by the activation and 

deletion of links which gives rise to unlinked atoms. In particular, if 

the activated link is the only link connected to an atom in one of the 

parent clauses, then that parent clause is deleted when the link is 

activated. In favourable circumstances, the activated link is the only 

link connected to both atoms at the ends of the link in the parent clauses. 

In such cases, bcth parent clauses are deleted when the link is activated. 
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+ S(l,6) 

0 

S(x,y) +Vp(z,y) , Np(x,z) 

/./ 
_,,.,.,,,,---"/ 

Vp(x,y) + Verb(x,y) Vp(x,y) + Verb(x,z),Np(z,yy' 

-~/ ----
oc:::::;__ _____ ~-----

Verb(x,y) + likes(x,y) Np(x,y) 
I 

0/' 
I 

likes(4,S) + Det(x,y) + The(x,y) Jldj(x,y) + little(x,y) 

The (1,2) + little (2, 3) + lioun(x,y) + cheese(x,y) 

o/ 
' mouse(3,4) +- cheese (5,6) + 

Figure 39. The initial connection graph for the parsing problem. The links 

0)-@ are selected for activation because deletion of those links allows all the 

parent clauses to be deleted from the graph. Activation of (D 
analysis of the sentence and activation of@ - 0 initiates a 

initiates a top-down 

bottom-up analysis. 
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i 
Vp(x,y) +- Verb(x,y) Vp(x,y) +- Verb(x,z), Np(z,y) 

1
j 

. ---- ~ 

~
7,,,~@ ------------ ______ ---~- --- '\_ I 
// --~ °\_ I 

/ ' I 
/--- -...-:..=:--·-·· .. •· ----· -- "-...,/ 

Verb(4,5) +- Np(x,y) +- Det(x,u), ·Adj (u,v) ,Noun(v,y) Np(x,y) +- Noun(x,y) 

~ . ~ /1 
, I 

! 
"~, I 

G)/ @, 
·,, 

I y 
I 

.,· ",. 
! ' • 

Det(l,2) +- Adj (2,3) +- l.\ioun ( 3, 4) +- Noun (5 ,6) +-

Figure 40. The connection graph which results from activating links Q - @ 
........._ fo' 

in :.: .... gure 39, k:tivation of links (.2) and ~) generates two new clauses and 

---results in the deletion of t.he three parent clauses. k:tivation of { 9 results 
'--· 

in the deletion of both parent clauses. Subsequent activation of the descendant 

of link @' in the new clause results in deletion of both parents, one of them 

the clause just generated. ktivation of (i) - @ corresponds to bottom-up 

analysis. 

Vp (4, 5) +-

Figure 41. 

Figure 40. 

+ Vp(z,6), Np(l,z) -- -· 
/ 

✓-~-

/ e' 
Vp(4,y) + Np(5,y) 

,,. 

Np(l,y) +- Noun(3,y) Np(x,y) +- Noun(x,y) 
r·,.... ~ 

I ' .... ------ // 

~- - ..... . LI ',, __ .--·~ / 

,J .... , / 

~--- ....... ✓ 

Noun (3 ,4) + Noun(5,6) +-

The connection graph which results from activating (~ - Q:__o) in 

The dotted lines represent unsuccessful attempts to add new links, 

descending from old links, to the graph. k:tivation of@ corresponds to top-

down analysis and results in the deletion of both parent clauses" 
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Noun (3,4) + Noun (5 ,6) + 

Figure 42" 

Figure 41. 

The connection graph which results from activating @ in 

ktivation of @ - @ corresponds to bottom-up analysis, 

generates three new assertions but results in the deletion of the four 

parent clauses. 

+ Np(S,6) ,Np(l,4) 

' -----1 

ffi □ 
Np ( 1 , 4 ) + Np ( 5 , 6) + 

Figure 43. The connection graph which results from activating @ - @ 
in Figure 42. Activation of link @ and then the descendant of @ 
connected to the new clause results in the generation of the null clause 

and in the deletion of all other clauses. 

Resolution. 

The selection of links for activation in a connection graph is like the 

selection of atoms in a goal statement in the top-down interpretation: at 

every stage, any link may be selected. The new clause obtained by 

activating a link is called a resolvent of the two parent clauses connected 

by the link. The resolvent associated with a link between two clauses 

U { B} + CQ. 

~ 
+ e,u {C} 

is the clause 
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Resolution as originally defined { 49} incorporates the additional 

operation of factoring clauses. A clause ce is a factor of a clause C, 

~l \J O O O u CB + (O_l u • • • u (D_ , m n 

if 8 is a most general simultaneous unifier of the family of sets of atoms 

For example the clause Grandparent(x,y) +Parent(x,z) ,Parent(z,y) has two 

factors: 
Grandparent(x,y) + Parent(x,x) and 

Grandparent(x,y) + Parent(x,z) ,Parent(z,y). 

Later we shall see an example which requires the use of the factoring 

operation. 

Top-down generation of goal statements and bottom-up generation of 

assertions are special cases of resolution. In addition, resolution deals 

with the activation of links between two procedures and with the activation 

of links connected to non Horn clauses. 

Figures 44 and 45 and Figures 46-48 illustrate alternative connection 

graph refutations of the non Horn clause, Robert-is-always-working example. 

The first refutation (Figures 44 and 45) proceeds basically in the top-down 

direction, whereas the second refutation (Figures 46-48) proceeds basically 

bottom-up. 

+ Working (Robert) 

~~ 
Working (x) + A.t (x,work) Working (Robert) + , :. (Robert,home) 

~ / 
At (Robert,work), At (Robert,home) +-

Figure 44. The initial connection graph for the Robert-is-always-working 

example. k:tivation of links @ and (D initiates a top-down analysis and 

results in the deletion of the three parent clauses. 



+· At(Robert,work) 

\ 
0\ 
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+-At (Robert,home) 

/4 
At(Robert,work), At(Robert,home)"' 

□ 

Figure 45. The connection graph which results from the activation of 

links {2:' and@ in Figure 44. Activation of 0 results in the deletion 

of the two parent clauses. Activation of the descendant of G) in the 

resolvent results in the generation of the null clause and in the deletion 

of all other clauses. 

+- Working(Robert) 

----•-.. 

~,/- ~--. ·-
.,..,. 

·--Working(x) +- At(x,work) Working (Robert) + At (Robert,home) 

-~ 
0 ·"' 

'-
At (Robert,work) ,At (Robert,home) +-

Figure 46. The initial connection graph for the Robert-is-always-working 

example. Activation of 0) initiates a kind of bottom-up analysJ_ s. 

+- Working (Robert) 

__ 92--------------------0_. 
Working (Robert) ,At (Robert,home) +- Working(Robert) +- At(Robert,home) 

----··---------
(?) 

Figure 47. The connection graph which results from the ~ctivation of G) 
in Figure 46. Activation of@ continues the kind of bottom-up analysis 

begun in Figure 45. 

+- Working (Robert) 

I □ 
Working (Robert) +· 

Figure 48. The connection graph which results from the activation of 0 
in Figure 47. The only link in this graph descends from both links (v and 

(v in Figure 4 7. 

null clause. 

Activation of this link results in the generation of the 
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Figures 49-53 illustrate an alternative refutation of the set of 

clauses in the parsing problem. The activation of links G ,0 and @ 
in this example derives new procedures from old ones. 

+- S(l,6) 
t 

0 

S(x,y) +- Vp(z,y),Np(x,z) 

Vp(x,y) +- Verb(x,y) 

,~:'\ ,,,,./ 
\2-" 

Vp(x,y) +- Verb(x,z),Np(z,y) 

\ 
\ 
\ 

oe::::::::::__ ______ ------ ______ , .. · ·-..~ 
Verb(x,y) +- likes(x,y) Np(x,y) +- Det(x,u), Adj (u,v) ,Noun(v,y) Np(x,y) +- Noun(x,y) 

I 
likes(4,5) +- Det(x,y) +- The(x,y) Adj (x,y) +- little(x,y) 

r 
r;--,,; 

'0/ 
1 

The (1, 2) +- little(2,3) +-

mouse ( 3 , 4) +- cheese (5,6) +-

Figure 49. The initial connection graph for the parsing problem. Pctivation of links 

(D - (j) results in the deletion of all the parent clauses. Pctivation of G) and 0 
derives new procedures from old ones and is an example of macroprocessing: all procedure 

calls Verb(s,t) are eliminated from the program. 

1• also eliminated. 

The definition of the Verb procedure 



Figure so. 
Figure 49. 
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+ Vp(z,6) ,Np(l,z) 

Det(l,2) + Adj(2,3)+ Noun (3,4) + 

The connection graph which results from activating 

Act ... ·Jation of@,(~) and @ and then the descendant 

Noun(S,6) + 

,,.........,, r-::;--... . 
\2:_,J - 0 in 

-" of ~ results 

in the deletion of all parent clauses. 

Vp (4, 5) + 

Figure 51. 

Figure SO. 

Np(l,y) + Noun(3,y) Np(x,y) + Noun(x,y) 

\·---- ---~ .. ---- I \ ./ --- ~-: .. -... / .. 
Noun (3,4) + Noun ( 5 , 6) +-

The connection graph which results from activating © - @ in 

J.l.ctivation of links @ and @ corresponds to top-down analysis, 

whereas activation of @ derives a new procedure from old procedures. 
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+ Vp(z,6) ,Noun(3,z) +- Vp(z,6),Noun(l,z) 

I 
I 
L 

Vp (4 ,y) 

\_,,./_/,,,­

+- Noun(S,y) 

. \ 
\ 

\ 

Noun(3,4) +-

' 
' ' 

I 
I 

I 

f 

,1 

' ' ' ,' I 

/ I 

• 
I 
I 

Noun{S,6) +-

Figure 52. 
r,-:;\ ~ v-~ 

The connection graph which results from activating links 

in Figure SL 

3 +- Vp ( z, 6) , Noun ( 3, z) ---=--- Noun ( 3, 4) + 

□ 
' ~ Vp (4 ,y) +- Noun (5 ,y) ---=---Noun (5 ,6) +-

Figure 53. The connection graph which results from deleting clauses 

containing unlinked atoms in the graph of Figure 52. Activating @ 
and ~i and then the descendant of @ results in generation of the null 

clause. 

Self-resolving clauses. 

Before defining the connection graph theorem-proving system more 

precisely we need to illustrate the treatment of self-resolving clauses and 

factoring. 

A self-resolving clause is one which resolves with a copy of itself. 

For example 

l·_ppend(cons(x,y) ,z,cons(x,u)) + Append(y,z,u) 

resolves with the copy 

Append(cons(x' ,y') ,z' ,cons(x' ,u')) +- ~pend(y' ,z' ,u') 
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Amatching substitution is 

y:= cons(x' ,y'), z:= z', u:= cons(x' ,u') 

and the corresponding resolvent is 

Append(cons (x,cons (x' ,y')) , z', cons (x,cons (x' ,u'))) +- Append(y' ,z' ,u'). 

Figures 54-56 illustrate a combined top-down, bottom-up strategy for 

appending the list {3} to {2,1}. 

+- Append (cons ( 2, cons (1, nil)) , cons ( 3, nil), w) 

,J)L v 
--- 0 

Jppend (cons (x,y), z,cons (x,u)) + Append (y, z,u)---'------ Append (nil ,x,x) +-

Figure 54. The initial connection graph for appending {3} to {2,1}. 

The link 0 is a "pseudo-link" representing the real link between atoms 

in different copies of the self-resolving clause. Pseudo-links are not 

activated directly but are used to help construct the new links connected 

to atoms in newly generated clauses. Activation of link (D initiates 

a top-down execution strategy. The new derived goal stc, tement replaces 

the old goal statement. 

+- Jppend(cons(l,nil) ,cons(2,nil) ,w') 

'2>D(iL--~=------ 0 --.._ ·-- \::_} '" --- --" --Jppend (cons (x, y) , z, cons (x, u)) +- Append (y, z ,u) .1 >;4\ -- ',;:~-,c,:~ ;nil ,x,:<) +-

0 
Figure 55. The connection graph which results from activating (Din 

Figure 54. The new link@ descends from the pseudo-link (i). The 

unsuccessful link® descends from@- 1\ctivation of link 0 results 

in the deletion of the parent assertion and executes the recursive Append 

procedure bottom-up. 
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+ Append(cons(l,nil),cons(2,nil),w') 

........ _ 

·...__ -. 
Jppend(cons(x,y) ,z,cons(x,u)) + Append(y,z,u)---·-'...,'-"-•Append(cons(x,nil} ,z,cons(x,z)} + 

~ 

Figure 56. The connection graph which results from activating@ in 

Figure 57. The new link 0 descends from the pseudo-link (2). The new 

link 0 descends from 0 . A:::tivation of (D intersects the top-down 

and bottom-up analyses and results in the generation of the null clause. 

Factoring and the soldiers. 

In the following example the factoring operation is necessary in order 

to obtain a refutation: 

Suppose that 

Show that 

(1) all soldiers kill all people who do not kill 

themselves, and 

(2) all soldiers kill only people who do not kill 

themselves. 

(3) there are no soldiers. 

In a non clausal form of predicate logic (1) and (2) become (1'} and (2'} 

respectively: 

(1') Kill(x,y) + not-Kill(y,y) ,Sold(x) 

(2') not-Kill(y,y) + Kill(x,y),Sold(x) 

In clausal form (1') and (2') are respectively (l") and (2"). The negation 

of (3) is (3"): 

(1") Kill(x,y) ,Kill(y,y) + Sold(x) 

( 2 ·' J -+· Kill (x, y) , Kill (y, y) , Sold (x) 

( 3") Sold (Robert) + 

Here Robert is an arbitrary name for the soldier whose existence is expected 

to contradict (3). The set of clauses { (1 "), (2"), (3")} ie1 1.r,con:nstent. 

Figures 57-59 illustrate an unsuccessful attempt to obtain a connection graph 

refutation without use of the factoring operation. The successful refutation 
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obtained in Figure 59 is made possible by adding to the graph the factor 

Kill(Robert,Robert) + 

of the clause 

Kill(Robert,y), Kill(y,y) + 

already in the graph. 

/x,_~ 

+ Kill(x,y),Kill(y,y) ,Sold(x) 

Sold ( Robert) ~ 

Figure 57. The initial connection graph for the soldiers example. 

J\ctivation of Q) and@ results in the deletion of the three parent 

clauses. 

Kill(Robert,y), ~ill(y,y) + 

I'•· /-1 
' _,,.,,- I 

·,,,,,/" l 
... ,, ! 

'•·-----1 
+ Fill(Robert,y), Kill(y,y) 

Figure 58. 

Figure 57. 

The connection graph obtained by activating --~' and G) in 

There exists no way of activating links which eventually 

results in the generation of the null clause. In order to obtain a 

refutation it is necessary to add to the graph a factor of either one or 

both of the clauses in the graph. 

Kill ( Robert,Robert) ~ 

-<-· Kill (Robert,y), Kill (y,y) 

Figure 59 .· The graph which 

clauses in the graph. The new 

the link ~) descends from i.3) 
then of the descendant of 1'41;) 

\ .... . / 

results from adding d factor of one of the 

link 6 descends from both 0 --~nd ® 
and ® Activation of link \!~') and 

results in generation of ~he null clause. 
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Definition of the connection graph theorem-proving system. 

The following definition makes more precise the connectJ,," ::iraph 

theorem-proving system illustrated in the preceding examples" In order 

to simplify the definition, pseudo-links are not made expl1_c1 t 

(1) Initialise the graph. Let S be the set of all factors 

of clauses in the initial set of clauses. Form the 

initial connection graph by inserting a link betwe2r.1 all 

matching atoms on different sides of the arrow in 

different clauses in S. Label each link by the 

matching substitution 

(2) Repeat the following procedure until the null clause 

is generated. 

(a) Select a link in the graph. Activate it 

by generating the associated resolvent and 

all its factors. Delete the activated link, 

Add the resolvent and its factors to the graph-

(b) Co,mcct the atoms in the new clauses by links 

to other atoms in the graph. 

Suppose that an atom L0 in a new clause 

descends from an atom Lin one of the parent 

clauses. Suppose that the old atom Lis cc,nr.2cted 

by a link to an occurrence of an atom K. If the 

substitution er- labelling the link between Land K 

is compatible with 6, then insert a link between 

the new atom L8 and the occurrence of K. L3bel 

the link by the matching substitution. 

Suppose that an a tom in a new clause rna '- ,:hes 

an atom on the other side of the arrow in an,.:;d,et 

new clause or in one of the parent clauses. 

Insert a link between the matching atoms and 

label it by the matching substitution. 

(c) Delete from the graph any tautology and any 

clause containing an unlinked atom. Delete all 

links connected to atoms in the deleted clause. 

-- ---- -- -- ----------------
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The generation of all factors of input clauses and of resolvent< J s 

excessively redundant. Redundancy can be controlled by imposing 

restrictions on the factoring operation. The following res tr ictiun'c 

have proved useful in other theorem-proving systems. 

(1) Idem-factoring ( {25} , {21} ) . 

Only generate factors C9 of non Horn clauses C 

of the form 

cB u G 
l 2 + 

where 0 is a most general unifier of (~ 1 • Do not 

activate any links connected to atoms in ~ .:0 in the 

factor ce . 

(2) m-factoring ( {21} , {26} ) • 

Generate all factors of input clauses. Generate 

only those factors of resolvents which do not identify 

distinct atoms from the same parent. 

Neither of these factoring methods makes special use of the conneccicn graph 

structure. It may be that more satisfactory factoring methods wilJ_ be 

obtained by relating the generation of factors to the presence of ce1tdin 

links in the connection graph. 

The selection and activation of links is non-deterministic. D 1.ffe,rent 

sequences for scheduling the activation of links should lead to C,e same 

result and should differ only by leading to that result with more er Les3 

efficiency. In order to secure this objective it ls necessary t.,:;, .:1v::.id 

methods of selection which indefinitely postpone the activation of ._;e:::tain 

links needed for a refutation. This can be achieved by employing ;c3election 

methods which eventually select every link for activation. 

In addition to employing negative criteria which guard against dw 

dangers of indefinite postponement, it is necessary to use positive cr1ser1_a 

which prefer the selection of one link to another. These criteria ca!l be 

formulated by the user and conveyed to the theorem-prover in an auxiliary 

control language. Or they can be general-purpose strategies which are 

pre-programmed into the theorem-prover. In either case, it is preferable 

in general to select links whose activation least complicates the graph" 
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Simplification takes place when the resolvent replaces both its parents 

or when it replaces one of its parents but contains fewer atoms and links 

than the deleted parent. The selection of links, which temporarily 

complicate the graph but eventually simplify it, is facilitated by the 

look-ahead computations described in {23}. Preference should also be 

given to the selection of links connected to clauses which descend from 

the initial goal statement or problem-specific assertions. The combination 

of these two preference strategies combines in connection graphs the 

principle of procrastination with the Pohl and Bledsoe heuristics. 

Amore detailed investigation of connection graphs, emphasising 

their historical relationship with top-down resolution systems, is reported 

in the original publication {23}. 
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